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Abstract—Simulations are an essential tool for studying wire-
less networks, yet great care must be taken when choosing the
simulation parameters, in order to have results reflecting what
would happen in a real network. Thanks to extensive traces
containing scan results collected by pedestrian users in an urban
setting, we select the parameters of different NS-3 modules so that
the results obtained match what we observed in a real setting,
contrary to what happens if one uses the default values of these
modules. We extend the NS-3 simulator in order to faithfully
simulate the scanning phase and in order to dynamically change
the IP address assigned to Mobile Stations. Finally, we use the
simulation parameters that have produced realistic results to
analyze what happens when the Access Point density changes.

I. INTRODUCTION

One of the challenges faced by researchers when proposing
new architectures or new protocols for wireless networks
is that ideas that look good on paper do not always live
up to expectations when they are implemented in the real
world. Scalability issues, signal propagation characteristics or
non representative topologies may significantly mitigate the
performance of the newly proposed mechanisms. This is one
of the reasons for which, over the last few years, a lot of efforts
have been made to implement the proposed solution in real
networks. Such a solution does indeed have several advantages
but it comes at a significant cost in terms of time and effort.
And it does have at least one non-negligible shortcoming:
in a real network not all parameters can be easily changed,
especially if some of the devices used are part of a production
network. In other words, the relevance of using a real network
with real traffic comes at the expense of not being able to
change certain parameters.

WiFi is one technology that has proven its success over
the years, with a growing number of Access Point (AP) being
deployed around the globe. A significant number are in private
homes, where they provide connectivity to the household
members but, especially in dense urban environments, they
can also be shared to offer Internet access to other customers
of the same network provider, or to customers who have signed
up for specific services, like those offered by FON.

Cellular network providers have shown a growing interest in
using WiFi APs to offload some of the data traffic from their
cellular networks. It is however hard to test new solutions
(protocols and/or architectures) using a production network.
Simulations can be an invaluable tool, as long as all the
parameters are set correctly.

In this paper, we show how it is possible to use a simulator
to reproduce the results obtained by collecting measurements
in real WiFi networks, thanks to a WiFi war walking appli-
cation called Wi2me [1]. This Android application runs on a
smartphone and performs periodic scans to discover available
APs. The data gathered by this application are then used
to set up the network simulator with a representative Wi-Fi
topology. APs are pseudo-randomly deployed inside buildings,
and routes are drawn on virtual maps where a Mobile Station
(MS) can move. We chose Network Simulator 3 (NS-3) as the
simulation software, for its open source code and the variety
of parameters in its module, and also because it is a very well
known tool with a large active community behind it. With
these tools, we are able to measure the impact of AP density,
by varying the number of active APs. We can also study the
network performance observed by a mobile client.

The remainder of the paper is organized as follows. In the
next section, we discuss previous works on using real experi-
ments to feed or verify network simulations. In Section III,
we explain how we generate synthetic, yet representative,
topologies and how we have modified Network Simulator
3 (NS-3). In Section IV, we present how we choose the
simulation parameters, before using them to analyze changes
in the AP density in Section V. Finally, Section VI concludes
the paper.

II. RELATED WORKS

Over the last several decades, many authors have worked
on wireless channel models, resulting in a dauntingly vast
literature on the subject (see for instance, the books by Tse and
Viswanath [2], Rappaport [3], and Pedersen [4] and references
therein). Such an abundance of different models has lead
other authors to compare them, highlighting the non-negligible
consequences on the result obtained by using different models
(e.g., [5], [6]).

As pointed out by Kotz et al. [7], one should take care
of avoiding common mistakes when simulating wireless net-
works. Following this line of research, several works have
compared simulation results with measurements from real
wireless networks. Given the complexity of these models,
which reflect the complexity of the real world, different
authors have addressed different use cases and technologies.
Some deal with sensor networks (e.g., [8], [9]), others with ve-
hicular networks (e.g., [10], [11]), and yet others with 802.11



networks (e.g., [12]–[15]). To the best of our knowledge, only
Yoo et al. [16] deal specifically with smart phones, studying
how to best set the parameters in NS-3, all the other papers
use laptops or different types of sensors.

The model and the parameter settings giving the most
accurate simulation results depend on the type of device and on
the environments. To the best of our knowledge, no previous
work has validated simulation results using APs in an urban
setting with smart phones as clients.

III. METHODOLOGY AND TOOLS

Fig. 1 shows how to use real world data to set the simulator
parameters and create realistic topologies. The process consists
in using experimental measurements and open street map
information to generate topologies. Results obtained with a
simulated MS moving within this topology help to configure
the simulation parameters. The network simulator is then set
to run original scenarios that would not be doable in a real
topology.

