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The structural role of pavements is to decrease, by means of their material behavior layers, stresses
from the supporting soil so as to allow for durable traffic flow and parking. Pavement is composed
of a stacking sequence of layers, each performing a distinct function that may be divided into two
sub-components: road foundation and surface layers. The road foundation serves to distribute the
loads induced by vehicles, bringing them to a level compatible with supporting soil characteristics.
This foundation can comprise two sub-layers, called respectively the base course and subbase, which
may or may not be distinct in composition depending on both the environment and the traffic
intensity applied to the structure. The wearing course, either an overlay or a surface dressing layer,
is primarily intended to protect the road foundation against water infiltrations and intense traffic.

The French pavement design method uses Burmister's model [1] for a planar elastic multilayer
structure within the half-space composed of the pavement-soil system. This model can be
programmed, for example, with LCPC's "ALIZE" software described in Autret et al. [2], which yields,
in semi-analytical form, the theoretical stress and strain fields taken into account during pavement
design. In analyzing certain phenomena not incorporated into conventional tools (e.g. flexible
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pavements submitted to either strong temperature gradients or the action of low-speed channeled
traffic loads), a real need gets expressed for more highly-specialized numerical tools, for example in
coping with slow-moving truck traffic that leads to the appearance at the bottom of the asphalt layer
of transverse strains sharply higher than longitudinal strains [3]. This effect, heavily magnified by
multiple-load axles (e.g. airport runway loads), is not predicted by conventional computations
conducted in elasticity. In the case of laboratory tests on bending cracking, the viscoelasticity of
overlays can obviously induce top-down crack propagation, even in the case of a specimen notched
over the lower part [4]. Improving model representativeness thus requires, among other things,
including the viscoelastic behavior of asphalt overlays.

A semi-infinite multilayer structure model based on Huet and Sayegh's thermoviscoelastic
constitutive law [5,6] will be presented herein. The method employed consists, by means of a double
Fourier transformation, of setting up the problem within the horizontal wave number space and
solving it analytically along the thickness. The solution, identified in the rolling load coordinate
system, is obtained by adding a double inverse Fourier transformation outside the coordinate system
origin point and applying a special integration technique below this unique point. It then becomes
possible to study displacements and stresses at various pavement points vs. loading, temperature or
vehicle speed.

The viscoelastic constitutive law

The considered pavement structure is a multilayer half-space composed of layers exhibiting either
elastic behavior or thermoviscoelastic behavior characterized by the Huet and Sayegh model, which
is particularly well-adapted to asphalt overlays. The rheological behavior model comprises two
parallel branches (see Fig. 1): the first represents the viscous part of behavior and contains a spring
and two parabolic dampers (with viscosity dependent upon excitation frequency), while the second
consists of a spring that corresponds to the static or long-term behavior of the overlay.

E∞ is the instantaneous elastic modulus, E0 the static elastic modulus, k and h are the parabolic
damper exponents (1 > h >k > 0), and δ is a positive adimensional coefficient that accounts for the
proportionality between characteristic times of the two dampers. Thermoviscoelastic behavior can
thus be characterized, at a given excitation frequency ω (with temporal variation in e–jωt) and
temperature θ, by means of the complex modulus:

(1)

COMPUTATION METHOD

 Figure 1
Diagram of Huet and Sayegh’s rheological model (1963)
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where τ(θ) = exp(A0 + A1θ + A2θ2) is a temperature function that depends upon three scalar
parameters A0, A1 and A2, where j is the complex number such that: j2 = –1. In the following
discussion, temperature is considered to be uniform and constant by layer, and all indications of the
dependence on θ for the various magnitudes can be omitted. Poisson's ratio ν is assumed to be real
and independent of the frequency.

