
HAL Id: hal-01535060
https://hal.science/hal-01535060v1

Submitted on 8 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Event-B at Work: Some Lessons Learnt from an
Application to a Robot Anti-collision Function

Arnaud Dieumegard, Ning Ge, Eric Jenn

To cite this version:
Arnaud Dieumegard, Ning Ge, Eric Jenn. Event-B at Work: Some Lessons Learnt from an Application
to a Robot Anti-collision Function. 9th International Symposium on NASA Formal Methods (NFM
2017), May 2017, Moffet Field, CA, United States. pp.312-341, �10.1007/978-3-319-57288-8_24�. �hal-
01535060�

https://hal.science/hal-01535060v1
https://hal.archives-ouvertes.fr

adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Event-B at Work: some Lessons Learnt from an

Application to a Robot Anti-Collision Function

Arnaud Dieumegard1, Ning Ge1, 2, Eric Jenn1

1IRT Saint-Exupéry

118 Route de Narbonne, 31432 Toulouse, France

<firstname.lastname>@irt-saintexupery.com
2Systerel Toulouse

La Maison des Lois, 2 impasse Michel Labrousse, 31036 Toulouse, France

<firstname.lastname>@systerel.fr

Abstract. The technical and academic aspects of the Event-B meth-

od, and the abstract description of its application in industrial contexts

are the subjects of numerous publications. In this paper, we describe the

experience of development engineers non familiar with Event-B to get-

ting to grips with this method. We describe in details how we used the

formalism, the refinement method, and its supporting toolset to develop

the simple anti-collision function embedded in a small rolling robot.

We show how the model has been developed from a set of high-level

requirements and refined down to the software specification. For each

phase of the development, we explain how we used the method, expose

the encountered difficulties, and draw some practical lessons from this

experiment.

Keywords: Formal refinement, software verification, formal verifi-

cation, anti-collision, Event-B.

1 Introduction

The practical implementation details and the difficulties encountered during the

application of the Event-B method by “typical industrial engineers” are usually not

widely discussed. Therefore, in the current publication, we share the method we have

used, the difficulties we have encountered, and some lessons we have learnt when

applying this method to develop one particular function of our small rolling robot [1].

It is worth noting that even though this development was tightly driven by consid-

erations about aeronautical certification, the question of compliance with ARPs [2] or

DOs [3]–[5] objectives using Event-B is not directly addressed here.

The paper is organized as follows. Section 2 outlines our development process.

Section 3 introduces our case study: the anti-collision function of a small rover. Sec-

tion 4 details the elaboration of the software requirements using formal refinement.

Section 5 covers related works. We conclude in section 6.

2 Formal Refinement in an Industrial Development Process

Our experiment focuses on the following development activities: (i) formalization

of the system specification, (ii) definition of a refinement strategy, (iii) application of

the refinement strategy to elaborate a set of high-level software requirements compli-

ant with the initial specification. Subsequent software production activities are not

detailed and are the subject of an ongoing publication [6]. Other activities such as

integration or testing are not addressed.

The development process starts with a set of informal requirements expressed in a

natural language. In order to optimize the modelling and validation effort, the initial

set of requirements is decomposed into disjoint subsets, the processing of which is

realized sequentially. Processing a subset of the requirements involves several phases:

formalization, where requirements are translated into Event-B constructs; validation,

where these constructs are validated against the initial user specification; refinement,

where these constructs are made more concrete; verification, where the correctness of

these constructs is proved. This process stops when (i) all subsets have been pro-

cessed and (ii) the set of modelling elements allocated to software is completely de-

fined. The overall development process is depicted on Fig. 1.

System
requirements

process

Software
requirements

process

Software Design

Software
Coding

System requirements

HLR

LLR

Source code

Integration

Fig. 1. Overall development strategy

With respect to a typical development process in the aeronautical domain, this part

of the overall process covers part of the system-level specification and design activity

(as per ARP4754 [2]) and part of the software requirement activity (as per DO-178C

[3]).

In our case, we consider the last refinement of the Event-B model to carry high-

level requirements (HLR), i.e., “software requirements developed from analysis of

system requirements, safety-related requirements, and system architecture” (DO-

178C). The software code will be implemented from those HLR; this part of the pro-

cess is described in [6].

