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1. Introduction

Consider a rigid body moving steadily and without rotation in an incompressible viscous
fluid. Suppose the fluid flow is steady, too. With respect to a frame in which the body
is at rest, such a flow is usually described by the stationary Navier-Stokes system. After
normalization, this system takes the form

—AV+7(V-V)V4+VII=F divV =0 in Q= R?’\ﬁ,

where  C R? is supposed to be open, bounded, with C?-boundary and with Q° connected.
In order to obtain a well-posed problem, we require a boundary condition on 9Q2 and at
infinity,

Vot =0, V(x)— (1,0,0) for |z| — oo. (1.1)[2]

The domain €2 represents the rigid body, the vector field V' stands for the unknown velocity
field of the fluid, and the scalar function II for the unknown pressure field. The vector
(—=1,0,0) corresponds to the velocity of the rigid body, as seen from an observer at rest,
for whom the fluid velocity tends to zero far from the moving object. Of course, for an
observer moving with the rigid body, the velocity of the fluid near infinity is (1,0,0),
and thus nonvanishing. Besides this velocity, the given quantities are the volume force
F, a vector-valued function, and the Reynolds number 7 € (0,00), which is a coefficient
describing the character of the flow.

From a mathematical point of view, it is inconvenient to work with nonzero boundary
conditions at infinity as in (1.2). Therefore we introduce the new velocity field U :=
V' —(1,0,0). This field verifies the Navier-Stokes system with the Oseen term 70U,

AU+ 70U +7({U-VYU+VII=F, divU=0 inQ°, (1.2)[1a)]
and is subject to the boundary conditions
UloQt = (-1,0,0), U(z) — 0 for |z|— oc. (1.3)[2a]

We consider a Leray solution to (1.3), (1.4), that is, a pair of function (U,II) with U €
LS(Q)3 N Wli’cl (Q%)3, VU € L2(Q%)? and T € L7 (Q°)% satisfying (1.3) — in variational



form — as well as (1.4). The boundary condition at infinity imposed by (1.4) is taken
account of by the relations U € LS(Q%)3, VU e L*(Q°)°. (We refer to Section 2 for
the definition of our function spaces and for other notation.) Leray solutions to (1.3),
(1.4) exist under suitable assumptions on F' and 992. More details may be found in [23,
Theorem VIL2.1, I1.5.1]. If F decays sufficiently fast, it may be shown that U € LP(Q%)?
for p € (2,00] and VU € LP(Q°)° for p € (4/3, o] ([24, Theorem X.4.1]). In the work
at hand, it is sufficient to suppose U € LP(Q°)? for p € (2,00) and VU e LP(Q)? for
p € (4/3, 3+¢g], with some €9 > 0. Then U € W13+ (Q%)3 so U € L>(Q°)3 by a Sobolev
inequality, and also |U(z)| — 0 for |z| — oo, as explained in [12, p. 209]. Therefore the
assumptions U € LP(Q°)3 for p € (2,00) and VU € LP(Q°)? for p € (4/3, 3 + ¢o] mean in
particular that

U e LP(Q)? for pe (2,00], |U(z)]—0 for |z|— oo, (1.4)[3]
VU € LP(Q°)? for p e (4/3, 3].
These are the properties of U we will actually use in what follows. We are interested in
conditions which guarantee asymptotic stability of U, that is, if U € VVO1 ’2((26)3 N Hy(Q°),

and if the quantity |U — Ul|z + |[V(U — U|s is sufficiently small, then the velocity part v
of a solution (v, ) of the initial-boundary value problem

V'(t) — Ago(t) + T dz1v(t) + 7 (v(t) - Vg Jo(t) + Var(t) = F, divyo(t) =0 (¢ > 0), (1.5)[4]
0|0 x (0,00) = (—1,0,0), v(0)="U, (1.6)[5]

should satisfy the relation ||V, (v(t) — ﬁ)”g — 0 for t — co. However — and this is usual
in this context — we will not consider problem (1.6), (1.7) directly. Instead we work with
the equivalent problem

W' (t) — Agu(t) + 7 0xqu(t) + 7 (U - Vi )u(t) (1.7)[e]
+7 (u(t) - V)U + 7 (u(t) - Va)u(t) + Vor(t) =0,  divyu(t) =0 fort € (0,00),
v[0Q x (0,00) =0, u(0) = ugp. (1.8)[7]

Our aim then is to show stability of the zero solution to (1.8), (1.9), in the sense that
|Vzu(t)]l2 = 0 (¢ — o0) if the quantity |lug|l2 + |[Vuopll2 is small. (1.9)[8]

Of course, the preceding relation will only hold under certain assumptions. The type of
conditions we are interested in here relate to the spectrum of a linear operator £, which
may be defined as follows. Put

D(L) == Hy(Q°) n W2(Q)3 n Wy 2(Q%)3, (1.10)
BW):=—7(U-V)W —7(W-V)U for W e W, Q3 (1.11)[69]
Lo(W) := Pa(AW — 70;W) (”Oseen operator”), (1.12)
L(W) = Lo(W) + Po(BW)) = Po( AW — 7 W + B(W)) for W e D(L). (1.13)

Under the assumption @ = () (hence Q° = R3, “whole space case”), it was proved by J.
Neustupa and the present author [12] that the stability relation in (1.10) holds if R\ < 0



for any eigenvalue A of £, and if A = 0 is not a generalized eigenvalue of £. The reason
why we restricted ourselves to the whole space case was that only then we were able to
derive the resolvent estimates necessary for our argument.

In a recent paper [45], J. Neustupa gave a proof of (1.10) under the assumptions that
A = 0 is not a generalized eigenvalue of £ , and that there is some § > 0 such that any
eigenvalue X\ of L satisfies one of the relations

RA< -0 or T2RA < —(SN)2 (1.14)[15]

The second inequality means that A belongs to the essential spectrum of £. In fact,
according to Babenko [2], Farwig, Neustupa [16], the essential spectrum oes5(Lo) of the
Oseen operator Lg (see (1.13)) is given by 0ess(Lo) = {A € C @ 72RX < —(SN)?}. As
explained in [44, p. 25], the essential spectrum o.s5(L) of L coincides with that of Lo,
hence

Oess(L) = 0ess(Lo) = {A € C : T2RA < —(IN)?). (1.15)[14]

This means o.45(L) is a parabolic region in the complex plane touching the imaginary axis
from the left at the origin A = 0.

The conditions in (1.15) are stronger than those required in [12] for the whole space case:
stability holds in that latter situation even if contrary to (1.15), there is no § > 0 such
that RA < —4 for any eigenvalue A not belonging to the essential spectrum of £. Instead,
as mentioned above, it is sufficient that R\ > 0. Reference [45] leaves open the question
whether the result from [12] remains valid in the exterior domain case. It is the aim of
the work at hand to give a positive answer to this question (Theorem 2.5).

This is not just a technical improvement. In fact, simple examples involving the linear
problem u’(t) — £( u(t) ) = 0 indicate that stability cannot be expected to hold if there are
eigenvalues of £ with nonnegative real part. (As explained in [45] by a reference to [31]
and [46], the nonlinear term in (1.6) does not contribute to stability.) Thus, by allowing
eigenvalues with negative real part to pile up near the imaginary axis — including those
that do not lie in the essential spectrum —, we clearly deal with a main difficulty, and
obtain an optimal result. So it is perhaps not astonishing that a considerable effort is
necessary to derive this result.

As a key feature of our proof, the resolvent estimates established in [12] for the whole space
case will be generalized to the exterior domain case. (We will comment on these estimates
further below.) Once they are available, the functional analytic reasoning leading to (1.10)
may be carried through in exactly the same way as in [12]. Our resolvent estimates may
serve in other contexts as well, and thus are of independent interest.

The theory developed here, in [45] and in [12], respectively, goes beyond of what may be
expected from the theory of abstract differential equations. In fact, according to [46] or
[30], [31] for example, stability holds in an abstract situation if the relevant spectrum is
located in the part R\ < —4 of the complex plane, for some § > 0. Such a condition
cannot be satisfied here because the essential spectrum of £ touches the imaginary axis
from the left, as mentioned above (see (1.16)). But the point is that the work at hand,
[12] and [45] make do with weaker assumptions than those in the abstract case, requiring
conditions only on eigenvalues, instead of on all of the spectrum.



The present work, reference [12] and [45] share a common starting point. In fact, all three
of them are based on a result by J. Neustupa [44, Section 4] (also see the predecessor
papers [41], [42], [43]), which we formulate in Theorem 2.4 below, and which states that
the relation in (1.10) holds true if the semigroup generated by L satisfies a certain estimate
on a certain finite-dimensional subspace of D(L) (inequality (2.3)). However, this criterion
is very technical, should be difficult to verify in concrete situations, and does not connect
with the more general theory based on spectral properties of suitable linear operators.
This situation motivated the articles [12], [45] as well as the work at hand.

A remark is perhaps in order with respect to the condition that A = 0 is not a generalized
eigenvalue of £. A precise form of this assumption states that the only solution of the
boundary value problem

AV 471V -BV)+VIl=0, divV=0 inQ°, V|[0Q=0, (1.16) [70b]

whose first and second derivatives belong to L?(Q°) is the zero function. Note that the
velocity part V of a solution to (1.17) cannot be expected to belong to L2(Q°)3, in view of a
similar situation for solutions to the Oseen system (|24, Theorem X.6.4]). Thus, supposing
that A = 0 is not an eigenvalue of £ amounts to not requiring anything at all concerning
the spectral properties of the origin of the complex plane. Therefore it should be expected
that in the case A = 0, a somewhat more general notion of eigenvalue is needed in order
to guarantee stability.

As indicated above, our proofs are based on resolvent estimates. More precisely, we first
estimate the velocity part V' of solutions to the Oseen resolvent problem,

AV 47V H+AV4VII=G, divVi=0 inQ°, V|[0Q=0, (1.17)[10]
and then the velocity part of solutions to a perturbed version of (1.18), that is,
AV 47V —BV)+AV+VII=G, divVi=0 inQ°, VdQ=0. (1.18)[11]

Both in the case of problem (1.18) and (1.19), we provide upper bounds of the velocity
depending on A in an explicit way. This is — as usual — the crucial feature and the main
difficulty of resolvent estimates. In a paper by Kobayashi, Shibata [32] — the article in
literature most closely related in spirit to our work —, this type of estimates for solutions to
(1.18) are derived under the assumptions A > 0, || > Cj for some Cy > 0 ([32, Theorem
4.4]). Our key estimates of solutions to (1.18) are in a certain sense complementary: we
provide upper bounds holding uniformly for |[A\| — 0 if R\ > 0. In this context, it is
important to know that a basic resolvent estimate for the Stokes system does not have an
equivalent in the Oseen case. More precisely, it is well known that ||V |2 < C'||G||2/|A] if
V' is the velocity part of a solution to the Stokes resolvent system —AV + AV 4+ VII =
G, divV = 0 in Q°, under Dirichlet boundary conditions V'|0Q = 0, where G € L*(Q)3
and A\ € C with |argA\| < 9, with ¥ being some fixed number from (7/2, 7). Such an
estimate does not carry over to the Oseen resolvent problem (1.18) if A is close to zero.
This is obvious in the case R\ < 0, in view of what is stated above about oss(Lg). But
as was shown in [13], this estimate does not hold for the Oseen resolvent even under the
assumption RA > 0 if |\| is small.



Concerning further results in existing literature, we mention that Sazonov [47] announced
a stability result as in (1.10), but with ||u(¢)||s in the place of || Vu(t)||2, under assumptions
on the spectrum of £ similar to ours. But it seems his proof has a gap; see the detailed
discussion of his argument in [44, p. 25], [45, Section 1], and [32, p. 6-7].

There are many articles deriving stability results for the zero solution to (1.8), (1.9) from
smallness conditions on 7 or U. In this regard we mention J. G. Heywood [27], [28], [29],
K. Masuda [38], P. Maremonti [37], G. P. Galdi and S. Rionero [20], G. P. Galdi and
M. Padula [21], W. Borchers and T. Miyakawa [3], [4], H. Kozono and T. Ogawa [34],
H. Kozono and M. Yamazaki [35], [36], G. P. Galdi, J. G. Heywood and Y. Shibata [22],
T. Miyakawa [39] and Y. Shibata [48]. This list is not exhaustive.

2. Notation. Statement of main results.

For ¥ € (0,7), a € (0,00), we put Sy, := {\ € C\{a} : |arg(A —a)| < 9}. If A C R3,
let A¢ denote the complement R?\ A of A in R3. The symbol | | designates the Euclidean
norm in R™, for any n € N, and also the length a; + a2 + a3 of a multiindex a € Ng,
as well as the Lebesgue measure of measurable subsets of R3. For R > 0, = € R?, put
Bgr(r) :=={y € R® : |z —y| < R}. If x = 0, we write By instead of Bg(0). If A is some
nonempty set and v : A — R a function, we abbreviate |v|s := sup{|y(z)| : = € A}. Let
V:R?*— Cand W : R? = C be measurable functions with [ps [V (z — y)| [W (y)| dy < oo
for a. e. & € R®. Then we define (V+«W)(z) := [ps V(z—y) W(y)dy for a. e. z € R3. We
will use the differential operators 8;, 8° for 8 € N3, V., A and div with respect to functions
having a domain in R3. As concerns function with domain of the form A x J, where
A CR3, JCR, we use the notation d,,, 85, Vo, Ay, div,, O, with obvious meanings.

Our notation of function spaces does not distinguish between spaces of real-valued and
of complex-valued functions because this distinction should be clear from context. In
fact, in what follows, spaces of complex-valued functions are relevant only if a resolvent
parameter \ € C is involved. For p € [1,00], A C R? measurable, we write LP(A) for the
usual Lebesgue space on A associated with p, and || ||, for the usual norm of this space.
Let A C R? be open, p € [1,00) and m € N. Then the symbol W™P(A) stands for the
usual Sobolev of order m and exponent p. The standard norm of this space is designated
by || |[mp- The space W"?(A) is defined as the closure of C§°(A) with respect to the norm
of W™P(A), and is equipped with this norm. For any open set B C R3, and for p and m
as before, the spaces L (B), W,):P(B) are to contain the functions v from B into R or C
satisfying the relations v|A € LP(A) and v|A € W™P(A), respectively, for any open and
bounded set A C R? with A ¢ B. If A C R? is an open set with bounded C?-boundary
0A, then the Sobolev space W"™P(9A) with p € (1,00), r € (1,2) is to be defined as in [19,
Section 6.8.6].

Let n € N, A a non-empty set and V a vector space consisting of functions from A into

R or C. Suppose a norm denoted by || || has been introduced on this space. Then we set
1/2 . .

I(f1y oy )| = (Z?:l Hf]H2> for (f1, ..., fn) € V™. The mapping || || is a norm

on V", and we equip V" with this norm. However, we will write || || for this norm too,

instead of || [|(.



If AC R?isopen and p € (1,00), define H,(A) as the closure of the set {¢p € C§°(A)3 :
div ¢ = 0} with respect to the norm || ||, of LP(A)3. Let A C R3, p € (1,00), n € N. Then
we write W, P (A)™ for the space dual to Wol’pl(A)”. The norm || ||_1,, of Wy "P(A)™ is to
be understood as the operator norm of this space, that is, ||§|| -1, := sup{|F(V)|/[|V|l1p :
Ve VVO1 P /(A)”, V # 0} for any linear bounded functional § on VVO1 4 (A)™. For any Hilbert
space H and any T € (0, 00|, the spaces L?(0,T, H) and W2(0, T, H) are to be defined
in the usual way; see [50, Section IV.1.2] for example. The spaces L%OC( [0,00), H ) and
I/Vllof( [0,00), H ) are to contain those functions v : (0,00) — H satisfying the relation
v|(0,T) € L?(0,T, H) and v|(0,T) € W42(0,T, H), respectively, for any T € (0, 00).

The set 2 and the parameter 7 € (0, 00) introduced in Section 1 will be kept fixed through-
out. Recall that € is supposed to be open and bounded, with C?-boundary and with Q°
connected. Put K, := {A € C : ®X >0, |\ < (7/2)?}. For R € (0,00) with Q C Bp,
we put Qg = Br\Q. It will be convenient to fix a real S € (0,00) with Q C Bg. The
symbol J stands for the identity operator on Hy(Q). By Dé:i(ﬁc), we denote the set of

all functions V' € VV;)C1 (Q°)3 with VV e L2(Q)? and such that there is a sequence (¢,) in
C°(Q%)3 with div g, = 0 for n € N and ||[VV — V¢, |s — 0. We define
D*(Q°) = {V e W@ : VV e L2Q)°, V e LS(V) and V]9 = 0}.

The mapping V — ||[VV]2, V € Dé’Q(ﬁc), is a norm (Theorem 3.5); we equip the space
D(l)’2(§c) with this norm. It should be remarked that the mapping V +— ||[VV]|2 is not a
norm on D(l)’Q (R3), contrary to what is written in [12, p. 205], if that latter space is defined
as the closure of C§°(R?) with respect to the mapping V + ||VV||2. Here this space will
not be used. The space dual to Dé’Q(ﬁc)?’ is denoted by D, 1’2(56)3. It is equipped with
its natural norm denoted by || ||—1,2 and defined by

I311-1,2 == sup{|[F()I/IVA]l2 : v € D*(Q°)?, 7 # 0},

for any linear and bounded functional § from D(l)’Q (Q%)? into R or C. We refer to Theorem
3.6 for more properties of this space. In this theorem, it is explained in which sense
functions with domain Q° may belong to Dy L2(Q°)3. For functions V € Dy L2@%3 n
L?(Q°)3, we use the notation ||V := |[V|-12 + V]2 If p € (1,00), n € {1, 3} and
G € WEH R, we define

loc
IGll-1pms = sun{ [ G/ IVl : v € CFRY" 7 £ 0},

We further set 7551’p(R3)” = {G e WH (R . |Gll—1prs < oo}. The preceding two

loc
notation should be considered as abbreviations. We will not use any functional analytic

properties of either the mapping || ||y ,rs or the space D, 1’p(R?’)". For convenience, we
will write || |1, instead of || ||_; ,gs. In the case p = 2, care has to be taken as concerns
the quantity ||¢]_1, if ¢ € C(Q°)3. In fact, for any open set A C R3, we consider
functions from C§°(A) as functions with domain R? (but, of course, with compact support
in A). So, if ¢ € C5°(Q°)3, we have to distinguish between ||¢||_1 2 and ||¢|Q°||_1.2, with
the first expression denoting ||¢[|_; o g3, and the second involving the norm | |[_12 of
Dy 12(Q%)3; see Theorem 3.6 and Lemma 3.4 in this respect.



The symbol C' is to denote numerical constants, and C(71, ..., ) constants depending
exclusively on 71, ..., 7, € (0,00), for some n € N. However, such precise indications on
how a constant depends on parameters will be given only at some places. In order to avoid
that our presentation becomes too unwieldy, most of the time we take the point of view
that the dependence of our constants should be clear from context, and we only indicate
some key parameters. In that situation the symbol € or €(vy, ..., v,) is used to denote
generic constants. Typically they depend on 7, on €, in particular on the parameter S
introduced above, on ||U||, for certain p € (2,00], and on ||VU]|, for certain p € (4/3, 3],
where U is the function from (1.5).

We introduce two fundamental solutions. Put N(z) := (47 |z|)~! for z € R3\{0} (funda-
mental solution of the Poisson equation), and EM (z) := (47 |z|)~! e~ AT/ fal T 21 /2
for x € R3\{0}, A € C with R\ > 0 (fundamental solution of the scalar Oseen equation
—AV + 70,V =G if A =0, and of the associated resolvent equation if A # 0).

We recall that the space D(L) was introduced in (1.11), and the operators B and £ in
(1.12) and (1.14), respectively. As also mentioned in Section 1, the resolvent set of L is
denoted by o(L). In the ensuing Theorem 2.1, we introduce the Helmholtz projection on
LP(Q)3, denoted by P,, and the operator G, corresponding to the complement of H, (ﬁc) in
LP(Q%)3. Theorem 2.1 states those properties of P, and G, we take from literature. Some
additional facts, in principle well known, too, are presented in Corollary 3.7. Following
Theorem 2.1, we introduce the operator By, and K as well as the space Hj, which come
up in Theorem 2.2 and 2.4, and then again in Section 8 (Theorem 8.2, Corollary 8.5).
The Helmholtz decomposition of LP(R3)3, involving operators P, and G, is introduced
in Theorem 3.12. The notion of “essential spectrum” mentioned in Section 1, will not be
needed in what follows. Still we indicate that in Section 1, the essential spectrum of the
operator L is understood to consist of those A € C for which AJ — £ is not semi-Fredholm
([44, p. 29)).

(theoremT2.10) . . . —
Theorem 2.1 ([24, Section IIIL.1, in particular p. 149-152]) Let Py : L*(2)3 —

Hy(Q) denote the usual projection operator onto the closed subspace Hy(Q) of L*(Q2°)3.
Let p € (1,00). Then there are linear operators P, : LP(Q°)% s H,(Q°), G, : LP(Q°)%
WP (Q°) such that P2 =Py, V =Py(V) + Gp(V),

IPe (W)l +IVGV)lp < €@) IV ]l5, (2.1)[T2.10.10]
in particular VG,(V) € LP(Q°)? and Pp(VGp(V)) =0, for V e LP(Q%)3, and such that
Pp(V) =Pa(V) for Ve C°(Q°)3.
Proof: See [24, Section III.1, in particular p. 149-152] or [18]. O

Define
3
Baym(W) := Ps (—T S (W 0kU; + 93] /2) K(W) = Po(AW)  (2.2)

: 1<k<3’
J=1

for W € D(L). Note that K is the usual Stokes operator in L?. Next we present the results
from [44] entering into our theory. We start with a theorem that serves to introduce a key
finite-dimensional subspace of D(L).



(theoremT2.20)
Theorem 2.2 ([44, Lemma 3]) Fiz some s € [0, 1]. Then the operator KC+(14+r) Boym :
~C

D(L) — Hy(Y) has a finite number of eigenvalues in C\(—o0,0], all of which are positive
and of finite multiplicity.

Observe that each eigenfunction of K4 (14 &) Bsym belongs to D(L), in view of the domain
of K + (1 + k) Bsym. Denote by Hj the subspace of D(L) generated by the eigenfunctions
of K + (14 k) Bsym associated with positive eigenvalues of this operator. According to
Theorem 2.2, this space HJ is finite dimensional.

Theorem 2.3 The operator £ : D(L) — Ho(Q°) generates an analytic semigroup on

Hy(Q).
Proof: See [44, p. 32]. Alternatively, this theorem follows from [26, Theorem I.3.4],
Lemma 8.5 and Corollary 8.6. O

The operator given at time ¢ € (0,00) by the analytic semigroup generated by £ will be
denoted by e“?. The theorem from [44] mentioned in Section 1 as being the starting point
of our stability theory may now be stated as follows.

(theoremT2.40) _
Theorem 2.4 ([44, Theorem 1 and p. 42]) Let R € (0,00) be so large that Q@ C Bpr

and such that ||U|Bg||3 < Co (see (1.5)) for some constant Cy independent of U. Suppose
there is a function ¢ € L'(0,00) N L?(0,00) such that

Ve 6|Qrll2 < (1) |9ll2 for t € (0,00), ¢ € Hy, (2.3)[12.40.10]

Then there is some number § > 0 such that for any ug € Hy(Q°) ﬁDéﬁ(ﬁc) with [|upl/1,2 <
8, there is a unique function u € L} ([0,00), D(L)) N VVllof( [0, 00), Hg(ﬁc)) which solves
(1.8), (1.9) in the sense that

() =L(u(t)) +Po[—7 (u(t) Va)ult)], u(0)=ue. (2.4)[T2.40.20]
This function satisfies (1.10), that is, [|[Vu(t)|2 — 0 for t — oco.

As indicated in Section 1, we will show that our conditions on the spectrum of £ imply
(2.3). This will lead to the following theorem, which is our main result on stability.

(theoremT2.50) ] .
Theorem 2.5 Suppose that RA < 0 for any eigenvalue A of L, and that any function

Ve Dé’Z(QC)S N VVZQO’Cl Q)% with D?V € L*(Q°)?" and satisfying the equations
divV =0, Po( AV =70,V +B(V)) =0 (2.5)[T2.50.10]

vanishes. Then there is § > 0 such that for any ug € Hy(Q°) N Déﬁ(ﬁc) with ||lugll12 <6,
there exists a unique function u € L7, ([0,00), D(L)) N W1’2( [0, 00), Hg(ﬁc)) such that

loc loc

(2.4) holds. This function satisfies (1.10).