Mobile load
The load is assimilated, like in the ALIZE program, with a constant uniform pressure on the rectangle
[–a, a] × [–b, b]. It leads to a total loading as f0 = 4abp0 and moves at a constant speed V (see Fig. 2).
In a pavement-related coordinate system, the dynamic equation in each layer i is then given by:

(2)

where u(x, y, z, t) is the displacement vector, ρi the mass density of the component material of layer i,
and σ(x, y, z, t) the Cauchy stress tensor. The boundary conditions are expressed as follows:

on the free surface:  σ(z = 0) · n = –p0n on the rectangle [–a, a] × [–b, b] and 0 elsewhere, with n
being the external normal;

at the interface between layers i and i+1:  and 

 (in the case of perfect bonding, for example);

at infinity, the fields cancel each other out, i.e.  and .
Inertia forces are generally negligible in pavement applications, yet appear here in order to facilitate
the semi-analytical solution to the equations. To make the transition into the mobile coordinate
system of the load, the substitution (x, y, z) → (X – Vt, Y, Z) is performed, which leads to the
following time-independent relation (quasi-stationary mode):

(3)

The next step consists of taking the Fourier transform of the previous relation in both the X and Y
directions. The direct and inverse Fourier transforms of function A are defined by:

(4)

Figure 2
Mobile load on a stratified half-space with 
the Huet Sayegh model
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The constitutive law of each layer i can be simply written within the Fourier domain in the
multiplicative form:

(5)

where (k1V) and (k1V) are complex Young's modulus functions (k1V) of layer i with the
same formula as in the elastic case; ε* is the strain tensor. By substituting relation (5) into (3),
Nguyen [7] provided, within the wave number domain, the equilibrium relation in each layer i in the
following form:

(6)

with:

          (7)

where cpi and csi are the longitudinal and transverse wave speeds respectively in layer i. The search
for solutions to (6) in the exponential form U*(k1, k2, Z) = U(k1, k2)ejk3Z leads, in each layer, to the
quadratic problem of searching for the following eigenvalues k3 and eigenvectors U:

(8)

Ensuring nonzero solutions requires:

(9)

The solutions to this equation are then:

(10)

with the longitudinal and shear wave numbers given by:

(11)

Six eigenvectors are to be associated with these eigenvalues, which respectively equal:

(12)

λι
∗ µι

∗ Ει
∗
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The first two eigenvectors are associated with κp and the remainder with κs. The solution to Equation
(6) may be written as the sum of these six eigenvectors, which gives rise to an expression of the
displacement field in layer i that depends on six parameters, denoted ,
hence:

(13)

Displacement is a function of horizontal wave numbers k1 and k2 and depth Z. In order to avoid
excessive terms in the exponentials, the origin of each layer is chosen at the layer summit. Through
use of the relation in (5), the stress tensor can also be written as a function of the six parameters

.

Solution in the multilayer
Displacements and stresses at a given point on the structure may also be expressed in matrix form:

(14)

where t = T[σ13 σ23 σ33] is the stress vector normal to the horizontal plane. The other vectors and
matrices are given by:

          

(15)

          (16)

          

(17)

(18)

(19)

The continuity relations for displacements and stresses are noted at each interface, which yields the
following relation between layers i and i+1:

(20)
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where  and di is the thickness of layer i. It is preferable to write this relation in the
following form:

(21)

with the transfer matrix given by:

(22)

In this form, transfer matrix Q only contains negative exponentials, which serves to avoid possible
capacity overages during the computations. Sub-matrices L are expressed as:

(23)

This process may be pursued until a relation between layers i–1 and i+1 is obtained.

(24)

with the new transfer matrix written as:

(25)

with  and . This step is concluded by deriving a
relation between parameters of the first and last layers:

(26)

The condition at infinity is:

(27)

Relation (26) can actually be represented as:

(28)

The boundary condition on the upper surface yields:

(29)
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with the loading vector given by:

(30)

where f0 is a constant vector indicating the load application direction, often along the normal, yet
tangential loadings are also possible, e.g. braking forces or centrifugal forces. Relations (28) and (29)
enable computing the amplitudes β within the initial layer. These are given by:

(31)

The amplitudes in the other layers can next be obtained from (21):

(32)

The displacement and stress fields within the wave number domain have, at this point, been
determined. It should be noted that the matrix operations displayed in the previous equations
pertain solely to matrices relatively small in size; these operations can thus be conducted as is,
without relying upon any dedicated numerical algorithms. A return to the domain of space
variables (X, Y, Z) entails use of the inverse Fourier transform.