3 The Case Study

3.1 The TwIRTee Rover and the ARP Function

TwIRTee is the three-wheeled robot (or “rover”) used as the demonstrator of the

INGEQUIP project conducted at the Institut de Recherche Technologique of Toulouse

(IRT Saint-Exupéry). It is used to evaluate new methods and tools in the domain of

hardware/software co-design [1], virtual integration, and application of formal meth-

ods for the development of equipment [6]–[9]. TwIRTee’s architecture, software, and

hardware components are representative of aeronautical, spatial and automotive sys-

tems.

A rover performs a sequence of missions (on Fig. 2) defined by a start time and an

ordered set of waypoints to be passed-by. Missions are planned off-line and transmit-

ted to the rover by a supervision station (). To go from the first waypoint to the last,

the rover moves on a track materialized by a dark line on the ground. In a more ab-

stract way, a complete mission can be modelled by a path in a graph where nodes

represent waypoints, and edges represent parts of the track joining two waypoints.

A rover shares the tracks with several identical rovers. In order to prevent colli-

sions, each of them embeds a protection function (or ARP) which purpose is to main-

tain some specified spatial () and temporal separation () between them. On Fig. 2,

temporal separations are represented by light green and light red areas superimposed

on the map: basically, rover 2 (resp. rover 1) shall never enter the light green (resp.

light red).

In our implementation, the ARP essentially acts by reducing the rover speed and,

in some specific cases, by performing a simple avoidance trajectory. To take the

appropriate action, the ARP exploit the following information: the map, the position

of all other rovers transmitted by a centralized supervision station (), and its own

position.

For this paper, we rely on a simplified version of the ARP function where some

specification elements such as the rovers positions, speeds, decelerations, etc. are

represented as discrete values (no use of Real or Floating Point data). Interested read-

ers can refer to another study [9] conducted on this same function but covering differ-

ent formal modelling aspects.

W1

Spatial separation

Mission:
(W1,W4,W5)

W5

W4 W7

W6

Map

W8

Mission:
(W5,W2,W5)

Map

W2Rover 1

Rover 2W3

Temporal separation

Position transmissionSupervision
station

Waypoint

Fig. 2. System overview

3.2 Rodin and Event-B

Event-B [10] is a method to develop systems according to a correct-by-

construction approach. It is the system level modelling evolution of the B-method

[11] successfully applied in real-size industrial applications [12]. The Event-B method

constructs a correct model of a system via a series of refinements of its specification.

The correction of a refinement is ensured by proving automatically or manually a set

of proof obligations (PO) generated from the model.

The Rodin Platform1 is an Eclipse-based IDE for Event-B that provides effective

support for refinement and mathematical proof. The platform is open source, based on

the Eclipse framework. Its development started in 2004 during the RODIN project,

and continued within the DEPLOY and ADVANCE projects. The community is still

active regarding the development. The extensibility of the platform through the use of

plugins is of great interest as it allows to rely among others on (i) analysis tools for

verification (SMT solvers, model checkers) or validation (animators, simulators gen-

erators) of the models and the refinements, (ii) traceability facilities for link with re-

quirement documents, (iii) code generation tooling, (iv) automated refinements meth-

ods easing the refinement work.

4 From System-level Requirements to High-level Requirements

In our process, the latest refinement of the Event-B model represents software

HLR. As already studied in [10], [13], the development of a refinement strategy is the

entry point for the definition of Event-B models. It improves the understanding of the

requirements by the designer and the robustness of the development process by

providing an intermediate formalization phase between requirements and design.

Refinement strategy application produces Event-B refinements.

4.1 Building a Refinement Strategy

Our refinement strategy is based on Abrial [10], Butler et al [13] and Wen Su et al

[14]. The work started with a thorough analysis of the requirements to identify the

variables used in the system and classify them as either uncontrolled (environment),

controlled (system), or commanded (operator). Requirements are classified accord-

ing to the same three categories. The main role of the ARP function is to ensure the

absence of collision between rovers by controlling the deceleration of the rover. The

controlled variable deceleration of the control function is chosen as the first element

of focus in the requirements document for the elaboration of the refinement strategy.

Requirements Layering

The refinement strategy defines the order to process the requirements. This order is

determined from the dependencies between variables and, consequently, between

requirements. In our case study, we identified the deceleration feature as dependent of

the occurrence of conflicts and emergency braking. As a first abstraction, conflicts

1 http://www.event-b.org/

might occur at any time and so might emergency braking. Our initial layer of refine-

ment was thus only composed of these three variables.