In view of Lemma 4.1, we have B(V) € L?(Q°)3 for a function V as in (2.5), so that
the expression Po( AV — 79,V + B(V)) is well defined. However, such a function need
not belong to D(L) because it is not required to be in L?(2)3. Therefore, in view of the
definition of £, if there were a nonvanishing solution V' to (2.5) with properties as stated
in Theorem 2.5, the value A = 0 might be considered as a generalized eigenvalue of £
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Let us indicate the structure of the work at hand. The next section (Section 3) consists of
a collection of auxiliary results, most of them well known and stated for the convenience
of the reader. When we cannot give a direct reference for a known result, we will in some
cases sketch a proof, again for the convenience of the reader. There are three theorems
(Theorem 3.10, 3.11 and 3.13) which provide results that are new as far as we know.
Section 4 also deals with auxiliary results, but is focused on issues related to problem
(1.18) and (1.19). Again most results, but not all, are well known. The new results in this
section, however, are just technical observations adapting known theory to our purposes.
Next (Section 5) we consider regularity of the Oseen resolvent system in the whole space
R3. In Section 6, we derive a rather general uniqueness theorem for solutions to (1.18)
(Theorem 6.2). Once uniqueness is established, we are able to derive estimates of solutions
to (1.18) for small values of |A| (Section 7). These Oseen resolvent estimates (Theorem 7.1
— 7.3) are the key element of our theory. They are exploited in Section 8 in order to derive
upper bounds for solutions of the perturbed Oseen resolvent problem (1.19). Once these
bounds are available, we are able to rerun the functional analytic mechanism already used
in [12], which reduces Theorem 2.5 to Theorem 2.4 (Section 9).

3. Various auxiliary results.

We start by indicating some properties of Sobolev spaces.

Theorem 3.1 ([24, Lemma I1.6.1]) Let p € (1,00), A C R3? open, bounded, with Lip-
schitz boundary. Let B € {A, A°, R}, and V € W (B) with VV € LP(B)®. Then
V € WYP(A) in the case B= A, V € VVZZ’S(R3) in the case B = R3, and V|A°N By €

Wl’p(ZcﬁBR) for any R € (0, 00) with A C Bg if B = A°

Lemma 3.1 Letp,q € (1,00). If V € LYR3)NLP(R3), there is a sequence (¢n,) in C§°(R?)
with ||V — ¢ulls — 0 for s € {p,q}.

LetV € I/Vlicl (R3)NLP(R3) with VV € LI(R3)3. Then there is a sequence (y,) in C§°(R3)
such that |V — n|lp, = 0 and [|[VV — Vipy[lg — 0

Proof: Use Friedrich’s mollifier. O

Theorem 3.2 ([23, p. 149-150]) Let p € (1,00) and V € VVol’p(ﬁc)3 with divV = 0.
Then there is a sequence (¢y,) in C(Q°)3 with divg, =0 forn € N and ||¢n— V|1 — 0.

It is perhaps not so well known that L9 is compactly imbedded in W—14:

Theorem 3.3 ([24, Theorem I1.5.3]) Let A C R3 be open and bounded, q € (1,00),
and (V;,) a bounded sequence in LI(A). Then there is V € LY(A) and a subsequence (W)
of (Vi) such that |Wy, — V||—1,4 — 0.

Lemma 3.2 Let V € Hy(Q°) N WoH(Q)3. Then divV = 0.

Proof: Take a sequence (¢,,) in C5°(Q°)? with divé, = 0 for n € N and ||¢,, — V]2 — 0.
Let ¢ € C{)’O(ﬁc). Then fﬁc divV pdr = — fﬁc VVedr =lim, o — fﬁc on Vodr =0. O



Theorem 3.4 Let A C R? be either an open bounded nonempty set with Lipschitz bound-
ary, or A=10. Let g € (1,3) and V € I/Vll Y(A°) with VV € LI(A°)®. Then there is V* € R
such that V — V* e L34/(3=4) (A ), and the following five assertion are equivalent:

1.) V e L"(A°) for somer € (1,00); 2.) V e L3/B-9(A%); 3.) Jog, V(R2)|7do, —
0(R—00); 4.) [yp, [V(Rz)|doy — 0 (R — c0); 5.) V*=0.

If one — and therefore everyone — of these assertions holds, the ensuing inequality is valid:

1V l3q/(3-q) < €(q, A) [[VV]lg- (3.1)[T3.40.5]

Proof: According to [24, Lemma I1.6.3], the relation VV € L9(A%)? implies there is
V* € R with fa& |(V(Rz) — V*|7do, — 0 (R — o00). Moreover, by [24, Theorem I11.6.1],
we have V — V* € L39/(3=9(A%). Starting from these relations, we showed elsewhere ([10,
Lemma 2.4], [11, Lemma 2.1]) that assertion 2.) follows from 1.). Suppose that assertion
3.) holds. Then we get from the convergence relation at the beginning of this proof that
V* =0, so assertion 2.) holds because V — V* € L34/(3=9) (A%, If assertion 2.) is valid, we
may deduce from the preceding relation that V* = 0, so 3.) follows from the convergence
result at the beginning of this proof. Suppose that assertion 4.) holds. Then we may
choose a sequence (R,,) in (0,00) such that R, — oo and V(R,z) — 0 (n — oo) for a.
e. x € 0B1. But again by the convergence result at the beginning of this proof, there is
a subsequence (Sy) of (R,) such that |V (S, z) — V*|? — 0 for a. e. € 0B;. Recalling
the choice of (R;,), we may conclude that V* = 0, so assertion 3.) follows by referring
once more to the beginning of this proof. Obviously 3.) implies 4.). Inequality (3.1) holds
according to [24, Theorem II.6.1]. O

~—1
As a consequence of the preceding theorem, we get that C§°(R?)3 C D, ’p(]R3)3 ifp > 3/2:

corollaryC3.15) ~_1p
Corollary 3.1 Let p € (3/2, 00) and ¢ € C§°(R?)3. Then ¢ € D, ~ (R3)3.

Proof: Let R € (0,00) with supp(¢) C Bgr. Since p' € (1,3), we get with (3.1) that
| Jrs dvdz| < N0lassim—1 1V /@) < I0lassiam-1 1Vl for v € CER?)?. O

(lemnal3.30) Lemma 3.3 Let q,r € (1,00), Ry € (0,00). Then

R IVIBar\rllg < Cla, 7, Ro) (IVIBRlr + IVVIBEllg + R~V + B7H[VV]|g)

for R e (Ry,00), V € W (Bg,) N L"(Br,") with VV € Li(Bg,")>.

loc

Proof: We proceed as in [23, p. 177-178]. Take R and V as in the lemma. First suppose
that ¢ < 3. Then Holder’s inequality yields ||V|Bagr\Brllq < € R||V|Bgl|34/(3—q)- On the
other hand, a scaling argument and Theorem 3.4 with A = Bp, imply

IVIBlsg/(3-q) = (R/R0)® |V ((R/Ro)- )| By llsg/3-q)

< C(Ro, q) (R/Ro)*" V4|V [V ((R/Ro)- )|Br, |lg = C(Ro,q) [ VV| Bl -
Thus, in the case ¢ < 3, we have found that ||V|Bagr\Brllq < C(Ro,q) R||VV|B%||q- Next
suppose that ¢ > 3 and ¢ < r. Since we then have 1/¢ — 1/r > 0, we get by Holder’s
inequality that ||V|B2r\Bgll; < C R3*M/a=Y") |V |B%||,. But ¢ > 3 and R > Ry, so we
may conclude that ||V |Bag\Bgll, < C Ro M1V RV |BS,-

10



Finally suppose tha ¢ > 3 and ¢ > r. Then a := (1/¢—1/r)/(1/q —1/r —1/3) € (0,1).
Obviously 1/q = a(1/q — 1/3) + (1 — a)/r, so by [23, Lemma 2.2], we obtain |||, <
Clg. ) VW] IWlz= < Clg.r) (IVWllg + ||W|| ) for W € W, (R%) LT(R?’) with
VW € LI(R3)3. Now we split V into a sum of a W —functlon on R? and a W —functlon
on a bounded domain. To this end, we set B := BR0+1\BR07 and take ¢ € COO(R3) with
¢|Bg, +3/0 = 1 and ¢|Bry+1/4 = 0. Obviously ¢ V' € VVZE(}(RS) N L"(R3). According to
Theorem 3.1, we have V|B € W14(B), so V(pV) € LY(B). Now the above inequality
involving the parameter a yields ||¢ V||, < C(q,7, Ro) (|[VV g + IVIB|lg + |V |l»). Hence

Vllg < Ml Vlg + 111 = @) Vllg < Clg;r, Bo) (IVVlg + IVIBllg + [[V]]:)- (3.2)[13.30.20]

But the term ||V|B||, my be estimated by Poincaré’s inequality for functions with mean
value zero. In fact, abbreviate m := |B|™' [,V dz. Then |[V|B|; < [[(V — m)|B|, +
|m||B[Y4, with ||(V — m)|B||, bounded by C(q,Ro)||VV|B|, whereas |m||B|'/? may
be estimated by |B|~**Y¢||V|B||;, and thus by C(q,7, Ro) ||V|;. Therefore from (3.2),
Vg < C(r,Ro) (IVV|lg + IV]lr). The lemma follows from the preceding inequality and

from our estimates of ||V|Bar\BRg|| in the cases ¢ < 3 and ¢ > 3, ¢ < r, respectively. O

Next we collect some properties of D(l)’Q(ﬁC) and D, L2@).

(theoremT3.60) 1,2 /¢
Theorem 3.5 The mapping (V,W) — [qe VV - VW dz is a scalar product on Dy~ (Q),

and Dé’2(§c) equipped with this scalar product is a Hilbert space, with associated norm
V > [[VV |lo. Moreover the inequality |[Vls < €||VV |2 holds for V € Dy*(Q°), and the
set C°(Q°) is dense in Dé’2(ﬁc).

Proof: For the Hilbert space property, we refer to [24, p. 105] or [49, Theorem 1.2.2

1.2.8]. The inequality ||Vl < €||[VV]|2 holds according to (3.1). As concerns density of
C3o(Q) in D(l)’2(QC), we refer to Theorem 3.4 and [23, Theorem I1.7.1], or to [49, Theorem

1.2.8]. 0
(theoremT3.70) —
Theorem 3.6 Let g € L, () and put Gy(p) := [ge g+ pdx for ¢ € C§° (Q°)3. Suppose

that ||gl|~1 o == sup{Gy4()/IVell2 : ¢ € CF° (Q)3, ¢ # 0} < co. Then there is a unique
element F, € Dy "2(Q°)3 with F,|C(Q°)? = Gy, and the relation lgll*10 = [[Fyll-12
holds. In this case, we write g instead of Fy, and g € Dam(ﬁc)g instead of ||g||* 5 < oo.

If g € LS/5(Q°)3, then g D_12(Q )3, Fylp) = [qe g - pdx for any ¢ € D(l)’Q(Qc)?’, and
1gll-1.2 < &) llglle/5-

For any h € D_l 2(Q°)3, there is a sequence (o) in C°(QX°)? with ||h — ¢p|| 1 2 — 0.

(6
Proof: Hahn-Banach’s theorem, the density of C§°(Q°) in D 2(Q°) (Theorem 3.5) and
the definition of [|g[|*; o yield existence of Fy € Dy (O )3 with F,|Cs°(Q°)% = G,
Uniqueness of F, follows again from the density of C§°(Q°) in D(l)Q(Q ). By Holder’s
inequality and the estimate [|¢|l¢ < €||Ve||2 (Theorem 3.5), we get that [5e|g - ¢|da <
lglle/s IVell2 for ¢ € C5°(2°)3, so the claim of the theorem related to the case g €
L%/5(Q%)? is true. The last statement of the theorem follows by [23, Theorem I11.6.5]. [

(lemmal.8.50) — —
Lemma 3.4 Let G € C*(Q)3. Then ||G||-12 < €[|GIQ ...

11



Proof: Let o € C®(R?) with p|Bg = 0, ¢|Bg; = L and 0 < ¢ < 1. Let v €
CS°(R3)3. Then ¢y € Cg°(Q°)3, so by splitting G into the sum (1 — ) G + ¢ G, , we get
| o G - v de| < [[G1Qswall2 (1 = @)ll2 + G| 12 [V(97)ll2- Put B := Bgya/4\Bs.
Then by Poincaré’s inequality on Bgi1, we see that ||[(1 — @) 7|le < €(||v|B]l2 + [[V7l2)-
Moreover [[V(p7)|l2 < €(|[7[Bll2 + [[Vyll2). But the estimate ||v[B|l2 < C(S) [|v[Bll¢ and

Theorem 3.4 with A = Bg® imply ||7|B|l2 < €||V~||2. Collecting the previous estimates
yields the lemma. O

We turn to the boundary value problem divV = G in B, V|0B = 0, for annular domains
B C R3.

(theoremT3.80) - N
Theorem 3.7 ([6, Theorem 2.4]) Let R, R € (0,00) with R < R, and put B =

BE\FR. Then, for any q € (1,00) and m € {0,1}, there is a linear operator © :=
D(q,m, R, E) from {g e Wy (B) : [ggdx = O} into Wg”l’q(B)?’ such that div®(g) =
g and [1D(@)llms1,q < Ca,ms Ry B) gllmg for g € WH(B) with [5gdz = 0.

Moreover, for p, m as before, and for g € Cg°(B) with [z gdx =0, the function D(g) (or
more precisely: the zero extension of D(g|B) to R?) belongs to C§°(B)3.

Finally, if p, ¢ € (1,00), m,n € {0,1} and g € C§°(B) with [zgdx = 0, then the
functions ©(p, m, R, ﬁ)(g) and ®(q,n, R, ﬁ)(g) coincide.

The ensuing lemma deals with solutions to the boundary value problem divV = G in
B, V|0B = 0, with B belonging to the set { B2, \By, :, n € N} of annular domains. The

lemma indicates how the LP-norm of these solutions depends on n.

(lemmal.3.50) 1/ _
Lemma 3.5 Let ¢ € (1,00), v € {0,1}, Co > 0, W,, := {g € W Ba,\Bn)

fB%\B—ngdx =0} forneN, D: W, — Wg+1’q(Bg\E)3 a mapping such that div®(g) =
g and |1D(9)|14v.q < Collgllvg for g € Wi. Forn € N, g € Wy, = € By, \By, set
9,(9)(x) = nD(g(n-)) ((L/n)2).

Then, for n € N, g € W,,, we have Dy(g) € WOVH’q(BQn\Bin)?’, div®D,(g) = g and
10D, (9)llq < Con'~lel|igll, for a € N} with |a| < 1 in the case v = 0, as well as
1010m®n(9)llg < Collgll1,q for i,m € {1, 2, 3} in the case v = 1.

Proof: Direct calculation, via scaling. U

Next we recall some results related to Poisson’s equation AV = G.

(theoremT3.90)
Theorem 3.8 (Weyl’s lemma) Let A C R? be open and V € L} (A) such that the

integral [, V MA@ dx vanishes for any ¢ € C°(A). Then V € C*°(A) and AV = 0.

Proof: An elementary proof may be found in [49, Appendix]. U

The consequence of Theorem 3.8 we have in mind is the ensuing corollary, which in princi-

ple is well known, but which we state and prove because we do not know a direct reference.

corollaryC3.20) 11
Corollary 3.2 Let A C R? be open and connected, I1 € W, (A) with VII = 0. Then

there is ¢ € R with II(z) = ¢ for a. e. x € A.

Proof: Theorem 3.8 yields IT € C§°(A). O

The ensuing theorem deals with the Newton potential. Since some subtleties of this

12



potential play an important role in what follows, we state them here. Concerning proofs,
they are, of course, well known. We only mention for completeness that the relations in
(3.3) follow by some integration by parts and Lebesgue’s theorem, the estimates in (3.5)
and (3.6) are a consequence of Hardy-Littlewood-Sobolev’s inequality, whereas inequality
(3.4) may deduced from Calderon-Zygmund’s inequality. The other claims of the theorem

follow from these inequalities via density arguments. Lemma 3.1 is useful in this context.
(theoremT3.100)

Theorem 3.9 Let ¢ € CSO(R3). Then the integral ng |0“N (z —y) 8/%5(3/)\ dy is finite for

r€R3 ae N} with|a| <1, €N, and

Nsx¢e C®R?), 0°(Nx¢)=Nxd°0¢) for 5N, (3.3)[T3.100.10]
(N «¢) = (ON) ¢ for 1 <1<3, A(Nx%¢)=0,
1010m (N * ¢)llq < Cla) [8llg for 1<1,m <3, g€ (1,00). (3.4)[T3.100.20]
Let g € (1, 3/2), ¢ € LY(R3). Then
[N |9lll34/(3-24) < C(q) [|9llq, (3.5)[T3.100.30]

in particular N ¢ € L39/B-20(R3) and Jgs IN(z — y) d(y)|dy < oo for a. e. x € R3.
Moreover N x ¢ € I/Vli’cl (R3)

Let g € (1,3), ¢ € LY(R3). Then
110N *[ll134/3-q) < Cla) |@llq for 1 <1 <3, (3.6)[13.100.40]

in particular N * ¢ € L34/ B~ (R3) and Jgs [ON (z = y)| |¢(y)| dy < oo for a. e. x € R3.
Moreover (O,N) ¢ € WE(R?) and div ((9;N) * ¢)

loc 1<i<3 = ¢.

If g € (1,3/2), ¢ € LYR®), then (N x ¢) = (ON) ¢ (1 <1 <3). Ifqge (1,3), pe€
(1,00), ¢ € LI(R3) N LP(R3), then

10m ((AN) % 6)[lp < C(p) Ml (1 <1,m<3). (3.7)[13.100.50]
In addition O;(N * ¢) € L (R3) for any r € (3/2, o) if ¢ € LI(R3) for any q € (1,3), and
OmOy(N * ¢) € L™(R3) for any r € (1,00) if ¢ € LI(R3) for any q € (1,00).
corollaryC3.30) 1
Corollary 3.3 Let p € (1,00), ¢ € Uy LI(R*) N Dy " (R?), | € {1,2,3}. Then
[OiN) * ¢llp < C (@) |9l -1,p-

Proof: We simplify the argument from [23, p. 394-396]. By the assumptions on ¢, we
may choose ¢ € (1,3) with ¢ € LI(R3), so (9;N) * ¢ € L3¥/B~D(R3) (Theorem 3.9). Let
Y € C3°(R3). In view of (3.6), we may apply Fubini’s theorem, to obtain fR3( (O/N) =
¢)Vdr = [ps((ON) *¢) ¢ dx. Since q < 3, we have ¢’ > 3/2, so (;N)* 1) € L7 (R?) and
also V((ON) x¢) € L” (R3) by (3.3) and the last two assertions of Theorem 3.9. Thus,
by Lemma 3.1, we may choose a sequence (7,) in C§°(R?) such that |[(9N)*1) — ||y — 0
and [|[V((9N) ) — V| y — 0. We now find

[ (@) 6) wda] < timsun [ v oda] < timsnp 9]-1, 1970
R3 n—o0 R3 n—o0

<él-1p 1 V(@ON) * ¥ )l < N dll-1 [l &1,
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where the last inequality follows from (3.7). O

~—12 . .
We now show that a function from Hy(R?*)ND, "~ (R3)? may be approximated simultane-

ously in L?(R3)? and 25(; b (R?)3 by smooth solenoidal functions. This is a generalization
of [23, Lemma VII.4.3], although only for the case ¢ = 2, but it seems to be new.

(theoremT3.110) ~_19
Theorem 3.10 Let ¢ € Ho(R3) ND, ~(R3)3. Then there is a sequence (¢,) in C§°(R3)

with divg, =0 (n € N) and ||¢ — ¢n|l2 = 0 and ||[¢ — ¢pl|—12 — 0.

Proof: Since ¢ € L?(R3)?, we may define v;; := (O;N) x ¢; for 1 < j < 3; see Theorem
3.9. By the same reference, in particular (3.5), we get v;; € I/Vll L(R?) Omvj € LA(R3) (1 <
j,l,m < 3), Z?:l dwj = ¢; (1 < j < 3). Corollary 3.3 yields v;; € L*(R?), so we
have vy € WH2(R3) (1 < j,1 < 3). Since ¢ € Hy(R3), we may choose a sequence (¢,,) in
C§°(R3)? with divep, =0 for n € N and ||¢p — ¢, ]| — 0. It follows with (3.7) that

10mvjt = Om ((OUN) # g )[l2 = 0 (1< j,1,m < 3). (3.8)[13.110.20]

Next we observe that 0;((ON) * ¥ j ) = ;01N * Y ;) = O(N * Ojabn ;) for 1 < j,1 <
3, n € N, as follows again by Theorem 3.9, in particular (3.3). Thus div( (9,N) 1y ;) =0
for I, n as before, hence from (3.8)

div (vji)1<j<s =0 for 1 <1< 3. (3.9)[13.110.30]
Let ¢ € C§°(B1) with ¢ > 0, fB @dr = 1, and define () = e 3p(ex) for x €
R3, we := @ xw for e > 0, w € L] OC(R3) (Friedrich’s mollifier). By standard properties
of this molhﬁer, by (3.9) and because v;; € WH2(R3), we get (vj;)e € C°(R3) NWL2(R?),

div ((vr1)e ) cpeq = 0 for e >0, [0 — 0% (vji)ella = 0 (e} 0) (3.10)[T3.110.45]
(1 < 4,1 <3, ae N} with |a] < 1). Choose some v € C§°(By/4) with v|Bj,y =
1, 0 < v < 1. Define y,(2) = v((1/n)z) for x € R* n € N. Note that v|Bs, /4 = 1
for n € N. We recall that Zl 1 Ovj; = ¢;. Thus the idea now is to approximate ¢ by
a solenoidal version of (Zl 1 Ol (V1) e ])1 << with n € N and € > 0 as independent
parameters. In order to introduce such a solenoidal version, take n € N, € > 0 and
L€ {1,2,3}. Then V7, ((vji)e ), ;<3 € C§°(B2n\Bn). This observation and (3.10) yield
fan\E Vn ((vjl)E )1Sj§3 dr = 0. Thus, in view of Theorem 3.7, we may define D,
as abbreviation of the function nD(2,0,1,2)( [V, ((vji)e )1§j§3](n ))((1/n)- ), and
then put ¥, = Tn ( (vj1)e )1<j<3 +Dine (1<1<3, neN, e>0). By Theorem 3.7 and
Lemma 3.5, we have ¢, € C§°(R?)? and div i, . = 0. Finally put ¢y, := Z?:l O e
for e >0, n € N. Then ¢, € CSO(R3)3 and div ¢, . = 0 for €, n as before, as follows from
corresponding properties of v, .. Using the equation 2?21 Ojr = ¢; (1 < j < 3), we
split the difference ¢, ; — ¢; into a sum of twelve parts: ¢, ; — ¢; = Z?zl Z? 1 S,)e,j,l

forn €N, e>0, 1< <3, with AL} o= 9y (ji)e, ALL ) == ODpneys Vo), =
%(al(vﬂ) — Blvﬂ) Qlffzjl = (% — 1) Oy for 1 < 1 < 3. Similarly, since ¥y, €

C§(R3)3, we get for ¢ € C§°(R3)3, after an integration by parts,

3
/RS(%,EJ, o) cjdx_/SZZ%fjmalgjdx for e>0,neN, 1<j<3,

i=1 [=1
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with BY) o=y ((Wi)e = vit), Brer ) = Dimegs Bor iy o= (n — Dy for 1 <1< 3.
Let x € (0,00). Due to second relation in (3.10), we may choose ¢y > 0 so small that

HmneoleZ + H% EOJZHQ < k for 1 < 4,1 <3, n € N. Moreover, since vy € WH?(R?)
and (1 — v,)|B,, = 0 for j,1,n as before, we may choose n; € N such that ‘|§2[n7€0,j,l”2 +
H%(?’) 2 < Kk for 1 < 5,1 <3, n € N, n > ny. In addition, with Theorem 3.7,

n,€0,7,
Lemma 3.5 and because |VA|o < C/n for n € N, we get that ||an sogl” + H%n 60]l||2
is bounded by €n ||V~ ( (vir)e )1§k§3H2, and hence by €max{|[(vii)e | By, ll2 : 1 <k <
3} for n € N, 1 < 4,1 < 3. Thus, since (vj;)e, € L*(R?), there is ny € N such that
2

1262 5all2 + 1%

that |[VA|lse < C/n and (vj;)e, € L*(R?), we may choose n3 € N with HQ(ne”ng <k
for n € N, n > n3g and 1 < 5,1 < 3. The preceding estimates taken together yield
¢ — ¢n,607j||2 <12k and ‘f[gg?)(qb - ¢n,60,j) G dw’ <9K|IV(|l2 for 1 <j <3, (€ Cgo(Rg)g

and n € N sufficiently large. Theorem 3.10 follows. O

nerlHQ < kforn €N, n>nyg, 1 <4l < 3. Finally, using again

A simplified version of the preceding proof yields a somewhat more direct access to [23,

Lemma VII.4.3], which we will also need in the case ¢ = 2, and therefore state as
corollaryC3.40) 12
Corollary 3.4 Let ¢ € L2 (R®)ND, " (R3). Then there is a sequence (¢n) in C§°(R3)
with H¢ - ¢n”2 — 0 and ||¢) - gan—LQ — 0.