Numerical computation
Computation is based on executing numerical FFT (fast Fourier transform) operations. The
computed magnitude depends on longitudinal wave numbers k1 and k2, which may be written in
the form f(k1,k2). An inverse Fourier transformation using FFT yields the same magnitudes in the
real domain, a step that requires discretizing function f by taking discrete values in the following
form:

(33)

N1 is selected such that:

(34)

This expression signifies that function values are small at the left-hand extremity over the discretized
domain. The same procedure is also applied to choose N2. The value of ε is set equal to 10–3. A
discrete Fourier transformation is then carried out to obtain:

(35)

which is the computed value in the real domain at the desired depth, with the result: δx1 = 2π/
(δk1 N1). To ensure validity of the solution derived, the following is to be verified:

(36)

THE "VISCOROUTE" SOFTWARE APPLICATION
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where  is a small-valued parameter. Otherwise, δk1 is replaced by δk1/2 and the computation is
reinitiated. The same steps apply to verify that δk2 has been selected at a low enough value.

The computation of f(i1 δk1, i2δk2) is performed rather smoothly except for i1 = 0, since function f is
unique for k1 = 0. In order to overcome this difficulty, f(0,i2δk2) = 0 is imposed prior to conducting
the FFT on this modified function. Corrections are then introduced in the real domain by adding the
missing part around k1 = 0 to the resultant function, hence:

(37)

For the sake of simplification, the corrective term is set constant along direction 1 and its
corresponding FFT is set on variable 2 alone. This procedure makes it possible to improve the
solution and thereby avoid having to assign very high values for N1 and N2.

Graphics interface
The above computations were programmed with a software package called "ViscoRoute", which is
composed of a computation module written in C++ and an input-output interface written in Visual
Basic®. A sample input configuration has been shown in Figure 3. The upper part of the window
focuses on defining the properties of the various material layers (both behavior and geometry), while
the lower part serves to define the loading and potential output type. The parameters to be
introduced have been listed in Table I. Figure 4 provides an example of results visualization; it is
possible to plot the output magnitude along an axis parallel to the x or y axis. Visualization in the
form of a surface as a function of x and y is also permitted. Output parameters could consist of the
three-directional displacements, the six strain tensor components, the six stress tensor components,
the three displacement vector components, or the three acceleration vector components.

Figure 3
Input of structure and loading parameters

ε̃
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TABLE I

ViscoRoute input parameters

Parameters Summary comments on the data
FX, FY, FZ, V Total force vector coordinates, in newtons, and load speed, in m/sec

Force option a, b Force option: two Boolean values are possible:
1: either the case of a point force (a = b = 0)
2: or the case of a surface force, with values a and b being those of the target surface 
(2a × 2b)

N Number of layers (≥ 1)
For all 1 ≤ i ≤ N ρi:  mass density

: instantaneous elastic modulus
νi:  Poisson’s ratio
di:  layer thickness
ci:  type of bonding with the lower layer (0-bonded, 1-sliding layer)
opt:  type of layer (0-elastic, 1-thermoviscoelastic)

:  static elastic modulus
ki:  coefficient used in the Huet and Sayegh Law
hi:  coefficient used in the Huet and Sayegh Law
δi:  coefficient used in the Huet and Sayegh Law
θi:  temperature

, , : evolution law coefficients with resepct to temperature

m Number of points at which the result is computed
Depth (i) 1 ≤ i ≤ m Depth (i): positive real number representing the depth at which output is to be 

studied

Output (i) 1 ≤ i ≤ m Type of desired output:
displacement: ux, uy, uz
strain: εxx, εyy, εzz, εyz, εxz, εxy
stress: σxx, σyy, σzz, σyz, σxz, σxy
speed: νx, νy, νz
acceleration: ax, ay, az

Figure 4
Example of displacement in the z-direction
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In what follows, we will present a few examples of results and comparisons with other methods,
either analytical or numerical (see also [8,9]). The loading is a 65-kN mobile force distributed over a
square surface with side lengths 2a = 2b = 0.22158 m (1/2 the standard axle in road design). Except
for specifications stating otherwise, load speed equals 5 m/sec. The parameters inherent in the
complex modulus of viscoelastic materials are obtained from standardized bending test results on a
trapezoidal bracket specimen (NF P 98-261-1). The Huet and Sayegh model parameters based on
complex modulus test results can be determined using the "ViscoAnalyse" software developed in a
Matlab® environment [10].

