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Oseen resolvent estimates with small resolvent parameter.

Paul Deuring

Université du Littoral Cote d’Opale, Laboratoire de Mathématiques Pures et Appliquées
Joseph Liouville, F-62228 Calais, France.

Abstract

We consider the Oseen system with resolvent term in an exterior domain in R3,
supplemented by homogeneous Dirichlet boundary conditions. Under the assumption
that the resolvent parameter A is close to zero and RA > 0, A # 0, we estimate the LP-
norm of the velocity against the LP-norm of the right-hand side, times a factor C'|\| 72,
with C' > 0 independent of A\. Such an estimate cannot hold for this range of X if |A| 72
is replaced by |A|7" with k < 3/2, and there are indications that x € [3/2, 2) cannot
be admitted either. We present various other LP-estimates of Oseen resolvent flows
for the same range of A. Our article is complementary to the work by T. Kobayashi
and Y. Shibata, On the Oseen equation in the three dimensional exterior domains,
Math. Ann. 310 (1998), 1-45, where Oseen resolvent estimates are derived under the
assumption that |A| > ¢g, for some arbitrary but fixed ¢y > 0, with the constant in
the resolvent estimate depending on cg.

AMS subject classifications. 35Q30, 65N30, 76D05.
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1. Introduction

An incompressible viscous flow around a rigid body moving steadily and without rotation
is usually described by the Navier-Stokes system with an Oseen term,

u(z,t) — Agu(w,t) + 70y u(z, t) + 7 (u(x, t) - Vo Ju(z, t) + Ve (z,t) = f(z,t), (1.1)[1]
divyu(z,t) =0 fort e (0,00), z € Q" := R3\Q,

where the open, bounded set  C R3 represents the rigid body, and 7 € (0,00) is the
Reynolds number. The unknowns of this system are the velocity field u and the pressure
field 7 of the fluid. The velocity in question is the “velocity above ground”. This means
that the fluid particle located at point x at time ¢ moves with velocity u(x,t) with respect
to a fixed point in space, where x1, x2, x3 are the coordinates of the particle with respect
to a reference system which adheres to the rigid body, and so is not attached to the fixed
point in space. This type of velocity has two advantages from a mathematical point of view.
Firstly, the rigid body is represented by a set that does not depend on time, and secondly,
the velocity of the fluid vanishes at infinity in the sense that u(x,t) — 0 for |z| — oo,
a condition that may be expressed in weak form by the relation u(-,t) € L"(Q°)3 for
t € (0,00), where r is some number in [1,00). But on the other hand, an additional term,
that is, the Oseen term 7 0, u(x,t), arises in system (1.1), complicating some aspects of
the mathematical theory related to (1.1). In the work at hand, we will deal with such an
aspect. In fact, we consider the Oseen resolvent system

AU+ 71U +NU+VII=G, divU=0 inQ", (1.2)[3]



as well as the stationary Oseen system
AU +70U+VII=G, divU =0 inQ", (1.3)[2]

which may be considered as a special case of (1.2) (A = 0). In order to explain what we
want to show with respect to (1.2) and (1.3), let us first recall some facts about the Stokes
resolvent system

~AU+ AU+ VI =G, divU=0 inQ, (1.4)[4]
under Dirichlet boundary conditions
u|02 = 0. (1.5)[s]

If S € (0,00) with Q € Bg, p € (1,00) and 9 € (7/2, 7), then for any A € C\{0}
with |arg A\| < 0, there is a unique pair of functions (U,II) such that U € W2*P(Q°)3 N
Wy P(Q9)3, T € WLP@QF), VII € LP(Q°)® and st\ﬁde = 0, and such that (1.4) is

satisfied. In addition, there is a constant C' > 0, only depending on €2, p and ¢, such that
1U|l, < CINH|Gl, for A, G and U as above; (1.6)[s]

see [18], [3] or [5], [6], [7] or [25]. Inequality (1.6) is a basic tool in the mathematical study
of the Navier-Stokes system

du(z,t) — Agu(z, t) + 7 (u(z,t) - Vi )u(z, t) + Vor(z,t) = f(,t),
divyu(z,t) =0 (t€ (0,00), € Q°),

and is applied directly or indirectly in a very large number of papers dealing with this
system, usually in the context of the theory of analytic semigroups.

It is well known that the existence result stated above for solutions to (1.4), (1.5) does
not remain valid in the Oseen case, nor does inequality (1.6) for the same range of .
In fact, it was shown in [2] and [14, Theorem 3.1] that if 72R\ < —(S\)?2, then there
are some functions G € LP(Q°)? such that a solution to (1.2), (1.5) need not exist or
be unique, no matter what is the choice of p € (1,00). As a consequence, since the set
{A € C\{0} : 2R\ < —(3N)?} intersects the sector {\ € C\{0} : |arg)\| < ¥} for
any ¢ € (m/2, 7), inequality (1.6) indeed cannot be valid for the same range of A as in
the Stokes case. Therefore it may be asked to which extent estimate (1.6) carries over to
solutions of the Oseen resolvent system (1.2) under Dirichlet boundary conditions (1.5).
Answers to this question determine how semigroup theory may be used in order to study
solutions to (1.1).

As far as we know, the most detailed results up to now about existence of solutions to (1.2),
(1.5) and about estimates of these solutions are due to Kobayashi, Shibata [19]. According
to [19, Theorem 4.4], for any A € C\{0} with R\ >0, p € (1,00) and G € LP(Q°)3, there
is a unique solution (U,II) to boundary value problem (1.2), (1.5), where the notion of
“solution” is to be understood in the same sense as described above in the context of (1.4),
(1.5). Let us denote the velocity part U of this solution by U(A, G). Then, again by [19,
Theorem 4.4], for any p € (1,00) and Cp € (0,00), there is a constant C' > 0 depending



on Q, p and Cp, such that inequality (1.6) is valid for G € LP(Q°)%, X € C with R\ > 0
and || > Cp, and for U(A, G) in the place of U.

This raises the question as to whether estimate (1.6) remains valid when || tends to 0 in
the right half of the complex plane. A negative result in this respect was derived in [12].
It states that even if p = 2 and Q = () (hence Q° = R?), there cannot be a constant C' > 0
and an exponent k € [0, 3/2) such that

1B Gl < CAT G, (1.7)[7]

for any G € LP(Q°)3, X € C\{0} with R\ > 0 and |A| < 1. The condition [A| < 1 may be
replaced by |A| < M for any M > 0, as follows from [19, Theorem 4.4].

It is the aim of the present article to prove a positive result in this respect, that is, estimates
of solutions to (1.2), (1.5) remaining valid when || tends to zero, provided that A > 0. In
particular we will show that inequality (1.7) holds with x = 2 for any p € (1,00) and any
A € C\{0} with R\ > 0 and |\| < (7/2)?; see Theorem 6.4. In view of [19, Theorem 4.4],
the quantity (7/2)? can be replaced by any constant M > 0. Of course, the negative result
in [12] does not exclude that inequality (1.7) holds even for some x € [3/2, 2). However,
we will derive our estimate by reducing it to an analogous inequality in the whole space R3
under the assumption p < 2; see the proof of Theorem 6.1. This latter inequality seems to
be sharp as concerns the exponent x = 2, so we would conjecture that the same is true for
(1.7). In addition to (1.7), we will show various other estimates of solutions to (1.2), (1.5),
some of them involving upper bounds independent of A, and then being valid for solutions
to the Oseen system (1.3) as well. We refer to Theorem 6.1, 6.3 and 6.4 for details.

As concerns interesting applications of our results, we mention a companion paper [9],
which actually motivated the work at hand, and which deals with stability of solutions to
the stationary Navier-Stokes system with Oseen term,

~AU+70U+7(U-VU+VII=@G, divU=0 inQ

under the assumptions that all eigenvalues of a certain linear operator have negative real
part. Some of our estimates from Theorem 6.1 and 6.3 constitute key elememts of the
theory developed in that reference.

Let us indicate how we proceed in order to prove our results. In section 2, we collect various
auxiliary results related to subjects like, for example, the Helmholtz decomposition, the
divergence equation divV = F, and the decay behaviour of functions V € VVllocl (ﬁc) with
VV e LP(Q°)3 for some p € (1,3). These results are essentially well known, so in order to
prove them, we limit ourselves to giving references, except for some details which we think
are not so well documented in literature. Section 3 recalls known results about differential
equation (1.2), (1.3) or (1.4). Concerning proofs, we are guided by the same principle as in
section 2: we cite references, additionally elaborating some details if this seems helpful for
the reader. The subject of Section 4 are LP-estimates of solutions to the Oseen resolvent
system or to the Oseen system in the whole space R3. As our main tool in this context,
we represent these solutions by a convolution integral involving a fundamental solution of
the scalar Oseen resolvent equation —Av + 7 91v + Av = h or the scalar Oseen equation
—Av+7 01v = h. Section 5 provides uniqueness results for solutions of the Oseen resolvent
system and the Oseen system, respectively, first in the whole space case (Theorem 5.1),



and then in the exterior domain case under Dirichlet boundary conditions (1.5) (Theorem
5.2). Although we only slightly generalize existing uniqueness results, a considerable effort
is necessary to achieve this generalization. Finally, in section 6, we turn to LP-estimates
of solutions to boundary value problem (1.2), (1.5) (Oseen resolvent system) and (1.3),
(1.5) (Oseen system). Our general approach consists in reducing the estimates in question
to the whole space case and the bounded domain case. This approach was applied in [20]
to the Stokes system, in [3] to the Stokes resolvent problem (1.4), (1.5), and in [19] to
problem (1.2), (1.5). The reasoning we use in order to make this method work in our
context is rather technical. This should be expected, however, because LP-estimates of
solutions to the Oseen resolvent system, with upper bounds depending on A in an explicit
way or being independent of A, are difficult to come by. We recall in this context that
estimate (1.6) of the Stokes resolvent is not easily accessible either.

In Theorem 6.1 and 6.4, solutions to problem (1.2) are estimated in the form ||U||,, <
CGllg, IVUp, < €||Glq and [[Ul]p, < €A% ||G]lq, with constants € independent of A
and certain exponents k, for a certain range of ¢, p1, p2 and p3. Actually a larger range
of values for pi, po and p3 may be admitted. This is because, firstly, the approach by
duality and interpolation in the proof of Theorem 6.4 may be applied in the case p3 # ¢
as well, and secondly, because [11, Theorem 10], dealing with the whole space case and
reproduced as Theorem 4.1 below, can be extended to certain limit values of p; and
p2 by applying the Hardy-Littlewood-Sobolev inequality instead of Young’s inequality in
the reasoning presented in [11]. That latter substitution was already used in the case
p1 = 6, po = 2, ¢ = 6/5, which is addressed in [11, Theorem 10] and Theorem 6.1.
However, as concerns the inequality ||D*U]|, < €||G||4, which we only proved for ¢ = 2
in the case A # 0 (see Theorem 6.1), we have doubts that it may be extended to a larger
range of ¢, in spite of a remark to the contrary in [19, beginning of the proof of Lemma
3.4]. In fact, it is not clear how to come by such an estimate in the whole space case (proof
of Theorem 4.2). As a consequence of this situation, we could not extend Theorem 6.3 to
cover an inequality of the form |VU||, < €||G||-1,4 for some g # 2 if X\ # 0 because such
an estimate reduces to an inequality of the form ||D*U||, < €||G||, (proof of Theorem
4.3).

Let us introduce some notation. The set  and the parameter 7 € (0,00) introduced
in Section 1 will be kept fixed throughout. Recall that ) is supposed to be open and
bounded, with C%-boundary and with Q° connected. Put K, := {AeC :RA>0, [N <
(7/2)%}. For R € (0,00) with Q C Bg, we set Qp := Bg\Q. It will be convenient to fix
a real number S € (0, 00) with Q C Bg. For technical reasons, we will not only consider
differential equation (1.2), but also its adjoint equation. In order to work on both problems
simultaneously, we take p € {0, 1} and introduce the following boundary value problem:

AU+ p1lU+ANU+VII =G, divU=0 inQ°, U0 =0. (1.8)[10]

In the proof of Theorem 5.1 and 6.4 below, some results preceding these theorems and
involving the quantity u are exploited both in the case 4 = 1 and u = —1. Therefore the
parameter p is not fixed. Instead, wherever it is involved, it should be considered as a
variable with range {—1, 1}. But this will not be stated explicitly in what follows.

We write Rz for the real part, Sz for the imaginary part and Z for the complex conjugate
of a number z € C. If A C R?, let A° denote the complement R?*\ A of A in R3. The



symbol | | designates the Euclidean norm in R", for any n € N, the modulus of a complex
number, the length a; 4+ as + a3 of a multiindex o € N3, as well as the Lebesgue measure
of measurable subsets of R3. For R > 0, z € R3, put Br(z) := {y € R? : |z —y| < R}.
If x = 0, we write Bpr instead of Br(0). If A is some nonempty set and v: A — C a
function, we abbreviate |y|o := sup{|y(z)| : 2 € A}. Let V : R* = C and W : R3 — C
be measurable functions with [ps |[V(z — y)| W (y)|dy < oo for a. e. x € R®. Then we
define (V « W)(z) := [ps V(z —y) W(y) dy for a. e. z € R3.

For p € [1,00], A C R? measurable, we write LP(A) for the usual Lebesgue space on
A associated with p, and || ||, for the usual norm of this space. Let A C R3 be open,
p € [1,00) and m € N. Then the symbol W"P(A) stands for the usual Sobolev of order
m and exponent p. The standard norm of this space is designated by || ||m . The space
Wy""(A) is defined as the closure of C§°(A) with respect to the norm of WP(A), and is
equipped with this norm. For any open set B C R3, and for p and m as before, the spaces
Ly (B), W,"P(B) are to contain those functions v from B into C that satisfy the relations
v|A € LP(A) and v|A € W™P(A), respectively, for any open and bounded set A C R?
with A C B. If A C R? is an open set with bounded C?-boundary dA, then the Sobolev
space WP(0A) with p € (1,00), r € (1,2) is to be defined as in [16, section 6.8.6].

Let n € N, A a non-empty set and V a vector space consisting of functions from A into

C. Suppose a norm denoted by || || has been introduced on this space. Then we set
1/2 . .

I(f1s oy f)||(W = (Z;”:l ||fJH2> for (fi, ..., fn) € V™. The mapping || || is a norm

on V", and we equip V" with this norm. However, we will write || || for this norm too,

instead of || [|(".