A. Methodology

As previously mentioned, we have collected several traces
(31 traces for 64km) by walking in the city center of Rennes
(France), using the Wi2Me application [1]. This environment
is characterized by fairly narrow streets (no large boulevards)
and buildings of a few stories (between three and six) with
businesses (stores, offices) as well as private residences. We
take advantage of these traces in order to appropriately set the
parameters of the NS-3 simulator.

Given that we do not know the actual location of the APs
that were detected during the measurement campaigns, and
given the limitations of the NS-3 simulator that force buildings
to be rectangles, we generate random topologies. This has the
added benefit of increasing the variability in the simulations by
considering different, but equally representative and realistic
topologies. Using the data provided by Open Street Map,
we compute the distributions of a few key elements (see
Section III-B below for more details) and generate synthetic
topologies that have the same properties. We then randomly
place APs inside buildings so that resulting AP density is the
same that we have observed in the Wi2Me traces.

We simulate a user walking in the virtual topology, collect-
ing the same measurements that we collected with Wi2Me,
so that we can then compare the traces from the simulation
to those collected with Wi2Me. In other words, we simulate
what we have done in a real setting, in order to select the
parameters of the simulation that best correspond to what we
have empirically measured. Finally, we use these parameters to
evaluate the performance of the AP-selection algorithm. As we
cannot turn on and off real APs, we can only use simulations
at this point.

B. Topology Generation

In this paper, we focus on pedestrians using MSs connected
to WiFi networks in a dense urban environment. While users
are walking in the streets, the overwhelming majority of APs
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Fig. 1: Field testing and simulation data workflow

within range are located indoor. In order to simulate such a
scenario, we need to produce a topology (streets and buildings)
and then place the APs inside the buildings.

Thanks to Open Street Maps we computed the following
features of the city center of Rennes, in order to produce
random topologies with the same characteristics:

• the density of street corners
• the density of building
• the distribution the streets’ lengths
• the distribution of the buildings’ wall lengths
• the distribution of the buildings’ distances to the streets

We then randomly place APs inside buildings so that that
resulting AP density is the same that we have observed in
the Wi2Me traces.

Figure 2 presents such an automatically generated topology.
The black lines correspond to the streets where the MS can
walk. The rectangles alongside them are the buildings, and
the triangles represent the APs. As previously mentioned,
buildings are rectangles due to an NS-3 limitation.

C. NS-3 Enhancements

NS-3 already comes with a rich WiFi implementation,
including scanning, association to APs, traffic that takes into
account the positions of the different transmitters. However
the default implementation lacks a few key features needed
in our use case. We implemented a Medium Access Control
(MAC) layer inheriting from NS-3’s sta-wifi-mac. It features
the ability to scan periodically even when already associated to
an AP, store scan results, and to compare the candidate APs to
the one it is currently using (if any). It also triggers handovers
to the best possible candidate when the Receiving Signal
Strength Information (RSSI) of the current AP drops below
a threshold value, as an actual WiFi station would do. On top
of these MAC layer handovers, we also implemented network



Fig. 2: Realistic topology generated for simulation

layer handovers, having the station pick up an appropriate
IP address respecting its new AP’s Classless Inter-Domain
Routing (CIDR) prefix.

IV. SELECTING THE BEST SIMULATION PARAMETERS

As demonstrated by [6], the choice of a propagation model
for an NS-3 experiment will dramatically impact the behaviour
of the simulated nodes such as the traffic they will be able
to transmit, or even their ability to communicate at all. One
needs not only to choose a propagation model but also to
decide the values of different parameters. While this flexibility
allows to simulate almost any situation, finding an appropriate
value for each parameter is a critical part of the simulation
design. Because our work revolves around WiFi transmission,
the modules we especially need to properly configure are
the propagation model, and the WiFi physical layer. More
precisely, these are the choices that we must make:

• Choice of the Propagation model: since our scenario
includes buildings, our choices in terms of propagation
models are limited to two candidates: OhBuildingsProp-
agationLossModel and HybridBuildingsPropagationLoss-
Model.

• Propagation model calibration: both aforementioned
models have the following configuration parameters:

– The standard deviation of the shadowing for outdoor
nodes.

– The standard deviation of the shadowing for indoor-
outdoor transmissions.

– The additionnal loss caused by inner walls.
• Physical layer calibration: the WiFi physical layer

includes these configuration parameters:
– The energy threshold over which a received signal

can be detected by the physical layer.

– The energy threshold over which the medium is
considered busy by the physical layer.