Parameters of the temperature function τ(θ) for the bitumen-bound granular material subsequently
chosen are: A0 = –0.342, A1 = –0.401, A2 = 0.002954, and the temperature θ is 15°C.

Homogeneous half-space
The first example entails studying the mechanical fields in a half-space with assumed linear elastic
behavior. The elasticity constants are obtained from a viscoelastic material featuring a Poisson's ratio
of 0.35, an instantaneous modulus E∞ = 29,914 MPa and a deferred modulus E0 = 70 MPa. Damper
parameters are assumed such that δ = 0 and h = 0. The target material is thus equivalent to an elastic
material with a Young's modulus of 14,992 MPa. The second case is a material displaying the same
parameters, except that coefficient h now equals 0.3 in order to ascribe the material a viscoelastic
behavior. Curves in Figures 5 and 6 show the vertical displacement for depths z1 = –0.0165 m and
z2 = –0.2444 m. The comparisons with Boussinesq's analytical solution given in [11] and the semi-
analytical solution obtained in [12] for the viscoelastic case are both excellent (i.e. differences of less
than 1%).

Multilayer
The second comparison has been shown in Figure 7. The structure contains a viscoelastic layer of a
virtual material 8 cm thick with the following mechanical characteristics (ν = 0.35, E0 = 0,
E∞ = 29,914 MPa, h = 0.5, δ = 0). This layer lies on both an elastic layer 24 cm thick (ν = 0.35,
E = 10,000 MPa) and an elastic solid (ν = 0.35, E = 50 MPa). The comparison is drawn by finite
element computation via the CVCR modulus contained in the CESAR-LCPC code [13]. In this finite

Figure 5
Displacements for an elastic half-space

with δ = 0, h = 0 and for depths
z1 = – 0.0165 m and z2 = – 0.2444 m

EXAMPLES
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element computation, the target domain is a soil 15 m thick; moreover, 10 m of structure on each side
of the load are modeled. Problem symmetry with respect to the xOz plane was employed herein. In
order to generate an accurate comparison with the finite elements, a 15-m thick soil layer was
introduced into the "ViscoRoute" program, and a solid with a very high Young's modulus value was
positioned below this layer to simulate a stiff boundary condition, like for the finite element
computation. Results are presented for depths z3 = –0.0165 m and z4 = –0.37 m.

The comparison between results obtained by means of finite element computation and ViscoRoute
output is highly satisfactory. If the soil were modeled by a semi-infinite solid, results would be less
promising [9], which signifies that the finite element computation contains an extension in Z
incapable of fully representing a semi-infinite solid.

Influence of load speed
Given that the model incorporates material viscoelasticity, structural response varies with load
speed, as opposed to the purely-elastic case. The computed structure comprises three layers and is
identical to the one in the previous section with a semi-infinite solid instead of the 15 m of soil.
Figure 8 displays displacements for the case of the three-layer structure with load speeds of 0.1 m/
sec, 5 m/sec and 30 m/sec. It may be observed that displacements rise as load speed decreases, due

Figure 6
Displacements for a viscoelastic 
half-space with δ = 0, h = 0.3 and 
for depths z1 = – 0.0165 m and 
z2 = – 0.2444 m

Figure 7
Comparison between CVCR and 
ViscoRoute at depths z3 = – 0.0165 m 
and z4 = – 0.37 m
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perhaps to the type of dependence inherent in the complex modulus in relation (1), where it is
obvious that the modulus becomes higher when speed increases (i.e. by replacing ω with k1V in the
equation). This effect heightens as the load nears. The difference in displacement between the slowest
and fastest speeds lies on the order of 30%. Figure 9 shows the influence of speed on vertical
stress σzz; it can be remarked that the variation in stress with speed is small. Stress is primarily
concentrated underneath the load.