If AC R?isopen and p € (1,00), define H,(A) as the closure of the set {¢p € C§°(A)3 :
divg = 0} with respect to the norm || ||, of LP(A)3. If in addition n € N, we write
W(Tl’p(A)” for the space dual to Wol’p/(A)”. The norm || |-, of W(;l’p(A)" is to be
understood as the operator norm of this space, that is, ||§||-1, := sup{|F(V)|/||V |1y :
Ve Wol’p,(A)”, V' # 0} for any linear bounded functional § on Wol’p,(A)”. We define

DY QY) = {V e WL 2(Q") : VV e L2(Q9)°, V € L%(V) and V[9Q = 0}.

The mapping V — |[|[VV]2, V € Dé’2(ﬁc), is a norm (Theorem 2.5); we equip the space
Dé’Q(ﬁC) with this norm. The Cantor completion of C$°(Q°) with respect to the norm
V = [[VV]|2 on C§°(Q°) is isomorphic to Dé’g(ﬁc) ([17, p. 83-84, 105-106]). However, in
our context it is not practical to work with this completion. The space dual to Dé’Q(ﬁc)g

is denoted by D, L2(Q%)3. Tt is equipped with its natural norm denoted by || |12 and
defined by

I311-1,2 == sup{|[F()I/IVA]l2 : v € Dy*(Q°)?, 7 # 0},

for any linear and bounded functional § from Dé’2(§c)3 into C. We refer to Theorem 2.6
for more properties of this space. In this theorem, it is explained in which sense functions
with domain Q° may belong to Dal’Q(ﬁc)?’. For functions V' € Dal’Q(ﬁc)?’ N L2(Q°)3, we
use the notation ||V||s := |[V]—12 + |[V]2- If p € (1,00), n € {1, 3} and G € L, (R3)",
we define

IGll-1ps = sup{ [ G-/ IValy s v € CFRY" 5 £ 0},



(theoremT3.10)

(lemmaL3.10)

(theoremT3.20)

We further put 551’17(}1%3)" = {G € L, (R*)" : ||G|_; g < oo}. The preceding two

loc
notation should be considered as abbreviations. We will not use any functional analytic

properties of either the mapping || [|_; ,rs or the space D, 1’p(R?’)". For convenience, we
will write || ||-1, instead of || ||_;,rs. Care has to be taken as concerns the quantity
[¢ll-12 if ¢ € C(Q%)3. In fact, for any open set A C R3, we consider functions from
C§°(A) as functions with domain R? (but, of course, with compact support in A). So,
if ¢ € C°(Q°)?, we have to distinguish between ||¢||_19 and ||¢[Q°||_12, with the first
expression denoting ||¢[|_; o g3, and the second involving the norm || || 1,2 of Dal’Q(ﬁc)S;
see Theorem 2.6 in this respect.

The symbol C' is to denote numerical constants, and C(~, ..., 7,) constants depending
exclusively on 71, ..., 7, € (0,00), for some n € N. However, such precise indications on
how a constant depends on parameters will be given only at some places. In order to avoid
that our presentation becomes too unwieldy, most of the time we take the point of view
that the dependence of our constants on parameters should be clear from context. In that
situation the symbol € is used to denote generic constants. Often they depend on 7 and on
2, in particular on the parameter S introduced above. The notation €(vy1, ..., ;) means
that we want to stress the dependence of the constant in question on 7y, ..., 7, € (0, 00),
for some n € N. But a constant denoted in this way may depend on other quantities as
well.

We define N(x) := —(47|z|)~! for z € R3\{0} (fundamental solution of the Poisson
equation), and EM(z) := (47 |z|)~t e A/ 2 eltre1/2 for 5 ¢ R3\{0}, A € C with
R > 0 (fundamental solution of the scalar Oseen equation —AV + 7V = G if A = 0,
and of the associated resolvent equation if \ # 0).

2. Various auxiliary results.

We start by indicating some properties of Sobolev spaces.

Theorem 2.1 ([17, Lemma I1.6.1]) Let p € (1,00), A C R? open, bounded, with Lip-
schitz boundary. Let B € {A, A°, R}, and V € W, (B) with VV € LP(B)®. Then
V € WYP(A) in the case B = A, V € VVllo’f(R‘?) in the case B = R3, and V|A°N By €
WP(A° N Bg) for any R € (0,00) with A C B if B= A",

Lemma 2.1 Letp,q € (1,00). If V € LY(R*)NLP(R3), there is a sequence (¢r,) in C§°(R?)
with ||V — ¢ulls — 0 for s € {p,q}.

LetV e I/Vllog (R3)NLP(R3) with VV € LI(R3)3. Then there is a sequence () in C§°(R3)
such that |V — n|l, = 0 and [[VV — Vipy[lg — 0

Proof: Use Friedrich’s mollifier. O

Theorem 2.2 ([17, Theorem II1.4.2]) Letp € (1,00) andV € Wol’p(ﬁc)3 with divV =
0. Then there is a sequence (¢n,) in C3°(Q°)> with divg, = 0 forn € N and ||¢p — V|1, —
0.

It is perhaps not so well known that L9 is compactly imbedded in W —14:



(theoremT3.30)
Theorem 2.3 ([17, Theorem I1.5.3]) Let A C R3 be open and bounded, q € (1,00),

and (V) a bounded sequence in L1(A). Then there is V € LY(A) and a subsequence (W)
of (Vi) such that ||W, — V|| -1, — 0.

The next theorem deals with the decay behaviour of functions V' in exterior domains A°
with VV € LP(A%)? for some p € (1,3).

(theoremT3.40) ) ) )
Theorem 2.4 Let A C R? be either an open bounded nonempty set with Lipschitz bound-

ary, or A=10. Let g € (1,3) and V € I/Vll Y(A°) with VV € LI(A°)®. Then there is V* € R
such that V — V* e L34/(3=4) (A ), and the following five assertion are equivalent:

1.) V e L"(A°) for somer € (1,00); 2.) V e L3/B-9(A%; 3.) faB \V(Rx)|?do, —
0(R—00); 4.) [yp, IV(Rz)|doy — 0 (R — c0); 5.) V*=0.

If one — and therefore everyone — of these assertions holds, the ensuing inequality is valid:

1V llsg/(3-g) < €(@) [VV g (2.1)[T3.40.5]

Proof: According to [17, Lemma I1.6.3], the relation VV € L9(A%)% implies there is
V* € R with faBl |(V(Rx) — V*|9do, — 0 (R — o0). Moreover, by [17, Theorem I1.6.1],
we have V — V* e L34/(3=9)(A%). Starting from these relations, we showed elsewhere ([8,
Lemma 2.4}, [10, Lemma 2.1]) that assertion 2.) follows from 1.). Suppose that assertion
3.) holds. Then we get from the convergence relation at the beginning of this proof that
V* =0, so assertion 2.) holds because V — V* € L34/(3=9) (A%, If assertion 2.) is valid, we
may deduce from the preceding relation that V* = 0, so 3.) follows from the convergence
result at the beginning of this proof. Suppose that assertion 4.) holds. Then we may
choose a sequence (R,,) in (0,00) such that R, — oo and V(R,z) — 0 (n — oo) for a.
e. x € 0B;. But again by the convergence result at the beginning of this proof, there is
a subsequence (Sy) of (Ry,) such that |V (S, z) — V*|? — 0 for a. e. z € 0B;. Recalling
the choice of (R;,), we may conclude that V* = 0, so assertion 3.) follows by referring
once more to the beginning of this proof. Obviously 3.) implies 4.). Inequality (2.1) holds
according to [17, Theorem I1.6.1]. O

As a consequence of the preceding theorem, we get that C§°(R3)3 C 158 1’p(]R:)’ ¥ if p > 3/2:

corollaryC3.15) ~1p
Corollary 2.1 Let p € (3/2, 00) and ¢ € C§°(R?)3. Then ¢ € D, ~ (R3)3.

Proof: We have p’ € (1, 3), so we get with Holder’s inequality and (2.1) that ! Jrs gb’ydx‘ <
1601 /31/m)-1 IVllspr s 3—py < €MDl 1311 /p)-1 IVl for v € C§(R?)3. O

In the ensuing lemma, we consider how functions V in exterior domains decay in the
L%-norm if VV is an Li-function and V' and L"-function, with ¢ not necessarily equal to

T
(lemmal.3.30)
Lemma 2.2 Let q,r € (1,00), Ry € (0,00). Then

R [V|Bar\rllg < €(a,, Ro) (IVIBRIlr + IVVIBgllg + B[Vl + BHIVV )

for R € (R, 0), Ve WY (Bg,“) N L™ (Bg,") with VV € L1(Bg, ).

loc



Proof: We proceed as in [17, p. 225]. Take R and V as in the lemma. First suppose that
q < 3. Then Holder’s inequality yields ||[V[Bag\Brllq < € R||V|Bgll34/(3—g)- On the other
hand, a scaling argument and (2.1) with A = Bp, imply

VB lI3q/3—q) = (B/Ro)® UV ((R/Ro) - )|Bry" ll3q/3—a)
< C(Ro,q) (R/Ro) /4 ||V[V((R/Ro)- )|Bry" |llg = C(Ro,q) |VV|B%|lq-

Thus, in the case ¢ < 3, we have found that ||V|Bagr\Brllq < C(Ro,q) R||VV|B%||q- Next
suppose that ¢ > 3 and ¢ < r. Due to the second assumption, we get by Holder’s inequality
that |V|B2r\Bgllq < C R*(/a=1/) V| B§|,. But ¢ > 3 and R > Ry, so we may conclude
that |[V|Bag\Bglly < C Ry~ 1/3)R|\V\B Iy

Finally suppose that ¢ > 3 and ¢ > r. Then a := (1/r — 1/q)/(1/r —1/q+ 1/3) € (0,1).
Obviously 1/¢ = a(1/q¢ —1/3) + (1 — a)/r, so by [17, Lemma II.3.3], we obtain ||[W||, <
Clg. ) VW] IW = < Clg.r) (IVWllg + HWH ) for W € W, (R%) LT(RP’) with
VW € LI(R3)3. Now we split V into a sum of a W —functlon on R3 and a W —functlon
on a bounded domain. To this end, we set B := BR0+1\BR07 and take ¢ € COO(R?’) with
¢|Bg, +3/0 = 1 and ¢|Bry+1/4 = 0. Obviously ¢ V' € VVZ1 '(R3) N L"(R3). According to
Theorem 2.1, we have V|B € W4(B), so V(¢ V) € LI(R3). Now the above estimate of
IWllq yields [l Vg < &g, 7, Ro) ([VVIlg + [[VIBllg + [IV]|-). Hence

Vil <lleVilg + 11 =) Vg < &g, Ro) ([IVV g + [IVIBllg + V7). (2.2)[13.30.20]

But the term ||[V|B||, my be estimated by Poincaré’s inequality for functions with mean
value zero. In fact, abbreviate m := |B|™! [5V dx. Then |V|B|l; < [(V —m)|B|, +
|m||B|"/%, with ||(V — m)|B|, bounded by C(q, Ro)||VV|B|,, whereas |m||B|'/? may
be estimated by |B|~'*1/4||V|B||;, and thus by C(q,r, Ro)||V|,. Therefore from (2.2),
IVig < €(r,Ro) (|IVV]lqg + |V|l;). The lemma follows from the preceding inequality and
from our estimates of ||V|Bar\Brl|q in the cases ¢ < 3 and ¢ > 3, ¢ < r, respectively. [

Next we collect some properties of Dé’Q(ﬁc) and D, L2@9.

(theoremT3.60) 1,2 /¢
Theorem 2.5 The mapping (V,W) — fﬁc VV - VWdx is a scalar product on Dy~ (€2),

and Dé’2(ﬁc) equipped with this scalar product is a Hilbert space, with associated norm
V = |[VV|l2. Moreover the inequality |[V]l¢ < €||VV |2 holds for V € Dé’z(ﬁc), and the
set CS°(Q°) is dense in D(lj’Q(ﬁc).

Proof: For the Hilbert space property, we refer to [17, p. 105] or [24, Theorem 1.2.2,
1.2.8]. The 1nequahty IV]le < €||VV]2 holds according to (2.1). As concerns density of
C°(Q°) in DO 2(Q°), we refer to Theorem 2.4 and [17, Theorem I11.7.1], or to [24, Theorem

1.2.8]. 0

(theoremT3.70) c
Theorem 2.6 Let g € L} () and put Gy(p) := Jae g wdx for ¢ € C§° (Q°)3. Suppose

that ||glI*1 o == sup{Gy4(p)/IVell2 = ¢ € CF° (Q°)3, ¢ # 0} < co. Then there is a unique
element F, € D_IQ(Q )3 with Fy|C(Q°)3 = Gy, and the relation lgll=12 = [Fyll-1.2
holds. In this case, we write g instead of Fy, and g € Dy" 2(Q°)3 instead of lgll%19 < oo.

If g € LY/5(Q%)3, then g € D_12(Q )2, Fy(@) = Jge g9 - pda for any ¢ € Dé’2(56)3, and
lgll-12 < &) [lglle/s-



For any h € Dal’Q(ﬁc)S, there is a sequence (o) in C(Q°)% with ||h — @n||—1.2 — 0.

Proof: Hahn-Banach’s theorem and the definition of [|g||*; o yield existence of Fyy €
D, 2 (019) with F,|C0(Q)® = G, and lgll=12 = [IFyll-1,2. Uniqueness of F, follows
from the density of C§°(Q°) in Dé’z(ﬁc) (Theorem 2.5). By Holder’s inequality and the
estimate ||p|ls < €||Vp|l2 (Theorem 2.5), we get that fﬁc lg - pldz < ||g||6/5 [IVell2 for

v € Cf° (ﬁc)?’, so the claims of the theorem related to the case g € L%/° (50)3 are true.
The last statement of the theorem holds according to [17, Theorem II.8.1]. 4

We turn to the boundary value problem divV = G in B, V|0B = 0, for annular domains
B CR3.

(theoremT3.80) - -
Theorem 2.7 ([4, Theorem 2.4]) Let R, R € (0,00) with R < R, and put B :=

BE\FR. Then, for any q € (1,00) and m € {0,1}, there is a linear operator © :=
D(q,m, R, R) from { g€ WJ"(B) : [5gdz =0} into W' (B)? such that div®(g) =
g nd [D(@)llms1,4 < Cgm, B, R) llglmg for g € Wy™(B) with [, gdz = 0.