– The station’s transmission and reception gains.
– The maximal and minimal transmission powers

available to the MS.
– The Noise figure corresponding to the station recep-

tor’s imperfections.
We use the default values for the parameters of the AP

modules, as these have already been thoroughly studied and
can be considered trustworthy. On the contrary, parameters
from the propagation models are intimately linked to the
geographic environment and will vary from place to place.
The MS’s physical layer’s parameters will also need to be
chosen in order to properly model a smartphone, a different
type of device from those modelled by the default parameters.

A. Empirical Validation

Thanks to the Wi2Me traces, we can empirically verify the
following metrics:

• The number of APs responding to a scanning request.
• The average of all the RSSIs of the scanning responses

from each AP.
These metrics were chosen because both the RSSI at wich a
MS receives messages from the AP, and its ability to see it at
all will directly impact the simulations described in Section V.

With the Wi2Me traces as a baseline, we simulate scanning
campaigns in randomly generated topologies as explained in
Section III-B. By varying the configuration parameters over a
reasonably wide range, we determine which values best match
the empirical traces. See the first column of Table III for a
summary of the total simulation time and other metrics.

B. Selected Parameter Values

Figures 3a and 3b present the Cumulative Distribution
Functions (CDFs) for both metrics, generated from field
data as well as simulations using propagation models in
their default configuration and simulations using a custom
set of parameters values. Figure 3a presents the CDFs of
the average RSSI value for each AP, and shows that the
OhBuildingsPropagationLossModel with its default parameter
values is already a pretty good fit for the field data baseline.
For this reason, it will be preferred, in the rest of this work,
to its counterpart, the HybridBuildingsPropagationLossModel.
On the other hand, Figure 3b shows some non negligible
differences in the number of APs that respond to a scanning
request by the station. Our goal is therefore to find the values
of the parameters that improve the accuracy of this metric,
without disrupting an already decent representation of the APs’
power levels.

Table I shows the default values and the values that best
match the Wi2Me traces. We have used the well-known the
Kolmogorov Smirnov test [17] (D-Statistic) to measure the
distance between two CDFs. As we are interested in matching
two CDFs (the AP average RSSI and the Scan Result Size), we
are faced with a multi-objective optimization problem, where
each one of the eight columns of Table I corresponds to a



(a) Average signal strength of observed APs CDF (b) Number of APs responding to a scan CDF

Fig. 3: Comparison of metrics obtained through simulation and field testing

TABLE I: Parameter Value Selection

Outdoor
Nodes
Shadowing
std. dev. (dB)

Indoor/Outdoor
Transmission
Shadowing
std. dev. (dB)

Internal Walls
Loss (dBm)

Energy Detec-
tion threshold
(dBm)

CCA Busy
energy
threshold
(dBm)

Station Tx/Rx
Gain (dBi)

Station
Transmission
Power (dB)

Receptor
Noise
Figure(dB)

Parameter
Range

[2:16] [2:16] [2:16] [-100:-88] [-100:-96] [-1:8] [2:27 ] [4:16]

NS-3 Defaults 7 5 5 -96 -99 1 16 7
Best Match 10 8 12 -92 -97 0 8 12

TABLE II: D Statistics between simulations and field data

Oh default Hybrid default best match

Scan Result Size 0.99 0.94 0.32
Average RSSI
per AP

0.16 0.90 0.42

Average
D Statistic

0.58 0.92 0.37

variable. Unsurprisingly, values that minimize one objective do
not minimize the other, we therefore decided to choose values
that minimized the average of both D-Statistics. Table II gives
the value of the D-statistic for the default NS-3 settings as well
as the best match. With our selection of simulation parameters,
we manage a combined D-Statistic of 0.37 instead of the 0.58
and 0.92 values obtained with the default parameters. It is
achieved through a much better fit for the scan result size,
with a D statistic of 0.32 instead of values over 0.9 for the
default, whithout degrading the D-Statistic for the average rsssi
per AP.

While the range over which each parameter varied was
purposely wide, we still end up with realistic parameter values.
The interpretation of these values can be made along two axis:

the degradation of the MS’s performance, and the degrada-
tion of the environment. Degrading the MS’s performance is
legitimate, as we make the model evolve from representing
a classical 802.11 client to a lightweight smartphone, with
for example a 0 dBi antenna gain, as chosen by Yoo et al.
[16]. Similarly, choosing values the correspond to a more
hostile environment is not shocking, as there can be additional
obstacles in the way of the transmission, for example internal
walls or furniture affecting the Internal Wall Loss parameter.
There can also be other factors, such as moving and static
vehicles resulting in additional variations of the shadowing
(Outdoor Nodes Shadowing parameter).