The purpose of Theorem 3.10 and Corollary 3.4 is to serve as tools in order to establish
analogous results for the exterior domain case. We elaborate the proof of the analogue of

Theorem 3.10.
(theoremT3.120)

Theorem 3.11 Let G € Hy(Q )ﬂD(;l 2(Q°)3. Then there is a sequence (®y,) in Cso(R3)3
such that div®, =0 forn e N, |G — ®,|l2 = 0 and |G — ®p||-12 — 0.

Proof: Fix some function ¢ € C§°(Bgy7/4) with ¢|Bgys5/4 = 1 . Choose a sequence
(¢n) in C2(Q°)? with dive, = 0 for n € N and |G — ¢plla — 0. Abbreviate B :=
Bgi2\Bgy1. Then [ V¢, dz = 0forn € N, hence [, Vo G dx = 0. Therefore, following
Theorem 3.7, we may consider the functions ® := ©(2,0,S + 1,5 + 2)(—Ve - G|B) and
D, = 9(2,0,S+ 1,5 + 2)(—=Vp - ¢»|B) for n € N. This means in particular that
D e WOI’Q(B)?’ and D,, € C§°(B)3. We further get with Theorem 3.7 that p ¢, + D, €
C3 ()3, div (¢ pn+Dy) = 0 for n € N. In addition, since |D —Dy |2 < € ||Ve-(G—¢n) |2
by Theorem 3.7, we obtain [[pG + D — (¢ ¢n + Dyp)ll2 — 0. Moreover, observing that
supp(ng +9 — (pdn+9,) C Bgya, we get

’AC(¢G+@ — (96 +Dn)) "vd:c’ SCeG+D = (pdn+Dn)l2[IVY]2

for v € C§°(2°)3, where we applied Poincaré’s inequality to v|Qg 2. Since the term || G+
— (¢ pn+D,)||2 tends to zero (see above), it follows that || G+D— (¢ ¢, +D,) | =12 — 0.

Let G denote the zero extension of G to R®. Note that (1 — ¢) é\Bs+5/4 = 0. Reasoning
as above, we find that ||[(1 — ¢) G — D — ((1=9)pn—Dp )2 = 0, s0 (1 —0)G—D €
H(R3)3. Take v € C®(R?)3. Then (1 — )y € C°(2°)3. Moreover, using (3.1), we get
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VB2 < €[l7]Blls < €|[7[Bsy1lls < €[[Vyll2- Therefore [[V(1 — ) - 7] < €[[V]l2, so
we may conclude that UR3 (1-9)G de‘ <||G|=1,2 HV((l ©)y )||2 < C|G|-1.2 HV’sz
S1m11arly, URS D ydz| < |D2]7Bll2 < €[|D]l2 - [[Vyll2- Thus we see that (1 — ©)G —

D e DO (R3) . Therefore by Theorem 3.10, there is a sequence () in C§°(R3)3 with
divep, =0 for n € N and

I1=¢)G =D —tnllz =0, [[(1—¢)G—D —thp]l_12— 0. (3.11)[13.120.40]

Choose ¢ € C*®(R3) with <p|Bs+3/4 =1, ¢|Bgtia = 0, 0 < ¢ < 1. Recalling that
supp(1l — @) Usupp(D) C B, ,, we obtain (1 -¢)G -0 =¢ ((1—¢)G—D). Obviously
Jg.\55 V& ¥ndx = 0, 50 the function D,, := D(2,0, 5, S+1)(=V-¢|Bs41\Bs) for n €
N, is well defined; see Theorem 3.7. This theorem and the relations 2 C Bg, ¢|Bgi1 a=0
imply ¢, + D, € C°(Q9)? and div (@4, + Dy,) = 0 for n € N, as well as [|D,]]2 <
CVE - Ypll2 < C||Yn|Qs+1]l2- Since (1 — ) G — D|Qs41 = 0, we may conclude from the
preceding inequality that

1Dnllz < €-[I(1 = 9) G =D = |l < I(1 = 9) G =D — o (3.12)[13.120.60]

Now we find with the relation (1—¢)G—D = ((1—¢)G—D) that |(1-¢)G—-D —
(@ Un+Dn)ll2 <18 (1=0) G=D =) 2+ [Dnll2 < €[[(1 =) G—=D —1y|2. Therefore
from (3.11), |(1 =) G =D — (@ +Dp)|2 — 0.

This leaves us to prove convergence of the sequence (¢, + 35n|ﬁc) with respect to the

norm || ||_12. To this end, take n € N and v € C§(Q°)%. Then, with the relation
1-9)G-2=5((1-9)G-D),

A, ;:\/c(a_go)a—@—(@wﬁ@n))wdx\ (3.13)[13.120.50]

<| [ 2(0 =902 =) vda| + [Bull 1B\ Bl

< (1 =9) G =D = dull-12 V@2 + €[[(1 = 9) G =D = Iz [11Bs+1\Bsle.

where we used (3.12) in the last inequality. But |[V(@7)|l2 < € (||v|Bs+1\Bsll2 + [|V7|l2)
and ||7|Bs+1\Bsll2 < € |7|Bs+1\Bslls < €[7[Bs"[l6 < €||V7|l2, with the last inequality
following from (3.1). This estimate allows us to deduce from (3.13) that the quantity
2, i bounded by € ([I(1— ¢) G~ © — tall 12+ (1~ ) G — D — ) [V4]2. Now
we may conclude from (3.11) that |[(1 — )G — D — (@, + 6n)H_1,2 — 0. In view of
the fact that the terms || G + D — (9 dn + Dn)ll2, [¢ G+ D — (@ dn + Dy)| 1,2 and
1(1—¢) G =D — (Fthn +Dn)|l2 tend to zero for n — oo, as previously shown, the theorem

is proved. O

corollaryC3.41) . _19,~c —
Corollary 3.5 Let G € L*(Q) ND, “(Q°). Then there is a sequence (¢,) in C(Q)

such that ||G — ¢nll2 = 0 and |G — ¢n||—12 — 0.

Proof: This corollary may be proved by the same type of argument as Theorem 3.11, this
time based on Corollary 3.4 instead of Theorem 3.10. But the details are considerably less
involved. O

16



In the rest of this section, we deal with the Helmholtz projection, starting with the whole
space case. The special feature of that case is that the projection in question applied to a
smooth function is given in an explicit way.

(theoremT3.150)
Theorem 3.12 Let g € (1,00). Then there are linear operators P, : L4(R3)3 — H,(R?)

and Qq : LIUR?) — WLU(R®) such that P? = P, G = Py(G) + VQu(G), ||Py(G)llq +
IVQq(G)lly < Cl) |Gllq (in particular VQu(G) € LI(R?)3 and Pq(VQq(G)) =0) for

G € LY(R*), and Qq(G) = NxdivG, Py(G) = G—((N)xdivG),_,_, for G € C§°(R?)>.

Proof: See [24, Section III.1, in particular p. 147-148 and Theorem III.1.2]. O
corollaryC3.50)
Corollary 3.6 Let p,q € (1,00) and G € LP(R3)3 N LY(R3)3. Then P,(G) = P,(G).
Proof: See [12, Theorem 5] or use Lemma 3.1 and Theorem 3.12. O

As a supplement to Theorem 2.1, we state some additional properties of the Helmholtz
projection on LP(Q°)3.

corollaryC3.60) — —
Corollary 3.7 Let p,q € (1,00). Then Pp(G) = Py(G) for G € LP(Q°)3 N LI(Q")3.

Moreover (Pp) =Py and Pp(VIL) =0 for Il € VVZ}JS(QC) with VII € LP(Q%)3.

Proof: The first claim of the corollary follows from Lemma 3.1, (2.1) and the last equation
in Theorem 2.1. Concerning the proof of the second statement, let G € LP(Q°)3, H e
LY (Q°)3. We may choose a sequence (¢,,) in C§°(Q°)? with dive, = 0 for n € N and
o —Pp (H)|ly — 0. Then, since VQ,(G) € LP(Q°)? (Theorem 2.1), we have Joe VO, (G)-
Py (H)dz = limy, 00 [qe VQp(G) - ¢ndr = 0,50 [qe G-Py(H)dx = [qc Pp(G)-Py(H)dx
by Theorem 2.1. An analogous equation holds with P,(G) - H in the place of G - Py (H)
on the left-hand side. The second claim of the theorem follows. The third follows from
the second by the same type of argument. O

(theoremT3.160) _19,=~c . I .
Theorem 3.13 Let G € Dy “(Q°)2 N L*(Q°)3. Then P2(G) € Dy “(Q7)3 N Ha(Q") and

[P2(G)][-1,2 < €G]

Proof: Obviously we have Py(G) € Ho(Q") (Theorem 2.1). Let v € C3°(Q°)%. We are
going to show that | f5c P2(G) - ydx | < €||G|« ||Vl2. This proves Theorem 3.13; see
Theorem 3.6. In order to establish the preceding estimate, we construct functions 4! €
C=(R%)?, 1@ € C§°(Bgy1)? with vV[Q° € W2(Q9)% N Hy(QF), [V Dl2 < €[V
for i € {1,2}, and [5¢ P2(G) - vdz = [5e P2(G) - (v + +?)) dz. These relations will
yield the estimate we look for. We start by setting I := (Z?:l 0;0/(N 7l))1§j§3'
Then 9 € C®(R3?)? N L?(R3)3 according to (3.3) and (3.4). Moreover, again referring to
(3.3), we note that 9,M; = 9,,0;(N * divy) for 1 < j,m < 3, so VON; € L*(R?)3 and
(VN2 < C||divylle < C||Vyll2 for 1 < j < 3 by (3.4). It further follows with (3.3) that
div9l = A(N x div~y) = divy. Thus we have found that

y=NeCXRPNWHRY?, div(y =) =0, [[V(y=N)|2<C[Vrll2. (3.14)[13.160.30]

Put B := Bgy1\Bg, and take ¢ € C™(R?) with 0 < ¢ <1, ¢|Bgi1/4 = 0, o|Bg 54 = 1.
Then Vo - (y —=9MN) € C°(B) and [ Ve - (y —N)dx = 0, so we may consider D :=

D(2,0,5,5+1)( Ve (v —N)|B); see Theorem 3.7. Note that by that latter theorem,

17



we have D € C§°(B)? and

1Dz < €[V - (v =Ml2 < €Iy = NBls < &}y = N[B5lls < C[[V(y = N)|2, (3.15)[T3.160.40]

where the last inequality follows from (3.1). Now put A= (v —=9) +D. Then A1) e
C>®(R3)? N W2(R3)3, y(V|Bg = 0, divy™ = 0, in particular yV|Q° € W(}’Q(ﬁc)g. Due
to (3.14) and (3.15), we have |[VyD |y < €||V(y = N)|l2 < €||V72, where we used that
(3.15) yields an estimate of ||D||2 as well as of ||V (y—MN)||2 against €- ||V (y—N)]|2. Put
7@ = (1=p) (7=N) =D = 7y—N—D. Then y? € C°(Bs,1)?, so we get by Poincaré’s
inequality that |y < €[|V~?)|y. Hence by the inequality ||[VyM| < &||Vy|l2 shown
above and by (3.14), the estimate [|7?)|| < € ||V (y=0N—vD)|]2 < €|V~ holds. We recall
that 9 € L2(R3)3. Moreover (3.3) yields 9% = V(N xdiv~y) and N *divy € C®(R?), so by
the second and third equation in Corollary 3.7, [gc P2(G) - Ndx = [ge G - P2(N) dx = 0.
Now we get

/CPz(G)wdw:/CP2(G)-(v—m)dx=/c772(G)-(7“)+7(2))dfv- (3.16)(T3.160.60]
Q Q Q

But y(|Q° ¢ W(}’Z(ﬁc)3 and divy™) = 0, as mentioned above, so y(V|Q° € Hy(Q%)? by
Theorem 3.2. Thus [5 P2(G) - vM dz = [5¢ G - 4V dz. Now we may conclude from the
relations ||[Vy(D|ly < €||VA]l2 and ||[7P || < €||VAl2 established previously, and from
(3.16) that | for Po(G) - v | < G129Vl + [Po(@l2 1?2 < € (1G] 12+
IP(G)|l2) [IV7]|2- The looked-for inequality | [qe P2(G)-ydz | < €||G|« [|[V7]l2 now follows
with (2.1). O

4. The Stokes and Oseen system and associated resolvent
problems: some known results.

Our theory relies heavily on existence and regularity results for the Stokes and Oseen
system, and on resolvent estimates related to these systems. For the convenience of the
reader, we specify in this section what exactly will be relevant in this respect. We begin
by considering the Stokes resolvent problem.

(theoremT4.10) 1.9 —~c
Theorem 4.1 Let p € (1,00), A € (0,00), V € D(L) (see (1.11)), 1 € W .7(2), G €

L2(Q N LP(Q°)3 with —AV + AV + VII = G, divV = 0. Then V. € W*P(Q°)3 and
[Vl2,p < €p) [IGlp

Proof: According to [25], [5] or [7], [8], there are functions W € W2P(Q%)3 N Wol’p(ﬁc)g’ N
Hy(Q%), TT € WLP(Q)? such that —AW + AW + VII = G, divIW = 0 and |[W||z, <
C(p) |G|lp- Then V =W by [11, Lemma 2.5], so the theorem follows. O

Next we observe that for any weak solution of the Oseen or the Oseen resolvent system,
there exists an associate pressure.

(theoremT4.20) 11
Theorem 4.2 Let A C R? be open, g € (1,00), A€ C, G € LL (A), V € W, (A)® with

loc
VV e L] (A)?, divV =0,

loc

/(VV-Vw-I—(TalV—i—)\V—G)-1/1)dx:0 for 1 € CF°(A)? with divyp = 0. (4.1)[T2.20.10]
A
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Then there is 11 € L

loc

(A) ("pressure associated with V') such that
/ (VV - V+ (1O + AV = G)-¢p) — M div) ) dz =0 for o € C°(A)3.  (4.2)[T2.20.20]
A

Proof: Let B C R? be open and bounded with B C A. Then —7 &,V — AV + G|B €
L(B)3 (Theorem 3.1), and Poincaré’s inequality yields ’ Jp(=T OV = AV +G) - dx ‘ <
C(A) (IV|Bll1,q4 + |G| Bllg) [|#|lq for ¢ € Wol’q/(B)?). Now Theorem 4.2 follows from [23,
Lemma IV.1.1] and (4.1). O

We cite a theorem on interior regularity of solutions to the Stokes system.

(theoremT4.30)
Theorem 4.3 ([23, Theorem IV.4.1]) Let A C R3 be open, m € Ny, r € (1,00), G €

W (A)3, Ve WhI(A)® with VV € L, (A)?, divV =0 and

loc
/(vv VY —G-)de =0 for ¢ € CP(A) with divyy =0 (4.3)[T4-30.10]
A

(V' weak solution of the Stokes system). Then V € I/Vl2+m’r(A)3. Let 11 € Lj (A) with

oc loc
/(VV'Vw—Hdz‘mb—G-w)dx:O for i € C3°(A)3 (4.4)[T4.30.20]
A

(pressure associated with V' ). Then II € T/Vle’T(A) and —AV 4+ VII = G.

oc

The preceding theorem implies interior regularity for solutions of the Oseen resolvent

problem (if A = 0: Oseen system). For the convenience of the reader, we indicate a proof.
corollaryC4.10) 3 q N 11 3
Corollary 4.1 Let A C R” be open, q,5 € (1,00), A€ C, G € L}, (A)*, V€ W, . (A)

loc

with VV € L§ (A)? and divV = 0. Suppose that (4.1) holds. Then V € W/lzo’g(A)?’. Let

loc

ITe L{ (A) be a pressure associated with V' (Theorem 4.2). Then Il € Wllof(A) and

loc

AV 47V +AV 4+ VI =G, divV = 0. (4.5)[c4.10.10]

Proof: Theorem 3.1 yields V' € Wli’cs(A)?’. Abbreviate H := —7 0,V — AV + G. Put
r1 := min{q,s}. Then H and VV are L)) -functions in A, so Theorem 4.3 implies that
Ve I/Vlic” (A)3, I € VVZ1 "(A) and (4.5) holds. If ¢ < s, Corollary 4.1 is proved. Else we

oc
apply a Sobolev inequality to obtain V' € Wﬁ)’f/z(A)‘?’. Put rg := min{q, 3/2}. Then we may

conclude that VV and H are L;? -functions in A4, so V € VV;ZQ (A)3 and II € W,2"*(A)

loc

by Theorem 4.3. Thus we are done if ¢ < 3/2, otherwise V' € W/li’f/z(A)3 C VV;E(A)‘g
Setting 73 := min{g, 3}, we thus have 9;V, H € L;? (A)3 (1 < < 3). Another reference to
Theorem 4.3 yields V € W/ %*(A)* and IT € W,>"3(A). This settles the case ¢ < 3. Else

loc

Ve VV;;?(A)?’ C I/Vl{)’cq(A):*, hence H € L (A)3?, so Corollary 4.1 follows by once more

loc

referring to Theorem 4.3. O

Concerning regularity near the boundary, in many situations we again rely on a result
about Stokes flows:
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(theoremT4.40)

corollaryC4.20)

corollaryC4.30)

corollaryC4.40)

(theoremT4.50)

Theorem 4.4 ([24, Lemma IV.6.1]) Let A C R? be open and bounded, with C*-boun-
dary, v € (1,00), G € L"(A)3, V € I/Vli’cl(A)i)’ with VV € L"(A)? (hence V. € WT(A)3
by Theorem 3.1), V|0A € W2V (9A), divV = 0, and with V satifying (4.3) (weak
solution of the Stokes system). Then V€ W2 (A)3. Let I1 € L], (A) be such that (4.4) is
satisfied (associated pressure). Then I1 € W (A) and —AV + VII = G.

Corollary 4.2 Let A C R3 be open and bounded, with C*-boundary, s,q € (1,00), A €
C, G € LY(A)3, V € I/Vli’cl(A)i)’ with VV € L5(A)? (hence V.€ WH3(A)3 by Theorem
3.1), VI0A € W2 V29(9A)3, divV = 0, and with V satifying (4.1) (V weak solution of
(4.5)). Then V€ W29(A)3. Let 11 € L; (A) be a pressure associated with V (Theorem

loc

4.2). Then I € WY9(A) and equation (4.5) holds.

Proof: We have V|0A € W21/"7(9A)3 for r € [1,q]. Thus we may proceed in the same
iterative way as in the proof of Corollary 4.1, but with the references to Theorem 4.3
replaced by ones to Theorem 4.4. O
Corollary 4.3 Let s,q € (1,00), A€ C, G € L] (R®)3, V € V[/lzcl(ﬁc)?’ with VV|Qpr €
L5(QRr)° (hence VIQr € WL5(Qg)3 by Theorem 3.1) for any R € (0,00) with Q C
Bgr, V]0Q € W2=1/29(9Q)3, divV = 0. Further suppose that V satifies (4.1) with A = Q°.
Then V|Qr € W29(Qg)3 for R as above. Let T1 € L (Q°) be a pressure associated with
V' (Theorem 4.2). Then I1|Qg € W14(Qg) for R as above, and equation (4.5) holds.

Proof: Corollary 4.1 yields V € W21(Q%)3, T € W,L9(Q°) as well as (4.5). Let R € (0, 00)
with Q C Bg. Since V € W/lzo’cq(ﬁc)3, we have V|0Bg € W2 1/449(9Bg)3. Thus, recalling
the assumption on V|99, we obtain V|0Qr € W2~1/49(90R)%. Now Corollary 4.2 yields
VIQr € W29(Q5)3, QR € WH(Qp). 0

Next we present a criterion on C*°-regularity.

Corollary 4.4 Let A C R? be open, ¢ € (1,00), A € C, G € C®(A)3, V ¢ I/Vllocl(A)3
with VV € L1(A)?, divV =0, and with V satisfying (4.1). Let I1 € L (A) be a pressure
associated with V. (Theorem 4.2). Then V. € C®(A)3, I € C*°(A) and equation (4.5)

holds.

Proof: In the case A = 0, we may refer to [23, Theorem VII.1.1]. But both the case
A =0 and A # 0 may be reduced to Theorem 4.3. In fact, by Corollary 4.1, we have
Ve WAIUAB, 11 € Wli’cq(A), and equation (4.5) holds. Suppose that n € Ny and

loc

Ve W2IMI(AR, T e WE™I(A). Then —1 0,V — AV + G € W,™9(A)3, so Theorem

oc

4.3 implies V € W2™9(A)3 and I € W2I"™9(A). Therefore it follows by induction that

loc loc

Ve W™(A)3 and 11 € Wmflvq(A) for any m € N, m > 2. Corollary 4.4 follows by

loc loc

applying a Sobolev inequality to V|Be(z) and II| Bc(z), where x is an arbitrary point in A

and € > 0 is chosen in such a way that B.(z) C A. O

We cite an existence result for weak solutions of the Oseen system ((4.5) with A = 0).

Theorem 4.5 ([1, Proposition 4.2]) Let A C R3 be open and bounded, with C*-boun-
dary, p € (1,00), G € W(;l’p(A)3. Then there is a unique function V. € WyP(A)® and
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corollaryC4.50)

a function I € LI(A), unique up to a constant, such that divu = 0, and such that (4.2)
holds with A = 0 (Oseen system) and [, G - v dx replaced by G(1)).

We are going to exploit this theorem in order to obtain weak solutions of the resolvent
problem (4.5). These weak solutions have the special feature that the pressure belongs to
a uniqueness class that will be convenient in what follows. A proof of this result is well
known in principle: it makes use of the fact that on bounded domains, the resolvent term
AV may be considered as a compact perturbation of the Laplace operator. However, since
some details are perhaps less evident, and for the convenience of the reader, we indicate
the main elements of this proof.

Corollary 4.5 Let A C R3 be open and bounded, with C%-boundary. Let ( € C§°(A) with
(>0, [,¢dx>0. Let pe (1,00), A€ K, G € Wo_l’p(A)3. Then there is a unique pair
of functions (V,1I) € Wol’p(A)3 x LP(A) such that [,(Idz =0, diwV =0, and such that
(4.2) holds with [, G - dx replaced by G(1p). Moreover |[V||1p + [|TI]|, < €(p, ) |G||-1,p-
Ifp <3, s€[p, 3p/(3—p)], we additionally have |V |s < €(p,\) |G||-1,p-

Proof: Put Wol’f ={W € Wol’p(A)3 s diviW = 0}, LY == {p € LP(A) : ngpCdx =
0}, 2, = Wol”f X L}g, |V ID)[] :== [V|l1p + I, for (V,II) € 20,. Then 20, is a
vector space, and the mapping ||| ||| is a norm which turns 20, into a Banach space.
Define § : 20, — Wo_l’p(A)?’ by F(V.ID)(¢) :== [4(VV -V + 701V - ¢ — IIdive) de
for ¢ € VVO1 P /(A)3, (V,II) € 20,. Obviously the operator § is well defined, linear and
bounded, and by Theorem 4.5, it is onto. In addition, due to this theorem and because
the zero function is the only constant function in Lg, this operator is one-to-one. Thus
§ is bijective, so the open mapping theorem implies there is a constant Cy > 0 with
IV [l1p+ T, < Co ||§(V,IT)||—1,p for (V,IT) € 20,,. For o € C, define &, : 2, — W, "P(A)?
by Ro(V,ID)(h) := [, @V -t da for (V,11) € 20, ¢ € W (A)®. This operator &, is linear,
bounded and compact. As concerns compactness, we note that the operator (V,II) — oV
from 20, into LP(A)3 is bounded, and then refer to Theorem 3.3. Let ¢ € C\{0} with
Ro > 0. If p > 2, it may be shown by some partial integrations that R(F+8K,)(V,II)(V) > 0
for (V,II) € 20, with V' # 0. Thus we get with Corollary 3.2 that the operator § + &,
is one-to-one if p > 2. Suppose that p < 2 and the pair (V,II) € 20, satisfies the
equation (§ 4 £,)(V,II) = 0. Then Corollary 4.2 yields V € WP (A)3, I € WP (A).
Therefore the term (§ + 8,)(V,II)(V) is well defined, and again by partial integration we
may conclude this term is strictly positive if V' # 0. As a consequence, the operator §+ &,
is one-to-one in the case p < 2, too. On the other hand, since § is linear, bounded and
bijective and £, is linear and compact, the sum § + £, is Fredholm with index zero. All
these observations taken together imply that § + £, is bijective, so by the open mapping
theorem, there is a constant C, > 0 with ||V, + |||, < C, [|[(§ + K)(V,II)|| -1, for
(V,II) € 20,. This is true for any o € C\{0} with Rp > 0. Recall that in the case
o = 0, the preceding inequality was proved further above. As a consequence of these
estimates, we get for p,0 € C with R0 > 0, (V,II) € 20, that ||(§ + K)(V,I)||-1,p >
|G+ 8V -1y~ le— &l [Vl > (€5 —le—al) (IV 1+ ITI],). Thus, for any go € C
with Rog >, there is some €(gp) such that for any ¢ € C with |o — 09| < €(00), we have
Viip+ I, <2C, ||(F + Rp)(V,II)|| -1, for (V,II) € 2,,. Now the first estimate at the
end of Corollary 4.5 follows by an open covering argument, whereas the second may be
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deduced from the first by a Sobolev inequality. O

We turn to strong solutions of (4.5) on bounded domains.