Moreover, for p, m as before, and for g € C§°(B) with [5gdx =0, the function ©(g) (or
more precisely: the zero extension of D(g|B) to R3) belongs to C§°(B)3.

Finally, if p,q € (1,00), m,n € {0,1} and g € C§(B) with [ggdr = 0, then the
functions ®(p,m, R, R)(g) and ®(q,n, R, R)(g) coincide.

The ensuing lemma deals with solutions to the boundary value problem divV = G in
B, V|0B = 0, with B belonging to the set {Bs,\B,, :, n € N} of annular domains. The

lemma indicates how the LP-norm of these solutions depends on n.

(lemmaL3.50) 1/ _
Lemma 2.3 Let ¢ € (1,@), v € {0,1}, Cy > 0, W,, := {g € W(B2,\By)

fB%\B—ngdq: =0} forneN, D: W) — Wg+1’q(32\§1)3 a mapping such that divD(g) =
g and |[D(g)|li+v,q < Collgllvq for g € Wh. For n € N, g € W,,, = € By, \By, set
Dn(g)(z) :=nD(go(n ide\E) )((1/n) ), with idp,\ gy the identity function on Bo\B;.

Then, for n € N, g € Wy, we have Dy(g) € Wé’“’q(Bgn\Bin)?’, divD,(g) = g and
10°Dn(g)llq < Con'~lel|lglly for @ € N3 with |a| < 1 in the case v = 0, as well as
1010mDn(9)llq < Collglli,qg for I,m € {1, 2, 3} in the case v = 1.

Proof: Direct calculation, via scaling. O

Next we recall some results related to Poisson’s equation AV = G.

(theoremT3.90)
Theorem 2.8 (Weyl’s lemma) Let A C R? be open and V € L} (A) such that the

integral [, V Agdx vanishes for any ¢ € C§°(A). Then V € C®(A) and AV = 0.

Proof: An elementary proof may be found in [24, Appendix]. O

The consequence of Theorem 2.8 we have in mind is the ensuing corollary, which in prin-

ciple is well known, but which we indicate because we do not know a direct reference.

corollaryC3.20) 11
Corollary 2.2 Let A C R?® be open and connected, I1 € W, (A) with VII = 0. Then

there is ¢ € R with II(z) = ¢ for a. e. x € A.

Proof: Theorem 2.8 yields II € C§°(A). O



The following theorem deals with the Newton potential. Since some subtleties of this
potential play an important role in what follows, we state them here. Concerning proofs,
they are, of course, well known. We only mention for completeness that the relations in
(2.3) follow by integration by parts and Lebesgue’s theorem, the estimates in (2.5) and
(2.6) are a consequence of Hardy-Littlewood-Sobolev’s inequality, whereas inequality (2.4)
may deduced from Calderon-Zygmund’s inequality. The other claims of the theorem follow

from these inequalities via density arguments. Lemma 2.1 is useful in this context.
(theoremT3.100)
Theorem 2.9 Let ¢ € C5°(R3). Then the integral [o5 |0°N(z—y) 8°¢(y)|dy is finite for
r€R3 ae N} with |a| <1, B €N}, and

N s ¢ e C®R?), 9°(N x¢) =N xd%(9) for § €N, (2.3)[13.100.10]
(N x¢) = (ON) x ¢ for 1 <1<3, AN *¢) = ¢,
[010m(N * 9)|lq < Cla) [|¢llg for 1<1,m <3, g€ (1,00). (2.4)[T3.100.20]
Let g € (1, 3/2), ¢ € LY(R3). Then
[N |9lll34/(3-24) < C(a) [|9llg (2.5)[T3.100.30]

in particular N * ¢ € L39/G20(R3) and [ps |N(z — y) d(y)|dy < oo for a. e. x € R3.
Moreover N x ¢ € I/VI2OCI(R3)
Let g € (1,3), ¢ € LY(R>). Then

1V 5 16l g/s-a) < C(@ 1] for 1< 1<3 (2.6) [13..500.40)

in particular N x ¢ € L3V B-D(R3) and Jgs [ON (z —y)| |¢(y)| dy < oo for a. e. x € R3.
Moreover (O|N) x ¢ € VVli’cl(R3) and div ((ON) * ¢) | jeq = ¢

Ifqe(1,3/2), ¢ € LIRS, then (N x¢) = (AN) %6 (1 <1< 3). Ifqe (1,3), pe
(1,00), ¢ € LI(R3) N LP(R3), then

10m ((ON) * ) lp < Clp) ¢l (1 <1,m<3). (2.7)[13.100.50]
In addition O;(N * ¢) € L"(R3) for any r € (3/2, o) if ¢ € LI(R?) for any q € (1,3), and
OmOI(N % ¢) € L™(R3) for any r € (1,00) if ¢ € LIY(R3) for any q € (1,00).

corollaryC3.30) ~_1.p
Corollary 2.3 Let p € (1,00), ¢ € Uy LI(R*) N Dy " (R?), | € {1,2,3}. Then

1(ON) * ¢llp < C(p) |9]]-1,p-

Proof: We simplify the argument from [17, p. 457-458]. By the assumptions on ¢, we
may choose ¢ € (1,3) with ¢ € LI(R?), so (;N) * ¢ € L39/B3~9(R?) (Theorem 2.9).
Let 1 € C§°(R3). In view of (2.6), we may apply Fubini’s theorem, to obtain Jxs ( (OIN)
qb) Ydr = — [ps ( (8ZN)*¢) ¢ dz. Since ¢ < 3, we have ¢’ > 3/2, s0 (O N)*1) € Lq/(Rg’) and
also V((ON) x¢) € L (R3)? by (2.3) and the last two assertions of Theorem 2.9. Thus,
by Lemma 2.1, we may choose a sequence (7y,) in C§°(R?) such that |[(9N)*1) — ||y — 0
and [|[V((9N) ) — V| y — 0. We now find

[ (@) 6) bda] < timsun [ v oda] < timsnp 6]-1, 197
R3 n—o0 R3 n—o0

< él-1p I V(@ON) * ¢ )l < M dll-1 [l &1,
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where the last inequality follows from (2.7). O

In the rest of this section, we deal with the Helmholtz projection, starting with the whole
space case. The special feature of that case is that the projection in question applied to a

smooth function is given in an explicit way.

(theoremT3.150)
Theorem 2.10 Let g € (1,00). Then there are linear operators P, : L4(R3)% — H,(R?)

and Qg : LY(R3) — Wli’g(R?’) such that P} = Py, G = Py(G) 4+ VQu(G), [|P(G)llq +
IVQq(G)llg < C(@)IGllg (in particular VQq(G) € LI(R?)? and Py(VQq(G)) = 0) for

G € LR, and Qy(G) = NxdivG, Py(G) = G—((AN)xdivG),_,_, for G € C(R3)3.

1<i<

Proof: See [17, Section III.1, in particular p. 147-148 and Theorem III.1.2]. O
corollaryC3.50)
Corollary 2.4 Let p,q € (1,00) and G € LP(R3)3 N LY(R3)3. Then P,(G) = P,(G).
Proof: See [11, Theorem 5] or use Lemma 2.1 and Theorem 2.10. O

In the ensuing Theorem 2.11, we introduce the Helmholtz projection on LP(£2)3, denoted
by Pp, and an operator G,, corresponding to the complement of Hp(ﬁc) in LP(Q°)3. Some
additional facts that may be deduced from Theorem 2.11 are presented in Corollary 2.5.

(theoremT2.10) . e
Theorem 2.11 Let Py : L2(Q2°)3 = Ho(Q") denote the usual projection operator onto the

closed subspace Ha(Q) of L>(Q°)3. Let p € (1,00). Then there are linear operators P, :
LP(Q°)% s Hy(Q°), Gy LP(Q°)% o WLP(QF) such that P2 =Py, V = Pp(V) + Gy(V),

Py + IVGV)lp < &) [V Iy, (2.8)[12.10.10]

in particular VG,(V) € LP(Q°)? and Pp(VGp(V)) =0, for V e LP(Q°)3, and such that
Pp(V) =Pa(V) for Ve C5o ()3,

Proof: See [17, Section III.1, in particular p. 149-152], [15], [21] or [23]. O

corollaryC3.60) — —
Corollary 2.5 Let p,q € (1,00). Then Pp(G) = Py(G) for G € LP(Q°)3 N LI(Q")3.

Moreover (Py,)" = Py and Po(VII) = 0 for Il € I/Vlicq(ﬁc) with VII € L9(Q°)3. In addition,
P,(G) =G for G € Hy(Y).

Proof: The first claim of the corollary follows from Lemma 2.1, (2.8) and the last equation
in Theorem 2.11. Concerning the proof of the second statement, let G € LP(QC)S, H e
LV (Q%)3. We may choose a sequence (¢,) in C5°(Q°)% with dive, = 0 for n € N and
| o —Py (H) ||,y — 0. Then, since VG, (G) € LP(Q°)? (Theorem 2.11), we have J5¢ VG,(G)-
Py (H)dz =limy, 0 e VGH(G) - ppdx = 0,50 [qe G-Pp(H) dx = [5e Pp(G)-Py(H) da
by Theorem 2.11. An analogous equation holds with P,(G) - H in the place of G - P (H)
on the left-hand side. The second equation of the corollary follows. The same type of
argument yields that [qeV - VIIde = 0 for V € Hy (Q°) and for II as in the corollary.
This equation and the second statement of the corollary yield the third. Finally the
preceding equation, the second equation the corollary and Theorem 2.11 imply [qe ( G-
Pp(G)) - Wdz =0 for G € H,(Q)%, W € LP(Q°)%. This proves the last claim of the
corollary. O
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3. The Stokes and Oseen system and associated resolvent
problems: some known results.

We observe that for any weak solution of the Oseen or the Oseen resolvent system, there

exists an associated pressure.

(theoremT4.20) 11
Theorem 3.1 Let A C R3 be open, ¢ € (1,00), A€ C, G L (A), V€ W, (A)? with

loc loc
VV € LL (A)?, divV =0,

loc
/(vv-vw+(uralv+>\V—G)-¢)dx:0 for 1 € C3°(A)? with divp = 0. (3.1)[T4.20.10]
A

Then there is I1 € L

loc

(A) ("pressure associated with V') such that

/(VV‘V1/1+(,MT@1V+)\V—G)-w)—Hdivw)daz:() for i € C5°(A)3. (3.2)[T4.20.20]
A

Proof: Theorem 2.1 yields V|B, € L‘Y(Be(ar;))3 for any x € A, € > 0 with B.(x) C A.
Thus V € L} (A)?, and we may conclude that —u7&V — AV + G € L] (A)3. Now

loc

Theorem 3.1 follows from [17, Lemma IV.1.1] and (3.1). O

We cite a theorem on interior regularity of solutions to the Stokes system.

(theoremT4.30)
Theorem 3.2 ([17, Theorem IV.4.1]) Let A C R3 be open, m € Ny, r € (1,00), G €

W (A, V e WhH (A with VV € LT, (A)?, divV =0 and

/(vv Vi —G-)dr =0 for ¢ € C°(A)? with divy =0 (3.3)[T4.30.10]
A

(V weak solution of the Stokes system). Then V € W™ (A)3. Let 1 € L}, (A) with

loc
/(vv-w—ndmp—a-¢)dx=0 for ¥ € CS°(A)? (3.4)[T4.30.20]
A

"pressure associated with V7). Then 11 € W™ (A) and —AV + VI = G.
1

oc

The preceding theorem implies interior regularity for solutions of the Oseen resolvent

problem (if A = 0: Oseen system). For the convenience of the reader, we indicate a proof.
corollaryC4.10) 3 3 11 3
Corollary 3.1 Let A C R3 be open, q,5 € (1,00), A€ C, G € L} (A3, V e W, (A)

loc loc

with VV € LE (A)? and divV = 0. Suppose that (3.1) holds. Then V € W21(A)3. Let

loc loc

IT € L .(A) be a pressure associated with V' (Theorem 3.1). Then Il € I/Vlz’cq(A) and

loc

AV +pu10V+AV+VII=G, divV =0. (3.5)[ca.10.10]

Proof: Theorem 2.1 yields V € T/Vllo(f(A)3 Abbreviate H := —pu1701V — AV + G. Put
r1 = min{q,s}. Then H and VV are L;! -functions in A, so Theorem 3.2 implies that
Ve W2 (A)3, I € W (A) and (3.5) holds. If ¢ < s, Corollary 3.1 is proved. Else we

loc loc

apply a Sobolev inequality to obtain V' € VVZI’3/2(A)3. Put ry := min{q, 3/2}. Then we may

oc
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(theoremT4.40)

corollaryC4.20)

corollaryC4.30)

corollaryC4.40)

conclude that VV and H are L}2-functions in A, so V € W;2"*(A)? and I € W,2"*(A)

loc

by Theorem 3.2. Thus we are done if ¢ < 3/2, otherwise V' € W2’3/2(A)3 c WA (A)3.

loc loc

Setting 3 := min{q, 3}, we thus have 9,V, H € L}? (A)3 (1 <1 < 3). Another reference to

loc

Theorem 3.2 yields V' € W/lZi’Q(A)g and II € I/Vll’”’ (A). This settles the case ¢ < 3. Else

oc

Ve WEEA)? c VVlf)’cq(A)?’, hence H € L! (A)3, so Corollary 3.1 follows by once more

loc loc

referring to Theorem 3.2. U

Concerning regularity near the boundary, we again start with a result about Stokes flows:

Theorem 3.3 ([17, Lemma IV.6.1]) Let A C R? be open and bounded, with C*-boun-
dary, v € (1,00), G € L"(A)®, V € Wh(A)? with VV € L™ (A)° (hence V€ W' (A)?
by Theorem 2.1), VIOA € W21/ (9A)3, divV = 0, and with V satifying (3.3) (weak
solution of the Stokes system). Then V€ W (A)3. Let Il € L, (A) be such that (3.4) is

satisfied (associated pressure). Then I1 € WL (A) and —AV + VI = G.