From this entry point, the next requirements layers are produced by gradually in-

troducing new features such as: fleet of rovers, distances between rovers, emergency

braking etc. Each feature is attached to a subset of the initial requirements. As some

requirements are linked to multiple features, they are attached to multiple layers and

their implementation is gradually completed along with the refinement of layers.

Complementary to the previous horizontal refinements, vertical data refinements

are also performed. For instance, the values of the deceleration variable, initially con-

strained by a simple range in the early refinement, become later constrained by axi-

oms specifying the semantics of deceleration. Similarly, the calculus of the distance

between rovers that was simply defined as a value in a range is refined as a shortest

path function.

Lessons Learnt

Building a consistent, adequate and applicable refinement strategy is the first step

towards the correct understanding of the system and contributes to the correct model-

ling of the system. If requirement classification is a rather systematic activity, their

layering (or sequencing) is more difficult. Layering starts with the identification of an

entry point from which the activity starts. Layering may be driven by the identifica-

tion of the minimal subset of features that ensures the capability to simulate and vali-

date the model at each layer.

4.2 Formalization of Requirements

Formalization starts with the definition of Event-B contexts containing sets, con-

stant variables and constant relations, the definition domain of which are specified as

axioms. Then machines are detailed with variables and relations with their definition

domain specified as invariants. Variables require the setting of their initial value in

the special INITIALIZATION event. Variables shall be used in events specifying the

condition under which their value changes (guards) and how their value changes (ac-

tions). Event execution modifies the state of the system. Properties expected to be

verified by the system shall be added as invariants of the machine and shall hold in

every event.

Producing Event-B models from informal specification can be done using multiple

approaches. A first approach relies on modelling the states of the system as sets. In

that interpretation, state changes are represented by the “movement” of elements from

one set to another. This approach has been used for instance in an alternative model-

ling of our use case in [9] where the study goal was on time and the data refinements

relied on the use of real values.

Our modelling approach, depicted in Fig. 3, is inspired from [10]. The function is

first abstracted as a hierarchic cyclic state machine comprising two states: the first one

updates the state of the environment of the system and the second updates the state of

the system itself (i.e., performs the function under design). Transition from one state

to the other is triggered by dedicated events (arp_state_env_start and

arp_state_fun_start) updating a state variable arp_state. Sub state ma-

chines are triggered depending on activation variables

([mm|fm|cm|em]_activated). This approach provides a clear separation be-

tween the environment and the system under design, exposes the execution cycle, and

so facilitates the production of the executable code from the model. Unfortunately,

exposing the execution cycle of the function may also introduce implementation de-

tails too early in the refinement process.

Function state machineEnvironment state machine

arp_state_fun_start

arp_state_env_start

fm
cm emmm

fm

Fig. 3. Event-B model as a circuit

Lessons Learnt

Modelling the system using our approach does suffer from some serious limitations.

We assume that all other rovers in the environment do implement the same ARP func-

tion as the one under design. For our implementation, this assumption was added as a

new environment requirement. Such assumption was not necessary in the alternative

modelling approach as every rover in the system was explicitly modelled and each of

them implements the same ARP behaviour. Our modelling approach yields an ad-

vantage regarding the formal verification: as we do not model all the rovers, a level of

universal quantification in the model is removed.

Vertical data refinements produce detailed specifications for variables and for

functions. These specifications may be purely declarative or imperative. In the first

case, implementation is provided outside of the Event-B world; in the second case,

Event-B is used to “code” the function. In our use case, for instance, an imperative

model of the simple “deceleration function” could be easily designed in Event-B.

However, this would be much more tedious for the “shortest path function”. Thus we

have favoured a pure declarative approach in Event-B, leaving the implementation

details to programming languages.

The choice of the “set-oriented” or “finite-state-machine-oriented” modelling ap-

proach has an impact on efficiency. The use of sets increases abstraction and reduces

the modelling effort, but it increases the implementation work. Reciprocally, using the

finite state machine approach is less abstract, less compact, more difficult to write, but

simplifies the implementation. Additionally, this approach also facilitates the auto-

matic discharging of POs but at the price of adding invariants to propagate the values

of variables changed in sub states to the final state of the state machine. Note also that

the nature of the variables and the system under design are likely to favor one or the

other modelling approaches.