(theoremT4.60) )
Theorem 4.6 Let A C R? be open and bounded, with C?-boundary, q¢ € (1,00), € >

0, A € C with RA > 0 and |\ < ¢, G € LP(A)3. Then there is a unique pair of functions
(V,II) € W24(A)3 x WH(A) with V € Wy (A)3, divV =0, [,Tdx =0, and with (V,II)
satisfying (4.5). This pair satifies the estimate ||V |24 + [|[H|1,4 < €(g,€) |Gll4-

Proof: A direct reference is [32, Proposition 2.6], where a much more detailed result is
provided. But Theorem 4.6 may also be deduced by starting with an existence and a
uniqueness result for strong solutions of the Oseen system on bounded domains (see [1,
Proposition 4.3] for example), and then proceed to a perturbation argument as in the

proof of Corollary 4.5. O

corollaryC4.60)
Corollary 4.6 In the situation of the preceding theorem, we have ||V|, < &€(p,q,¢€)||G||q

forpe (1, (1/a—2/3)"" if ¢ <3/2; [[VVl, < €p.q,€)[|Gllq forp € [1, (1/q—1/3)7]
if ¢ < 3, and for p € [1,00) if ¢ = 3. Moreover, if A # 0, ¢ < 2, p € [q,2], the estimate
IV, < €(p, g, €) |21 A-1a+1/p) |G|, is valid.

Proof: The corollary follows from Theorem 4.6 and Sobolev estimates. Concerning the
last estimate in the corollary, we note that 2—4(1—-1/¢+1/p) <0if ¢ <2, p € [¢,2], so
that in the case X # 0, we have 1 < C(p, g, €) |\[?~4(~1/a+1/p), O

In the ensuing three theorems, we consider problem (1.18) (Oseen resolvent system in Q°,
with Dirichlet boundary conditions), first for A = 0 (Oseen system), and then for A\ # 0.

(theoremT4.70) —c
Theorem 4.7 ([23, Theorem VIIL.7.1]) Let r € (1,2), G € L"(Q")3. Then there are

functions V € W2I(QF)? N L27/C-1)(@Q°)3, T € WLT(Q°) such that the relations VV €

LA/ (Q9) 9V, 0,11 € LT(Q°) (1 < j, k < 3) hold, the pair (V, 1) satisfies (1.18)

with A\ =0, and [V 30/62-) + IV 1rya-m + D2V [, + [ 911, < €(r) |Gl
(theoremT4.90) 1.2 —~c . -1,2,/7¢
Theorem 4.8 Put Wy := {W € Dy*(Q)3 : divW = 0, "W € Dy “(Q)3}. Then
the operator | : Wy x L2(Q°) = Dy *(Q°)%, RV, IN)(Y) := [e(VV - VY + 7V -4 —
IT divyp) dzx for ¢ € Cgo(ﬁc)?’, V € Wy, I € L*(Q°), is well defined, linear and bijective,
and |[VV 3+ IVl + 10V 1o + [Tl < € [R(V,IT) | 15 for V € 20, T € 12(0).

Proof: The operator R is well defined due to the definition of 2. Let G € D 1’2(56)3.
By [23, Theorem VIL.7.2], there is V € Dy(29)3, 11 € L2(Q°) such that divV = 0 and
(4.2) holds with A = 0 and with [5- —G -9 da replaced by —G(1). Since 0;Vy, 1T € L? Q)
for 1 < j,k < 3, this implies &V € Dy "*(Q°)3, so it follows that V € Ws, R(V, 1) = G.
The inequality stated at the end of Theorem 4.8 holds by [23, Theorem VII.7.2], and —
concerning the term ||0;V||—1 2 — because R(V,II) = G. O

(theoremT4.80) . =c\3 .
Theorem 4.9 Let p € (1,00), A € C\{0} with RA > 0, G € LP(2")°. Then there is a
unique function Ve WP(Q)%n Wol’p(Qc)?’ and a function II € Wli’f(Qc), unique up to a

constant, such that VII € LP(Q°)3, the pair (V,TI) fulfills (1.18), and ||V |2, + ||VII||, <
C(p, M) G llp-
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Proof: See [32, Theorem 4.4] and the proof of this theorem on [32, p. 29]. O

In the rest of this section, we are going to show that if problem (2.5) only admits the
trivial solution, then problem (1.19) with A = 0 (perturbed Oseen system with Dirichlet
boundary conditions) possesses a L%-weak solution for any G € D, 12(Q%)3. Recall that
the operator B was introduced in (1.12).

(lemmal.8.10) 12 —=c
Lemma 4.1 Let V € Dy*(Q°)3. Then B(V) € LI1(Q°)? for q € [6/5, 2], |Po(BV))lq <

(q) IBV)llq < €(q) [[VVl2, and
IxBs, BV)lq < €(q) (IUIBRl(1/g-1/2)-1 + IVUIBR (1/g-1/6)-1) IVV |2

for q € [6/5,2], R € (0,00) with Q C Bg. Note that (1/q—1/2)~* € [3,00] and (1/q —
1/6)~t € [3/2, 3] for q as before, so the right-hand side of the preceding estimate is finite;
see (1.5). Moreover Po(B(V)) € Dal’z(ﬁc)?’ N Hay(Q°).

Proof: Holder’s inequality, the estimate in Theorem 3.5 and Theorem 2.1 yield the lemma.
Note that the relation B(V) € L4(Q%)? for ¢ € [6/5, 2] implies Py(B(V)) = P2(B(V))
for such ¢ (Corollary 3.7), and that L%/°(Q%)® Dy L2(Q°)3 (Theorem 3.6). For additional
details we refer to [12, proof of Lemma 8§]. O

Now we exploit Lemma 4.1 and Theorem 4.8 in order to construct L?-weak solutions to
(1.19) with A = 0.

Theorem 4.10 Define R : 2y x L2(Q) — Dgl’Q(ﬁc)g’ by %(V,H)(w) = [qe(VV - V¢ +
TV - —B(V)- ¢~ divey) dzx for ¢ € C(Q)3, V € Ws, T € L2(Q°), with Wy defined
in Theorem 4.8. Then R is well defined, linear, bounded and Fredholm with index zero.

(theoremT4.100)

Proof: By Lemma 4.1, we have B(V) € Dgl’z(ﬁc)3 for V e Dé’2(ﬁc)3, so R is well
defined. Due to Theorem 4.8, there is Cyp > 0 such that ||VV|2 + [[01V || =12 + |[II]j2 <
Co ||R(V, )| 1.2 for V, II as in the definition of R. For R € (0,00), define Hr : Wy x
LZ(QC) — Dal’z(ﬁc)3 by Hr(V,II)(¢) = fﬁc —XBg B(V) -4 dx for ¢, V, II as in the
definition of ®. Due to (1.5), we have ||VU|B%|32 + |U|B&ls — 0 for R — oc.
Since [[9r(V,ID)[|-12 < €xpg B(V)|¢/5 (Theorem 3.6), we may thus conclude from
Lemma 4.1 with ¢ = 6/5 that we may choose Ry € (0,00) so large that Q C Bg,
and [|9r,(V,I)||_1.2 < (2C0)"1||VV]2 for V, II as in the definition of R. Therefore
from our preceding estimate of |[VV |2 + |01V ||=12 + || 1||2, we get |[VV 2+ |1V -12 +
II]l2 < 2Co [|(R + Hr,)(V,II)||-12 for V, II as before. In particular R + $Hp, is one-
to-one. Moreover the preceding estimates and a simple fixed point argument yield that
R + HR, is onto, and therefore bijective. Note in this respect that 22 equipped with
the mapping V' — HVVHQ + [[01V]-12 is a Banach space; see Theorem 3.5. Define
R QﬁgXLQ(Q)HD 2(Q°)2 by Or, (VI (%) := [ —XBg, B(V) - ¢ da for ¢, V, TI
as in the definition of R. Obviously Ry 18 hnear and bounded. Moreover we find with
(3.1) that [BOV)| Qo2 < € (IVV]l2 U128,z + IVll6 VU2, ls/5) < €(Ro) (1] +
IVU[3) [VV ]2 < €(Ro) [[VV |2, where we used that [[Ul[3 + |[VU||3 < oo; see (1.5). It
follows with Theorem 3.3 that $r, is compact. Obviously R + g, is linear and bounded,
so that by the bijectivity of the latter operator, we may conclude that R + 9 Ro + 9R, is
Fredholm with index zero. Since R = R + Hg, + Hr,, the theorem is proved. O
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corollaryC4.70) . 1.9 —c o
Corollary 4.7 Suppose that any function V € Dy~ () satisfying Jae [VV'Vl/J-I-T V-

P — PQ(B(V)) @Z})] de =0 for o € 080(50)3 with divi) = 0 vanishes. Then, for any
G e Dal’z(ﬁc)?), there is a function V € 2y such that

/p[VV VY + 70V - —Po(B(V))-¥)]de =G() for ¥ as before. (4.6)[c4.70.10]
¢

Proof: Let (V,II) € 205 x L2(Q°)? with R(V,1I) = 0, where 20, is defined in Theorem
4.8, and %R in Theorem 4.10. Then, by the definition of S)N%, by Theorem 2.1 and Corollary
3.7, and because B(V) € L*(Q°)? for V € Dé’z(ﬁc)3 (Lemma 4.1), we see that V' satisfies
the relation stated at the beginning of Corollary 4.7, so V' = 0 by the assumptions in that
corollary. It follows with Corollary 4.4 and 3.2 that II = 0. Thus we have shown that
R is one-to-one. We may conclude with Theorem 4.10 that R is bijective. So there is
(V,1I) € Wy x L2(Q°) with R(V,1I) = G. This implies (4.6). O

5. Oseen resolvent estimates in the whole space R3.

In this section, we extend some results from [12] concerning solutions to the Oseen re-
solvent (4.5) in the whole space R3. As in [12], our theory is based on the use of the
fundamental solution E™) (see Section 2) of the scalar Oseen system. This approach has
the inconvenient feature that the Helmholtz projection P, (Theorem 3.12) is involved when
we represent solutions to (4.5) by means of convolutions with EW . However, although a
fundamental solution to (4.5) is available ([32, p. 19-20]), we were not able to estimate it
in a satisfactory way. We begin by stating some basic facts about convolutions with EFW),
most of them taken from [12].

(theoremT5. 10) 3
Theorem 5.1 Let A € K. Suppose that H € LP(R?) for some p € (3,00) and for some

€ (1,3/2). Let « € N} with |a] < 1. Then [g, 0°EWN (2 — y)| |H(y)|dy < oo for
any x € R3. Let ¢ € [1,2) and p € ((1/(]— 1/2)71, oo] if ¢ > 3/2, orp € ((1/q -
1271, (g~ 2/3)) if 4 < 3/2, or p =6 if g = 6/5. Then [|IEV] = Glll, < Cp,a) |Gl
for G € LY(R3). In particular, the function |E>(z — )| * |G(y)| is integrable with respect
toy € R3, for a. e. x € R3.

Let g € [1,3], p € ((1/q —-1/4)7t, (1/q - 1/3)) if g <3/2, orp=2ifq==6/5, and let
1 €{1,2,3}. Then || EV| |G|, < C(p,q)||Gllq for G € LI(R3). In particular, the
function |0, ENx — y)| * |G(y)| is integrable with respect to y € R3, for a. e. x € R3.

IfAN#0,q€[1,2], p€q,2] and ¢ > 1 or p < 2, then
HED| |Gl < Clp,q) A1 CVEUD |Gl for G e L9(RY). (5.1) 715.10.307

So also for such p and q,the function |EMx — y)| * |G(y)| is integrable with respect to
y € R3, for a. e. x € R3.

Let ¢ € C°(R3), and put V. :i= EXN « ¢. Then V € C®(R3), 9V = EWN « 98¢ for
BeN OV = (O EM)x¢ for 1 <1<3, —AV 4+ 70V + AV = ¢, and HD2V|BRHq <
(7(}%»Q)"¢Hq fb7'q € (1700)7 1365( ’ )'
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(theoremT5.20)

corollaryC5s.10)

Proof: We have |0*EW (2)| < C(1) (x(0,1)(I2]) 2|~ lel 4 X[l,oo)(’z‘) |z| 71101/ for 2 €
R3\{0}, a € N} with |a| < 1 by [12, Theorem 9]. Let z € R3, and take a as before.
Then, by Holder’s inequality and the preceding estimate, the functlon 0*EWN| | H (y)] is
integrable with respect to y € Bi(x) because H € LP(R3) for some p € (3,00), and with
respect to y € Bi(x)¢ since H € LP(R?) for some p € (1, 3/2). The inequalities stated in
the theorem, except the last one, hold according to [12, Theorem 10]. As for the last part
of the theorem, pertaining to the function V', we refer to [12, Theorem 11].

Theorem 5.2 Let A € K, and ¢ € (1,00). Then |D*(EW x ¢)||, < C(q) |p|l4 for ¢ €
C§°(R3) if A = 0 or if ¢ = 2. This means in particular that in the case ¢ = 2, the constant
C(q) does not depend on \. If X # 0, we further have |[EX % ¢||l14 < C(g,\) ||9ll4 for
¢ € C3°(R3).

Proof: For f € L'(R?), define f(&) := (2m)~3/2 [o5 e "€ f(n)dn for € € R? (Fourier
transform of f). Let ¢ € Cg°(R3), I,m € {1, 2, 3}. Then 9;0,,(E©@ x ¢) = E@ x (9,0,,0)
for o € C with Ro > 0, |o| < (7/2)% by Theorem 5.1, so we get from [14, proof of
Corollary 4.1], [13, Theorem 2.1] that (E@ x ¢)(z) = [pae 87 (27)732 (0 + |n|*> +

iTm) " i m @(n) dn for z € R3, ¢ as before. In this s1tuat10n it shown in [23, p. 383-386]
(in particular see [23, (VIL.4.12)]), on the basis of Lizorkin’s multiplier theorem, that the
first estimate in Theorem 5.2 is valid in the case A = 0. As already noted in the proof of
[12, proof of Theorem 13], we have |n;n, (0 + |12 +i7n1) 71| < C for n € R3\{0} because
RA > 0. Thus, if ¢ = 2, the above equation for (E(@ % ¢)(x) and Plancherel’s theorem
yield the first estimate in Theorem 5.2, both in the case A = 0 and A # 0. Now suppose
that A # 0. According to [12, (3.2)], we have [0*EM ()| < C(r, \) (x(0,1(I2]) 2|1 lel 4
X[1,00)(12]) e_"|)‘|2|2|) for z € R®\{0}, o € N} with |a| < 1, where o > 0 is a constant in-
dependent of z and \. It follows that 9*E®) e L'(R?) for o as before. Thus, by Young’s
inequality ([40, Part I, Theorem 1.2]), we get [[(0“EWN) % ¢[|, < C(7,\) |94, for a as
before and for ¢ € C3°(R3), so |EN  ¢||1, < C(7,N) ||9]l4- O

Corollary 5.1 Let A € K; and G € C§°(R3)3. Then Py(G) € LP(R3)3 for p € (1,00),
so we may define V := EWN x Py(G). Put 11 := Qo(G) (Theorem 3.12). Then V €
C®(R3)3, I € C*°(R®), and (4.5) holds. In addmon Vi, < Cp, ) 1Gllgs IVVp <

C(p,q) |G||q, with the range of p and q being the same as in the corresponding estimates in
Theorem 5.1, | D*V|Bgll; < C(gq, R) ||Gllg, for ¢ € (1,00), R € (0,00), |[D?*V |2 < C||G]2
If X = 0, we further have |D?V ||, < C(q) |Gllq for ¢ € (1,00). If XA # 0, the inequalities
Vg < Cla, N IGlq for g € (1,00) and [X[~>H U=V V]|, < C(p,q) [|Glly for p,g

as in the corresponding estimate in Theorem 5.1 hold. Finally ||VII||, < C(q) ||G|lq for
€ (1,00).

Proof: By Theorem 3.12 and (3.3), we have Py(G), Q2(G) € C®(R3). Tt further follows
from Theorem 3.12 and Corollary 3.6 that P>(G) € H,(R?) and |[VQ2(G)]l, < C(q) ||IGll4
for ¢ € (1,00). In particular the last inequality in Corollary 5.1 is valid. Let p € (1, 00).
By Lemma 3.1, we may choose a sequence (¢,) in C°(R?)? with ||P(G) — ¢nlle/5 — 0
and ||P(G) — ¢nll, — 0. By Theorem 5.1 With q = 6/5, we have ||V — ¢pll¢ — 0. The
same reference yields ||(9;EW) x Py(G) — 3;( % ¢p)|l2 — 0 for 1 <1 < 3. Again by
Theorem 5.1, we see that the sequence (D2( ) % qﬁn)]BR) o converges in LP(BRr)*, for

any R € (0,00). These relations imply that V' € I/Vloc( ) , 8ZV (OEW) % Py(G) for

25



1 <1<3,and |D?V — D*(EW % ¢,)|Bg|l, — 0 (n — oo) for any R € (0,00). Now we
may conclude from Theorem 5.1 that —AV + 70V + AV = P»(G). The first equation
in (4.5) now follows by Theorem 3.12 and the definition of II. Since P»(G) € Hg5(R?)
(Corollary 3.6), we may choose a sequence () in C§°(R?)3 with divyy, = 0 for n € N
and [|P2(G) — Ynllg/s — 0. But 9,V = (O EW) % PQ(G) (see above), so we may deduce
from Theorem 5.1 with ¢ = 6/5 that |9}V — (9, EWN) x 4,2 — 0 for 1 <1 < 3. We again
refer to Theorem 5.1 to obtain div (E™ % 4,) = EX) s divp, = 0 for n € N. Thus we get
divV =0, so (4.5) is proved. Corollary 4.4 now yields V € C*(R?). Now the estimates
of |V, and [|[VV]|, claimed in the corollary follow from Theorem 5.1, 3.12 and Corollary
3.6. As concerns the estimates of || D?V|Bgl|4, ||D?*V |2 and ||D?V||,, we refer to Theorem
5.1, 5.2, 3.12 and Corollary 3.6. Finally, if A # 0, the estimate of ||V||14 follows from
Theorem 5.2, 3.12 and Corollary 3.6. U

corollaryC5.20)
Corollary 5.2 Let A € K; and q € (1,00). Suppose that A = 0 or ¢ = 2. Let p E
(1,2), ¢ € vvlloj(u?’) qu(R3) with V¢ € LP(R3)3, | € {1, 2, 3}. Then EW % 8¢ €

WEHR3) and ||0m(EY % 90|, < C(q) 16llq (1 <m <3). If ¢ < 3, we addztzonally have
Vo dp = (QEN) x ¢.

Proof: By Lemma 3.1, we may choose a sequence (¢,,) in C§°(R?) such that ||¢,— |, — 0
and ||V (¢, — @)l — 0. Fix some r € ((1/p—1/2)"!, o0o) with r < (1/p —2/3)~" in the
case p < 3/2 Then ||EX % 8¢ — EX x 8y, — 0 by Theorem 5.1, and ||0,,0(E™ %
bn — EWN x o)y < C(q) |dn — drllq for nk € N, 1 < m < 3 by Theorem 5.2. The
latter 1nequahty implies that the sequence (8m81(E()‘) * On) )n>0 converges in L4(R3), for

1 < m < 3. Moreover 0,,0(E™ x ¢,,) = (E()‘ * Oj¢p) for n € N, 1 < m < 3, again by
Theorem 5.1. Thus we may conclude that EX) %9, € VVlt)C1 (R3), O (EXN x9y¢,,) € LI(R?)
and 904 (EX # 60) — O (EW) 5 016) 4 = 0. Since 984 (EW 5 gn)llg < Cq) puly (n €
N, 1 < m < 3) by Theorem 5.2, we obtain the estimate stated in Corollary 5.2. Now
suppose that ¢ < 3. Choose s € ((1/¢—1/4)7', (1/¢—1/3)~"). By Theorem 5 1, we get
[(DQEWM) % ¢ — (BEN) % ¢p|ls — 0. On the other hand, (9, EM) x ¢,, = EX % 9, for
n € N by Theorem 5.1. Since EN) x9;¢,, — EM) x9y¢ in L"(R?)3, as noted above, we thus
obtain the equation stated at the end of Corollary 5.2. U

For the proof of the ensuing theorem, we adapt an approach from [23, p. 391-393].

(theoremT5.30) )
Theorem 5.3 Let A € K, and q € (1,00), with A = 0 or ¢ = 2. Let G € CP(R?)3 N
~—1, . . . .

D, q(R3)3. (According to Corollary 3.1, in the case q > 3/2, it suffices to require G €

C(R3)3). Then |0k (EW x Py(G))|lg < C(q, T)NGll-14- If ¢ < 3 and s € ((1/q —

1/4)7 % (1/q¢—1/3)71 ), we further have HE * Po(G)|ls < Clg,s,7) |G|l =1,4-
Proof: Corollary 3.6 yields P;(G) € LP(R?)3 for any p € (1, 00). By referring to (3.3) and
to Corollary 3.3, we get for ¢ € C§°(R?)3, 1 <1 < 3 that
[ (@) < aivG) v =| [ (@) +G) - Vodd] < @) Gl V0l
R R

C) G -14 VPllg-

Hence [[(O;N) * divG|-14 < C(q) ||G||-1,4 for 1 <1 < 3. Thus we may conclude from
Theorem 3.12 that || P2(G)||-1,4 < C(q) |G||-1,4- Again referring to Corollary 3.3, we then
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arrive at the estimate

[ON) * Po(G)lg < Clg, 7) 1G24 (1 <1< 3). (5.2)[5.30.10]

By the first sentence of this proof and by Theorem 3.9, we know that N x Py(G) €
WELHR?)3, (ON) * Po(G) = 9i( N % Po(G) ), D*(N % Py(G)) € LP(R*)? for p > 1, and

loc

div ((ON) * Po(G) )1§l§3 = P(G). (5.3)[T15.30.20]
In particular with the estimate of ||(0;IV) * P»(G)||, shown further above, we may conclude
that
(BIN) * P2(G) € WEH(R?)P N LYR®)3, V((AN) * P2(G)) € LP(R?)° (5.4)[T5.30.30]

for any p € (1,00). Thus we may apply Corollary 5.2 with ¢ replaced by (O;N) * Po(G).
By (5.3), (5.2) and this corollary, we get

10m ( EX % Py(G ||q<ZHa N 9y ((ON) * Po(G)) ]l

3
Z alN * P2 )Hq < C(Q) HGH*LQ'

Thus the first estimate in Theorem 5.3 is proved. Now suppose that ¢ < 3 and s € ( (1/q—
1/4)7, (1/q — 1/3)7'). Then Corollary 5.2 and (5.4) yield E® x 9,((9,N) * P»(G) ) =
(O EW) x ((/N) = P»(G)), so the last inequality in Theorem 5.3 follows from Theorem
5.1 and the estimate |[(O;N) * P2(G)llq < C(q,7) ||G||-1,4 shown above. O

(lemmal5.10) 1
Lemma 5.1 Letq € (1,00), G € CP(R?)3ND, " (R*)3. Then ||Q2(G) ||y < C(q) |G| -1.4-

Proof: Combine Theorem 3.12, the equation N * dive = 37 (9 N) * G (see (3.3)) and
Corollary 3.3. U

The results of this section imply the following existence results for solutions to the Oseen
system and to the Oseen resolvent system (4.5), and to the system adjoint to (4.5).

corollaryC5.40)
Corollary 5.3 Let A € K, and G € C(R?)3. Put V := EY x Py(G), T := Q2(G).