Corollary 3.2 Let A C R? be open and bounded, with C?-boundary, s,q € (1,00), \ €
C, G € LI(AP®, V e WE' (AP with VV € L5(A)? (hence V. € WH*(A)? by Theorem
2.1), VIOA € W2V99(9A)3, divV = 0, and with V satifying (3.1) (V weak solution of
(3.5)). Then V. W24(A)3. Let 1 € L} (A) be a pressure associated with V (Theorem

loc

3.1). Then 11 € Wh4(A) and equation (3.5) holds.

Proof: We have V|0A € W21/77(9A)3 for r € [1,¢]. Thus we may proceed in the same
iterative way as in the proof of Corollary 3.1, but with the references to Theorem 3.2
replaced by ones to Theorem 3.3. 0

Corollary 3.3 Let s,q € (1,00), A € C, G € LL (R®)3, V € W,2H(Q)? with VV|Qp €
L*(Qgr)? (hence V|Qr € W5(Qg)3 by Theorem 2.1) for any R € [S,00), VI]0Q €
W2-129(9Q)3, divV = 0. Further suppose that V satifies (3.1) with A = Q°. Then
VIQr € W29(Qg)? for R € [S,00). Let IT € L, (Q°) be a pressure associated with V
(Theorem 3.1). Then TI|Qr € WH4(QR) for R € [S,00), and equation (5.5) holds.

Proof: Corollary 3.1 yields V € W24(Q%)3, I € WL9(Q) as well as (3.5). Let R €
[S,00). Since V € T/Vli’g(ﬁc)?’, we have V|[0Br € W2 1/449(9Bg)3. Thus, recalling the
assumption on V|09, we obtain V|0Qr € W?2~1/249(9Qx)3. Now Corollary 3.2 yields
VIQr € W24(QRr)3, T|Qr € WH(Qpg). O

Next we present a criterion on C*°-regularity.

Corollary 3.4 Let A C R? be open, ¢ € (1,00), A € C, G € C®(A)3, V € I/Vllocl(A)3
with VV € LI(A)°, divV =0, and with V satisfying (5.1). Let IL € LI (A) be a pressure
associated with V. (Theorem 3.1). Then V. € C®(A)3, I € C*®(A) and equation (3.5)
holds.

Proof: In the case A = 0, we may refer to [17, Theorem VII.1.1]. But both the case
A =0 and A # 0 may be reduced to Theorem 3.2. In fact, by Corollary 3.1, we have
V e W2I(A)P, T € WhY(A), and equation (3.5) holds. Suppose that n € Ny and
Ve Wﬁjn’q(A)S, IT € VVlloJcrn’q(A). Then —pu70V - AV +G € VVliin’q(A)?’, so Theorem

3.2 implies V € W,>T™9(A) and TI € W2I™9(A). Therefore it follows by induction that

loc
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(theoremT4.50)

corollaryC4.50)

Ve W(A)? and II € mzz_l’q(A) for any m € N, m > 2. Corollary 3.4 follows by
applying a Sobolev inequality to V|B¢(x) and II|B¢(x), where z is an arbitrary point in A
and € > 0 is chosen in such a way that B.(z) C A. O

We cite an existence result for weak solutions of the Oseen system ((3.5) with A = 0).

Theorem 3.4 ([1, Proposition 4.2]) Let A C R? be open and bounded, with C?-boun-
dary, p € (1,00), G € W(Tl’p(A)?’. Then there is a unique function V € V[/'Ol’p(A)3 and
a function 11 € LI(A), unique up to a constant, such that divu = 0, and such that (3.2)
holds with A = 0 (Oseen system) and [, G - dx replaced by G(1)).

We are going to exploit this theorem in order to obtain weak solutions of the resolvent
problem (3.5). These weak solutions have the special feature that the pressure belongs to
a uniqueness class that will be convenient in what follows. A proof of this result is well
known in principle: it makes use of the fact that on bounded domains, the resolvent term
AV may be considered as a compact perturbation of the Laplace operator. However, since
some details are perhaps less evident, and for the convenience of the reader, we indicate
the main elements of this proof.

Corollary 3.5 Let A C R3 be open and bounded, with C%-boundary. Let ( € C§°(A) with
¢>0, [(¢dr > 0. Let p € (1,00). Then, for any A € K., G € Wo_l’p(A)?’, there is a
unique pair of functions (V,II) € Wol’p(A)?’ x LP(A) such that [, (Idx =0, divV =0,
and such that (3.2) holds with [, G - dx replaced by G(). Moreover ||V |1, + 11|, <
C(p) [|Gll=1p- If p < 3, s € [p, (1/p—1/3)71], we additionally have ||V ||s < €(p) |G||-1p-

g
0}, 0, := Wol,f X L?, I|(V,ID)||] :== [|[V']}1,p + ||II1]| for (V,II) € 20,. Then 20U, is a vector
space, the mapping ||| ||| is a norm on 20, and 20, equipped with this norm is a Banach
space. Define § : 20, — Wy P (A)3 by F(V,IN)(¢) := [,(VV -Vp+puTdV -1p—T1divep) de
for ¢ € WO1 P /(A)?’, (V,II) € 20,,. Obviously the operator § is well defined, linear and
bounded, and by Theorem 3.4, it is onto. In addition, due to this theorem and because
the zero function is the only constant function in LIC), this operator is one-to-one. Thus
§ is bijective, so the open mapping theorem implies there is a constant Cy > 0 with
IV Tl < Co [ F(V. I0) |1,y for (V,I1) € 2. For g € C, define &, : 2, — Wy 7(4)?
by Ro(V,II)(¢) := [, 0V -4 dx for (V,II) € 2, ¢ € Wol’p/(A)3. This operator &, is linear,
bounded and compact. Let ¢ € C\{0} with Ro > 0. If p > 2, it may be shown by some
partial integrations that R(F+K,)(V,I)(V) > 0 for (V,1I) € 2, with V # 0. Thus we get
with Corollary 3.1 and 2.2 that the operator § + 8, is one-to-one if p > 2. Suppose that
p < 2 and the pair (V,II) € 20, satisfies the equation (§ + K,)(V,II) = 0. Then Corollary
3.2 yields V. € W2# (A)3, I € WY (A). Therefore the term (F + &,)(V,I1)(V) is well
defined, and again by partial integration we may conclude this term is strictly positive if
V # 0. As a consequence, the operator § + £, is one-to-one in the case p < 2, too. On
the other hand, since § is linear, bounded and bijective and K, is linear and compact,
the sum § + £, is Fredholm with index zero. All these observations taken together imply
that § + 8, is bijective, so by the open mapping theorem, there is a constant C, > 0 with
Viip+ 1], < Co [[(§ + Ro)(V,II)|| 21 for (V,II) € W,,. Recall we supposed o € C\{0}
with o > 0, and in the case g = 0, the preceding inequality was proved further above.

Proof: Put Wy? := {W € WyP(A)? : divW =0}, L := {p € LP(A) : [,¢Cdw =
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As a consequence of these estimates, we get for g, 0 € C with Rp > 0, (V,II) € 20, that
1E+82) (V. ID]—1p > [ +8) (V. ID =1 —lo—2l [Vl > (C5 ' —|e—2l) (IV][1p+ ITT][,)-
Thus, for any g9 € C with Ry > 0, there is some €(gg) such that for any o € C with
lo — 00| < €(go), we have [[V]|1p + [Tl < 2Cy, [|(§ + Ro)(V, )| -1 for (V,II) € 2p.

Now the first estimate at the end of Corollary 3.5 follows by an open covering argument,
whereas the second may be deduced from the first by a Sobolev inequality. 0

We turn to strong solutions of (3.5) on bounded domains.

(theoremT4.60)
Theorem 3.5 Let A C R® be open and bounded, with C*-boundary, q € (1,00), X €

K., G € LP(A)3. Then there is a unique pair of functions (V,II) € W24(A)3 x W14(A)
with V' € Wol’q(A)3, divV =0, [,Ildz =0, and with (V,1I) satisfying (3.5). This pair
satifies the estimate ||V 2,4 + ||1]|1,4 < €(q) [|G|lq-

Proof: A direct reference is [19, Proposition 2.6], where a much more detailed result is
provided. But Theorem 3.5 may also be deduced by starting with an existence and a
uniqueness result for strong solutions of the Oseen system on bounded domains (see [1,
Proposition 4.3] for example), and then proceed with a perturbation argument as in the

proof of Corollary 3.5. 0

corollaryC4.60)
Corollary 3.6 In the situation of the preceding theorem, we have ||V, < €(p,q,€) ||G|lq

forp e (1, (1/q—2/3)""] if ¢ < 3/2, and forp € [1,00) if ¢ > 3/2; |[VV||, < &(p,q,¢) ||G||q
forpe[l, (1/q—1/3)"Y if ¢ < 3, and for p € [1,00) if ¢ > 3. Moreover, if X # 0, q
2, p € [q,2], the estimate |V |, < €(p, g, €) |A|72F41/a=1/P) |G|, is valid.

Proof: The corollary follows from Theorem 3.5 and Sobolev estimates. Concerning the
last estimate in the corollary, we note that —2+4(1/¢—1/p) <0if ¢ <2, p € [q,2], so
that in the case X # 0, we have 1 < C(p, g, €) |\|[~2T*(/a=1/p), O

In the ensuing two theorems, we consider problem (1.8) (Oseen resolvent system in Q°,
with Dirichlet boundary conditions), first for A = 0 (Oseen system), and then for A # 0.

(theoremT4.70) —
Theorem 3.6 ([17, Theorem VIIL.7.1]) Let q € (1,2), G € LY(Q")3. Then there are

functions V' € W/f’q(ﬁc) NLA/a-Y27H Q)3 T e V[/llo’cq(ﬁc) such that the relations VV €
LY=197HQY0 . 9,0, Vi, ;11 € LIQ°) (1 < jik,1 < 3) hold, the pair (V, 1) satisfies
(1.8) with A = 0, and |V [|1/g-12)-1 + IVV | (1/g-1/0-1 + [ D?Vlg + VIl < €(g) | Gllg-

(theoremT4.80) ) — )
Theorem 3.7 Let p € (1,00), A € C\{0} with R\ > 0, G € LP(Q")3. Then there is a

unique function V€ W2P(Q°)3 n I/Vol’p(ﬁc)3 and a function I1 € W'llo’f(ﬁc), unique up to
a constant, such that VII € LP(Q°)3, the pair (V,TI) fulfills (1.8), and |V |2, + | VI, <
(P M) I Gllp-

Proof: See [19, Theorem 4.4] and the proof of this theorem in [19, p. 29]. O

4. Oseen resolvent estimates in the whole space R3.

In this section, we extend some results from [11] concerning solutions to the Oseen re-
solvent (3.5) in the whole space R3. As in [11], our theory is based on the use of the
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fundamental solution E®) (see Section 2) of the scalar Oseen system. This approach has
the inconvenient feature that the Helmholtz projection P, (Theorem 2.10) is involved when
we represent solutions to (3.5) by means of convolutions with £(*). However, although a
fundamental solution to (3.5) is available ([19, p. 19-20]), we were not able to estimate it
in a satisfactory way. We begin by stating some basic facts about convolutions with E™),
most of them taken from [11].

(theoremT5.10)
Theorem 4.1 Let A\ € K,. Suppose that H € LP(R3) for some p € (3,00) and for some

p € (13, 3/2). Let a € N} with |a| < 1. Then [, 10°EWN) (2 — y)| |H (y)| dy < oo for any
z € R°.

Letq € [1,2) andp € ((1/q—1/2)7", 00] if¢>3/2, orp € ((1/q—1/2)7", (1/q—2/3)7")
if ¢ <3/2, orp=6if ¢g=6/5. Then |||[EM|* |G|, < C(p,q,7) |Gy for G € LI(R?). In
particular, the function |E*x — y)| * |G(y)| is integrable with respect to y € R3, for a. e.
z € R3.

Let g € [1,3], p € ((1/qg—1/4)7', (1/q—1/3)7'), orp =2 if ¢ = 6/5, and let | €
{1,2,3}. Then ||| EM| |G|, < Cp,q,7)||Gllq for G € LYR3). In particular, the
function |0, ENx — y)| * |G(y)| is integrable with respect to y € R3, for a. e. x € R>.

IfAN#0,q€[1,2], p€q,2] and ¢ > 1 or p < 2, then
IEXV| |G, < Clp, q,7) N> WP G| for G € LUR?).

Also for such p and q, the function |E>(x —y)|* |G (y)| is integrable with respect to y € R3,
for a. e. x € R3.

Let ¢ € C°(R3), and put V = EX % ¢. Then V e C®(R?), 9°V = EM x 9%¢ for
BENE OV = (BEN)x¢ for 1 <1<3, ~AV +7V + AV = ¢, and | D*V|Bgl|, <
C(R,q,7)¢llq for g € (1,00), R € (0,00).

Proof: We have |0*EWN ()| < C(1) (x(0,1)(I2]) | 2|71 lel 4 X[1,00)(12]) |2| 71101/ for 2 €
R3\{0}, a € N} with |a] < 1 by [11, Theorem 9]. Let z € R?, and take « as before.
Then, by Holder’s inequality and the preceding estimate, the function |§*EW||H (y)] is
integrable with respect to y € Bj(x) because H € LP(R?) for some p € (3,0), and with
respect to y € Bi(z)¢ since H € LP(R3) for some p € (1, 3/2). The inequalities stated in
the theorem, except the last one, hold according to [11, Theorem 10]. As for the last part
of the theorem, pertaining to the function V', we refer to [11, Theorem 11].

(theoremT5.20)
Theorem 4.2 Let A € K, and q € (1,00). Then |D*(ED x ¢)|l, < C(q,7)|¢lly for

¢ € CR(R3) if X =0 or if ¢ = 2. This means in particular that in the case q = 2, the
constant C(q,T) does not depend on X\, even if A # 0. In that latter case, we further have
IE® % ¢]l1,4 < Cla, A7) I6llg for & € C3°(R?).