Finally, it is worth noting that writing Event-B models does not require more

knowledge than writing software. While using first order logic and set theory is a shift

from classical software engineering methods, this belongs to the mathematical back-

ground of any engineer. However, writing Event-B model requires a strong capability

of abstraction and a capability to describe without being able to execute…

4.3 Verification of Refinements

Verification of formal refinements in the Event-B method relies on the discharging

of automatically generated POs. POs can be automatically discharged using predicate

provers embedded in the Rodin toolset. Plugins have been developed to leverage the

increasing capabilities of SMT solvers such as Alt-Ergo2, Z33, CV44, or others. For-

mal verification is conducted in parallel with formal refinement: as soon as any ele-

ment is added in an Event-B model, PO are generated and potentially discharged au-

tomatically. In some way, this can be related to the automatic syntactic verifications

performed by current IDEs.

Refinement Verification in Practice

The number of generated POs increases with the size of the model. Even with au-

tomatic verification provided by embedded PP and SMT solvers, some POs remain to

be proved “manually”. Hopefully, the proof plug-ins in Rodin are easy to use and

very intuitive for the users, and thus is of great help when manual proofs are required.

Unfortunately, diagnosing why some PO fails to be discharged manually or auto-

matically remains difficult. The reason may be that the property simply does not hold,

or that either the automatic prover or the user is not able to carry out the proof. In the

latter case, reasons may be the limited capabilities of the human or mechanical prover,

or missing lemmas. Discriminating the various situations is very hard and may require

a significant (but hard to estimate) effort.

Rodin embedded prover can be adapted through the definition/modification (with a

graphical interface) of profiles. Profiles customization finds its interest in case de-

pendent models as it provides tactics adapted to specific goals to be proved. We relied

on profiles customization in our use case in order to add tactics such as “domain re-

writing” that were of great help for the automation of the proof work.

Part of the proof work was additionally assisted by adding “helper” invariants. This

was unfortunately not enough to fully automate the formal verification, as about 1%

of the proofs remained to be done by hand (a total of 2442 POs including 15 proven

by hand). Remaining proofs relate to the use of non-linear arithmetic for which auto-

matic provers are not really efficient. We dealt with these proofs by adding theorems

adapted to the proof goals and by performing their proof by hand. The necessary work

2 http://alt-ergo.lri.fr/
3 https://github.com/Z3Prover/z3
4 http://cvc4.cs.nyu.edu/web/

was not complex but is time consuming due to the manual search for missing theo-

rems.

Lessons Learnt

Formal verification is the most time-consuming activity in the refinements process.

This work is complex and requires experience and specific skills when automatic

proof fails to discharge all POs. Worse, the effort to complete a proof is difficult to

estimate. This problem is made even more critical due to the fact that no guidance can

be provided to complete a proof. Avoiding manual proof work would thus be a way to

avoid such limitation but would require modelling guidance on how to stay on the

path of what is automatically provable.

On the other side, proofs performed fully automatically and immediately may cov-

er other difficulties. Hence, our first proofs were performed in no time due to contra-

dictory axioms/invariants/guards. Unfortunately, avoiding such inconsistencies is

difficult and detection cannot be done automatically. So we relied on the voluntary

insertion of inconsistent axioms/invariants/guards to check for the consistency of the

other axioms/invariants/guards.

After a relatively short training on the Event-B method, formalism and proof tech-

niques, it appears to us that modelling systems and proving them using the Rodin

toolset is a task that is accessible to engineers with some background in mathematical

logics. However, the time needed for the modelling and verification of a system re-

mains difficult to estimate. Worse, the effect of a simple model modification on the

proof effort (especially, manual) is difficult to estimate. We really miss appropriate

modeling guidance.

4.4 Validation of Formal Requirements

Ideally, the set of requirements is consistent and complete at each refinement level.

In reality, it is very likely that some requirements have been ignored, misunderstood,

or badly transcoded. As the rework of an Event-B model is fairly expensive, it shall

be validated as early and often as possible.

Executing the model has been identified by Event-B experts as the only means to

achieve validation [15], [16]. The production of simulators has been the subject of

many works [17]–[19] and tools have been developed for this purpose.

Simulator-Based Validation

In our experiment, we relied on ProB [20] complemented by B-Motion [21] and

JeB [22] as validation tools. The last two additionally provide means to graphically

represent the execution of the model: this greatly improves stakeholders’ ability to

validate the Event-B models.