Then V € C®(R?)3, II € C*®(R3), and the pair (V,11) solves (4.5). Moreover, if A\ # 0,
we have V.€ WHP(R3) for any p € (1,00), and D*V € L*R3)?". If A = 0, we have
V € LP(R3)? for p € (2,00), VV € LP(R?)? for p € (4/3,00), and D*V € LP(R3)?7 for
p € (1,00).

If A\ =0 and G € CP(R?)3 N ﬁal’p(R3)3 for any p € (1,00), we get V. € LP(R?)? for
p € (4/3,00) and VV € LP(R3)Y for p € (1,00). In all cases we have 11 € LP(R3) for
p € (3/2,00) and VII € LP(R?) for p € (1,00). If G € C5°(R?)? N Dy (R¥) for any

€ (1,00), we get II € LP(R3) for any p € (1,00).
Put V(z) := V(-x), I(z) := II(—z) for z € R3. Then all the preceding statements remain

valid with V IT in the role of V' and I1, respectively, except that the factor T in (4.5) has
to be replaced by —T.
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Proof: According to Corollary 5.1, we have V;, II € C™(R3) for 1 < j < 3, and the
pair (V,II) solves (4.5). If A # 0, Corollary 5.1 yields that V' € W1P(R3)3 for p € (1, 00)
and D?V € L?(R?)?". In the case A = 0, the integrability relations stated for V, VV and
D2V follow from Corollary 5.1, and if G € C§°(R3)3 N @al’p(Rg’)‘g for p € (1,00), from
Theorem 5.3. Due to Theorem 3.12, (3.3) and the second last statement of Theorem 3.9,
we know that IT € LP(R3) for p € (3/2,00). In the case G € C§°(R3)3 N Zsal’p(]l@)?’ for
p € (1,00), Lemma 5.1 yields IT € LP(R3) for this range of p. LP-integrability of VII for
any p € (1,00) holds according to Corollary 5.1. O

6. Uniqueness theorems for solutions to (1.18).

We first consider the whole space case, then exploit the results we obtain for this case
to determine a uniqueness class for weak solutions of (1.18) (exterior domain case). Our
results are more general than what is available in literature because we do not suppose
that the gradient of the velocity is an LP-function for a single p € (1,00). Instead it may
be split into a sum of gradients each of which is LPi-integrable with respect to a different
exponent p; € (1,00). Unfortunately this seemingly small generalization complicates the
argument considerably. For technical reasons, we first consider a splitting into a sum of
three terms (whole space case), and then into a sum of two terms (exterior domain case).

(theoremT6.10) ) )
Theorem 6.1 Let A\ € K,. Fori e {1,2, 3}, let ¢;, r; € (1,00), R; € (0,00) and V) e
W (R3)3 with V| B, € L (B§, )*, VV© € L% (R3)°. Suppose that div(3";_, VD) =0

and (4.1) is satisfied with A =R3, G =0, V = Z?:l V. Then Z?:l VO =o.

Proof: Abbreviate V := Zle VO, ¢ := min{q, ¢2, ¢3}. Then V € Wlicl (R3)3, VV €
L] (R?)?, divV =0, and (4.1) is satisfied with A =R3, G = 0. Corollary 4.4 yields that
V € C*(R3)3, and that there is IT € C*°(R3) such that (4.5) is valid with G = 0.

Fix some function ¢ € 080(37/4)3 with ¢|Bs;y = 1, 0 < ¢ < 1, and put p,(z) =
¢o((1/n)x) for n € N, z € R3. Note that ¢, € C§°(Brnja), 0 < on <1, ¢[Bspy =1,

IVloo < EnTL [010m@lee <E€n"2 for neN, 1<I,m<3. (6.1)[T6.10.10]

Letl € {1, 2, 3}, ¢ € C5°(R3)3. Obviously 0;¢ € C’(‘)’O(R3)3ﬂl~751’p(R3)3 for any p € (1, 00).
Therefore, according to Corollary 5.3, we may choose functions W € C®(R3)3, T' €
C>(R3) such that the pair (W,T') solves (4.5) with W, I, 9;¢, —7 in the place of V, II, G, T,
respectively, and such that 9;Wy, I' € LP(R?) for p € (1,00), 1 < j,k < 3. In the case
A # 0, we may require W € LP(R?)? even for any p € (1,00). On taking account of the
fact that ¢ has compact support, we get

alv-qﬁdx:—/ V.-0¢pdr =— lim V016 ¢ dx (6.2)[T6.10.20]
R3 R3 R3

n—oo

= — lim V- (=AW — 1O W + AW + VI') ¢, dx.

n—oo R3
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Let n € N, and abbreviate A, := By, \B,. Since divW = 0 and supp(Vy,) C A, we
have Vi, - W € C§°(A,) and fAn Vo, - Wdzx = 0. Thus we may refer to Theorem 3.7 to
define Dy, :=nD(2,1,1,2)[((—~Ven - W)(n-)[A,]((1/n)z) for z € R. Theorem 3.7 and
Lemma 3.5 yield that ©,, € C§°(A4,)3 and div (¢, - W +D,,) = 0. It further follows from
Theorem 3.7, in particular its last statement, and from Lemma 3.5 and (6.1) that

1Dnllp <€) W] Anllp,  10°Dullp < €)™t [W]An]l1y, (6.3)[T6.10.30|

for any o € N} with 1 < |a|] < 2, and for any p € (1,00). On the other hand, since
Vi, I € C®(R3) for 1 < j < 3, equation (4.5) is valid with G = 0. Observing that
on W +D,, € C5°(B2 )3, and recalling that div (¢, W +9,,) = 0 for n € N, we may thus
deduce from (6.2) by some integrations by parts that [ps OV - ¢ da = lim, e Ay, with

3
Q[n::—/ V~<2ZakgonakW—FA(an—i-TalgOnW—l-A@n—T@lgn
R3 k=1

AD, — FV(pn> dr for neN.

Since the support of any derivative of ¢,, is a subset of A,, and because of (6.1), we get
for n € N with n > Ry := max{R;, Ry, R3} that

3
] < C D VOB, (IVW[Apllyr + 07 WA+ Y 109Dl
i=1 a€N3, 1<|a<2

HA Dl + 1T Anll, )-

Next we apply (6.3) to obtain

3
| < Cla1,02,03) D _IIVOIB N, (IVW[Anlly + 07 WALl (6.4)[T6.10.40]

i=1
HAWIAnll,, + [T Anll,, ) (n €N, n > Ro).

Lemma 3.3 yields that n~"[|[W]A, [, is bounded by C(r}) (W [B,"||3 + |]VW\EC”r; +
n~ W3 +nt [VW]||g for n € N, n > Ry. So we may deduce from (6.4) that

3
2] < Cla1,02,03) D _IIVOIBG N, (IWIBG s + VW[ Bl +n~" [W]ls (6.5)[T6.10.50]

=1

0 [T g + A W] Aull; + ITIBSl ) (€N, 0 > Ro).

As the reader may recall, we have W € LP(R3)3 for p € (4/3, 00), VW € LP(R3)3
for p > 1. Thus we may conclude that [[VW|B|[,, + [W|[By|[s — 0 and nH|W|s +
nt IVWI,; = 0 (n = oo) for 1 < i < 3. Similarly, recalling that I' € LP(R3) for
p € (1,00), we get |I[Bill, = 0 (n — oo, 1 < i < 3). Finally, if A # 0, we have
W € LP(R3)3 for p > 1, so || [WAn|[;s = 0 (n — oo, 1 <4 < 3). Therefore inequality
(6.5) implies that |2(,,|] — 0. Since fRS OV - ¢dxr = lim,,_ .o A, as observed above, this
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means that [p; OV - ¢ dx = 0. But the function ¢ was arbitrarily chosen in Cs°(R3)3, so
OV = 0. This is true for any | € {1, 2, 3}. We thus see there is ¢ € C? with V = ¢
(Corollary 3.2). But for e > 0, i € {1, 2, 3}, the relation [{z € By, S VO()| > €} < oo
holds because otherwise the assumption V|B% € L"(B%. ) could not be true. Now
suppose that ¢ # 0. Then {z € By : V(z) = c} c Ui {zeBj, : V@ (z)| > |c|/6}. On
the other hand, the equation V' = ¢ means that {z € By : V(z) = ¢} = Bj, so there
must be a number i € {1, 2, 3} with [{z € B : [V (x)] > |¢|/6}] = oo, a contradiction!
Therefore ¢ = 0, so the theorem is proved. Il

Now we consider the exterior domain case (weak solutions to problem (1.18)).

(theoremT6.20) _
Theorem 6.2 Let )\ € K; and Ry € (0,00) with ) C BRO For i € {1, 2}, let q;, s; €

(1,00), VO ¢ VVOC Q)3 with Vv e L%(Q°)?, and V |B € Lsi(Bf%O)‘g. Further
suppose that div(VD —v @) =0, VU — v 90 = 0, and that (4.1) holds with A =
Q,G=0,V=VO_VE® Then V) — V@ = 0.

Proof: Put V := V1 -V 4:=min{q;,q}. ThenV € VVZ LQ9)3, VV € L (99, v
is solenoidal, and equation (4.1) holds with A = Q°, G = 0. In particular, there is a
pressure II € L, Oc(ﬁc) associated with V' (Theorem 4.2). From Corollary 4.4, we may
conclude that V;, IT € C*=(Q%) (1 < j < 3), and equation (4.5) is valid with G = 0. In

addition, Corollary 4.3 yields that
VIQr € W*P(Qr)?, TR € WHP(QR)3, for R € (0,00) with Q C Bg, p € (1,00). (6.6)[T6.20.10]

Fix a function ¢ € C®(R?) with 0 < ¢ < 1, ¢|Bgyt14a = 0, ¢|Bg, +3/4 = 1, and
abbreviate B := Bpr,11\Bg,- By Theorem 3.1 and our assumptions on V@, we get

V(eVO) € LU, oVO By = VOB, 40 € I (Bhyn)* (1€ (12D, (67)Te..20

Since Vo - V € C3°(B) and divV = 0, we have [V -V dz = 0. Thus we may apply
Theorem 3.7, setting ® := D(2,1, Ry, Ro + 1)(=V - V|B). Note that ® € C§°(B)3.
We further define V, II, F as the zero extension to R3 of (1 — @)V + D, (1 — ¢)II and
-2 Zk 10k OV =D V41010V -AD+T 81®+)\©—|—H Vgo, respectively. By the choice
of © and Theorem 3.7, we have divV = 0. Moreover V], Il € COO(R3) (1 <j<3), Fe
(O (B)3 the pair (V,II) satisfies (4.5) with V, II, G replaced by V, II, F, respectively.
Since F € C§°(B)3, we may apply Corollary 4.5, allowing us to choose functions W €
C>®(R?)3, T € C°°(R3) such that the pair (W,T') solves (4.5) with V, II, G replaced by
W, T, F , respectively, and such that in addition W € W?2?2(R3)3 in the case A # 0, and
W e LP(R3)3 for p € (2,00), VW € LP(R3)Y for p € (4/3, 00), D*W € LP(R3)?7 for

€ (1,00) if A = 0. At this point we may conclude that @ V) — oV — W + D =

V W e VV&)S(R?’) , div(V — W) = 0, and the function V — W satisfies (4.1) with
A=R3} G=0,V =V—W. Recalling (6.7) and the relations D € Ce(B), W €
C>®(R3)% N LP(R3) for p > 2, we see we may apply Theorem 6.1 with V(1) v y©)
replaced by @ V), —p V(2 —W + 9, respectively. This theorem yields that oV —

eV —Ww +® = 0, that is, V — W = 0. As a consequence, in view of (6.6), we have
VIBg, 11 = V|BR0+1 = W|B%, ;- This equation, (6.6) and the integrability properties

of W listed above yield that V € W22(Q%)3 if X # 0, as well as V e LP(Q°)3 for p €
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(2,00), VV € LP(Q°)? for p € (4/3, 00), D*V € LP(Q°)?7 for p € (1,00) if A = 0. Now
choose p = 2 in the case A # 0, and p = 3 if A = 0. Then, by the integrability properties of
V we have just proved, it follows that V € W?(Q)3 and VV e L¥ (Q°)? Since V|02 = 0
by our assumptions, we get V € W(} P (ﬁc)?’. But divV = 0 also by our assumptions, so
Theorem 3.2 yields there is a sequence (¢,) in C3°(Q°)? with divg, = 0 for n € N and
|V = ¢ull1p — 0. Using ¢, as test function in (4.1), letting n tend to infinity, and taking
account of the fact that VV e L¥' (2)?, we arrive at an equation whose real part is given
by VI3 + R [5e 01V - Vdz + (V) = 0, where (V) = 0if A =0, and y(V) := RA || V|3
else. Fix some function ¢ € C§°(By) with ¢|B; = 1, and define ¢, (z) := ¢(n~'x) for
r € R3 n € N. Then v, € C5°(Bay), ¥n|Bn = 1, and |Vib,|oe < €n~L. On the other
hand, since &,V € L¥ (Q°)3, V € LP(Q°)? by our choice of p, hence &,V -V € L'(Q%)?, we
have [gc 1V Vdr = lim,_ oo Jae 01V -V dz. But V € C®(R3)3, so obviously

§R/ 81V-V¢ndx:9%/ [0 (RV) - RV + 01(SV) - SV | by da = —/ V|2 e da /2.
QC ﬁc QC

It is also obvious that [V|2 € L"(Q°) for any r € (1,00), and ( [ge|01%n|* dx)l/s <
¢n~1F3/5 for s € (1,00). Therefore [5¢ [V|? 013 dz — 0 for n — oo, so we obtain || VV[|3+

v(V) = 0. As a consequence VV = 0, and we may conclude with Corollary 3.2 that V' = 0.
O

7. Oseen resolvent estimates.

In this section, we derive some estimates of solutions to (1.18), with upper bounds depend-
ing on A in an explicit way ("resolvent estimates”). We begin by presenting two corollaries
where we collect some features of these solutions following immediately from the existence
results in Theorem 4.7 and 4.9, and from the uniqueness properties stated in Theorem 6.2
and Corollary 3.2. The notation we introduce for these solutions in the two corollaries in

question will be used frequently in the rest of this paper.

corollaryC7.10) —
Corollary 7.1 Let A € K- \{0}. For any G € Uye(1,00)L9(Q)? or G € Uge(1,00)L1(R?)?,

there is a unique function V := UB(\,G) € qu(lvoo)qu(ﬁc)?’ and a unique function
IT :=1II(\,G) € qu(lpo)w/li’cq(ﬁc) such that fQS-H IIdx = 0 and the pair (V,II) solves
(1.18), with G|Q° instead of G if G € Uge(1,00) LIR?)%. If p € (1,00) and G € LP(Q°)3 U
LP(R3)3, then V€ W2P(Q%)3 and VII € LP(Q°)3. In particular, if G € C3°(Q°)3, we have
V e WP(Q°)? and VII € LP(Q°)? for any p € (1,00).

11laryC7.20 .
cororteany >Corollary 7.2 For any G € qu(LQ)Lq(QC)?’ or G € qu(Lg)Lq(RS)S, there is a unique

function V. := B(0,G) € I/Vlicl(ﬁc)d and a unique function I := T1(0,G) € I/Vlicl(ﬁc)
such that [y Tdzr = 0, V € Upe(ao0)LU2)%, VV € Uperass 00 LUQ°)°, DV €
qu(ljoo)[ﬂ(ﬁc)m, VII € qu(l,m)Lq(ﬁc)z%, and such that (1.18) holds with A\ = 0, and with
with G|Q° instead of G if G € Uge,2)LA(R?)?. If p € (1,2) and G € LP(Q°)3 U LP(R3)3,
then Ve L2P/C=2)(Q°)3, vV e LAP/U-0)(Q%), D2V e LP(Q9)?, VII € LP(Q°)3, in
particular V|Qr € W2P(Qg)? for R > 0 with Q C Br. Moreover, if G € C3°(Q°)3, then
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V e LP(Q°)? forp € (2,00), VV € LP(Q°)° for p € (4/3, 00), D*V € LP(Q)?" and
VII € LP(Q°)? for p € (1,00).

The inequalities stated in the next theorem are preliminary versions of our resolvent esti-
mates. In these first versions, the unknowns still appear on the right-hand side.

corollaryC7.30) .
Corollary 7.3 Let A € K; and G € CP(Q)3. Put V := U(\,G), 11 := II(\,G). Then

Ve C®(Q°)3 and T € C=(Q°). There is co € C such that 11 4+ co € LP(Q°) for p €
(3/2, o0). Abbreviate B = Bsy1\Bs, 84(G,V,T1) = | Glly + [IVV|2s41llg + [T9s:1 ],
for ¢ € (1,00). Then ||V, < €(p,q) R(G,V,10) for g € (1,2), pe ((1/g—1/2)7", 0)
if g >3/2, pe ((1/g—1/2)71, (1/g—2/3)") if ¢ < 3/2, and p = 6 if ¢ = 6/5.
Moreover [[VV |, < €(p,q,c0) &(G,V,I) for ¢ € (1,3], p € ((1/g —1/4)7", (1/q -
1/3)71), and p = 2 if ¢ = 6/5. Furthermore |D*V|Qg|q < €(q, R) Re(G,V,1I) for q €
(1,00), R € (0,00) with Q C Bg, and |D?*V ||y < € Ra(G, V,1I). In addition, if A # 0, we
have [N+ (et 1/p) |V ||, < €(p, q) R (G, V,TT) for q € (1,2], p € [q,2]. We further have
|\VII||, < €(q) Ry(G,V,1I) for q € (1,00). Finally

IV V|2 + [T+ coll2 < € (|GIQ°|-12 + VB2 + T Bl|-1,2), (7.1)[c7.30.60]
with co as above, and
IVIlp <€) (IG[Q[|-12 + [[VIBll2 + [T B -1,2)  for p € (4,6). (7.2)[c7.30.70]

Proof: By Corollary 4.4, we have V € C®(Q°)3 and II € C=(Q°). Moreover Corollary
4.3 yields

VIQr € W*P(Qr)3, TIQx € WHP(Qg)  for p € (1,00), R € (0,00) with Q C Bg. (7.3)[c7.30.100]

Recall that B = Bgy1\Bs. Choose some function ¢ € C§°(R3) satisfying the relations
0< <1, p|Bgii/a=1, ¢|Bg+3/4 = 0. Then Vo -V € C§°(B). Recalling that the pair
(V,1I) is a solution to (1.18), we note that V]|9Q = 0 and divV =0, s0 [V -Vdz = 0.
Therefore we may apply Theorem 3.7, setting © := ©(2,1,5,5 + 1)(Vy - V|B). This
means in particular that ® € C§°(B)3. Moreover, taking account of the last statement of
Theorem 3.7, we get

1Dll2p < C@) Ve -V, < Clp) [IVIB

1p for pe (1,00). (7.4)[c7.30.110)

Let V, II, H denote the zero extension to R3 of (1—¢) V4D, (1—¢) I and 2 S O OV
+ApV —1701pV — AD + 701D + AD — II Vi, respectively. By Theorem 3.7 and the
choice of ©, we have divV = 0. Thus the pair (V,ﬁ) solves (4.5) with V, II, G replaced
by V,II and (1 — )G + H, respectively. In view of Corollary 7.1 and 7.2, we know
that V € LP(Q°)3 and VV € L"(Q°)? for certain p,r € (1,00). Therefore, and be-
cause of the relations ® € C§°(B)? and (7.3), an analogous property is true for V and
VV, respectively. On the other hand, since (1 — )G + H € C°(R3)3, the functions
Vi:=EW« Pg( (1—p)G+ H), I := QQ( (1-—p)G+ H), satisfy all the properties listed
in Corollary 5.3, with V', II, (1 — golG + H in the place of V, II, G, respectively. Thus we
may apply Theorem 6.1 to obtain V = V. Corollary 3.2 then implies there is ¢y € C with
I + co = IL. In view of the choice of ¢, and because D € C§°(B)?, we may conclude that

VIBG1 = VIBs = VIBs1, T+colBgyy =T +co|Bgy =T[Bg,,.  (7.5)[c7.30.120]
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From (7.3), (7.5) and the fact that II possesses all the properties stated for II in Corollary
5.3, we may conclude that IT + ¢o € LP(Q°) for p € (3/2, 00), which is the first claim of
Corollary 7.3. Due to (7.4), we get

1H|lp < €(p) ([VI[l1p + [T Bllp) for p e (1,00). (7.6)(c7.30.80]
Since V|02 = 0, Poincaré’s inequality applied on Qg1 yields
1Gllp + IVIBll1p + [T Bllp < €(p) &y(G, V,1I)  for p € (1,00). (7.7)[c7.30.130]

At this point we observe that the functions V and IT may be estimated by applying Corol-
lary 5.1 with G replaced by (1 — ¢) G + H, and then referring to (7.6) and (7.7). Taking
account of the equations V =V and Il = H—l—co, we thus see that the inequalities in Corol-
lary 7.3 up to but excluding (7.1), with V II in the role of V and 11, respectlvely, follow
from Corollary 5.1. Put W := oV — 9, I' := ¢Il. Then W € C‘X’(Q 33, T e C®(Q,
and the equations in (4.5) hold with V, II, G replaced by W, ', ¢ G — H, respectively.
From (7.3), we conclude that W|Qg41 € W29(Qg41)? and H|Qg41 € WH4(Qg41) for any

€ (1, 00). Moreover, since ® € C§°(B)3 and by the choice of ¢ and G, we have ¢ G—H €
Cs°(Qs41)3, WIBS 3/, =0, I'|Bg, 5,y = 0 and W[0Q = V[0Q = 0. This means in par-
ticular that W Qg € Wo 9(Qg41)3 for any g € (1,00). Thus we see that we may apply
Theorem 4.6, in particular the estimate at the end of this theorem, as well as Corollary 4.6
with A = Qg41 and with V, II, G replaced by W|Qgsy1, T'|Qs41, ¢ G — H|Qg41, respec-
tively. Again taking account of (7.6) and (7.7), and recalling that W and T" vanish outside
Bg.1, we see that the first, second and fifth (if A # 0) inequality in Corollary 7.3 with
V replaced by W on the left-hand side follow from Corollary 4.6. Inequalities (7.6) and
(7.7) and the estimate at the end of Theorem 4.6 yield that || D?*W ||, + ||VII||, is bounded
by €(q) 8;(G, V,1I) for g € (1,00). This means that the third, forth and sixth estimate in
Corollary 7.3 hold with V, II replaced by W, I', respectively, on the left-hand side. Since
V =V +W, I =1+ c¢y+T, we have thus proved the estimates up to but excluding (7.1)
in Corollary 7.3.

In order to derive (7.1) and (7.2), take v € C§°(R3)3. With (3.1), we get [|y|Bll2 <
CllvBlls < €|v/Bslle < €||V|l2. Moreover, by Theorem 3.7, in particular by its last
statement, we obtain [|D|/12 < €||Ve - V|2 < ||V|B]l2. Using these estimates, as well as
the relations ® € C§°(B)? and supp(Vy) C B, we get

[, 807 de] <€I9DI 9112 < €VIB2 [Vl

3 [ nds| <€Dl lnIBl < € VIl [V

/3Zawakv ve| = | [ A907+Z(9w3m Vde| < €|[VIBI2 [T
R k=1

/ Ve ~vdx| <
R3

It is obvious how to handle the remaining terms of the integral fR3 H-~dx. Thus, collecting
the preceding estimates, we arrive at the inequality |H||—12 < €(||V|B||2 + [|II| B||-1.2)-
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Noting that supp(l — ¢) C B5+1/4c and Q C Bg, we obtain (1 — ¢)y € C§(Q°)? for
v € C§°(R3)3. On recalling that supp(Ve) C B and ||v|B|l2 < €[|V7|l2, we further find
that [V ((1—¢)7)llz2 < €[[V7]l2. As a consequence [|(1 — ¢) G||-12 < ¢||IGIN°) 12 In
view of the estimate of |H||_1 2 given further above, this means

I(1=¢)G+Hl-12 < C(IGIQ |12+ [[V]l2 + [T B -12). (7.8)[c7.30.140]

Next we remark that the functions V and IT may be estimated by making use of Theorem
5.3 and Lemma 5.1 with G replaced by (1 — ) G + H. Again recalling that V =V and
ﬁ = I + cp, we may then conclude that inequalities (7.1) and (7.2) with V, IT replaced by
V, II, respectively, follow from Theorem 5.3, Lemma 5.1 and (7.8).