Proof: For f € L'(R?), define f(¢&) := (27)3/2 Jgs €775 f(n) dn for & € R® (Fourier
transform of f). Let ¢ € C§°(R3), I,m € {1, 2, 3}. Then DO (EDX % ¢) = ED) % (8,0,,0)
by Theorem 4.1, so we get from [13, proof of Corollary 4.1] in the case A = 0, and
from [12, Theorem 2.1] if A\ # 0 that 9,0 (EM % ¢)(x) = [gs 7 (27) /2 (A + [n|? +
i) m d(n) dn for € R3. In this situation it is shown in [17, p. 447-450] (in
particular see [17, (VIL.4.14)]), on the basis of Lizorkin’s multiplier theorem, that the
first estimate in Theorem 4.2 is valid in the case A = 0. Now suppose that A # 0. We
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corollaryC5s.10)

corollaryC5.20)

have [m 1 (X + n]? +i7m)71| < C for n € R¥\{0} because RA > 0. This estimate
combined with the equations 90, (EW % ¢) = EXN % (9,0,,¢) and EM () = (27)73/2 (A +
Inl2 +iTm)~t (n € R3\{0}) ([12, Theorem 2.1]) and with Plancherel’s theorem yield the
first estimate in Theorem 4.2 for ¢ = 2. According to [11, (3.2)], we have [0*EM(2)| <
C(r.A) (xqon (12D 1217719 4 X1 oy (21) 77 PP for 2 € R3\{0}, @ € Nj with |a] < 1,
where ¢ > 0 is a constant independent of z and A. Tt follows that 9*E™ € L1(R3) for a as
before. Thus, by Young’s inequality ([22, Part I, Theorem 1.2]), we get |[(9*EW) x 4|, <
C(1,\) ||¢llg for o as before and for ¢ € C5°(R3), so [|EN  ¢||1, < C(1,N) ||9]l4- O

Corollary 4.1 Let A € K, and G € C(R3)3. Then Py(G) € LP(R?)? for p € (1,00),
so we may define V. := EW x Py(G). Put I := Qz(G) (Theorem 2.10). Then V €
C>™(R3)3, I € C*(R3), and (3.5) holds.

In addition ||V, < C(p,q,7) |Gllq, IVV |, < C(p,q,7)||Gllq, with the range of p and q

being the same as in the corresponding estimates in Theorem 4.1, except for the additional
restriction q > 1.

Moreover, |D*V|Bgl|l, < Clq, R,7) |G|l for ¢ € (1,00), R € (0,00), and |D*V |5 <

C(7) |G|l If A =0, the_inequality D2V |, < C(q,7) ||G|lq holds for q € (1,0).

If X # 0, we further have ||V |14 < C(g, N\, 7) ||Gllq for ¢ € (1,00). Moreover the estimate
IV, < C(p,q,7) |N72H*W/a=1P) |G|, is valid for p,q as in the corresponding inequality
in Theorem 4.1, but with the additional condition ¢ > 1. Finally |VIL||, < C(q) ||G||q for
q € (1,00).

Proof: From Theorem 2.10 and (2.3), we get Po(G), Q2(G) € C(R?). It further follows
from Theorem 2.10 and Corollary 2.4 that P»(G) € Hy(R?) and ||[VQ2(G)l, < C(q) ||Gll4
for ¢ € (1,00). In particular the last inequality in Corollary 4.1 is valid. Let p € (1, 00).
By Lemma 2.1, we may choose a sequence (¢,) in C3°(R?)? with [|Py(G) — ¢nlle/s — 0
and ||Py(G) — éull, — 0. By Theorem 4.1 with ¢ = 6/5, we have ||V — EW) x ¢, |l¢ — 0.
The same reference yields ||(9EM) x Po(G) — 91(EW x ¢,)||la — 0 for 1 <1 < 3. Again
by Theorem 4.1, we see that the sequence (DQ(E()‘) * ¢n)|Br )n>0 converges in LP(Bg)?7,

for any R € (0,00). These relations imply that V' € V[/lZOcl (R33, 9,V = (EN) % P(G)
for 1 <1 <3, and |[D*V — D2(EW x ¢,,)|Bgr|l, — 0 (n — o0) for any R € (0,00). Now
we may conclude from Theorem 4.1 that —AV + 70,V + AV = Py(G). The first equation
in (3.5) now follows by Theorem 2.10 and the definition of II. Since P»(G) € Hg5(R?)
(Corollary 2.4), we may choose a sequence (i) in C§°(R?)? with dive), = 0 for n € N
and [|P2(G) — Ynllg/s — 0. But 9,V = (QEWN) % Py(G) (see above), so we may deduce
from Theorem 4.1 with ¢ = 6/5 that |0,V — (9, EXN) % 9|2 — 0 for 1 <1 < 3. We again
refer to Theorem 4.1 to obtain div (E(’\) * ) = EW s divi, = 0 for n € N. Thus we
get divV = 0, so (3.5) is proved. Corollary 3.4 now yields V € C°°(R3). The estimates
of ||V]|, and ||VV||, claimed in the corollary follow from Theorem 4.1, 2.10, Corollary
2.4 and the equation &V = (EW) % Py(G) proved above. As concerns the estimates
of ||D*V|Bgllg, |D*V |2 and ||D?V||,, we refer to Theorem 4.1, 4.2, 2.10 and Corollary
2.4, and to the approximation of D?V|Br shown above. Finally, if A # 0, the estimate of
|V||1,4 follows from Theorem 4.2, 2.10 and Corollary 2.4. O

Corollary 4.2 Let A € K; and q € (1,00). Suppose that X = 0 or ¢ = 2. Let p €
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(1,2), ¢ € Wl{;j(RS) qu(R3) with V¢ € LP(R3)3, | € {1, 2, 3}. Then EW % 8¢
Wll(R3) and |0m (BN « 019) ||y < Clq,7) |9llq (1 < m < 3). If ¢ < 3, we addztzonally
have E( )*quﬁ (6ZE )*qﬁ

Proof: By Lemma 2.1, we may choose a sequence (¢,,) in C§°(R?) such that ||¢,— |, — 0
and ||V (¢n—9)|p, — 0. Fixsomer € ((1/p—1/2)~1, co) with r < (1/p—2/3)~" in the case
p < 3/2. Then |[EXN 86— EXN %y, — 0 by Theorem 4.1, and ||, 0 (EW x ¢, — EX) «
o1)llg < Cq) |on — dkllq for n,k € N, 1 <m < 3 by Theorem 4.2. The latter inequality
implies that the sequence (8m81(E(>‘) sk ¢”))n>0 converges in LI(R3), for 1 < m < 3.

Moreover 9,9 (EX % ¢,) = O (E * Oi¢pn) for n € N, 1 < m < 3, again by Theorem
4.1. Thus we may conclude that EX) « 9,0 € I/Vl1 1(R3) 8m(E(/\) * 01¢) € LI(R3) and
10mBUED & 6) — O X 5 19)lg = 0. Since [OmOU(EX 5 ) lg < Cla,7) éully (n €
N, 1 < m < 3) by Theorem 4.2, we obtain the estimate stated in Corollary 4.2. Now
suppose that ¢ < 3. Choose s € ((1/¢—1/4)7', (1/g—1/3)""). By Theorem 4 1, we get
(DEN) % ¢ — (EX) x ¢p||s — 0. On the other hand, (EWN) x ¢, = EW % §;p,, for
n € N by Theorem 4.1. Since EM) x9;¢,, — EM) x9y¢ in L"(R?)3, as noted above, we thus
obtain the equation stated at the end of Corollary 4.2. U

For the proof of the ensuing theorem, we adapt an approach from [17, p. 454-456].

(theoremT5.30) )
Theorem 4.3 Let A € K, and q € (1,00), with A = 0 or ¢ = 2. Let G € CP(R?)3 N
@al’q(R?’)S. (According to Corollary 2.1, in the case q > 3/2, it suffices to require G €
Ce(R3)3). Then ||0x( EX * Py(G))|lq < Cg,7) |Gll=14 (1 < k < 3). If ¢ < 3 and

€ ((1/q— /471 (1/qg—1/3)71 ), we further have HEW * Py (G)]ls < Clq,s,7)|G||=1,4-
Proof: Corollary 2.4 yields P,(G) € L"(R3)3 for any r € (1, 00). By referring to (2.3) and
to Corollary 2.3 with ¢ in the place of p, we get for ¢ € C§°(R3)3, 1 <[ < 3 that
[ (@) s avG)vds| = | [ ((0)+6) - Vods] < @) Gl (961
R R
C(@) |1Gll-1,4 VY-

Hence [[(O;N) * divG||—14 < C(q) ||G||=1,4 for 1 <1 < 3. Thus we may conclude from
Theorem 2.10 that || P(G)||-1,4 < C(q) |G||-1,4- Again referring to Corollary 2.3, we then
arrive at the estimate

[ON) * Pa(G)lg < Clg, 7) |G -14 (1 <T<3). (4.1)[T5.30.10]

By the first sentence of this proof and by Theorem 2.9, we know that N % Py(G) €
WEHR?), (N) x Po(G) = Oi( N * Py(G) ), D*(N * P»(G) ) € LP(R*)?" for p > 1, and

div ((ON) * Pa(G)j ) 1cjeq = P2(G); for 1< <3. (4.2)[T5.30.20]

We may conclude with (4.1) that
(ON) + Po(G) € WL R N LIRY?, V((ON) = Po(G)) € LP(RY?  (4.3)[15.30.50]

for any p € (1,00). Thus we may apply Corollary 4.2 with ¢ replaced by (O,N) * Po(G).
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By (4.2), this corollary and (4.1), we get

|0k (EX  Po(G Ilq<ZH8k N gy ((aN) = P2(G)) ]llg (4.4)[T5.30.25]

3
Z [(ON) * P2(G)llg < Cg) [|Gll -1y (1 <k <3),

so the first estimate in Theorem 4.3 is proved. Now suppose that ¢ < 3 and s € ((1 /q —
1/4)71, (1/q — 1/3)7'). Then Corollary 4.2 and (4.3) yield E? x 9,((9,N) * P5(G) ) =
(O EW) % ((O/N) * P2(G) ), so the last inequality in Theorem 4.3 follows from Theorem
4.1 and (4.1), by an estimate as in (4.4). O

(lemmal5.10) ~ g
Lemma 4.1 Let g € (1,00), G € C2(R3)3nDy "(R%)3. Then [|Q2(G)lly < C(q) |Gll-1.4-

Proof: Combine Theorem 2.10, the equation N *divG = 37 (9,N) x Gy (see (2.3)) and
Corollary 2.3. O

The results of this section imply the following existence results for solutions to the Oseen
system and to the Oseen resolvent system (3.5).

corollaryC5.40)
Corollary 4.3 Let A\ € K, and G € CP(R3)2. Put V := EWN x Py(G), I := Q2(G).

Then V. € C®(R3?)3, TI € C®(R3), and the pair (V,I1) solves (3.5). Moreover, if X # 0,
we have V. € WIP(R3) for any p € (1,00), and D>V € L*(R®)?". If A = 0, we have
V e LP(R3)3 for p € (2,00), VV € LP(R3)? for p € (4/3,00), and D*V € LP(R3)*" for
p € (1,00). Moreover I1 € LP(R3) for p € (3/2, oo) and VII € LP(R3)3 for p € (1,00).

If A\ =0 and G € C(R3)3 N @gl’p(R?’)?’ for any p € (1,00), we get V € LP(R3)? forp €
(4/3,00) and VV € LP(R3)? for p € (1,00). Moreover, if again G € CgO(R?))?’ﬂf)gl’p(R?’)?’
for any p € (1,00), but with non restriction on X, we get II € LP(R3) for such p.

Proof: According to Corollary 4.1, we have V;, I € C°°(R3) for 1 < j < 3, and the
pair (V,II) solves (3.5). If A # 0, Corollary 4.1 yields that V € W1P(R3)3 for p € (1, 00)
and D2V € L?(R3)%7. In the case A = 0, the integrability relations stated for V, VV and
D2V follow from Corollary 4.1, and if G € C°(R?) N Dy *(R?)? for p € (1,00), from
Theorem 4.3. Due to Theorem 2.10, (2.3) and the second last statement of Theorem 2.9,
we know that IT € LP(R3) for p € (3/2,00). In the case G € C§°(R?)3 N Zso_l’p(R?’)?’ for
p € (1,00), Lemma 4.1 yields IT € LP(R3) for this range of p. LP-integrability of VII for
any p € (1,00) holds according to Corollary 4.1. a

5. Uniqueness theorems for solutions to (1.8).

We first consider the whole space case, then exploit the results we obtain for this case
to determine a uniqueness class for weak solutions of (1.8) (exterior domain case). Our
results are more general than what is available in literature because we do not suppose
that the gradient of the velocity is an LP-function for a single p € (1,00). Instead it may
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be split into a sum of gradients each of which is LPi-integrable with respect to a different
exponent p; € (1,00). Unfortunately this seemingly small generalization complicates the
argument considerably. For technical reasons, we first consider a splitting into a sum of
three terms (whole space case), and then into a sum of two terms (exterior domain case).

(theoremT6.10) ) )
Theorem 5.1 Let A\ € K,. Fori € {1,2, 3}, let ¢;, r; € (1,00), R; € (0,00) and V) €

W (R3)3 with VO|BS, € L™(B%,)3, VV € L4 (R%)?. Suppose that div(37_, VD) =0
and (3.1) is satisfied with A =R3, G =0, V = 23:1 V@, Then Z?:1 v = .

Proof: Abbreviate V := Z?:l Ve, g .= min{qi, ¢2, ¢3}. Then V € Wl’l(Rg)S; VV €

loc

L1 (R3)Y divV =0, and (3.1) is satisfied with A = R3, G = 0. Corollary 3.4 yields that

loc

V € C*(R?)3, and that there is II € C*°(R3) such that (3.5) is valid with G = 0.

Fix some function ¢ € C§°(Bz4)® with ¢|Bs;y = 1, 0 < ¢ < 1, and put p,(z) =
¢((1/n)x) for n € N, z € R®. Note that ¢, € C§°(Bry,/4), 0 < on <1, @|Bs,a =1,

IVl < En7L [010m@lee <E€n™2 for neN, 1<1,m<3. (5.1)[16.10.10]

Letl € {1, 2, 3}, ¢ € C5°(R3)3. Obviously 0;¢ € C’(‘)’O(R3)3ﬂl~751’p(R3)3 for any p € (1, 00).
Therefore, according to Corollary 4.3, we may choose functions W € C®(R3)3, T' €
C>(R3) such that the pair (W, T) solves (3.5) with W, T, 9;¢, —p 7 in the place of V, I, G,
u, respectively, and such that W € LP(R3)3 for p € (4/3, 00), 9;W, I' € LP(R3) for
p € (1,00), 1 < 4,k < 3. In the case A # 0, we may require W € LP(R3)3 even for any
p € (1,00). On taking account of the fact that ¢ has compact support, we get

3;V-¢dx=/ V.-0¢pdr =— lim V0,6 ppdx (5.2)[T6.10.20]
R3 R3 R3

n—oo

= — lim V(=AW — u1oW + AW + VI) p,, dz.

n—oo R3

Let n € N, and abbreviate A,, := By, \B,. Since divW = 0 and supp(Vy,) C A, we
have Vo, - W € C3°(4,) and fAn Ve, - Wdr = 0. Thus we may refer to Theorem 2.7
and Lemma 2.3 to define ©, := n®(2,1,1,2)[(=Vg, - W) o (nide\E)] ((1/n)x) for
x € R3. Theorem 2.7 and Lemma 2.3 yield that ®,, € C§°(4,)3 and div (¢, W +D,,) = 0.