During the phase of requirement analysis, we developed a simulator including

movement dynamics of the rovers on a map using ScicosLab5 as depicted in Fig. 4.

The only purpose of the simulator was to validate our understanding of the specifica-

tion. Such simulator also has the interesting effect of producing simulation scenarios

5 http://www.scicoslab.org/

that can be used as test vectors fed to the Event-B simulators[19]. Simulations relying

on such values directly contribute to the validation of Event-B models as they rely on

pre-validated sets of values. Integration of third party simulators and produced values

can be technically done relying on FMI (Functional Model Interface) and the related

plugin developed for integration in the Rodin platform [17].

Fig. 4. ScicosLab simulator with graphical display (b) and underlying model (a)

Developing Event-B simulators is easy, especially during the first steps of refine-

ment. However, generating actual input vectors for the simulation can be quite tedious

and complex when the variables or constants are specified using non-deterministic

expressions.

We relied on JeB [18] for the generation of a web-based simulator and for the gen-

eration of values for constants. JeB provides an automatic translation of Event-B

models to an executable JavaScript implementation. It is then possible to provide

JavaScript functions computing the values for constants (resp. variables and parame-

ters). Such functions produce values that are pretty-printed using Event-B notation.

These values can then be used in the original Event-B model making JeB a very

handy tool for the production of test vectors for complex data (relations pairs etc…).

Computed values correction is formally verified using PP and SMT solvers when they

are injected in the Event-B model. In our ARP function we produced values for the

refined function for the calculus of the deceleration to be applied by the rover using

JeB.

In control systems, liveness properties or correctness properties such as deadlock

freeness shall be verified to ensure the responsiveness of the system. Simulation can

be used to obtain a first level of confidence on the absence of deadlocks, before re-

sorting to formal proof. Deadlock freeness theorems can be generated using dedicated

Rodin plugins, but depending on the model size, their verification may become very

challenging. Verifying these properties can also be done using model checking. But

this approach suffers from the classical limitations of model checkers. In our experi-

ment, we used a translation to another formalism and toolset (HLL and S3, see [6])

after introducing a scheduling sequence of events to the system under design to tackle

more efficiently and automatically the verification of those properties.

Lessons Learnt

Validating a formal model with respect to a set of informal requirements is a diffi-

cult task. Hopefully, the Event-B environment provides a set of very helpful anima-

tion tools. Animation allows stakeholders to see the behavior of the formal model and

validate it. Furthermore, it allows to assess reachability and liveness properties that

are difficult (and sometime impossible) to express directly on the Event-B model and

to formally verify these properties using model checking. However, as for any test-

based approach, confidence on the validation depends on the coverage of the valida-

tion scenarios.

4.5 Model Review

The review activity in a classical development process aims at ensuring the correct

implementation of requirements as code or the correct refinement of requirements, to

detect inconsistencies and misinterpreted requirements, and enforce the use of devel-

opment standard (e.g., code writing standards). Here, we consider three specific goals:

ensure a correct encoding of the designer’s intent, reduce the verification effort, and

support traceability.

Ensure Correct Encoding of Designer Intent

The correct encoding of the designer intent is ensured by the validity, correctness,

consistency and completeness of the formal model with respect to the requirements.

We provide here multiple elements supporting this goal.

Introduction of verification lemmas is a starting point advocated in many publica-

tions to assess the consistency of an Event-B model. As already stated, success in

proving obviously false theorems/invariants/guards put in contexts/machine/events

allows one to detect inconsistencies in contexts/machine initialisation/event guards

and parameters definitions.

Additional automated tooling for checking expressions could also help in our veri-

fication process, as an example, checking if bounded logic variables are used in quan-

tified constructs or writing implications in the body of existentially quantified expres-

sions might raise a warning for the designer.

A proofreading approach to model review could also be applied to Event-B mod-

els by having a reviewer to rewrite chosen guards and invariants using natural lan-

guage. The reviewer would then check if the natural language expressions are indeed

correct rewritings of the associated requirements. The opposite approach could also

be done and would be safer (reviewer to write the natural language expression of the

guard using FOL) but less straightforward for engineers. Proofreading should be fo-

cused on complex guards and invariants that are more likely to contain errors and on

invariants stating key properties of the system under design.