In order to estimate W and I, we fix a function ¢ € C§°(B) with ¢ > 0 and [ (dz > 0.
Put ¢, := <fBCd:1:)_1 J5T ¢dx. Corollary 4.5 with A = Qg1 and with G replaced by
G — H|Qg41 imply that

Wil + Wiy + [T = c[Qsall2 < €p) [lp G = H[Qs41] 1,2 for p € (4,6).

Obviously ||¢ G — H|Qs11]-12 < |l¢ G— H|Q°||_1 .2, so we may conclude with the estimate
of ||H||-1,2 we derived above that for p € (4,6),

Wiz + [Wllp + T = cc|Qs+1]l2 < €(p) (IGIQ°]-1,2 + [V Bll2 + T B]|-1,2)-

Since V =V +W, II = Il4+cy+T, we arrive at inequalities (7.1) and (7.2), but we still have
to add the term €- ||c¢|Qs41]]2 on the right-hand side of (7.1). However, since ¢ € C5°(B),
hence ¢ ¢ € C§°(B), we get with Poincaré’s inequality on B and the definition of I" that

el < €lecl < € [ M| < €MBI-1alloChe < B 12 (7.9)(e7.50.150
B

In the last inequality, we subsumed the term [|¢ (|12 in the constant €. Estimate (7.9)
completes the proof of (7.1). O

The ensuing two theorems are the key elements of the proof of our resolvent estimates.

(theoremT7.10) .
Theorem 7.1 Let A € K, g € (1,2), G € LI(Q")3. Then | B\, G)|p < €(p1,9) |Gllq

forpr e ((1/g—1/2)7 1 00) if ¢ > 3/2, p1 € ((1/q—1/2)7, (1/q —2/3)"1) in the
case ¢ < 3/2, and p1 = 6 if ¢ = 6/5. Moreover |[VU(X,G)|p, < €(p2,q) |Gl for
p2 € ((1/q—1/4)7", (1/q—1/3)7"), and po = 2 if ¢ = 6/5. In addition, if X # 0, we have
APV G, Gy < €(s,9) [Gllg for ps € [q,2]. Finally | D*T(X, G)|Qrlly <
€(q, R)||Gllq for q € (1,00), R € (0,00) with Q@ C Bg, and [VII(A, G)llq < €(q) IG]lq for
q € (1,00).

Proof: We proceed by contradiction, similarly to the approach by Kozono, Sohr [33] and
Borchers, Sohr [5]. Take p1, p2, ps as in the theorem, and let R € [S + 1, 00). Abbreviate
k:=244(—1/q+ 1/p3). Suppose there is no constant Cy > such that

1B (0; &)llpy + [IVD(2, 9)lp +sup 0" [IxBr B0, d)llps + |D*B(0,9)|Qr]ly  (7.10)[17.10.60]
>

+|VII(0,¢)|lq < Colldlly for ¢ € C5°(Q°), 0 € K-
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Then, for any n € N, there is some g, € K, and some function ¢, € C§° (60)3 with ~,, >
n[|@nllg, where yp, := (D (on, én)llp, + VU (on, én)llpe +suprso [on]™ [XBr B(on, dn)llps +
D2V (0n, n) QR+ VI (0n, ¢n)|lq- Note that by the regularity properties listed in Corol-
lary 7.1 (o, # 0) or (7.2) (o, = 0), we have 7, < oo for n € N. This is true even
if o, = 0 for some n € N, in which case the function U(gn, ¢,) need not belong to
LP3(Q°)3. However the term suppsg|on|® X5y B(0n, ¢n)|lps then vanishes. We do not
use the expression |on|" [|B(on, én)llps for 0 € K., ¢ € C(Q°)? because in the case
o = 0, it might lead to products of the form 0 - co, which we want to avoid. Define
Vn = Y L B (0n, On)y 0n = Y2 00, On)s Gn = V5! én for n € N. Then Corollary 7.1 —
7.3 yield v, € C®(Q°)3, 0, € C®(Q°)3, v,|Qr € W>4(QR)?,

—Avy, + 701Uy + 0n Uy + Vo, = gn, dive, =0, v,]0Q=0 for neN. (7.11)[T7.10.70]

Since v, > n||¢nllq, we further get

[onllpy + [1Vonllp, + sup |0n]" X8 Vnllps + ID*0a|Qrllg + IVoullg = 1 2 7 |lgallq (7.12)[17.10.80]
>

for n € N. As a first consequence of (7.12), we note that ||g,|l; — 0. By the choice
of I(gn, ¢n) (Corollary 7.1 and 7.2), we have fQS+1 ondr = 0, hence by a Poincaré’s
conclude from (7.12) that the sequence (0,|Qs+1)n>1 is bounded in Wh4(Qg,1). Since
p1 > 4q, p2 > q, R > S+1, it further follows from (7.12) that the sequencee (vy|Qs41)n>1 is
bounded in W?%4(Qg,1)3. We may conclude from (7.12) and from the preceding remarks on
(0n|2541)n>1 that there is a subsequence of ( (Un, Ons On) ), also denoted by ( (Un, Onsy On) ),
with the following properties: v, — V in LP*(Q°)3 for some V € LP(Q°)?, dv, — V¥ in
LP2(Q%)3 for some V) € LP2(Q%)% (1 <1< 3), Vo, — v in LI(Q°)? for some vy € LI(Q°)3,
|vn|Qs41 — Z|[1,4 — 0 for some Z € W14(Qg11)3, ||on|Qsi1 — Y|, — O for some Y €
Li(Qs41)%, and o, — oin C for some ¢ € K. By considering the sequences (Jae vn-Op¢ dx)
and (fqe Qvy - dx) with 1 € {1, 2, 3}, ¢ € C3°(Q°)%, we find that V € W' (Q°)? and
vV = VW for 1 <1 < 3. Similarly we get V|Qsy1 = Z, Y € W'(Qs11), VY =
v|Qs1. Since 9V = VB (1 <1 < 3), we conclude that VV € LP?(Q)?. The equation
st+1 on dx = 0 for n € N and the fact that ||oy,|Qg41 —Y||; = 0 yield fQSJrl Y dx =0. We
further conclude that ||v, —V[Qgi1][1,4 = 0, so V|02 = 0 by (7.11). The latter reference,
the relation ||g, ||, — 0 and the equation &V = V¥ (1 <1 < 3) imply that divV = 0 and
that (4.1) as well as (4.2) hold with A = Q°, G =0, A = g, and with the term —IIdiv1)
in (4.2) replaced by v - 1. Recalling that V € LP1(Q%)%, VV € L?(Q°)?, we may now
apply Theorem 6.2 to obtain V' = 0. Thus (4.2) reduces to the equation [ge~ -1 dr =0
for ¢ € C3°(Q°)3, which means that v = 0. Since VY = 4|Qg,;; and st+1 Ydx =0, as
mentioned above, we get Y = 0. In this way we arrive at the relations ||v,|Qg41][1,4 — 0
and |lon|Qs41]lq = 0. On the other hand, referring to Corollary 7.3, with V, II replaced
by v, = B(on, Y5t én), on = (on, vt én), we see that the left-hand side of (7.12) is
bounded by a constant times ||gn|lq + ||vn|Qs+1ll1,¢ + ||on|s+1]lg, uniformly in n € N.
But by what we have found before, this latter term tends to zero for n — co. Thus the
left-hand side of (7.12) must equally tend to zero, which is a contradiction. So we have
shown there is Cy > 0 such that inequality (7.10) holds for ¢ € C§°(Q°)?3, uniformly in
0 € K,. In order to extend this result to G € L(Q°)3, fix some such function G, and

inequality [|on|Qst1llg < €(q) [[Von|Qs+illy < €(q) [[Vonllq for n € N. Thus we may
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let (¢,) be a sequence in C3°(Q°)? with |G — ¢ully — 0. Let 0 € K,. If o # 0, then the
estimate in Theorem 4.9 yields ||V —V,,||2,4 = 0 and ||VII—-VIL,||; — 0, where we used the
abbreviations V = U(p, G), Il =1(p, G), Vi, = BV(o, ¢p,) and II,, = (on, ¢n), for n € N.
If o = 0, we use Theorem 4.7 to obtain |V — Vy|l24/c2—¢) = 0, [IV(V = Vo)llag/a—q) —
0, |D*(V — V)|l — 0 and ||[V(II — II,)|l; — 0. On the other hand, since inequality
(7.10) was shown to be valid for ¢ € C$°(Q°)3, we see that the sequence (V},) converges
in LP1(Q°)3, (VV;,) in LP2(Q°)%, (|o|* Vi) in LP3(Q°)3 if o # 0, (D?V,|Qg) in LI(QR)*7
and (VII,) in L9(Q%)%. Since LP-convergence implies pointwise convergence a. e. of a
subsequence, we may now conclude that the limit functions of the preceding sequences are
V, VV, |o|*V, D*V|Qg and VII, respectively. Thus inequality (7.10) remains valid when

¢ is replaced by G. This proves the theorem. O

(theoremT7.20) e
Theorem 7.2 Letp € (4,6), A € K, and G € C°(Q)3. Then, for some co € R, we have

1B, Gy + [V, G)lz + TN, G) + coll2 < €(p) |GIO° |- 1.2. (7.13) 717.20.207

Proof: We again proceed by contradiction. Suppose there is no constant Cy > 0 such
that

162, 9) I + [V D(2: 9)ll2 + L0, ¢) + clo, §)ll2 < Co |$[Q |12 (7.14)[17.20.30]

forpe K;, ¢ € CF° (Q°)3, where ¢(p, ¢) € C is chosen in such a way that II(o, ¢)+c(o, ¢) €
L7(Q°) for any r € (3/2, 00); see Corollary 7.3. Then, for any n € N, there exists
on € K; and ¢, € C(Q°)? such that v, > n¢n|Q°||_1.2, where v, := [|B(on, én)llp +
VU (0n, dn)ll2 + ITL(0n, &n) + c(0n, dn)||2. Note that v, < co for n € N by the choice of
¢(0n, ®n) and by Corollary 7.1 and 7.2. We define

Up = 7;1 m(@m ¢n)a On = 'Yn_l (H(Qna ¢n) + C(Qna ¢n) )7 gn = 77:1 ¢n for neN.

Then, as in the proof of Theorem 7.1, the pair (v, 0,) satisfies (7.11) (n € N). The
regularity properties listed in Corollary 7.1 in the case g,, # 0 and in Corollary 7.2 if g,, = 0
are valid for vy, o, in the place of V and II, respectively, and the first claim in Corollary
7.3 holds with II = 0, and ¢y = 0. Moreover Corollary 7.3 yields v, j, 0, € C§° (56)3 for
n €N, 1< j < 3. The inequality v, > 1 /¢n|Q"|_12 implies that

lonllp + I Vvnllz + llonllz = 1 > 7 |gn|@ |12 for neN. (7.15)[17.20.40]

As a first consequence of (7.15), we note that ||g,|Q[_12 — 0. Fix some function
¢ € C§°(Bs41) with ¢|Bs = 1. Put Bg41\Bs. Since v,]0Q = 0 according to (7.11), and
because p > 2, v, € LP(Q°)?, Vu, € L*(Q")?, it follows that ¢ v,|Qs41 € W01’2(QS+1)3
and ¢ vnl2s11ll12 < €0) ([onllp + [ Voall2), and similarly [ua[Rss1]12 < €(p) (Joally +
|Vonl|l2), for n € N. These observations, (7.15) and Theorem 3.3 allow us to choose a
subsequence of ((vn,an, On) ), also denoted by ((vn,an, 0On) ), with the following prop-
erties: v, — V in LP(Q°)? for some V e LP(Q°)3, g, — VW in L2(Q%)3 for some
VO e L2093 (1 <1<3), ConlQg41 — Z in Wy*(Qg41)? for some Z € Wy?(Qg41)3,
|va|B = Y12 — 0 for some Y € WH2(B)3, o, — I in L*(Q°)? for some II € L*(Q°)3,
|on|B —T|—12 — 0 for some I' € L?(B), and g, — ¢ in C for some g € K,. The relation
|on|B—T)-1,2 — 0 for some I' € L?(B) is a consequence of Theorem 3.3. By the reasoning
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indicated in the proof of Theorem 7.1, we may conclude that V € VVZIOC1 (QC)S, oV =vWh
for 1 <1<3, (V|Qgy1 = Z, VIB =Y, II|B = T. Therefore VV € L*(Q°)°, |vn —
V|B|2 = 0 and |0, — II|B||_12 — 0. Since (V|Qsi1 = Z € Wy (s11)%, ¢|Bs =1
and Q C Bg, we get V|92 = 0. Moreover, recalling that 9,V = VO for 1 <1< 3 and
19n|Q°]|—1.2 = 0, we may deduce from (7.11) that divV = 0 and that (4.1) as well as
(4.2) hold with A = Q°, G =0 and X\ = p. Since V € LP(Q°)3 and VV € L*(Q°)?, we
may at this point apply Theorem 6.2 to obtain V = 0. Now (4.2) yields [qcIIdive) =0
for 1 € C§°(Q%)3, implying that II € I/Vllgcl (Q%)? with VII = 0. As a consequence II = ¢
a. e. for some ¢ € C (Corollary 3.2). But II € L2(Q°), so II = 0, in particular I’ = 0.
In this way we arrive at the relations ||v,|B|2 — 0 and ||oy,|B||—12 — 0. On the other
hand o, € L*(Q°) by the choice of that function. Thus we may apply (7.1) and (7.2)
with V, IT replaced by v, = B(0n, V! én)s 0n = U(on, vyt én) + 75, L c(0n, dn), to obtain
Fonllo+ 10 ll2 + lonllz < €() (19l 1.2+ lonBll2 + llon| Bll1.9) for n € N. It follows
that the left-hand side of this estimate tends to zero for n — oo, which is a contradiction
to (7.15). As a consequence, there must be a constant Cp > 0 such that (7.14) holds. This

proves Theorem 7.2. O

(theoremT7.40) 19, ~c
Theorem 7.3 Let A € K, and G € Dy ()3 Then there is a unique function V :=

B\, G) € Dé’Z(ﬁc)S such that divV =0,

/ (VV -V + 10V + AV ) de = G()  for ¢ € C(Q°)3 with divep = 0. (7.16)[17.40.10]
-

This function V' satisfies the inequality ||V, + ||[VV |2 < &€(p) ||G]||-1,2 for p € (4,6].

Proof: Since D(l)’Q(ﬁC)?’ C LS(Q%3, VW € L2(Q°)? and W|9Q = 0 for W € Dé’Q(ﬁc)‘%,
the uniqueness statement in Theorem 7.3 follows from Theorem 6.2. Concerning existence,
Theorem 3.6 yields a sequence (¢,,) in C°(Q°)? with |G — ¢n||_12 — 0. Therefore, by
(7.13), the sequence (U(\, ¢p)) converges in LO(Q°)3, and the sequence (VDA ¢p) ) in
L2(€1)°. Thus there is a function V := B(X, G) € Lﬁ(ﬁc)?’ﬂVVllo’cl (Q%)? with VV € L?(Q%)?
such that |[V—=U(\, ¢p)|l6 = 0and [|[VV =VU(A, ¢,)|l2 = 0. Then ||[V—-B(X, ¢,,)|Qs]/1,2 =
0, so V|02 = 0. We thus have found that V' € Dé’Q(ﬁc)?’. The relations |V —U(\, ¢n)|le —
0 and |[VV — VU(\, é,,)]|2 — 0 and the fact that B(\, ¢,,) satisfies (1.18) with ¢,, in the
place of G imply (7.16). Again referring to (7.13), we get B(X, ¢n)lp + VDA, ¢n)ll2 <
Cl|pn|Q||_12 for n € N and p € (4,6). In view of the estimate in Theorem 3.5, the
preceding inequality also holds for p = 6. These observations imply the estimate stated in
Theorem 7.3. O

Theorem 7.4 For p € (1,00), the estimate | B\, G)|, < €(p) |A|72||G||, holds for G €
LP(Q°)3, A € K, \{0}.

Proof: Let A € K \{0}. If p € (1,00), G € LP(Q°)3, we write U+ (\,G) for the solution
of (1.18) if u = 1, and U~ (A, G) in the case p = —1. The notation It (A, G) and I~ (A, G)
are to be understood in the same way. For p € (1,00), put D, := H,(Q°) N W>P(Q°)3 n
Wol’p(ﬁc)g, Qlff(V) =Pp(-AVET 01 V+AV) for V € D,, with P, introduced in Theorem
2.1. Let p € (1,00), G € Hy(Q'), and abbreviate V := U+ (\,G), II := [I*(\, G). Then
V € W2P(Q%)3, and the pair (V,1I) is a solution of (1.18) with u = +1; see Corollary 7.1.
In particular we have V[0 = 0 (hence V € VVO1 P(Q°)3) and divV = 0. Thus Theorem

37



3.2 implies that V' € H,(Q°). These observations mean that V € D,,. Since VII € LP(Q)3
and the pair (V,II) solves (1.18) with p = 1. (Corollary 7.1), it follows with the third
equation in Corollary 3.7 that lei(V) = P,(G). Since G € H,(Q°), this means Ql;t(V) =G.
We have thus shown that Ql;,t : D, — H,(Q) is onto, with

W(V*(N\,G)) =G for G € Hy(Q). (7.17)[17.30.20]

Let V € D, with 25(V) = 0. Obviously —AV £ 70V + AV € LP(Q°)?, so we may
put I := —G,(~AV £ 79,V + AV). Note that IT € W,>P(Q°) with VII € LP(Q°)? by

Theorem 2.1. This latter reference and the assumption 217 (V') = 0 imply the pair (V,1I)
is a solution of (4.5) with = 41 and G = 0. Since V € D, C Wy ?(Q%)3, we additionally
have V|02 = 0, so the pair is a solution of (1.18) with G = 0, u = £1. Theorem 6.2
now yields V' = 0. Thus the operator Q[;,t is one-to-one. At this point we have found that
AE 2 D+ Hy(QF) is bijective, with (7.17) implying

(2A5)HG) =VE(N\,G) for G € Hy(QF). (7.18)[17.30.30]

This latter equation, the fact that U*(\, G) € Dy, and Theorem 4.9 yield that (Ql;t)*l :
H,(Q°) = H,(Q°) is bounded.

Next we observe that by integrations by parts and the second equation in Corollary 3.7,
the equation [ge (V) - Wdz = [5V -2, (W)dz holds for V € D,, W € Dy, and for
p € (1,00). It follows again with the second equation in Corollary 3.7 that the operator
(2)7" o Py is dual in LP(Q)? to (AF) Lo Py (p € (1,00)).

Let the operator norm of linear bounded operators § : LP(Q°)3 — LP(Q°)3 be denoted by
. ~C

I llp, that is, [[[§]lp == sup{IS(V)lIp/ IV, : V € LP(Q)?, V # 0}, for p € ((1,00).

Then a functional analytical principle allows us to deduce from the preceding result that

@)™ o Pollly = 1)~ o Pyllly  (p € (1,00)). (7.19)[17.30.40]

Now let p € (2,00). Then p’ € (1,2), so by Corollary 7.3 we know that || U~ (X, G)||,y <
¢(@) N2 |Gy for G € LY (Q°)3. Using (2.1) and (7.18), we may conclude that |||(Ql;,)_1o
Pylly < €@) A2 In view of (7.19), we thus obtain [||(2,])~ o Ppll[, < €(p)|A|~2.
Here p was arbitrarily taken from (2,00). If p € (1,2), the preceding inequality follows
directly from Corollary 7.3, (7.18) and (2.1). In order to handle the case p = 2, we
interpolate between L3(Q°)3 and L32(Q°)3. To this end, we note that by (7.18) and
Lemma 7.2, we get (A3) 71 (P3(G)) =TT (A, P3(G)) = TT(\,G) =T (A, Ps2(G)) =
(2[;?2)_1(773/2((;)) for G € L3(Q%)? N L3¥?(Q°)%. Since we showed that the estimate
1165~ o Pylll, < €(p) IA|72 is valid for p € (1,00)\{2}, we may now conclude by the
Riesz-Thorin interpolation theorem that it holds for p = 2 as well. Thus we have proved
this estimate for any p € (1,00). Combining it with Lemma 7.2, (7.18) and (2.1), we finally
get BTN G)lp = 107 (X Po(@)) Il = )7 (Pp(G))llp < €@) N2 IP(G)]p <
C(p) N2 (|G|, for G € LP(Q°)3, p € (1,00). O

We finish this section by pointing out some technical details about solutions to (1.18).
The first is an immediate consequence of Theorem 6.2 and the regularity properties of
solutions to (1.18) mentioned in Corollary 7.1, 7.2 and in Theorem 7.3.
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corollaryC7.50) . .
Corollary 7.4 Let A € K, and p € (1,00), with either A\ # 0 or p < 2. Let G €

LP(Q°)3 N D61’2(§C)3. Then the function B(\,G), as defined in Corollary 7.1 or 7.2,
and the function B(\, G) introduced in Theorem 7.3 coincide. Therefore we will use the
notation V(A\, G) instead of V(\, G) also if ¢ € Dam(ﬁc)?’.

11laryC7.60
corertay >Corollary 7.5 Let p € (1,2], r € (1, min{p, 6/5}). Put v := (1/r —1/3)~L. (Note that

v €(3/2,2).) Let A € K-\{0}, L € (0,00), ¢ € Cg°(Q). Then [A| [T\, x5, 9)ll5 <
C(r, L) A2 1 6]lp-

Proof: The estimate of the term |\|?+4(=1/a+1/P) ||5(\, G)||p, in Theorem 7.1, with ¢, p3
replaced by r and v, respectively, implies |A| [ B(\, x5, ¢)|l5 < €(r) |NY3 | xB, ¢l Since
r < p, we further have ||xp, ¢[/, < C(L) ||¢|lp. O

corollaryC7.70) 19 =c e 1.9 ~c
Corollary 7.6 Let G € Dy ~(Q°)> N L?(Q)? (hence V(0,G) € Dy~ ()3; see Theorem
7.3). Then B(0,G) € W1 (Q°)3, D2B(0,G) € L*(Q9)¥, &10(0,G) € Dy *(Q°)?, and

there exists a function TI(G) € WY2(Q°) such that (1.18) holds with V = 2(0,G), 1 =
II(G) and XA = 0.