It further follows from Theorem 2.7, in particular its last statement, and from Lemma 2.3
and (5.1) that

1Dnllp <€) W] Anllp,  10°Dully < €)™t [W]An]1p, (5.3)[T6.10.30]

for any o € N3 with 1 < |a] < 2, and for any p € (1,00). On the other hand, as remarked
above, equation (3.5) is valid for (V,II) with G = 0. Observing that ¢, W + 9, €
C§°(Bay,)?, and recalling that div (¢, W + D,,) = 0 for n € N, we may thus deduce from
(5.2) by some integrations by parts that [ OV - ¢ de = limy 00 Ay, with

3
Ay, = —/ V. (2 > " Okon WW + Apu W+ 7 D100 W+ AD,, + 7 91D,
R3 1

AD, — Fchn> de for neN.

20



Since the support of any derivative of ¢, is a subset of A,,, and because of (5.1), we get
for n € N with n > Ry := max{R;, Rg, R3} that
3 .
|an’ <c Z HV(Z)‘BZHU (HVW‘AnHT; + nt HW‘An”r: + Z Haagn”r:
i=1 a€eNG, 1<]a<2

+|>‘| ”gn”r; + ||F|AnH7"; )

Next we apply (5.3) to obtain

3
2] <€D VOBl (VW] Al + 07 W] Aglly (5.4)[16.10.40]

i=1
WAl + IT[Anllr ) (2 €N, n> Ry).
Lemma 2.2 yields that
n WAl < €(IWIBL s + IVWIB, [l + 0~ Wz + 0~ [[VW],0)

for n € N, n > Ry. So we may deduce from (5.4) that

3
2] < € VOB, ([WIBG s + [VWIBG g + 0 W]l (5.5) [T6.10.50)

=1
+n [ VW L+ AW Anlly + [T B5 ;) (n €N, n> Ry).

As the reader may recall, we have W € LP(R3)3 for p € (4/3, 00), VW € LP(R3)3
for p > 1. Thus we may conclude that [[VW|B||,, + [W|By|[s — 0 and n~H W5 +
n VW], — 0 (n — oo) for 1 < i < 3. Similarly, recalling that I' € LP(R3) for
p € (1,00),1 we get [T[Bg[lx = 0 (n = oo, 1 <4 < 3). Finally, if A # 0, we have
W e LP(R3)3 for p > 1, so || [WAn|[;; = 0 (n — o0, 1 <4 < 3). Therefore inequality
(5.5) implies that |2(,,|] — 0. Since fRS OV - ¢dx = lim,_.o A, as observed above, this
means that ng OV - ¢dx = 0. But the function ¢ was arbitrarily chosen in C§°(R?)3, so
0,V = 0. This is true for any [ € {1, 2, 3}.

Recalling that V € C®(R3)3, we thus see there is ¢ € C* with V = ¢. But for ¢ >

0, i € {1, 2, 3}, the relation {z € Bf, : V@ (z)] > €}| < oo holds because otherwise
the assumption V' |BC L’"i(B%i)?’ could not be true. Now suppose that ¢ # 0. Then
{z € By, : V(z) = c} C Ul {z € B, : [V®(z)] > |c|/6}. On the other hand, the
equation V' = ¢ means that {z € By : V(x) = ¢} = Bf, so there must be a number
i € {1, 2, 3} with |{z € By, : V@ (x)| > |c|/6}] = oo, a contradiction! Therefore ¢ = 0,
so the theorem is proved. O

Now we consider the exterior domain case (weak solutions to problem (1.8

))-
(theoremT6.20) .
Theorem 5.2 Let A € K, and Ry € [S,00). Fori € {1, 2}, let ¢;, s; € (1,00), VO ¢

wol (@53 wz’th VV® e L%(Q%? (hence VO |Qr € W4 (QR)? for R € [S, o) by Theorem
2. 1) and V0 |B € le(BCO)S, Further suppose that div(V() — V) =0, v —
2)16Q = 0, and that (3.1) holds with A =Q°, G =0, V=V -V, Then v _y?)

0.
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Proof: Put V := V) — V) ¢ := min{qy,q}. Then V € Wli’g(ﬁc):”, VV e LL (Q9°
(hence V|Qp € WH4(Qg)? for R € [S,00) by Theorem 2.1), V|0 = 0, V is solenoidal,
and equation (3.1) holds with A = Q°, G = 0. In particular, there is a pressure II €
Lfoc(ﬁc) associated with V' (Theorem 3.1). From Corollary 3.4, we may conclude that

V;, T € C=(Q°) (1 < j < 3), and equation (3.5) is valid with G = 0. In addition,
Corollary 3.3 yields that

V|Qr € WP(Qr)3, Qg € WHP(Qr)? for R € [S,00), p € (1,00). (5.6)[T16.20.10]

Fix a function ¢ € C®(R?) with 0 < ¢ < 1, ¢|Bgyt1/4a = 0, @|B§%0'+3/4 = 1, and
abbreviate B := Bpy11\Br,- By Theorem 2.1 and our assumptions on V®, we get

VeV®) € L9E), oV OB 1 = VOBl € I (Bh )’ (1€ {1, 2). (5.T) 62020

Since Vo -V € Cg°(B), V]|9Q = 0 and divV = 0, we have [, Ve -V dr = 0. Thus
we may apply Theorem 2.7, setting © := ©(2,1, Ry, Ry + 1)(—Vp - V|B). Note that
D € C§°(B)3. We further define V, 11, F as the zero extension to R? of ¢ V + D, ¢II and
-2 Zi:l OOV — ApV + 7010V — AD + 7D + AD + I1 Vi, respectively. By the
choice of © and Theorem 2.7, we have divV = 0. Moreover 17j, e C®R3) (1<j<
3), F € Cs°(B)3, and the pair (V,ﬁ) satisfies (3.5) with V, II, G replaced by 17, ﬁ, 15,
respectively. Since F € Cs°(B)3, we may apply Corollary 4.3, allowing us to choose
functions W € C*®(R3)3, ' € C*°(R3) such that the pair (W,T) solves (3.5) with V, II, G
replaced by W, I', F , respectively, and such that in addition W € W?22(R?)? in the case
A # 0, and W € LP(R?)3 for p € (2,00), VW € LP(R3)? for p € (4/3, c0), D?*W €
LP(R*)?7 for p € (1,00) if A = 0. In particular o V) — V@ — W + D = V-W e
Wlicl (R3)3, div(V — W) = 0, and the function V — W satisfies (3.1) with A = R3, G =
0, V.=V — W. Recalling (5.7) and the relations ® Cs(B), W € C®(R?)3 N LP(R3)
forp>2(A=0)orp=2(\#0), VIV € L?(R?)?, we see we may apply Theorem 5.1
with VO, V@ V6 replaced by goV(l), —p v, W+ 9, respectively. This theorem
yields that o V) — o V@ — W +© = 0, that is, V-W=0.Asa consequence, in view
of the equation in (5.7) and the relation ® € C§°(B)?, we have V|Bg | = ‘7|Bf,%0+1 =
W|B%, 1~ This equation, (5.6) and the integrability properties of W listed above yield
that V € W22(Q)3 if A # 0, as well as V € LP(Q°)3 for p € (2,00), VV € LP(Q°)? for
p € (4/3, 00), D2V € LP(Q°)? for p € (1,00) if A = 0.

Now choose p = 2 in the case A # 0, and p = 3 if A = 0. Then, by the integrability
properties of V' we have just proved, it follows that V' € W'?(Q%)? and VV e L (Q%)°
Since V[0 = 0 by our assumptions, we get V &€ WO1 P(Q°)3. But divV = 0 also by our
assumptions, so Theorem 2.2 yields there is a sequence (¢,,) in C§° (Q°)3 with div e, = 0
forn € N and |V — ¢nl1, — 0. Using ¢, as test function in (3.1), letting n tend to
infinity, and taking account of the fact that G = 0 in (3.1) and VV € L? (Q)?, we arrive
at an equation whose real part is given by |[VV|]3 + R [5c 01V - Vdz + (V) = 0, where
(V) =0if A =0, and v(V) := R\ ||V||2 else.

Fix some function ¢ € C§°(Bz) with 1|B; = 1, and define v, (x) := ¢(n~'x) for z €
R3, n € N. Then ¢, € C§°(Bay,), ¥n|Bn = 1, and |Vib,|oo < €n~L. On the other hand,
since 9,V € L (Q°)3, V e LP(Q°) by our choice of p, hence 8,V -V € LY (Q°)3, we have
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Jae 01V - Vdr = limy,_eo Jae 01V Vappdz. But V€ C®°(R3)3, so
9%/ alv-v¢ndx=/ [O1(RV) - RV + 0(IV) - SV | ¢y dr = —/ V01 da 2.
QC ﬁc ﬁc

But |[V|? € L"(Q°) for any r € (1,00), as is immediately clear if A = 0, and follows from
the relation V € W?22(Q%)3 by Sobolev inequalities in the case X # 0. In addition we have
( fae 101¢n]® da:)l/s < &n~3/5 for s € (1,00). Therefore [5¢ [V|2 919 dz — 0 for n — oo,
so we obtain ||[VV[3++(V) = 0. As a consequence VV = 0. Since V € C*®(Q°)?, we may
conclude that V' = 0. O

6. Oseen resolvent estimates.

We begin by presenting two corollaries where we collect some features of solutions to (1.8)
following immediately from the existence results in Theorem 3.6 and 3.7, and from the
uniqueness properties stated in Theorem 5.2 and Corollary 2.2. The notation we introduce

for these solutions in the two corollaries in question will be used frequently in what follows.

corollaryC7.10) =c\3 3\3
Corollary 6.1 Let A € K \{0}. For any G € Uge(1,00)L4(Q27)° or G € Uge(1,00) L (R?)°,

there is a unique function V = B(\,G) € qu(l,oo)qu(ﬁc)?' and a unique function

IT :=II(\,G) € uqe(lm)wﬁ;g(ﬁc) such that fQS+1 IIdx = 0 and the pair (V,II) solves

(1.8), with G|Q instead of G if G € Uye(1,00) LI(R3)%.

Ifp € (1,00) and G € LP(Q°)3 U LP(R3)3, then V € W*P(Q°)? and VII € LP(Q°)3.

In particular, if G € C(Q)3, we have V.€ W?P(Q) and VII € LP(Q°)3 for any
€ (1,00).

corollaryC7.20) =c\3 33 . )
Corollary 6.2 For any G € Uye(19)L9(2)° or G € Uge(1,2)L4U(R?)°, there is a unique
function V = 20(0,G) € I/Vlicl(Q )3 and a um’que function II := 1I(0,G) € VV&,;(Q )

such that fQSHHdaz =0, V € Uyl 3, VV ¢ Uge(a/3, 00) LI(Q 9, D*V €
Uge(1,00) L Q)Y VII € Uye(1,00)LUQ)?, and such that (1.8) holds with X\ = 0, and
with with G|Q° instead of G if G € Ugeq,2)LI(R?)3.

Ifpe(1,2) and G € LP(Q°)3 U LP(R3)3, then the relations V € LA/P=1/271 Q%3 vV €
LA/P=YH7HQ)0 D2V e LP(Q9)Y, VII € LP(Q°)?, hold, in particular V|Qr € W2P(Qg)3
for R €[S, 00).

Moreover, if G € Cg° ( V3, then V € Lp( ) forp € (2,00), VV € LP(Q°)? for p €
(4/3, 00), D2V € LP(Q°)?" and VII € LP(Q°)? for p € (1,00).

The inequalities stated in the next theorem are preliminary versions of our resolvent esti-
mates. In these first versions, the unknowns still appear on the right-hand side.

corollaryC7.30) .
Corollary 6.3 Let A € K; and G € CP(Q)3. Put V := U(\,G), 11 := II(\,G). Then

V e C®(Q°)? and I € C®(Q°).
Abbreviate R(G, V. 1I) := [|Gllq + [VV[Qs11llq + [T Qs11lq for g € (1,00).
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Then |V, < €(p,q) Re(G,V,IT) for q € (1,2), pe ((1/g—1/2)7", 00) if ¢ > 3/2, p €
((1/g—=1/2)7", (1/q—2/3)7") if ¢ < 3/2, and for (p,q) = (6, 6/5) .

Moreover |VV |, < €(p, q) 8(G, V.1I) forq € (1,3], p€ ((1/g—1/4)7", (1/¢—-1/3)7"),
and for (p,q) = (2, 6/5).

Furthermore | D*V |Qr|, < €(q, R) &y(G, V,1I) for ¢ € (1,00), R € [S,00), |[D?*V]2 <
CRy(G, V1), [[VII]lg < &(q) Re(G, V,1T) for g € (1, 00).

In addition, if A\ # 0, the inequality |V ||, < €(p,q) |\|~2+/a=1/P) g (G, V,TI) holds for
g€ (1,2, pelq2].

