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Paul Deuring

Université du Littoral Côte d’Opale, Laboratoire de Mathématiques Pures et Appliquées
Joseph Liouville, F-62228 Calais, France.

Abstract

We consider the Oseen system with resolvent term in an exterior domain in R3,
supplemented by homogeneous Dirichlet boundary conditions. Under the assumption
that the resolvent parameter λ is close to zero and <λ ≥ 0, λ 6= 0, we estimate the Lp-
norm of the velocity against the Lp-norm of the right-hand side, times a factor C |λ|−2,
with C > 0 independent of λ. Such an estimate cannot hold for this range of λ if |λ|−2

is replaced by |λ|−κ with κ < 3/2, and there are indications that κ ∈ [3/2, 2) cannot
be admitted either. We present various other Lp-estimates of Oseen resolvent flows
for the same range of λ. Our article is complementary to the work by T. Kobayashi
and Y. Shibata, On the Oseen equation in the three dimensional exterior domains,
Math. Ann. 310 (1998), 1–45, where Oseen resolvent estimates are derived under the
assumption that |λ| ≥ c0, for some arbitrary but fixed c0 > 0, with the constant in
the resolvent estimate depending on c0.

AMS subject classifications. 35Q30, 65N30, 76D05.
Key words. Incompressible Navier-Stokes system, Oseen term, resolvent esti-

mate.

1. Introduction

An incompressible viscous flow around a rigid body moving steadily and without rotation
is usually described by the Navier-Stokes system with an Oseen term,

∂tu(x, t)−∆xu(x, t) + τ ∂x1u(x, t) + τ
(
u(x, t) · ∇x

)
u(x, t) +∇xπ(x, t) = f(x, t), (1.1) 1

divxu(x, t) = 0 for t ∈ (0,∞), x ∈ Ω
c

:= R3\Ω,

where the open, bounded set Ω ⊂ R3 represents the rigid body, and τ ∈ (0,∞) is the
Reynolds number. The unknowns of this system are the velocity field u and the pressure
field π of the fluid. The velocity in question is the “velocity above ground”. This means
that the fluid particle located at point x at time t moves with velocity u(x, t) with respect
to a fixed point in space, where x1, x2, x3 are the coordinates of the particle with respect
to a reference system which adheres to the rigid body, and so is not attached to the fixed
point in space. This type of velocity has two advantages from a mathematical point of view.
Firstly, the rigid body is represented by a set that does not depend on time, and secondly,
the velocity of the fluid vanishes at infinity in the sense that u(x, t) → 0 for |x| → ∞,
a condition that may be expressed in weak form by the relation u( · , t) ∈ Lr(Ω

c
)3 for

t ∈ (0,∞), where r is some number in [1,∞). But on the other hand, an additional term,
that is, the Oseen term τ ∂x1u(x, t), arises in system (1.1), complicating some aspects of
the mathematical theory related to (1.1). In the work at hand, we will deal with such an
aspect. In fact, we consider the Oseen resolvent system

−∆U + τ ∂1U + λU +∇Π = G, divU = 0 in Ω
c
, (1.2) 3
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as well as the stationary Oseen system

−∆U + τ ∂1U +∇Π = G, divU = 0 in Ω
c
, (1.3) 2

which may be considered as a special case of (1.2) (λ = 0). In order to explain what we
want to show with respect to (1.2) and (1.3), let us first recall some facts about the Stokes
resolvent system

−∆U + λU +∇Π = G, divU = 0 in Ω
c
, (1.4) 4

under Dirichlet boundary conditions

u|∂Ω = 0. (1.5) 5

If S ∈ (0,∞) with Ω ⊂ BS , p ∈ (1,∞) and ϑ ∈ (π/2, π), then for any λ ∈ C\{0}
with | arg λ| ≤ ϑ, there is a unique pair of functions (U,Π) such that U ∈ W 2,p(Ω

c
)3 ∩

W 1,p
0 (Ω

c
)3, Π ∈ W 1,p

loc (Ω
c
), ∇Π ∈ Lp(Ω

c
)3 and

∫
BS\Ω Π dx = 0, and such that (1.4) is

satisfied. In addition, there is a constant C > 0, only depending on Ω, p and ϑ, such that

‖U‖p ≤ C |λ|−1 ‖G‖p for λ, G and U as above; (1.6) 6

see [18], [3] or [5], [6], [7] or [25]. Inequality (1.6) is a basic tool in the mathematical study
of the Navier-Stokes system

∂tu(x, t)−∆xu(x, t) + τ
(
u(x, t) · ∇x

)
u(x, t) +∇xπ(x, t) = f(x, t),

divxu(x, t) = 0
(
t ∈ (0,∞), x ∈ Ω

c )
,

and is applied directly or indirectly in a very large number of papers dealing with this
system, usually in the context of the theory of analytic semigroups.