Proof: By Corollary 3.5, there is a sequence (¢,,) in C5°(Q°)? such that |G — ¢n||_12 — 0
and |G — ¢n|l2 — 0. Then by Theorem 7.3,

190, G) — B(0, é) s + [V (B(0, G) — B(0, 6a) )2 — 0. (7.20) [¢7.70.10]

Let m,n € N. By Corollary 7.3, there are constants cy, ¢y, ¢mn € C such that the
functions T1(0, ¢n) + ¢, H(0, ) + ¢ and T1(0, ¢y — ¢m) + cnm belong to L2(Q°). By
Corollary 7.2, we know that (1.18) with A = 0 is satisfied with (0, ¢;), I1(0, ¢;) + ¢;, ¢; in
the role of V, II, G, respectively, for i € {m, n}, and also by B(0, ¢, — dm), (0, ¢p,— ) +
Cn,m, Pn— ¢m instead of V, 11, G, respectively. In view of the regularity properties listed in
Corollary 7.2, we may now apply Theorem 6.2 and Corollary 3.2 to obtain that (0, ¢,,) —
(0, dm) = B(0, ¢r— ¢ ), and I1(0, ¢p) +cn — (IL(0, ¢) + ¢ ) = (0, pr,— ) +Cnym- On
the other hand, we have ||[VD(0, ¢, — )2 + [|IT1(0, ¢p, — dm) + cnmllz < € ||dn — dmll—1,2
by Theorem 7.2. Moreover ||V (II(0,¢n — ¢m) + com )ll2 < €||¢n — dmll2 according to
Theorem 7.1, and the term ||D?(0, ¢,, — ¢)||2 is bounded by

€ ([|n = dmll2 + VU0, dn — dm)[Qs11ll2 + [0, dn — dm) + cnm Qs a2,

as follows from Corollary 7.3. Bringing all this together, we get
”D2%<07 ¢n) - DZm(Ov ¢m)H2 + HH(Ov (an) +cn — (H(07 ¢m) +Cm ) HLQ
< C([lon — Pmllz + o0 — Pmll-1,2)-

Thus we see that the sequence (D*U(0,¢y)) converges in L (Q9?7, and the sequence
(1I(0, ¢n) + ¢y ) in W12 (Q°). Let TI(G) denote the limit function of that latter sequence. It
follows with (7.20) that U(0,G) € W2 (Q°)?, D*B(0,G) € L*(Q°)*, and || D*V(0,G) —
D?*3(0, ¢,)||2 — 0. Thus we may further conclude with (7.20) and Corollary 7.2 that
(1.18) is satisfied with V' = 0(0,G), II = II(G), A = 0. It follows that 0,0(0,G) =
AB(0,G) — VII(G) + G. Since 9;0(0,G), II(G) € L*(Q°) (1 < j,k < 3), it is obvious
that AD(0,G) — VII(G) + G € Dy (Q)3, so 10(0,G) € Dy % (Q°)3. O
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(lemmal7.20) =c\3
Lemma 7.1 Let g € (3/2,2), G € LI(Q)°. Then |D(0,G)|e < €(q) ||G|l4-

Proof: Since 2¢q/(2 —q) > q and 4¢q/(4 — q) > ¢, we may deduce from Corollary 7.2,
Theorem 4.7 and 6.2 that

160, G)[Qs41ll2.4 < €(a) (100, G)l2/2—q) + IVD(0, G)l4q/(a—q) + [ D*B(0, G)|ly)
< &(q) Gllq-

It follows by a Sobolev inequality that B (0, G)[Qs11]c0 < €(q) |Gllg- If 2 € Q\Qg41, then
Bi(z) € Q°, so we obtain by an analogous reasoning that [0(0,G)|B1 ()]s < C(q) [|Gllq,
with a constant C'(¢q) independent of z. O

(lemmal7.10) —
Lemma 7.2 Let A € K., p € (1,2) in the case A\ =0, p € (1,00) if A # 0, G € LP(Q")3.

Then B(), G) = V(A P(Q)).

Proof: For ¢ € C3°(Q°)? with dive = 0, we have f5¢ G-¢ydz = f5¢ P(G) ¢ dx (Theorem
2.1). Therefore (4.5) is satisfied with V' = U(X,G) and V = U (A, P(G)), each time
with the function G on the right-hand side. Thus, due to the integrability properties of
(A, G) and U (A, P(G)) mentioned in Corollary 7.1 (A # 0) and 7.2 (A = 0), we may
apply Theorem 6.2, which yields (X, G) = B( A, P(G)). O

8. Resolvent estimates related to the perturbed Oseen prob-
lem (1.19).

We proceed as in the whole space case ([12, Section 4 and 5]). However, a new difficulty
arises: In the proof of Theorem 8.1, we need rather precise informations on the asymptotic
behaviour of solutions to (1.18) when |z| tends to infinity. In the whole space case, we
could exploit in this context that the velocity part of a solution to (4.5) with A = R3
and with G being solenoidal is given explicitly in the form E® x G. Here, however, we
have to rely on a different representation formula (equation (8.5)), due which our argument
becomes considerably more involved. This additional difficulty manifests itself in the proof
of Theorem 8.1. Otherwise we rather closely follow the reasoning in [12, Section 5 — 7],

often referring to the proofs given there.

(lemmal.8.40) 19 ,~c
Lemma 8.1 Let A\ € K, g € (1,2), ¢ € Dy ()3, and put V :=B(\,¢). Then B(V) €

L2(Q°)2 N LYQ°)? and P2(B(V)) € Hy(Q°) N Dy 2 (Q9)2 N LIUQ). Let G € LIQ°)?
and set W := B(\,G). Then B(W) € L1(Q°)3. Moreover [P2(B(V))|l« < €[|@]l-1,2 and
[Pe(BW))llq < €(q) [|Gllq- We further have

1P2(xBs, BV) )l < Di(R) 1ll-12,  [1Pq(x55 BW) )l < D2(a, R) |Gl

for R € (0,00), with D1(R) — 0 and Da(q,R) — 0 for R — oo. (The norm || ||« was
defined at the beginning of Section 2.)

Proof: Let ¢ € {6/5, q, 2}. If ¢ > 4/3 or if § < 4/3 and (1/§—3/4)"! > 6, put p := 6. In
the case ¢ < 4/3 and (1/¢—3/4)"" <6, set p := [max{4, 1/G—1/3)"1}+(1/¢—3/4)71]/2.
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With this choice of p, we have p € (4,6], (1/¢—1/p)~! € (4/3, 3] and (1/¢—1/2)"! €
(2, 00]; see the proof of [12, Lemma 9] for more details. The latter proof now yields Lemma
8.1 if we replace [12, (2.14) — (2.16)] by (1.5), [12, (3.39), (3.40)] by Theorem 7.3, and
[12, Theorem 4] by Theorem 2.1 and the first equation in Corollary 3.7. Also note that
L%/5(Q% c Dal’z(ﬁc) (Theorem 3.6). Concerning inequality [12, (4.6)], use Theorem 7.1
instead of [12, (3.16) and (3.17)]. O

(lemmaL8.30) 1.9 —=c —c
Lemma 8.2 Let g € (1,2), € > 0, G € LY(Q°)3, F € Dy *(Q)3 N L2(Q°)3. Then there

are functions ¢, 1 € COO(QC) such that divg =0 = dzm/J,
1P2[x8, BB F) =B\ 6)) [« <ellFlls,  [0[Q° <2 F|,
1Pq[ xBr B(BO,G) =B\ ¥)) g < ellGllg,  1llg < 2[Gllg,

for R € (0,00], A € K.

Proof: Take R, A as in the lemma. By Theorem 3.13, we know that Pa(F') € D51’2(ﬁc)3ﬁ
H(Q°)%. Therefore by Theorem 3.11, we may choose a sequence (¢,,) in C3°(Q°)? with
diveg, = 0 and ||P2(F) — ¢nll« < ||F||«/n for n € N. Lemma 7.2 states that U(\, F) =
Q]( A, Po(F) ) Therefore by Lemma 8.1, for n € N,

1P2[ xBr B(BO,F) =B\, ¢0) ) I+ < €[[P2(F) — ¢ull-1,2 < €||F|lo/n. (8.1)[L8.30.10]

Since P, (G) € H,(Q°), we may choose a sequence (1) in C5°(Q%)? with divip, = 0 and
|Pe(G) — Ynllqg < €||G|lq/n for n € N. Using Lemma 7.2 and 8.1 as in the proof of (8.1),
we further get ||Pq[ xBr B(TN, G) =B\, ¢n)) | llq < €(q) |Gllg/n for n € N. Lemma 8.2
follows by a suitable choice of n. O

The next lemma was proved in [12] without being stated explicitly there.

(lemmal8.60)
Lemma 8.3 Let A € K. \{0}, R, R € (0,00) with R >2R+3, q€ (1 2), ¢ € Cg°(R3)3.

Take some v € (3/2, 2), and put s := [(1/y—1/4)~  + (1/v —1/3)~ ]’/2 Then

HE“) s (xB. 8) — BV (x5 8)lloo + IV(EWV * (x5 ) — E® * (x5, ¢))[ls  (8.2)[L8.60.10]

() N2 11 Bl

| / (OPED) (@ —y)6ly) dy| < €(R) [B2 4 (~n(1 = 1/B) ] Joll.,  (3.3)[L8.60.20

| / (OB~ y) oy) dy| < (g, R) B2 g, (8.4)[£8.60.30]

for x € Bry1, 0 € {0, A}, B € N} with |B] < 1.

Proof: See [12, p. 221] for (8.2), and [12, p. 222-223] for (8.3) and (8.4). Note that in
[12, (4.7)] and in [12, p. 222 — 223], by mistake we wrote (1/2) In( R/(R — 1)) instead of

(In( R/(R—1))"".

(theoremT8.10)
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Theorem 8.1 Let R, R € (0,00) with @ C Br, R > 2R+ 3. Let A € K.\{0}, ¢ €
(1,2), G € C(Q°)? with divG = 0. Then

P2 [ xBr BBV, G) —0(0,G) ) ]I+ (8.5)[T8.10.10]
< [€R,R) N3+ e(R)RV2 4+ &R) (~In(1 —1/R))"*] |G|,

1Pa[ XBr B(BNG) —B(0,G)) ]lg < (C(R, R, q) N3 + €(R,q) RH7) |Gy (8:6)

Proof: Let ¢ € Cg°(R?) with ¢|Bg = 0, ¢|B,, = 1. Put B := Bgy1\Bg, W@ =
E(@ « @ for o € {0, A\}. Note that in particular G € Ho(R3), so Po(G) = G, Q2(G) =0
by Theorem 3.12. Let ¢ € {0, A}. Since P»(G) = G € C*®(Q)?, the regularity properties
of W@ correspond to those listed for V in Corollary 5.3. According to Theorem 5.1 and
because Q2(G) = 0, the equations in (4.5) hold with V = W@ II = 0. In particular
diviv® =0, Vi - W@ e C(B), so that [, Vi - W@ dx = 0. Thus the function
9@ .= D(2,1, R, R+1)(—Vy - W©|B) is well defined and belongs to C5°(B)? (Theorem
3.7). Put 2@ =y W@ 4 D),

3
F@ .= _Apw©@ _2 Z O W@ + 71y W@ — AD@ 4 79,0 4 p D),
k=1

Then F( ¢ C§°(B)3, and the function Z (@) inherits all the properties of W, as enu-
merated in Corollary 5.3 for V. Since B € Bg', ®©@ € C3°(B)? and ¢|Br = 0, we have
Z@|Bg = 0. There, in view of the definition of F(@) we see that the equations in (1.18)
are satisfied with V, G replaced by Z(Q)@C, F@ 1) G@C, respectively, and with II = 0.
Now put F©@ := —F(©@ 4 (1 — ¢)G. Since F© ¢ C3°(Q°)3, the regularity properties
of (o, F@) (Corollary 7.1 or 7.2) are identical to those listed for V in Corollary 7.3.
Moreover (1.18) is satisfied with V, G, II replaced by %(g,ﬁ(g)), F@ H(Q,ﬁ(‘g)), respec-
tively; see Corollary 7.1 or 7.2. (The function II(g, F(@)) will not be needed here.) In this
situation, Theorem 6.2 yields

V(o,G) = 29 + U(g, F?) for g€ {0, A}. (8.7)[18.10.25]

The preceding equation is the representation formula for U(o,G) on which our proof of
Theorem 8.1 is based. As mentioned at the beginning of this section, the choice of a
suitable representation formula is a difficulty we did not encounter in the whole space case
([12, Theorem 14]). Since the equation Z(@|Bgr = 0 implies xg, B(ZX™ — Z(0) = 0, we
may deduce from (8.7) that

P2 x5r B(BAG) —B(0,G)) I« = [IP2] x5, B(BO, FV) —0(0, FO)) ]|l (8.8)[1s.10.26]
< |[P2[ xBp B(BO, FO) =50, FOY) ]|« + P2 xBx B(BO, FX — FO)) ..

The equation (X, FO) —~Q3()\,F:(O)) = P\, FY — FO)) we used here follows from
Theorem 6.2. Note that FO — O = _ W 4 pO) According to Corollary 7.3, we
have B(\, F©)) € ¢*(Q%)3 n LP(Q°)3 for p € (1,00). So, by taking account of Corollary
7.1 and 7.2, we may deduce from Theorem 6.2 that

V(A FO) — 00, FO) =u(0, -A0(\, F)). (8.9)[r8.10.27]



Thus with Theorem 3.6 (continuous imbedding of L%/°(Q°) in D 12(Q%), Lemma 8.1
(B(B\, FO) — (0, F0)) € LP(Q°)? for p € (1,2]), the first equation in Corollary 3.7
and (2.1), we arrive at the inequality

A= ||P2[ x5 B(B, FO) —0(0, F) ) ]| (8.10)[T8.10.30]
<€ Y s B[B(0, -AB FO)) .
pe{6/5,2}

For r € (1, 6/5), we set v := y(r) := (1/r — 1/3)~%. Then v € (3/2, 2). We further set

si=s(r) = [ (1/7(r) = 1/4) " + (1/7(r) = 1/3) "] /2 for r € (1, 6/5). Since > 3/2 >
4/3, we have (1/y —1/4)~! > 2,50 s > 2 > p for any p € [1,2]. Choosing r = 11/10, we
may deduce from (8.10) that

a<e®) Y (IVUIRRI, 1B(0, -ADO FO)) |
pe{6/5,2}

HIUI2R] (11761 B0, =ABO, FO)) ).

Here it is important that s > p for p € {6/5, 2}. Next we use that |VU|Qg|, <
C(R) [[VU||3 and |U[QR](1/p-1/5)-1 < E(R) |Ul|oo for p € {6/5, 2}, and we apply Lemma
7.1 and Theorem 7.1, to obtain

A< C(R) A [|BN, FO). (8.11)[r8.10.40

Here it is essential that v € (3/2, 2). Next, by the choice of r and , by Corollary 7. 5 with
= 2, and because supp(F()) € Bry1, we find |A| | B\, FO)|l, < €(R) [A[Y/3 |FO|3, so
that from (8.11),

A < E(R) MV FO,. (8.12)[18.10.45)

On the other hand, since FN) — F(O) ¢ C§°(B)3, Lemma 8.1 implies

P2 xBr B(BO, FY = FON ]|l < €(R) [FY = FOIQ| 12 (8.13)([18.10.60]
¢(R) [ FY = FO,,

with the last inequality being valid because B C Qg41, so 7Bz < €(R) ||Vy|l2 for
vy € C°(Q°)? by Poincaré’s inequality on Qgy ;. From (8.8), (8.12) and (8.13), we may
conclude

P2 x5, B(BG) —B(0,G)) ]|+ < ER) (A2 |FO|2 + |[FX — FO5).  (8.14)[T8.10.70]

Let us consider the right-hand side of (8.14). By Theorem 3. 7 and because V@[} Wi ¢
Cg°(B)? for 0 € {0, A}, we get |99z < €(R) va- Dl < €Wt \BHM and
||@(A) ~ 02 = D2, 1LRR + 1)(=Ve - (WY = WO)[B)[22 < C¢(R) WD
W )\B H1 2. Due to these inequalities and some additional, obvious estimates, we find
that |z < €(R) [WO|B]|1,2 + |G|z, and

IF® — POy < e(R) W™ — WO B 5. (8.15)[18.10.71]
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Therefore from (8.14),

P2 [ B(VA, G) = 0(0,G)) ]Il (8.16)[T8.10.80]
< C(B) (A2 IWO[Bll12 + N2 NIGlz + W = WO By 2).
Thus we have reduced inequality (8.5) to estimates of W(?|B and W& — W (©)| B, similar

to the ones arising in the whole space case (Lemma 8.3, [12, proof of Theorem 14]). Since
B C Bry1, we get

W — WO Bl 5 < O (RAq + Ay +Ag), (8.17)[T8.10.90]
with 2 == [EX « (x5, G) = B  (xp, G)|Br+1l2,

Ay := Z 8[E XB G) (alE(O)) * (XBR G)‘BR-HH??

W= > Y OBV« (xpe @)|Braile,

0€{0, A} peNG, [BI<1

where we used Theorem 5.1 in the definition of 25 and 2A3. We may estimate 20y and 23
in a first step by replacing the L?-norm by the L>®-norm, and 2, by a transition from
the L2 to the L®-norm, with the exponent s = s(11/10) introduced above. (Recall that
s > 2.) This gives rise to a constant €(R), which does not matter. Then we evaluate
2 + Ay by inequality (8.2), which yields the upper bound & ||/3 |G|Bgll1, and thus

¢(R) |AY/3 ||G|¥°||+. Concerning s, we refer to (8.3), and we use Lemma 3.4 in order to
estimate ||G]_12 by €||G|Q°||s. In this way, we obtain the upper bound €(R) [R7Y2 +

(—In(1 - 1/R) )1/2] |GIQ¥°|| * . Collecting the preceding estimates from (8.17) onwards,
we arrive at the inequality

W — WO B, (8.18)[T8.10.100]
< [€R,R) N3+ ¢(R)R 2+ &(R) (—In(1 - 1/R))"*] |GIQ°]| *.

With (3.1), we find that

IWOBls < ¢(R) [W|B|ls < &(R) [W OB lls < €(R) [VWO ..

But |[VW© ||y < €||G]|-12 by Theorem 5.3 and because (G) = G, as mentioned above.
Again using Lemma 3.4, we thus get |[W(©)|B|12 < €(R)|[|G|Q°|«. From this estimate,
(8.18) and (8.16), we arrive at (8.5).

Concerning (8.6), we start with an analogue of (8.8), that is,

P4 [ x5, BB, G) = B(0,G)) g
< Py X8 B(BOLFO) =00, FO)) Jlly + Py [ x5 BB, FY = FO)) ]l

As regards the first term on the right-hand side of the preceding inequality, we first apply
(2.1), then use equation (8.9). The second term may be handled by Lemma 8.1, which
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yields the upper bound €(R) ||[FY) — FO)]||,. In this way we get

1Pq [ xB: B(T(X,G) —B(0,G)) ], (8.19)[T8.10.110]
< ¢(q) xBr B[B(0, =AT\, F)) ||y + €(q, R) |[FP — FO|,.

In order to evaluate the first term on the right-hand side of (8.19), we choose r := (1 +
min{q, 6/5})/2, and then consider the parameters v = v(r), s = s(r) associated with this
value of r according to the definitions given above. Proceeding in the same way as in the
transition from (8.10) to (8.11), but with ¢ in the role of p, we get

x5, B(B(0, =B\, FO))|, < &g, R) M B, FO)l,.

Now we use Corollary 7.5 again, with ¢ in the role of p. Due to the preceding choice of
r, this corollary yields |A| [T\, FO)|, < &(q, R) N3 [|F©)||,. The preceding estimates
from (8.19) onwards lead to the inequality

1Po[ xBr B(BON,G) —0(0,G)) ]llq < €q, R) (N3 FO |+ [FX — FO)|,). (8.20)(T8.10.120]

Since supp(FW — F(©) ¢ B C Bgi1, and by (8.15) and (8.17), we get ||[F) — FO, <
C(R)||[FW) — FO)y < €(R) (A1 + Az + Ag), with Ay, Ay, A3 defined as in the passage
following (8.17). In order to evaluate these terms, we again change from the L?- to the L>°-
norm (20 and 23), or to the L*-norm (2(3), but with the value of s = s(r) associated with

the preceding choice of . On using (8.2) as above, we get 1 + 2 < €(q) |N|V/? |G| Bz,

then evaluate ||G|Bg(l1 by ¢(R) |Gllq. As for A3, we apply (8.4), obtaining the upper
bound €(g, R) R~'+%/4"||G||,. In this way we arrive at the inequality

IFX — FOl, < (€(R,R) M2 + €(R) R/ ) || G, (8.21)[18.10.130]

Theorem 3.7, in particular its last statement, and the relation Vi - W(©) ¢ C§e(B),
yield that |9 ||y, < (g, R) Ve - WO ||, < &(q, R) |[W@|B||; 4. With this inequality
available, it is obvious that Hf(O)Hq < &(¢, R) [WO|B|j14 + ||G|l4- Now choose s1 :=
2(1/g—1/2)7Vif ¢ > 3/2, sy := ((1/g—1/2)"  + (1/q—2/3)71) /2 if ¢ < 3/2, 9 :=
((1/¢—1/4)"'+ (1/q—1/3)71)/2. Then Theorem 5.1 implies

IWBll1q < €R) (IWBriills, + VWO [Brialls,) < €(a, B)[|Gllg-

Therefore Hﬁ’(O)Hq < €(q, R) ||G||q, so inequality (8.6) follows from (8.20), (8.21) and the
preceding estimate. O

corollaryC8.10) ~
Corollary 8.1 Let R, R, A and q be given as in Theorem 8.1. Then inequality (8.5) holds

for G € L2(Q°)°n Dam(ﬁc)?’, and (8.6) for G € L1(Q°)3.

Proof: Suppose that G € LQ(ﬁC)3 N Dal’Q(ﬁc):s. By Lemma 8.2, we may choose a se-
quence (G,) in C3°(Q°)? with divG,, = 0 and ||G,|Q |« < 2||G|l« for n € N, as well as
P2 xBr B(B(0,G) — V(o0,Gn) ) ||« = 0 (n = o), for o € {0, A}. Since |G Q)] <
2||G||«, and because Theorem 8.1 implies that inequality (8.5) holds with G replaced by
G, for n € N, we may conclude this latter inequality is even valid for the function G given
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(lemmaL8.70)

(theoremT8.20)

(theoremT8.30)

in Corollary 8.1. The same kind of reasoning based on Lemma 8.2 is valid with respect to
(8.6). O

We recall that the space D(L) was introduced in (1.11), the operator Bg in (2.2), and the
operator K in (2.2).

Lemma 8.4 Let q € [1,6/5]. Then ||Bs(d)|ly < €(q)||¢lla for ¢ € L*(Q°)3. Moreover
Bs(¢) € L2(Q°)3 for ¢ € W2(Q°)3.

Proof: See the proof of [12, Lemma 10]; use (1.5) instead of [12, (2.14)]. O

Theorem 8.2 Let{ € R, and let o € [0,00) be an eigenvalue of the operator K+& PooBg,
and G an associated eigenfunction (in particular G € H), C D(L); see the passage following
Theorem 2.2). Then G € W>9(Q°)3 for g € (1, 6/5], and |[VG|2 < €(&) |Gll2, |Gll2,q <
€&, 0,q) [|Gll2 for q € (1, 6/5].

Proof: Since G € D(L), the estimate of ||VG||2 follows by the same variational argument
as in the whole space case; see [12, proof of Theorem 15|, with Lemma 8.4 in the role of
[12, Lemma 10], inequality (3.1) in that of [12, (2.10)], and Theorem 2.1 and Corollary
3.7 in the one of [12, Theorem 4]. Observing that —AG — £ Bs(G) € L*(Q°)? (Lemma
8.4), we may consider II := Go( —AG — £ Bg(G) ). Then Theorem 2.1 and the equation
(K+EP20Bg)(G) = 0 G yield T € W,22(Q°), VII € L2(Q°)3, ~AG+0 G+VII = ¢ Bs(QG).
The equation div G = 0 follows from Lemma 3.2. Thus Lemma 8.4 and Theorem 4.1 imply
G € W>4(Q%)3 and ||Glla,y < €(€,0,9) |Bs(G)]l4 for ¢ € (1, 6/5]. The estimate of |G|z,
stated in Theorem 8.2 now follows from Lemma 8.4. g

Theorem 8.3 Put § = {G € Dy*(Q)P nWL@Q°)? : &G € D;*(@Q°), DG ¢

— loc
L2(Q9%7, divG =0}, A(G) := Po(=AG + 17 1G) for G € 9.
Then 2 : § — Dy "2(Q°)3 N Ho(Q°) is well defined, linear and bijective, with A~ (¢) =
B(0,¢) for ¢ € Dy 2(Q)% N Hy(Q).

Proof: Obviously —AG + 701G € LQ(QC)3 for G € §. Moreover, since 0,0,,Gj, OnG; €
L2(Q°) for 1 < j,1,m < 3, we have AG € D81’2(ﬁc)3 for G € $, hence —AG +70,G €
DEI’Q(QC)?’. At this point Theorem 3.13 implies that Pa(—AG + 71 G) € 7)0_1’2(56)3 N
Hy(9°) for G € . Thus 2 : $ +— Dy "*(Q°)% N Hy(Q) is well defined.

Let ¢ € DEI’Q(QCPHHQ(QC). By Theorem 7.3 and Corollary 7.6, we have (0, ¢) € $, and
there is a function II(¢) € W1H2(Q°) such that (1.18) holds with V = (0, ¢), II = II(¢)
and A = 0. Since P2(VII(¢)) = 0 (Corollary 3.7), we may conclude from (1.18) that
Pa(—AB(0,¢) + 70:0(0,¢) ) = P2(¢) = ¢, with the last equation being valid because
¢ € Ho(Q°). Hence Ql(SU(O, (b)) = ¢. In particular the operator 2l is onto.