There is ¢g € C such that 11 4+ ¢y € LP(Q°) for p € (3/2, 00). Put B := Bs,1\Bs. Then
forp € (4,6),

VIl + IVV Iz + [T+ coll2 < €(p) (IGIQ°]| 12 + IV |Bll2 + [T B|-1,2)- (6.1)(c7.30.60]

Proof: By Corollary 3.4, we have V € C®(Q°)3 and II € C=(Q°). Moreover Corollary
3.3 yields

VIQr € W2P(Qg)3, T|Qr € WIP(QR) for pe (1,00), R € [S,00). (6.2)[C7.30.100]

Recall that B = Bg11\Bs. Choose some function ¢ € C§°(R3) satisfying the relations
0<¢ <1, p|Bgiijs =1, @\Bg+3/4 = 0. Then Vo -V € C§°(B). Recalling that the pair
(V,1I) is a solution to (1.8), we note that V|9 = 0 and divV =0, so [,V -V dz = 0.
Therefore we may apply Theorem 2.7, setting © = ©(2,1,5,5 + 1)(Vy - V|B). This
means in particular that ® € C§°(B)3. Moreover, taking account of the last statement of

Theorem 2.7, we get
1Dll2p < C(p) [V - Vi < Clp) IVIB

1y for pe (1,00). (6.3)[¢7.30.110]

Let V, II, H denote the zero extension to R3 of (1—¢) V+9, (1—¢) Il and 2 Zi:l Ok OV
+ApV =719V — AD + 79D + AD — 11 Vi, respectively. Note that H € C5°(B)3. By
Theorem 2.7 and the choice of D, we have div V' = 0. Thus the pair (V, II) solves (3.5) with
V, 11, G replaced by ‘7, IT and (1—¢) G+ H, respectively. In view of Corollary 6.1 and 6.2,
we know that V € LP(Q°)% and VV e L"(Q°)? for certain p,r € (1,00). Therefore and be-
cause of the relations ® € C§°(B)3, V;, Il € C™ (Q°) for 1 < j < 3, an analogous property
is true for V and V'V, respectively. On the other hand, since (1 — ¢) G + H € C§°(R3)3,
the functions V := EMN x« Po((1 — )G + H), I := Q2( (1 — ¢) G + H) satisfy all the
properties listed in the first part of Corollary 4.3, with V', II, (1 — ¢) G + H in the place

of V, II, G, respectively. Thus we may apply Theorem 5.1 to obtain V' = V. This implies
there is ¢y € C with II + co = II. In view of the choice of ¢, and because D € CSO(B)S, we
may conclude that

VIBG1 = VIBs = VIBs1, T+colBgyy =T+ co|Bgyy =T[Bg,,.  (6.4)[c7.30.120]

From (6.2), (6.4) and the fact that IT possesses all the properties stated for II in Corollary
4.3, we may conclude that I + ¢ € LP(Q°) for p € (3/2, ), as claimed in Corollary 6.3.
In view of (6.3), we get

1H]lp < €p) (IVIBll1p + [ITBp) for p e (1,00). (6.5)(c7.30.80]
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Since V|02 = 0, Poincaré’s inequality applied on Qg1 yields

1Gllp + [VIBll1p + M Bll, < €(p) Rp(G, V,IT) - for p € (1,00). (6.6)[c7.30.130]

At this point we observe that the functions V and II may be estimated by applying
Corollary 4.1 with G replaced by (1 — ¢)G + H, and then referring to (6.5) and (6.6).
Taking account of the equations V = Vand II =11 + co, we thus see that the inequalities
in Corollary 6.3 up to but excluding (6.1), with V, I in the role of V and II, respectively,
follow from Corollary 4.1.

Put W := oV —®, T := @IL. Then W € C®(Q)3, T € C®(Q°), and the equa-
tions in (3.5) hold with V| II, G replaced by W, I', ¢ G — H, respectively. From (6.2), we
conclude that W|Qgy; € VVQ"Z(QSH)3 and I|Qgsy 1 € WH9(Qg.,q) for any ¢ € (1,00).
Moreover, since ® € C§°(B)3 and by the choice of ¢ and G, we have oG — H €
Cs°(Qs41)3, VV|BSJF3/4 =0, F|Bs+3/4 = 0 and W|9Q2 = V]|0Q = 0. This means in

particular that W|Qg1 € W 19(Qg41)? for any ¢ € (1,00).

Thus we see that we may apply Theorem 3.5, in particular the estimate at the end of
this theorem, as well as Corollary 3.6 with A = Qg41 and with V| II, G replaced by
WQst1, I'Qs41, ¢ G — H|2g41, respectively. Again taking account of (6.5) and (6.6),
and recalling that W and I' vanish outside Bgy1, we conclude that the first, second and
sixth (if A # 0) inequality in Corollary 6.3 with V replaced by W on the left-hand side
follow from Corollary 3.6. Inequalities (6.5) and (6.6) and the estimate at the end of
Theorem 3.5 yield that | D?*W ||, + ||VII||, is bounded by €(q) &, (G, V,1I) for q € (1, ).
This means that the third, forth and fifth estimate in Corollary 6.3 hold with V, II replaced
by W, T, respectively, on the left-hand side. Since V=V + W, Il = I+ I', we have thus
proved the estimates up to but excluding (6.1) in Corollary 6.3.

In order to derive (6.1), take v € C§°(R?)3. With (2.1), we get ||v|B|l2 < C(S) ||7|Bll¢ <
C(9) |IVBs|ls < C(S)||V7|l2. Moreover, by Theorem 2.7, in particular by its last state-
ment, we obtain | D]|12 < €||Ve - V|2 < ||V|B]2. Using these inequalities, as well as the
relations ® € C§°(B)? and supp(Vy) C B, we get

[, 89 v de] <€9DI 9112 < €VIB2 [Vl

3 [ 2-qda| < €Dl 1Bl < €VIBl [V

3 3
[ oo s =| [ (der=Y 00 Vds| < VIBI V1]
R =1 R k=1

| B-12 [V7ll2-

/ Ve -~vdx| <
R3

It is obvious how to handle the remaining terms of the integral f H -~ dx. Thus, collecting
the preceding estimates, we arrive at the inequality |H||—12 < €(||V|B||2 + [[II| B]|-1,2)-
Noting that supp(l — ¢) C B5+1/4 and Q C Bg, we obtain (1 — ¢)y € C(Q°)? for
v € C§°(R3)3. On recalling that supp(Ve) C B and ||7|B|l2 < €||V7y||2, we further find
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that [V((1—¢)7)|l2 < €[|[Vyll2 for v € C§°(R?)?. As a consequence [|(1 — ¢) G||—12 <
¢ ||GIQ°||-1.2. In view of the estimate of ||H||_1 2 given above, this means

(1= ¢) G+ Hl-12 < C(|GIQ°||—1.2 + VB2 + [T B||-1,2)- (6.7)[c7.30.140]

Next we remark that the functions V and II may be estimated by making use of Theorem
4.3 and Lemma 4.1 with G replaced by (1 — ¢) G + H. Again recalling that V = XZarld
II = II + ¢, we may then conclude that inequality (6.1) with V, II replaced by V, II,
respectively, follows from Theorem 4.3, Lemma 4.1 and (6.7).

In order to estimate W and I', we fix a function ¢ € C§°(B) with ¢ > 0 and fB Cdx > 0.
Put ¢, := (fBCd:v)*l JgT ¢dx. Corollary 3.5 with A = Qg4 and with G replaced by
¢ G — H|Qg41 imply that

Wiz + IWllp + I = c¢[Qs41ll2 < €p) lo G — H[Qs41]| 12 for p € (4,6).

Obviously [l G = H[Qs41]-12 < [l G = H[Q |12 < 0 G| —12+ [ H| -1.2, 50 we may
conclude with the estimate of |H||_1,2 we derived above that for p € (4, 6),

Wl + W]y + IT = c¢[Qs41]]2 < €(p) (||G|§C||—1,2 + VB2 + [|TI| B]| -1,2)-

Since V = V+W, II = II+T, we arrive at inequality (6.1), but with the term €- llec|Q2s41l2
added on the right-hand side. However, since ¢ € C§°(B), hence ¢ ¢ € C§°(B), we get
with Poincaré’s inequality on B and the definition of I' that

lecls ]l < €lec| < € /B My o] < CIIB| 12 o Cllis < €TB] 1a.  (6.8)[c7.50.150

In the last inequality, we subsumed the term ¢ (|12 in the constant €. It is in view
of (6.8) that we introduced the condition [, 7({dz = 0 in Corollary 3.5. Estimate (6.8)
completes the proof of (6.1). O

Now we may prove our main results, beginning with

(theoremT7.10) —
Theorem 6.1 Let A € K., ¢ € (1,2), G € LY(Q")3.

Then | B\, G)llp, < €p1,q) [Gllg forpr € ((1/g—1/2)71, 00) if g > 3/2, pr € ((1/q -
1/2)7%, (1/q—2/3)71) in the case ¢ < 3/2, and for py =6 if ¢ = 6/5.

Morcover V(0 @)y < €2, ) |Gl for ps € ((1/g—1/4)", (1/g—1/3)""), and for
p2=2if ¢=6/5.

In addition, if X # 0, we have | B\, G)|lps < €(3,q) |N2HA/a=1p3) |G|, for ps € [g,2].
Finally || D*B(\, G)|Qr|lq < €(g, R) |G|l for g € (1,00), R € [S,00), and |[VII(\, G)|lq <
€(q) [|Gllq for q € (1,00).

Proof: We proceed by contradiction, similarly to the approach in [20] and [3]. Take
P1, P2, p3 as in the theorem, and let R € [S + 1, c0). Abbreviate k := 2 —4(1/q — 1/p3).
Suppose there is no constant Cy > 0 such that

16 (2; &)llpy + [IVD(2, 9)lp2 +sup 0" [IxXBr B(0: d)llps + ID*B(0,9)|Qmr]ly  (6.9)[17.10.60]

+|VII(0,¢)|lq < Colldlly for ¢ € C5°(Q°), 0 € K-
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Then, for any n € N, there is some g, € K, and some function ¢, € C§° (60)3 with ~,, >
n[|@nllg, where yp, := (D (on, én)llp, + VU (on, én)llpe +suprso [on]™ [XBr B(on, dn)llps +
D2V (0n, n) QR+ VI (0n, ¢n)|lq- Note that by the regularity properties listed in Corol-
lary 6.1 (o, # 0) or (6.2) (o, = 0), we have v, < oo for n € N. This is true even
if o, = 0 for some n € N, in which case the function U(gn, ¢,) need not belong to
LP3(Q°)3. However the term suppsg|on|® X5y B(0n, ¢n)|lps then vanishes. We do not
use the expression |on|" [|B(on, én)llps for 0 € K., ¢ € C(Q°)? because in the case
o = 0, it might lead to products of the form 0 - co, which we want to avoid. Define
Vn = Y B (0n, On)y 0n = v (00, On), Gn = V5! én for n € N. Then Corollary 6.1 —
6.3 and 3.4 yield v, € C°(Q°)3, 0, € C®°(Q°)?, v,|Qr € W29(QR)?,

—Avp + 7 Ovp + 0n Uy + Vo, = gn, dive, =0, v,]0Q=0 for ne€N. (6.10)[T7.10.70]

Since v, > n||énllq, we further get
Fenllp: + 1V onllos + suplonl™ x5y valles + 1D*vn| QR Nl + IVonllg = 1 = nlgally (6.11)[17.10.80]
>

for n € N. As a first consequence of (6.11), we note that ||gn|l; — 0. By the choice
of I(gn, ¢n) (Corollary 6.1 and 6.2), we have fQS+1 onpdr = 0, hence by a Poincaré’s
inequality [|on|Qst1lly < €(¢) [[Von|Qs+1lly < €(q) [[Vonllq for n € N. Thus we may
conclude from (6.11) that the sequence (0,|Qs+1)n>1 is bounded in Wh4(Qg,1). Since
p1>q, p2 > q, R > S+1, it further follows from (6.11) that the sequence (vy,|Qs4+1)n>1 is
bounded in W%4(Q2g.1)3. We may conclude from (6.11) and from the preceding remarks
on (op|Qs+1)n>1 and (vy|Qs41)n>1) that there is a subsequence of ((Un,O'n,Qn)), also
denoted by ((vn, Onsy On) ), with the following properties: v, — V in LP? (§c>3 for some
Ve L (Q°)3, gup, — VO in LP2(Q%)? for some VW e LP2(Q°)3 (1 <1 < 3), Vo, — ~
in L9(Q°)3 for some v € LI(Q)3, [|va|Qs41 — Z|l14 — 0 for some Z € WhH(Qg41)3,
|on|Qsi1 = Y]lg — 0 for some Y € L9(Qg41)3, and g, — ¢ in C for some o € K.

By considering the sequences ([qe vn - 09 dz) and ( [qe Qv - tp dx) with [ € {1, 2, 3}, ¢ €
Cee(Q°)3, we find that V e WL'(Q%)? and 9V = VO for 1 < 1 < 3. Similarly we
get VIQsi1 = Z, Y € Wh'(Qsy1), VY = 4|Qs11. Since gV = VO (1 <1 < 3), we
conclude that VV € LP2(Q2")?. The equation st+1 ondr =0 for n € N and the fact that
lon|Qss1—Y || = 0 yield st+1 Y dxz = 0. We further conclude that ||v, —V|Qgs41]/1,4 = O,
so V|02 = 0 by (6.10). The latter reference, the relation [/g,||; — 0 and the equation
oV =Vv® (1 <1< 3)imply that divV = 0 and that (3.1) as well as (3.2) hold with
A=0Q° G =0, A=, and with the term —IIdiv ¢ in (3.2) replaced by v-1). Recalling that
Ve LM (Q°)3, VV € LP2(Q°)?, we may now apply Theorem 5.2 to obtain V = 0. Thus
(3.2) reduces to the equation [ge 7y -t dx = 0 for ¢ € C§° (Q%)3, which means that v = 0.
Since VY = 7|Qg4+1 and st+1 Y dx = 0, as mentioned above, we get Y = 0 (Corollary
2.2). In this way we arrive at the relations ||v,|Qs41]/1,4 = 0 and |0y |Qs41]lq4 = O.