Minimize Verification Effort

Verification is one of the most expensive activities in the development of embed-

ded critical systems. Minimizing verification efforts is thus of primary interest.

To facilitate the (possibly automatic) verification process, we have to add addition-

al lemmas to the model. Those lemmas were explicitly identified as “helper” lemmas,

so as to ease the work of assessing the correction of the model. After several modifi-

cations of the model, some of those lemmas became unnecessary and were removed

from the model to lighten the verification. It is worth noting that some tautologies

were kept in the model even though they did not bring additional information as they

appeared to be very helpful to support “case splitting” and simplify the automatic

proof.

The verification effort obviously strongly depends on the ability for the verifier to

understand the model. One way to achieve this goal relies on the compliance to a set

of well-defined modelling rules compiled in a “modelling standard”, in a way similar

to what is usually done for software coding. Many rules for code writing such as

MISRA-C[23] can be applied to the writing of logical expressions: avoid deep nest-

ing, avoid too long lines of code, line breaks position according to operators, indenta-

tion consistency, parenthesizing consistency, avoid having two operator of different

precedence at the same level of indentation. Verification effort can also be strongly

reduced by an appropriate organization of the models. For instance, in our experi-

ment, we applied the following rule about model elements ordering: “the order of

declaration of constants, variables or parameters should match the order of appear-

ance of their respective definition (axioms, invariants, guards)”.

It is obvious but worth noting that adding comments in the model significantly

contributes to a better understanding of the intent of the designer and of the structure

and choices made during the design process. Comments shall be of help and not state

obvious information.

Existing tooling may also simplify the models and thus impact its understandabil-

ity. For instance, the “theory” plugin provides the capability to factorize properties or

expressions of the model and thus simplifies the writing (and, later, the understand-

ing) of complex Event-B models.

We have provided here a few examples of good practices for the writing of an

Event-B model to produce more readable, reviewable and thus understandable mod-

els. There exists many works and standards used in the industry to ensure such prop-

erties for code but to our knowledge there is a minimal work done on applying this to

logical specification. We plan on tackling these with more details on a dedicated pub-

lication.

Traceability

Aeronautics certifications require to trace each design elements to some require-

ment. The corresponding certification objective is “High-level requirements are trace-

able to system requirements” (DO178 Annex A, table A-3, objective 6). In our exper-

iment, ensuring traceability during the refinement process first relied on making ex-

plicit the mapping between the elements in the informal specification and Event-B

constructs. At high level, naming conventions allowed us to link each refinement

layer defined by the refinement strategy to its corresponding Event-B machine and

context. Newly introduced model element (constant, axiom, variable, invariant, event,

guard and action) were commented with the name of the requirement to which it was

linked. If an element could not be linked to a requirement, it was marked as “derived”

and the corresponding derived requirement was added to the specification.

We decided to use this approach to keep the traceability artefacts visible at all time.

An alternative solution would be to rely on the traceability plugin integrated in the

Rodin platform (RMF). This solution would simplify the traceability review process

and avoid cluttering of the models. Unfortunately, it was not available for the version

of Rodin we used in our experiment (such integration is planned to be provided at the

time of writing).

Lessons Learnt

We advocate that code review can be applied to Event-B models and may help in

(i) demonstrating the correct encoding of the intent of the designer in the formal mod-

el; and (ii) minimizing the verification effort by adopting appropriate modelling pat-

terns.

Model review against a well-defined modelling standard is a simple and efficient

means to enhance the quality of the model and reduce the number of errors. The bene-

fits of such activity strongly overcome its cost. Hence, it shall be an integral part of

the Event-B models development process. We believe that the complexity of such a

review activity is affordable for software engineers with basic mathematical

knowledge.

Additionally, generating appropriate documentation from Event-B models would

also greatly simplify the review work. Indeed, the way of displaying models in the

Rodin environment is not really adapted to a proper review activity. For instance, a

categorization of model elements and comments according to their purpose / role

(traceability, design choices, model element meaning, general information …) with

associated documentation generation would greatly help the review process.

Our approach to deal with traceability was applicable to our use case because of

the granularity of our requirements. Tracing more abstract requirements to specific

model elements would be difficult to manage and verify that way. Relying on an in-

termediate level of (semi-)formal requirements as advocated in the use of the “ex-

tended problem frame” approach [24] would be more generalizable.