Let G € $ with 2(G) = 0. Then, by the properties of Py (Theorem 2.1, Corollary 3.7), we
get for ¢ € C°(Q°)? with divey = 0 that [5-(VG - V¢ + 701G - ¢p) dz = 0. In view of the
regularity properties of G and the equation divG = 0, we may now apply Theorem 6.2,
to obtain G = 0. Therefore 2 is one-to-one. This completes the proof of Theorem 8.3. [J

From this point onwards, we suppose that problem (2.5) admits only the solution V' =0
in the space of all functions V' € Dé’2(50)3 N V[/licl (Q°)? with D?V € L*(Q°)%". This is the
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condition required in Theorem 2.5.

(theoremT8.40) 19 ,=c —
Theorem 8.4 The relation P2(B(G)) € Dy =()3 N Ha(Q) holds for G € . Define

A(G) == AG) — P2(B(G)) for G € $. Then the operator A §H Do_l’Q(ﬁc)3 N Hy(Q°)
is well defined, linear and bijective.

Proof: Let V € Dé’Q(ﬁc)?’ be a solution to (4.6). We show that V' € VVfocl(ﬁc)?’ and
D?*V € L*(Q°)?. To this end, we observe that Po(B(V)) € D51’2(§c)3 N Hy(Q°) by
Lemma 4.1, a reference which also yields the first claim of Theorem 8.4. We further
observe that by (2.5), the function V satisfies the equation divV = 0 as well as (4.1)
with A = 0 and G = P2(B(V) ). On the other hand, by Theorem 7.3 and Corollary 7.4,
we know that V := (0, P2[B(V)]) € Dé’2(ﬁc)3, div (V) = 0, and V satisfies (4.1) in
the role of V, with A = 0 and G = PQ(B(V) ), Now Theorem 6.2 yields V = V, so we
may conclude with Corollary 7.6 that D2V € L?(Q°)%". Moreover, by (4.6) and because
Ve Dé’Q(ﬁc)?’, P2(B(V)) € Hy(Q°), Corollary 4.1 yields a function II € Wlif (Q°) such
that the pair (V,II) satisfies (4.5) with A = 0 and G = P2(B(V)). Since D?V € L2(Q°)¥"
and P2 (B(V)) € Ha (Q%), the first equation in (4.5) with A = 0 allows to conclude that
VII € L?(Q°)3. Thus, due to Theorem 2.1 and Corollary 3.7, we see that (2.5) follows from
(4.5) with A = 0. At this point the condition introduced in the passage preceding Theorem
8.4 implies V = 0. So the assumptions of Corollary 4.7 are fulfilled, hence we obtain the
existence result constituting its conclusion. Now Theorem 8.4 may be proved in the same
way as [12, Theorem 17|, except that we have to refer to Lemma 4.1, Theorem 8.3 and
6.2 instead of [12, Lemma 8, Theorem 16 and Theorem 7], respectively. The existence
assumption being part of [12, (5.1)] is replaced by the conclusion of Corollary 4.7.

1laryC8.20 = re) 0 QO Q
corertay >Corollary 8.2 The operator Zy : 951’2(96)3 N HQ(QC) = Dal’Q(Qc)g n HQ(QC) with

Zy(G) == G — P> [B(QT(O, G) )] is well defined, linear, bijective and bounded with respect

to the norm || ||«

Proof: The bijectivity of Zo follows from Theorem 8.3 and 8.4, via the abstract — but
obvious — operator theoretical equations in [12, Lemma 11]. The boundedness of Zj is a

consequence of the first inequality in Lemma 8.1. O

(theoremT8.50) e
Theorem 8.5 Let q € (1,2), and put ZSQ)(G) =G —Pq[B(V(0,G)) ] for G e LYN")3.

Then the operator Z(gq) = L9(Q°)% — LYQ)3 is well defined, linear, bounded and bijective.

Proof: By the second inequality in Lemma 8.1, Z(()q) as an operator from the space
Lq(ﬁc)3 into itself is well defined and bounded. In order to prove that Z(© is bijective,
we consider R € (0,00) with  C Bg and write Z(()Q) as a sum & + G, with B(G) =
G — Py xBs, B(B(0,G)) |, &r(G) := Py x5, B(V(0,G)) ] for G € LI(Q°)%. Suppose
we know that & is compact and &g : LI(Q°)3 — L1(Q%)? is bijective for large R. Then

the operator Z(()q) is Fredholm with index zero. The proof of bijectivity of Z(gQ) is thus
reduced to showin that Z(9 is one-to-one. With this in mind, we consider ¢ € LI(Q°)3

with Z(()Q)(qb) = 0. Suppose we can deduce from this equation that

¢ € Dy 2(Q) N Hy(Q%) N L/5(0°)3. (8.22)
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corollaryC8.30)

(theoremT8.60)

In this situation, Corollary 7.4 yields Zéq)(qﬁ) = Zg((ﬁ), with Zy from Corollary 8.2. Thus
Zo(gb) = 0, so Corollary 8.2 yields ¢ = 0, a conclusion which completes the proof once
we have explained why Sp is compact, & is bijective for large R, and (8.22) holds for
¢ € LI(Q°)? with Z(()q)(qb) = 0. But for all this we refer to [12, proof of Theorem 18], with
the results from [12] used in that proof replaced by corresponding results from the work
at hand. More precisely, the first two estimates in Theorem 7.1 are substituted for [12,
(3.16) — (3.18)], whereas assumptions [12, (2.14) — (2.16)] are replaced by (1.5). Moreover
the estimate of the term ||D?*U(\, G)|Qg||, in Theorem 7.1 takes the role of [12, Corollary
1], the last inequality in Lemma 8.1 is used instead of [12, (4.4)], Lemma 4.1 fills in for
[12, Lemma 8], and Theorem 2.1 and Corollary 3.7 replace [12, Theorem 4]. The function
2(0, ¢) is used instead of E© « ¢, for ¢ € LI(Q°)3. Note that on [12, page 228], it should
read (3.16), (3.17) instead of (3.15), (3.16), and the factor (27)~! in [12, (5.6)] should be
replaced by 1/2. O

Corollary 8.3 Let ¢ € (1,2), A € K,\{0}. Then the operators Z : Do_l’2(§c)3 N
Hy(QF) = Dy 2093 N Hao(QF), Z(6) := & — Pa[B(V(N, ¢)) ], and 27 = LI(Q°)3 —
LI(Q°)3, Z/(\q)((;b) = ¢ — Pg[B(T(X, ¢)) |, are well defined, linear and bounded with re-
spect to the norm || ||« in the case of Zy, and and with respect to | llq as concerns Z/(\Q).
If ¢, G € Dy "2(Q)3 N Ho(°) with Zx(v) = G, then V(A ¢) € W22(Q)3, and there is
I'e W;g(ﬁc) with VT € L*(Q°)? such that (1.19) is satisfied with V, 11 replaced by B(\, 1)

and T, respectively. If in addition G € L1(Q°)3, then ¢ € L1(Q°)?, hence Zg\Q) (v)=G.

Proof: It is an immediate consequence of Lemma 8.1 that Z, and Zg\Q) are well defined
and bounded. Let S € (0,00) with @ € Bs, G € Dy "*(Q°)? N Hy(2°). Then, for ¢ €
Dam(ﬁc)?’, we have B(U(X, ¢) ), P2[B(TV(\,¢))] € LP(Q%)3 for p € (1,2] according to
Lemma 8.1, so Corollary 7.1 allows us to consider

Vyi=B(X P2[B(B( )] +G), Ty i=TI(A Po[B(B(A6))] +G).

This corollary implies that V € W22(Q%)3, Tl € W’ij(ﬁc), VI, € L*(Q%)3, and that the
pair (Vy,I1y) solves (1.18) with G replaced by P2 [B(‘ZT()\, ®) ) ] + G, where ¢ may be any
function from Dy *(Q%)3. Now suppose there is 1 € Dy "*(Q°)3N Ha(Q°) with Z(v) = G.
Then we get (A, 1) = V. Putting T' := Iy, 4+ G2 [ B(D(A,¢) ) |, with G5 from Theorem
2.1, we may conclude that T' € W*(Q°), VI € L2(Q°)?, and that the pair (B(), ), T')
solves (1.19). Suppose in addition that G' € L(Q%)3. Since Pa[B(UV(\¥))] € LP(Q°)3
for any p € (1,2], as mentioned above, we then obtain ¢ € L(Q°)3.

O

Theorem 8.6 There is ¢; € (0, (1/2)?] such that for any X\ € C\{0} with RA > 0, |A|
€1, the operator Zy : D61’2(§C)3OH2(§C) — D51’2(§C)3 N Hy(Q°) is bijective, with, ||@|
C||Z(9) for ¢ € Dy (@) 1 Ha().

Let g € (1,2). Then there is €2(q) € (0, (7/2)*] such that for X € C\{0} with R\ >
0, |A] < ea(q), the operator Z/(\q) = L9(Q) — LI(Q°)3 is bijective, and such that the
estimate |G|, < €(q) | Z\P(G)|4 holds for G € LI(Q)3,

<
<

Proof: This theorem follows from Theorem 8.1 — via Corollary 8.1 — and Lemma 8.1. The
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reasoning starts with Corollary 8.2 and Theorem 8.5, which provide constants 5’0, Co(q) >

0 such that
o1l < CollZx(@)lle,  IG]lq < Cola) [Z57(G)lq (8.23)[r8.60.10]
for ¢, G as in the theorem. Take such a function ¢. By Lemma 8.1 and Corollary 8.1, we
find that
120(6) = Zo(@)l = [P2[ B(B(, @) = B(0,6)) ]I (8.24) 18.60.20]

< |IPa[xBs, BB, 0)) |ll« + IP2[ x5, B(B(0,9)) ]|«
+||P2[XBR B(Q]()\,qb) — (0, ¢) ) ] [+
< (2D1(R) + C1(R) [R72 4 (—n(1 = 1/R))"* ] + Co(R, R) A 6]

for R € (0,00) with Q@ C Bg, R € [2R+3, 00), A € K,\{0}, where D;(R) was introduced
in Lemma 8.1. The specific (not generic) constants C1(R) and Cs(R, R) introduced here
do not depend on either A\ or ¢. Since D;(R) — 0 for R — oo, we may choose R > 0
with Q C Bg and 2 D(R) < (12Cy) ™!, with Cy from (8.23). Next we fix R € 2R+ 3, oc)
such that C1(R) [ﬁ_l/Q + (—In(1 - 1/R) )1/2] < (12Cp)~!, and finally we choose €] €
(0, (7/2)?] so small that Co(R, R)ei/® < (12Cp)~L. Then, if A € K,\{0} with |\ < e,
we may deduce from (8.23) and (8.24) that || Zx(¢)|l« > 1Z0(d)|lx — |1Zx(¢) — Zo(®)]|s >
CN'(;l lélls — (2Co) "L |o]l« = (2Co) " |||+ Applying Lemma 8.1 and Corollary 8.1 in an
analogous way, we may find €z(¢) € (0, (7/2)?] with \|Z§\q)(G)||q > (2Co(q)) LGl for G
as in the theorem and for A € C\{0} with ®A > 0, |A| < e2(q), where Cy(q) was introduced
in (8.23). As for the bijectivity of Z\ and Z (q), we refer to the last part of the proof of
[12, Theorem 19]. O

Now we consider the operator £ defined in (1.14), with a domain D(L) as chosen in (1.11).
Recall that the identical mapping of Ho(€2°) onto itself is denoted by J.

(lemmal.8.80) . —c
Lemma 8.5 The relation —AV +70,V — B(V) € L2(Q")? holds for V € D(L), hence L

is well defined. The set D(L) is dense in Ha(Q), and L : D(L) — Ho(Q°) is linear and
closed as an operator from a subspace of Ha(Q°) into Hy(Q°).

Proof: Since D(L) C D[1)72(§C)3, Lemma 4.1 yields the first statement of Lemma 8.5.
Let V € D(L), and put II := Go( AV — 70,V + B(V) ). Theorem 2.1 implies that II €
W,o2(QF), VII € L*(Q)?3, and the pair (V;1I) solves (1.19) with G = —£(V) + V and
A = 1. Therefore |V||22 < || = £L(V) + V|2 by Theorem 4.9. From this it may be deduced
that £ is closed. 4

We will make use of the following result about eigenvalues of £. Recall that o(£) denotes

the resolvent set of L.
(theoremT8.70)

Theorem 8.7 ([2], [17]) The set & := o(L)\{\ € C : 2R\ < —(SN\)?} is at most
countable and consists of eigenvalues of L.

From now on we require that A < 0 for any A € &. In view of the assumptions on the
unicity of solutions to problem (2.5), imposed in the passage preceding Theorem 8.4, we
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have thus introduced all the assumptions required in Theorem 2.5. In particular we have

{AeC:RAX>0, A#0} C o(L). (8.25)[6.2]
Corollary 8.4 Let A € C\{0} with R\ > 0, |\| < €1, where €1 was introduced in Theorem
8.6. Let G € Dy *(Q°)? N Hao(Q°). Then (AT — L£)"1(G) = B(A, (Z2)"(G)). There
isT € Wlif(ﬁc) such that VII € L*>(Q°)3 and (1.19) is satisfied with V, I1 replaced by
(AT — L) YG) and T, respectively. Moreover (AT — L)~HG) € Dal’Q(ﬁc)?’.

corollaryC8.40)

Proof: Abbreviate W := U( A, (Z))"HG) ). We have (Zy)"1@) e Dgl’z(ﬁc)?) (Theorem
8.6), so W € D(l)’2 (Q°)3 (Theorem 7.3, Corollary 7.4). Moreover Corollary 8.3 yields W e
W22(Q%)? and existence of a function T' € V[/llocz(ﬁc) with VI € L?(Q°)? and satisfying
(1.19) with V, II replaced by W, I, respectively. On the other hand, A € o(L) by (8.25),
so there is W € D(L) with (A3 — £)(W) = G. Putting I := Go( —AW +T7HW — B(W))
(see the first statement in Lemma 8.1), we get with Theorem 2.1 that (1.19) holds with
/VI7, T in the role of V and II, respectively. Now Theorem 6.2 yields W = /V[7, that is,
W = (AT — £)"1(G). We have W € D(L) C Dy>(Q°)?, so Po(B(W)) < D, *(Q)3
by Lemma 4.1. Moreover, since W € D(L) ¢ W22(Q°)? N Hy(Q), we further have
HW € Dam(ﬁc)‘g, D2*W € L2(9)?7 and divIV = 0 (Lemma 3.2). Thus, referring to
Theorem 8.3, we get W € $ and A(W) € Dal’Q(ﬁc)?’. But (AJ—£)(W) = G by the choice
of W, s0o W = A"t (E(W) +G) =71 [—Q[(W) + PQ(B(W) + G]. Thus we have found
that W € Dy 1’2(50)3. This proves the last claim of Corollary 8.4. O

The ensuing theorem states our resolvent estimates for solutions to the perturbed Oseen
system in (1.19), under the assumption that the resolvent parameter is small.

(theoremT8.80) ] ] 19, =c
Theorem 8.8 The inequality |[V(AT — £)71(G)|2 < €||G||« holds for G € Dy ()3 N

Hy(Q%), A € C\{0} with R\ >0, |\| < €1, where e; was introduced in Theorem 8.6.

Let s € (1,6/5], 6 € (0,1]. Then there is e3(s,0) € (0,€1] such that for G € L*(Q°)3 N
H(Q%), R € (0,00) with Q@ C Br, A € C\{0} with RA > 0, |\ < e3(s,d), the ensuing
estimates hold:

IVAT = L) 2@ Qr)2+ V(AT = L) o (AT = £)"HG) ) Q]2
< €(s,4,R) [A|7HA-Y9)=0 g,
VAT = £)73(G)|Qrll2 < €(s,8, R) [N/ ||G,.

Proof: The first part of this theorem is an immediate consequence of the equation (AJ —
L£)HG) = (A, (ZA)*I(G)) (Corollary 8.4), Theorem 7.3 and Theorem 8.6; see the
beginning of the proof of [12, Theorem 21]. As concerns the other inequalities stated in
the theorem, they are proved in exactly the same way as the corresponding estimates in
[12, Theorem 21], except that the references to [12, Lemma 12, Theorem 19, Corollary 4,
(3.15), (3.17)] are to be replaced by Corollary 8.4, Theorem 8.6, Corollary 8.3, and the
third and second inequality in Theorem 7.1, respectively. The function U(A, ¢) has to be
substituted for EM x ¢ (¢ € Do_l’z(ﬁc)?’ N Hy(Q°) ). Note that a factor 1/2 is lacking
in the definition of p on [12, page 231], and the symbol V and the restriction to By are
missing on the left-hand side of the last estimate on [12, page 231], O
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corollaryC8.50)
Corollary 8.5 The inequality |[V(A\T — £)71(G)||2 < €(&,0) ||G||« holds for &, o, G as in

Theorem 8.2 and for A € C\{0} with R\ > 0 and |\ < ;.
Let § € (0,1]. Then there is e4(0) € (0,€1] such that

VAT = L)@ Q]2 + V(AT = £)7 o (AT = £)7H(G) ) [2x]2
< Q:(é-v g, 6’ R) |)‘|_5 HGHQ,

IVOAT = £)7*(G)R]2 < €€, 0,6, R) A2 |Gl

for R € (0,00) with Q C Bg, A € C\{0} with R\ > 0, |\ < e4(d), and for &, o, G as in
Theorem 8.2.

Proof: See the proof of [12, Corollary 5]. Use Theorem 8.2 instead of [12, (4.26)], and
Theorem 8.8 in the place of [12, Theorem 21, (6.3), (6.4)]. O

(lemmal.8.90) —c
Lemma 8.6 Let A € C\{0} with R\ >0 and G € Hy(Y"). Then

VAT = L£)7HG) 2 < €(IGll2 + (AT = £)7H(G)l2).

Proof: Put V := (A\J — £)"}(G). Then, by the definition of £, we have V € D(L). By
Corollary 8.4, there is II € W,o*(Q°) with VIT € L*(Q°)? such that (1.19) holds. Lemma
8.6 follows from this latter equation and from Lemma 4.1, via a variational argument as
in the proof of [12, Lemma 13], similar to the end of the proof of Theorem 6.2. The
argument in question involves an integration by parts in the integrals fﬁc —Au - udx and
fﬁc O1u-udx, with u € D(L). These integrations do not generate boundary terms because

D(L) C Wol’z(ﬁc)?’. Note that the condition A # 0 was forgotten in [12, Lemma 13]. O

(lemmal.8.100) .
Lemma 8.7 Let vi, 72 € (0,00) with 1 < y2. Put My, 1, :={A € C : RA >0, 11 <

Al < 72}, Then My, 5, € (L) and (AT = L£)7HG)l2 < €(31,72) [|Gllz for G € Ha(€).

Proof: The lemma follows from (8.25); see the proof of [12, Lemma 14]. Use Lemma 8.6
instead of [12, Lemma 13]. O

We recall that Sy, stands for the sector {\ € C : |arg(A —a)| < 9} of the complex plane.

(theoremT8.100) . .
Theorem 8.9 Fiz some ¥ € (n/2, w) and some ag € (0,00). Then there is a constant

Cy > 0 such that the following two estimates hold: Firstly, |\ ||V |2 < €||G||2 for A € C
with |A| > C1 and which additionally satisfies at least one of the relations RA > 0 and
A€ Sya, G € Hy(Q), VeDL) with(A\V—L)(V) =G. Secondly, |\ ||VV |2 < C|[VG|2

for X as above, G € Hy(Q2°) N W01’2(§2)3 and V as above.

Proof: A proof of the second estimate in Theorem 8.9 is elaborated in [12, page 233 — 224]
for the whole space case. This proof carries over to the exterior domain case with some
minor adaptions. In fact, the equation AV — £(V) = G has to be multiplied by Pa(—AV)
instead of —AV. Theorem 2.1 may be used to handle the operator P5. The reference
to [12, Lemma 8] may be replaced by one to Lemma 4.1. Note that the integration by
parts in the integral [qe G- Po(AV)dx = [5c G- AV dz arising in the proof of [12, (6.15)]
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does not generate any boundary terms because we supposed G € WO1 ’2(56)3. The first
inequality in Theorem 8.9 follows by a variational argument similar to but simpler than
the one leading to the second estimate; compare the end of the proof of Theorem 6.2 and
[12, proof of Lemma 13] (which corresponds to Lemma 8.6 here) for the case RA > 0. O

corollaryC8.60) ]
Corollary 8.6 Fir some a € [ag,0) so large that {o € C : |o| < C1}U{oc € C : 7?Ro <

(S0)?} € C\Sy.a, with ¥ and ag from Theorem 8.9. Then

{AeSya : RA<O0}U{A € C\{0} : RA >0} C o(L). (8.26)[18.100.30]
Moreover
MV = £)7HG) ]2 < €[|Gl2, (8.27)[8.100.40]
for G € Hg(ﬁc), for A € C with |\| > Cy and R > 0, and for any XA € Sy q;
AIVAV = £)"HG)]l2 < €[ VG2 (8.28)[T8.100.50)

for G € Hy(Q) N WOI’2(§2)3 and for \ as in (8.27).

Proof: Let A € C\{0} with ®X > 0 or with A € Sy, and RA < 0. If R\ > 0, we have
A € o(£) by (8.25). Otherwise, if A € Sy, and RA < 0, we have 72 Ro > (So)? by the
choice of a, so either A € o(L) or A is an eigenvalue of £; see Theorem 8.7. But we have
Syq C{o€C : |o| > C1} again by the choice of a. Moreover Sy, C Sy 4, because a > ag
and ¥ > /2. Therefore |A| > C; and X € Sy 4,, so the eigenvalue case is excluded by the
first estimate in Theorem 8.9. As a consequence A € o(£), and (8.26) is proved. Since
S9.a C S9a, N{o €C : |o| > Ci}, inequalities (8.27) and (8.28) follow from Theorem 8.9
and from (8.26). O

As mentioned in [12, page 234] in a similar situation, Theorem 8.8 presents resolvent
estimates for the operator £ in the case that |A| is small, Lemma 8.7 may be interpreted
as dealing with intermediate values of |\|, and Corollary 8.6 deals with large values.

9. Proof of Theorem 2.5.

Theorem 2.5 may be proved in almost exactly the same way as [12, Theorem 25] is shown in
[12, section 7]. The reasoning in [12, section 7] is completely functional analytic, building
on the preceding results in [12]. So we just have to modifiy the references given in [12] for
those preceding results. In this respect we mention that [12, (6.2)] is replaced by (8.26).
As concerns [12, Corollary 5], in particular [12, (6.10) — (6.12)], we now make use of
Corollary 8.5. We substitute (8.28) for [12, (6.15)], and Theorem 8.2 for [12, Theorem 15],
in particular for [12, (4.26)]. Instead of [12, Lemma 14], we apply Lemma 8.7. Concerning
[12, Theorem 20], it is referred to on [12, page 235] because of the relation Sy, C o(L),
for which our reference here is (8.26). As for the parameters C1, 9, a and €4(9) appearing
in [12, section 7], we indicate that Cy and 9 are introduced in Theorem 8.9, whereas we
refer to Corollary 8.6 for a and to Corollary 8.5 for €1(d). We recall that by the choice of
a, we have |A\| > Cy for any A € Sy, (Corollary 8.6), a relation that need not be valid in
the setup in [12]. But this additional feature of the choice of a here enables us to obtain
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inequality (8.27) for any A € Sy ,. Therefore, according to [26], this inequality implies
directly that £ generates an analytical semigroup; see Theorem 2.2 and its proof. In [12],
it was implicitly assumed that the constraint |A\| > C; first has to be removed by shifting
the sector Sy, in the direction of the positive real axis in order to be in accordance with
the framework in [26]; see [12, page 235 at the top]. We finally remark that the condition
G e Wol’z(ﬁc)?’ in (8.28), instead of G € WH2(Q°)3, does not cause any trouble because
this inequality is needed only for the case that G is given as in Theorem 8.2, that is,
satisfying the relation D(L). In particular, in a version of [12, Theorem 24] adapted to
our situation, we may require that ¢ € Hy(Q°) N VVO1 2(€2°)3; see the proof of [12, Theorem
25] on [12, page 240 below], where [12, Theorem 24] is applied. The “differential equation
stated at the end of Theorem 25” mentioned on [12, page 240 below| means the equation
Af +EPByymf = o f, which is only alluded to, but not actually stated, at the end of
[12, Theorem 25].
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