On the other hand, referring to Corollary 6.3 with V, I replaced by v, = U(on, v, ¢dn)
and o, = I(on, ¥, ' ¢n), respectively, we see that the left-hand side of (6.11) is bounded
by a constant times ||gn|lq + [[vn|Qs+1]|1,¢ + [[on|Qs+1]lg (n € N). But by what we have
found before, this latter term tends to zero for n — oco. Thus the left-hand side of (6.11)
must equally tend to zero, which is a contradiction to (6.11). So we have shown there is
Cy > 0 such that inequality (6.9) holds for ¢ € C§°(Q°)? and ¢ € K.
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In order to extend this result to G € L(Q°)?, fix some such function G, and let (¢,) be
a sequence in C§°(Q°)3 with |G — éully — 0. Let 0 € K,. If o # 0, then the estimate
in Theorem 3.7 yields |V — V,[l2,y — 0 and |VII — VIL, ||, — 0, where we used the
abbreviations V = U(p, G), Il =1l(o,G), Vi, = BV(o, ¢p) and II,, = l(on, ¢n), for n € N.
If o = 0, we use Theorem 3.6 to obtain ||V — Vyull2¢/2—¢) = 0, [V(V = Vo)llag/a—q) —
0, |D*(V — V)|l = 0 and ||[V(II — II,)|l; — 0. On the other hand, since inequality
(6.9) was shown to be valid for ¢ € C3°(°)3, we see that the sequence (V},) converges
in LP1(Q°)3, (VV,,) in LP2(Q°)%, (Jo|® V;,) in LP3(Q°)% if o # 0, (D?*V,|QR) in LI(Qg)%¥"
and (VII,) in L9(Q%)%. Since LP-convergence implies pointwise convergence a. e. of a
subsequence, we may now conclude that the limit functions of the preceding sequences are
V, VV, |o|*V, D*V|Qg and VII, respectively. Thus inequality (6.9) remains valid when ¢
is replaced by G. This proves the theorem. O

(theoremT7.20) e
Theorem 6.2 Letp € (4,6), A € K, and G € C§°(Q°)3. Then, for some co € R, we have

1B, G)llp + VB, G2 + [T, G) + coll2 < €(p) |GI2|-12- (6.12)[17.20.10]

Proof: We again proceed by contradiction. Suppose there is no constant Cy > 0 such
that

162, 9) I + IV D(2. 9)ll2 + T2, ¢) + (o, §)ll2 < Co |$Q |12 (6.13)[17.20.30

forpe K;, ¢ € CF° (Q°)3, where ¢(p, ¢) € C is chosen in such a way that II(g, ¢)+c(o, ¢) €
L7(Q°) for any r € (3/2, 00); see Corollary 6.3. Then, for any n € N, there exists
on € K; and ¢, € 080(50)3 such that v, > n ||¢n’ﬁc||—1,27 where 7, := Hm(gnad)n)np +
VD (0n, dn)ll2 + [[T(0n, &n) + c(0n, én)|l2. Note that «, < oo for n € N by the choice of
¢(0n, ¢n) and by Corollary 6.1 and 6.2. We define

Un 1= 77?1 UV(on, dn), on = %;1 (H(Qna¢n) + c(on, Pn) )7 In = 71:1 ¢n for neN.

Then, as in the proof of Theorem 6.1, the pair (vy, 0,) satisfies (6.10) (n € N). The
regularity properties listed in Corollary 6.1 in the case g, # 0 and in Corollary 6.2 if
on = 0 are valid for v,, o, in the place of V' and II, respectively. Moreover Corollary 6.3
yields o, € L’"(QC)3 and vy, j, 0y € Coo(ﬁc) for r € (3/2, @), n € N, 1 < j < 3. The
inequality v, > 1 ||¢n|Q°||_12 implies that

lonllp + I Vvnllz + llonllz =1 2 7 |ga|Q°| 12 for n €N. (6.14)[17.20.40]

As a first consequence of (6.14), we note that ||gn|§c”fl,2 — 0. Fix some function
¢ € C§°(Bg+1) with (|Bs = 1. Put B := Bgy1\Bg. Since v,|0Q = 0 according to
(6.10), and because p > 2, v, € LP(Q°)? and Vv, € L*(Q)?, it follows that ¢ v,|Qs;1 €
WiA(Qs41)® and [Conl@s11ls < €0) (lonlly + [Vualla), and similarly [oal Bz <
C(p) (lvnllp + 1| Vun||2), for n € N. These observations, (6.14) and Theorem 2.3 allow us to
choose a subsequence of ( (vy,0n, on) ), also denoted by ( (vy,on, 0n) ), with the following
properties: v, — V in LP(Q°)3 for some V € LP(Q°)3, dv, — V¥ in L2(Q%)? for some
VO e L2 (1 <1<3), ConlQ5:1 — Z in Wy?(Qg41)? for some Z € Wy*(Qs41)%,
|vn|B = Y]l2 — 0 for some Y € L*(B)?, o, — II in L*(Q°)? for some I € L*(Q°)?,
|on|B —T||-12 — 0 for some I' € L?(B), and g, — ¢ in C for some ¢ € K.
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By the reasoning indicated in the proof of Theorem 6.1, we may conclude that V &
Wie (@), 9V =V for 1 <1 <3, (V|Qsi1 = Z, VIB =Y, H|B = I'. Therefore
VV € L2( 2, Nlvn — VIBll2 = 0 and |jo, — H|B||—12 — 0. Since (V|Qs11 = Z €
W *(Qg541)%, ¢|Bs =1 and Q C Bg, we get V[0 = 0. Moreover, recalling that 9,V =
V(l) for 1 <1< 3 and [|gn|Q)|-12 — 0, we ' may deduce from (6.10) that divV = 0 and
that (3.1) as well as (3.2) hold with A = Q°, G =0and A = o. Since V € LP(Q°)? and
VV € L*(Q°) we may at this point apply Theorem 5.2 to obtain V' = 0. Now (3.2)
yields [qe IIdive) = 0 for 4 € C5°(Q°)3, implying that IT € I/Vllo’cl (Q°)3 with VII = 0. As
a consequence IT = ¢ a. e. for some ¢ € C (Corollary 2.2). But IT € L?(Q%), so I1 = 0. In
this way we arrive at the relations ||v,|B||2 = 0 and ||o,|B||-1,2 — 0.

On the other hand We may apply (6.1) with V, II replaced by v, = B(0n, 75 én), on =
H(Qm Yn ¢n) + ’)’n (Qn, ¢n) to obtain

lonllp + [Vvnllz + llonllz < €(p) (19al2l-12 + l[onl Bll2 + llon| Bl -12)  for n € N.

It follows that the left-hand side of this estimate tends to zero for n — oo, which is a
contradiction to (6.14). As a consequence, there must be a constant Cy > 0 such that
(6.13) holds. This proves Theorem 6.2. O

(theoremT7.40) _12,=c ) ) )
Theorem 6.3 Let A € K, and G € Dy, (). Then there is a unique function V :=

BV(\,G) € Dé’2(ﬁc)3 such that divV =0,

/c(vv Y+ TOHV Y+ AV ) de = Gp)  for b € CP(Q°)? with divey = 0. (6.15)[17.40.10]
Q

This function V satisfies the inequality ||V ||, + |[VV |2 < €(p) |G]|-1,2 for p € (4,6].

Proof: Since Dy*(Q°)? ¢ LS(Q)3, VIV e L2(Q°)? and W|9Q = 0 for W € Dy*(Q°)?,
the uniqueness statement in Theorem 6.3 follows from Theorem 5.2. Concerning existence,
Theorem 2.6 yields a sequence (¢,,) in C5°(Q°)? with |G — ¢n||_12 — 0. Therefore, by
the estimate in Theorem 2.5 and (6.12), the sequence (U(),¢,)) converges in LS(Q°)3,
and the sequence (VU(A, ¢y)) in L2(Q°)%. Thus there is a function V := B(\,G) €
LS(Q°)? n W (Q%)? with VV € L2(Q°)? such that ||V — B(\, ¢,)|ls — 0 and |[VV —

B(\, ¢n)|l2 = 0. Then [|[V —B(\, ¢p,)|Qs]l1,2 — 0, so V|02 = 0. We thus have found
that V € Dy*(Q°)%. The relations |V — B(\, ¢,)|ls — 0 and [|[VV — V(A ¢n)2 — 0
and the fact that U(\, ¢,,) satisfies (1.8) with ¢, in the place of G imply (6.15). Again
referring to (6.12), we get || B\, én)llp + VB, ¢n)ll2 < €0n|Q|—12 for n € N and

€ (4,6). In view of the estimate in Theorem 2.5, the preceding inequality also holds for
p = 6. These observations imply the estimate stated in Theorem 6.3. U

As an immediate consequence of Theorem 2.6, 5.2 and the regularity properties of solutions
to (1.8) mentioned in Corollary 6.1, 6.2 and in Theorem 6.3, we obtain that the functions
U(\, G) and V(A G) coincide if G has suitable regularity:

Corollary 6.4 Let A € K, and p € (1,00), with either A\ # 0 or p < 2. Let G €
LP(Q°)3 N Dam(ﬁc)?). Then the function B(\, G), as defined in Corollary 6.1 (A #0) or
6.2 (A\=0), and the function B(\, G) introduced in Theorem 6.3 coincide.
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We add a technical remark which is relevant for the proof of the ensuing theorem, which

is another one of our main results.
(lemmal7.10) —
Lemma 6.1 Let A € K., p € (1,2) in the case A =0, p € (1,00) if X # 0, G € LP(Q")3.

Then B(X,G) = B(A, Pp(G)).

Proof: For ¢ € C°(Q°)3 with divey) = 0, we have Joe G - hdx = [5¢Pp(G) - Y dx
(second and forth equation in Corollary 2.5). Therefore (3.1) is satisfied with V' =
B(A\,G) and V = U(A, Pp(G)). Thus, due to the integrability properties of U(A, G)
and U( A, Pp(G)) mentioned in Corollary 6.1 (A # 0) and 6.2 (A = 0), and because
B(X,G)|0Q = V( A, Pp(G))|02 = 0. we may apply Theorem 5.2, which yields T(\, G) =
(A, Pp(Q)). O

7.30
(theorenT >Theorem 6.4 For p € (1,00), the estimate | B(A, G)|l, < €(p) |N"2||G|, holds for G €

LP(Q°)3, A € K,\{0}.

Proof: Let A € K,\{0}. For p € (1,00), put D, := H,(2°) N W2P(2°)3 N W, P(Q)3. We
will apply some of our preceding results both for 4 =1 and yu = —1, with u being the pa-
rameter fixing the sign of the Oseen term in (1.8), (3.1), (3.2) and (3.5). Therefore we have
this parameter appear explicitly in our notation, denoting by (QI(“)()\, G), I (X, G) ) the
solution of (1.8) introduced in Corollary 6.1, for p € (1,00), G € LP(Q°)3, u € {-1, 1}.
In addition we set AY) (V) := Pp(—=AV + 70V + AV) for V € D,

Let u € {~1,1}, p € (1,0), G € H,(Q"), and abbreviate V := UMW (\ Q), T :=
MW (X, G). Then V € W2P(Q%)3, and the pair (V,1II) is a solution of (1.8); see Corollary
6.1. In particular we have V]0Q = 0 (hence V € Wol’p(ﬁc)?’) and div V' = 0. Thus Theorem
2.2 implies in particular that V € Hp(ﬁc). These observations mean that V' € D,. Since
VII € LP(Q°)% and the pair (V,II) solves (1.8), it follows with the third equation in
Corollary 2.5 that Ql;(,“)(V) = P,(G). But G € H,(Q°), so QL;“)(V) = @ again by Corollary
2.5. We have thus shown that Qlé“) :Dp Hp(ﬁc) is onto, with

AW (YW(N,G)) =G for G € Hy(Q). (6.16)[17.30.20]

Let V € D, with Ql](gu)(V) = 0. Obviously —AV + u70,V + AV € LP(Q°)3, so we may
put T := —G,(~AV + p78;V + AV). Note that TI € W.P(Q°) with VII € LP(Q°)?
by Theorem 2.11. This latter reference and the assumption Qlé” )(V) = 0 imply the pair
(V,10) is a solution of (3.5) with G = 0. Since V € D, € WyP(Q%)3, we additionally have
V0092 = 0, so the pair is a solution of (1.8) with G = 0. Theorem 5.2 now yields V' = 0.
Thus the operator Ql,(f ) is one-to-one. At this point we have found that Ql,(j“ ) D, — H,(Q°)
is bijective, with (6.16) implying

(Q[I()u))—l(G) =gW(\G) for Ge H,(9). (6.17)[T7.30.30]

This latter equation, the fact that B\, Q) e D,,, and Theorem 3.7 yield that (Qll()” ))_1 :

H,(Q) = H,(Q°) is bounded.

Let us write 2T, A~ instead of A1 and Ql(*l), respectively. The notation U (\, G) and
20~ (), G) are to be understood in an analogous way, for G € LP(Q°)3, p € (1, 00).
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Integrations by parts and the second and forth equation in Corollary 2.5 yield fﬁc Ql;; (V)-
Wdz = [gV - (W)dz for p € (1,00), V € Dy, W € Dy, and for p € (1,00). It follows
again with the second and forth equation in Corollary 2.5 that the operator (2[;)_1 o Py
is dual in L?(Q°)? to @A) toP, (pe(l,00)).

Let the operator norm of linear bounded operators § : LP(Q°)3 — LP(Q°)3 be denoted by
. C

I {11y, that is, [[[§]llp := sup{[IFV)Ilp/IV]l, : V € LP(Q7)?, V # 0}, for p € (1, 00). Then

a functional analytical principle allows us to conclude that

@)™ o Pollly = 1A~ o Pyllly  (p € (1,00)). (6.18)[17.30.40]

Now let p € (2,00). Then p’ € (1,2), so by Theorem 6.1 with ¢ = p3 = p’ we know
that | B~ (\,G)|y < €@)N2|G|l,y for G € LP(Q°)3. Using (2.8) and (6.17), we
may conclude that |H(Ql;,)_1 o Pyllly < €@) A2 In view of (6.18), we thus obtain
11(5) " o Pylll, < €(p) |A|72. Here p was arbitrarily taken from (2,00). If p € (1,2), the
preceding inequality follows directly from Theorem 6.1, (6.17) and (2.8). In order to handle
the case p = 2, we interpolate between L3(Q°) and L3/2(Q°)3. To this end, we note that
by (6.17), Lemma 6.1 and the first equation in Corollary 2.5, we get (A$)~1(P3(G)) =
T (A, P3(G)) =0T (N, G) =T (X, P3ja(G)) = (Q/l;_/2)_1(7)3/2<G)) for G € L3(Q°)3 n
L32(Q%)3. Since we showed that the estimate 1)~ o Ppllly, < €(p) [A|72 is valid for
p € (1,00)\{2}, we may now conclude by the Riesz-Thorin interpolation theorem that it
holds for p = 2 as well. Thus we have proved this estimate for any p € (1,00). Com-
bining it with Lemma 6.1 and (6.17), we finally get | U (X\, G)|l, = [T (X, Pp(@))|p =
1) (Pp(G))llp < €p) A2 |Gl for G € LP(Q)?, p € (1, 00). O
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