Influence of temperature

Using the same data as for the previous example, temperature is modified by being ascribed the
values 0°C, 15°C and 30°C. Load speed is set at 5 m/sec and the structure is unchanged from the
previous section. The corresponding results have been indicated in Figure 10. Viscoelasticity leads to
major differences as temperature rises: high temperatures induce large displacements. This effect is

Figure 8
Vertical displacement at depth 0.0165 m

for various load speeds

Figure 9
Vertical stress σzz at depth 0.0165 m

for various load speeds
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more pronounced than the load speed effect and leads to a 50% increase in displacement for a
temperature transition from 0° to 30°C. This finding can be explained by material softening during a
temperature rise. As seen with speed, the influence of temperature on stresses remains minimal.

Comparison with measurement readings
The final example focuses on the case of a three-layer structure whose load corresponds to a dual-
wheel load distributed over a surface of two rectangles with dimensions: a = 0.15 m and b = 0.09 m
(see Fig. 11). Total load equals 65 kN and the speed is 67.8 km/hr. The structure is composed of a
semi-coarse asphalt viscoelastic layer 0.085 m thick with the following parameters: ν = 0.25,
E0 = 70 MPa, E∞ = 34,000 MPa, k = 0.22, h = 0.65, δ = 2.8, A0 = 1.94, A1 = –0.373, A2 = 0.00191, and
θ = 11.4°C. This layer lies on top of an unbound granular material layer (0/20 mm) with presumed
elastic behavior, a thickness of 0.43 m and parameters ν = 0.35 and E = 130 MPa. Beneath, the solid is
presumed to be semi-infinite, corresponding to a type 1 support platform, presumed elastic and with
characteristics of E = 40 MPa and ν = 0.35. Results are shown along the x-axis positioned halfway
between the two loads.

Results are given on Figure 12 for the longitudinal strain εxx and on Figure 13 for lateral strain εyy;
both these strains are compared with the experimental values obtained from measurements
conducted on the LCPC Pavement Fatigue Carrousel (see [14,15]). Curves L11 through L17 on
Figure 12 correspond to the longitudinal strain gauges (along x) placed at the base of the overlay. The
numbers indicate various locations on the fatigue carrousel at the same radius and depth. Similarly,

Figure 10
Vertical displacement at depth 0.0165 m 
vs. temperature

Figure 11
Load characteristics
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curves T10 to T13 on Figure 13 display the results measured by gauges along the transverse direction
(i.e. along y). They have also been placed at the overlay base, along the y-axis. While a few differences
can be detected between model and measurements, the level of agreement is, on the whole, quite
satisfactory. These differences can be explained by thickness uncertainties, the various layer moduli,
and by soil behavior that might differ from the elastic model used (in particular by its non-linearity).

In conjunction with the problems raised in new pavement design, for which approximating fields by
means of computations in linear elasticity proves (in the vast majority of cases) entirely sufficient, a
real need for more specialized numerical tools is now felt when it comes to analyzing certain
phenomena not incorporated into the set of conventional tools.

In the case of flexible pavements submitted to strong temperature gradients or to the action of slow-
speed channeled loads, pavement design fields become asymmetrical and their maximum value may
be significantly increased. As such, and this phenomenon does not get highlighted in elastic
computations, the strains transverse to the rolling axis may be of greater intensity than the
longitudinal strains. This effect has been illustrated effectively in the case of airport runway
pavements [3].

Figure 12
Comparison of longitudinal strain εxx

at depth 0.085 m

Figure 13
Comparison of transversal strain εyy

at depth 0.085 m
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A semi-infinite multilayer structure model that incorporates Huet and Sayegh's thermoviscoelastic
constitutive law has been developed and programmed in a software application called "ViscoRoute".
Computations have been successfully validated thanks to comparison with analytical results for a
homogeneous half-space [12], numerical computations obtained from the CESAR-LCPC code's
CVCR module, and lastly with experimental results. The chief benefit inherent in ViscoRoute
computations is an extremely high-speed execution (typically requiring just a few seconds for a
multilayer structure) as opposed to finite element computations.
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