5 Related Works

Research projects have produced a large literature on the methodology and tools

around the use of Event-B for system modelling. Project such as DEPLOY, for in-

stance, [24] have provided some very valuable results on the application of Event-B

on industrial use cases. In this work, they rely on the “extended problem frames”

approach as an intermediate formalism between informal requirements and Event-B

models to further formalize relations between requirements elements and thus simpli-

fy the formalization work. Model validation is tackled in their approach using tracea-

bility and animation through the use of ProB. To assess deadlock freeness, they rely

exclusively on ProB.

A complete approach for the design and conception of a pacemaker system [25]

and an adaptive cruise control has been developed by Singh [19]. Formalization of

requirements is done through the extraction of modes and variables and introduction

of refinement charts [25]. Event-B models are then produced, verified and validated

[26]. The whole process is also confronted to a potential use in a software certification

environment [27].

Our work on the analysis and formalization of requirements does not provide addi-

tional elements compared to previously presented state of the art applications. We

advocate on relying on animation technologies to improve the understanding of simu-

lation results by stakeholders by providing graphical simulators generated using B-

Motion and/or JeB. Simulation input data may be produced through the use of simula-

tors generators like JeB. We propose to additionally rely on a transformation of

Event-B models to HLL for verification and validation. A similar approach is advo-

cated in the FORMOSE6 project relying on UPPAAL [28]. We propose an additional

review process to complement validation relying on software review techniques en-

suring a better detection of conception errors and misunderstanding of the specifica-

tion during Event-B models design.

6 Conclusion

This work focuses on the application of the Event-B method on part of the process

followed during an industrial development. We give some lessons and proposed some

of the simple practices that we applied during this experiment. Relying on the Event-

B method for the development of systems provides a framework for the formalization

of textual requirements. This is strengthening the traditional error prone formalization

step of a software development process. Formal modelling, verification and validation

of Event-B models at an early stage provide a very valuable and fast feedback on the

correction of requirements.

One important conclusion of our experiment resides in the very fact that we –

“standard” software engineers – were able to apply the method on a non-trivial prob-

lem in a very reasonable time. This is in particular due to the great maturity of the

toolset and the efficiency of the underlying provers. However, this positive conclusion

is certainly largely due to the natural adequacy of our problem to the method. An

additional conclusion of our experiment is that classical verification and validation

activities shall be complemented by review activities. They strongly contribute to

reduce the number of errors and more generally to enhance the quality of the model.

Before moving to a large scale industrial application, some very important ques-

tions remain to be answered: what is the actual usage domain of the method, consider-

ing the constraints imposed by the capability of the automatic verification means?

How robust is the method to a change in the requirements? What are the good model-

ing practices to enhance this robustness and to reduce the verification effort? Definite-

6 http://formose.lacl.fr/

http://formose.lacl.fr/

ly, it is necessary to evaluate the method on different types of systems to detect weak

and strong points for its application.

This work will be pursued to answer these questions, and more specifically to ad-

dress the applicability of the Event-B method in a DO-178C compliant development

process. Additional tooling may be necessary in order to assess requirements cover-

age and improve review activities. Purpose / role focused documentation generation

could serve these activities that needs to be conducted in a certification environment.

7 REFERENCES

[1] P. Cuenot, E. Jenn, E. Faure, N. Broueilh, and E. Rouland, “An Experiment on

Exploiting Virtual Platforms for the Development of Embedded Equipments,”

in 8th European Congress on Embedded Real Time Software and Systems

(ERTS 2016), 2016.

[2] SAE, SAE ARP4754 Certification Considerations for Highly-Integrated Or

Complex Aircraft Systems. Warrendale, USA: Society of Automotive Engineers

(SAE), 1996.

[3] RTCA, DO-178C, Software Considerations in Airborne Systems and Equip-

ment Certification. Special Committee 205 of RTCA, 2011.

[4] RTCA, “DO-333 Formal Methods Supplement to DO-178C and DO-278A,”

RTCA & EUROCAE, Dec. 2011.

[5] RTCA, “DO-331 Model-Based Development and Verification Supplement to

DO-178C and DO-278A,” RTCA & EUROCAE, Dec. 2011.

[6] N. Ge, A. Dieumegard, E. Jenn, and L. Voisin, “From Event-B to Verified C

via HLL,” Oct-2016.