V. CONTROLLING ACCESS POINT DENSITY

We have previously proposed an algorithm to select a subset
of APs in order to cover a given area [18]. The idea being
that, given the large number of available APs in dense urban
environments, such as city centers, it is possible to save energy
by switching some of them off, as long the overall coverage
area does not change. Such a minimal set of APs could also
be used by the MSs in order to select the best AP when
performing a handover. Two main parameters are used to
determine the way we pick a collection of APs based on
scanning campaign results:



Best simulation pa-
rameters selection

Subset experiments

Simulated time (h) 2142 3628
Distance traveled
(km)

15334 25507

Scanning responses 4 402 665 7 983 162
Handovers 0 26703
Traffic (GB) 0 339.174

TABLE III: Summary of simulation characteristics

• Overlapping: The number of AP we try to have available
at any position. This is required to let multiple users use
the AP subset, but also to control the handover success
rate.

• Minimal RSSI: This is the minimal RSSI of an AP’s
response to a scan in order to consider that said AP covers
a specific position.

More details on the AP selection algorithm are available in
[18], but the core concept is to select the smallest number
of APs that provide the required overlapping coverage at
every position of the topology. Using simulation was also the
opportunity to vary these two parameters and see which fared
the best. Trying for example to select APs based on their bare
presence, with RSSIs down to -95 dBm, or based on their areas
of best coverage around -55 dBm. This section will detail the
properties and performance of two such AP subsets, compared
to an hypothetic baseline: all the available APse on the map.
Here are their details:

• Overlapping 2: Computed from simulated scanning
campaigns, with a minimal RSSI of -65 and an overlap
of 2

• Overlapping 4: Computed from simulated scanning
campaigns, with a minimal RSSI of -65 and an overlap
of 4

• Totality: The entire collection of APs available in the
area

We run simulations for each of these subsets, with a MS
walking in our topology at the speed of two meters by second,
selecting APs and generating traffic towards an application
server reachable by all the APs. Table IV gives the number of
APs present in these subsets, as well as the average throughput
that the MS was able to achieve when associated. The second
column of Table III shows the summary of some of the
characteristics of these simulations.

Figure 4 presents the CDF of the session duration, that is
the time the MS was able use an AP (between the moment it
associated to it to the last packet that it was able to transmit).
It shows a reasonably similar session duration in each case.
It is worth noting that running such an experiment on a
production network is extremely hard, as it would require the
cooperation of all the APs involved as they would need to offer
IP connectivity to the MS, ideally by quickly assigning an IP
address to the MS, without the delays imposed by commonly
used captive portals.

Fig. 4: CDF Of Session Times for different AP Subset types

Subset AP Count Throughput on Asso-
ciation (kB/s)

Overlapping 2 16 54
Overlapping 4 32 117
Totality 875 108

TABLE IV: Count of Access Points in subsets

Another way to gather such data is emulation. Still based on
the war walking campaings used to characterize our target en-
vironment, we computed an actual AP subset for a geographic
area in the city center. The Wi2Me android application used to
perform said campaign also has an emulation mode to asses the
viability of such an AP collection. It first behaves in the regular
smartphone manner by scanning on all available channels and
picking the best available AP member of the subset. While it
cannot connect to a protected AP in order to generate traffic,
Wi2Me is still able to send probe requests on the AP’s channel,
in our case at the frequency of ten per second, and to monitor
the response’s RSSI. Under a critical threshold, we consider
no more traffic could have been generated. We are this way
able to establish an emulated association time distribution for
an AP subset, presented alongside the simulation results, in
Figure 4. Based on the same geographic area used as the basis
for our simulations, this emulation data presents a reasonably
close behavior to the results of our simulations.

VI. CONCLUSION

In this paper, we presented a methodology combining
simulation and field experimentation in order to study dense
802.11 WiFi deployment. We showed how a topology could
be generated in order to represent a specific area. We also
evaluated how well NS-3 was able to simulate said topology
when compared to field data. While some metrics regarding



the power levels were satisfactory, some, more specific to our
problematic such as the perception of the AP density, were
not, and we showed how this could be improved. Through
the presented use case of AP selection, we made use of
our accurate simulation of the urban environment to evaluate
different AP subsets, a study that could hardly have been real-
ized as a real experimentation. This study opens perspectives
around this collaboration of experimentation and simulation.
The simulation parameter selection problem could definitely
be improved by coupling its simulation and evaluation phases
in a tighter manner. A genetic algorithm could for example
run simulations for a given population of parameter values,
evaluate its most promising members by comparing them to
field data, mutate them and pass on the next generation. While
human validation would probably remain needed at the end
of the process, this fully integrated approach would make the
process much more accurate. Another promising perspective is
in the characterisation of a geographic area, both by topology
generation, and by simulation parameter values. Wether they
change from town to town, or if families that share the same
characteristics can be identified would be both interesting and
useful.
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