[7] M. Clabaut, N. Ge, N. Breton, E. Jenn, R. Delmas, and Y. Fonteneau, “Indus-

trial Grade Model Checking Use Cases, Constraints, Tools and Applications,”

in 8th European Congress on Embedded Real Time Software and Systems

(ERTS 2016), Toulouse, France, 2016.

[8] N. Ge, E. Jenn, N. Breton, and Y. Fonteneau, “Formal Verification of a Rover

Anti-collision System,” in International Workshop on Formal Methods for In-

dustrial Critical Systems and Automated Verification of Critical Systems, 2016,

vol. 9933, pp. 171–188.

[9] N. K. Singh, Y. Ait-Ameur, M. Pantel, A. Dieumegard, and E. Jenn, “Stepwise

Formal Modeling and Verification of Self-Adaptive systems with Event-B. The

Automatic Rover Protection case study,” presented at the ICECCS, 2016.

[10] J.-R. Abrial, Modeling in Event-B - System and Software Engineering. Cam-

bridge University Press, 2010.

[11] J.-R. Abrial, The B-book: Assigning Programs to Meanings. New York, NY,

USA: Cambridge University Press, 1996.

[12] J.-L. Boulanger, Formal methods applied to complex systems: implementation

of the B Method. 2014.

[13] M. Butler, “Towards a cookbook for modelling and refinement of control prob-

lems,” 2009.

[14] W. Su, J.-R. Abrial, R. Huang, and H. Zhu, “From requirements to develop-

ment: methodology and example,” in Formal Methods and Software Engineer-

ing, Springer, 2011, pp. 437–455.

[15] A. Mashkoor, J.-P. Jacquot, and J. Souquières, “Transformation heuristics for

formal requirements validation by animation,” in 2nd International Workshop

on the Certification of Safety-Critical Software Controlled Systems-SafeCert

2009, 2009.

[16] S. Hallerstede, M. Leuschel, and D. Plagge, “Refinement-animation for Event-

B—towards a method of validation,” in International Conference on Abstract

State Machines, Alloy, B and Z, 2010, pp. 287–301.

[17] V. Savicks, M. Butler, J. Colley, and J. Bendisposto, “Rodin multi-simulation

plug-in,” presented at the 5th Rodin User and Developer Workshop, Toulouse,

France, 2014.

[18] F. Yang, “A Simulation Framework for the Validation of Event-B Specifica-

tions,” Université de Lorraine, 2013.

[19] N. K. Singh, “Reliability and safety of critical device software systems,” Ecole

Centrale de Nantes, 2011.

[20] M. Leuschel and M. Butler, “ProB: A model checker for B,” in International

Symposium of Formal Methods Europe, 2003, pp. 855–874.

[21] L. Ladenberger, J. Bendisposto, and M. Leuschel, “Visualising event-B models

with B-motion studio,” in International Workshop on Formal Methods for In-

dustrial Critical Systems, 2009, pp. 202–204.

[22] F. Yang, J.-P. Jacquot, and J. Souquières, “JeB: safe simulation of Event-B

models in javascript,” in 2013 20th Asia-Pacific Software Engineering Confer-

ence (APSEC), 2013, vol. 1, pp. 571–576.

[23] MIRA Ltd, “MISRA-C:2004 Guidelines for the use of the C language in Criti-

cal Systems.” .

[24] L. Petre, K. Sere, and L. Tsiopoulos, “Deploy Methods: Final Report,” D44,

Apr. 2012.

[25] D. Méry and N. K. Singh, “Formal Specification of Medical Systems by Proof-

Based Refinement,” ACM Trans Embed Comput Syst, vol. 12, no. 1, p. 15:1–

15:25, Jan. 2013.

[26] D. Méry and N. K. Singh, “Real-Time Animation for Formal Specification,” in

Complex Systems Design & Management 2010, Paris, France, 2010, pp. 49–60.

[27] D. Méry and N. K. Singh, “Trustable Formal Specification for Software Certi-

fication,” in 4th International Symposium On Leveraging Applications of For-

mal Methods - ISOLA 2010, Heraklion, Crete, Greece, 2010, vol. 6416, pp.

312–326.

[28] G. Behrmann et al., “UPPAAL 4.0,” in Third International Conference on the

Quantitative Evaluation of Systems - (QEST’06), 2006, pp. 125–126.