It is well known that the existence result stated above for solutions to (1.4), (1.5) does
not remain valid in the Oseen case, nor does inequality (1.6) for the same range of λ.
In fact, it was shown in [2] and [14, Theorem 3.1] that if τ2<λ ≤ −(=λ)2, then there
are some functions G ∈ Lp(Ω

c
)3 such that a solution to (1.2), (1.5) need not exist or

be unique, no matter what is the choice of p ∈ (1,∞). As a consequence, since the set
{λ ∈ C\{0} : τ2<λ ≤ −(=λ)2} intersects the sector {λ ∈ C\{0} : | arg λ| ≤ ϑ} for
any ϑ ∈ (π/2, π), inequality (1.6) indeed cannot be valid for the same range of λ as in
the Stokes case. Therefore it may be asked to which extent estimate (1.6) carries over to
solutions of the Oseen resolvent system (1.2) under Dirichlet boundary conditions (1.5).
Answers to this question determine how semigroup theory may be used in order to study
solutions to (1.1).

As far as we know, the most detailed results up to now about existence of solutions to (1.2),
(1.5) and about estimates of these solutions are due to Kobayashi, Shibata [19]. According
to [19, Theorem 4.4], for any λ ∈ C\{0} with <λ ≥ 0, p ∈ (1,∞) and G ∈ Lp(Ωc

)3, there
is a unique solution (U,Π) to boundary value problem (1.2), (1.5), where the notion of
“solution” is to be understood in the same sense as described above in the context of (1.4),
(1.5). Let us denote the velocity part U of this solution by V(λ,G). Then, again by [19,
Theorem 4.4], for any p ∈ (1,∞) and C0 ∈ (0,∞), there is a constant C > 0 depending
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on Ω, p and C0, such that inequality (1.6) is valid for G ∈ Lp(Ωc
)3, λ ∈ C with <λ ≥ 0

and |λ| ≥ C0, and for V(λ,G) in the place of U .

This raises the question as to whether estimate (1.6) remains valid when |λ| tends to 0 in
the right half of the complex plane. A negative result in this respect was derived in [12].
It states that even if p = 2 and Ω = ∅ (hence Ω

c
= R3), there cannot be a constant C > 0

and an exponent κ ∈ [0, 3/2) such that

‖V(λ,G)‖p ≤ C |λ|−κ ‖G‖p (1.7) 7

for any G ∈ Lp(Ωc
)3, λ ∈ C\{0} with <λ ≥ 0 and |λ| ≤ 1. The condition |λ| ≤ 1 may be

replaced by |λ| ≤M for any M > 0, as follows from [19, Theorem 4.4].

It is the aim of the present article to prove a positive result in this respect, that is, estimates
of solutions to (1.2), (1.5) remaining valid when |λ| tends to zero, provided that <λ ≥ 0. In
particular we will show that inequality (1.7) holds with κ = 2 for any p ∈ (1,∞) and any
λ ∈ C\{0} with <λ ≥ 0 and |λ| ≤ (τ/2)2; see Theorem 6.4. In view of [19, Theorem 4.4],
the quantity (τ/2)2 can be replaced by any constant M > 0. Of course, the negative result
in [12] does not exclude that inequality (1.7) holds even for some κ ∈ [3/2, 2). However,
we will derive our estimate by reducing it to an analogous inequality in the whole space R3

under the assumption p ≤ 2; see the proof of Theorem 6.1. This latter inequality seems to
be sharp as concerns the exponent κ = 2, so we would conjecture that the same is true for
(1.7). In addition to (1.7), we will show various other estimates of solutions to (1.2), (1.5),
some of them involving upper bounds independent of λ, and then being valid for solutions
to the Oseen system (1.3) as well. We refer to Theorem 6.1, 6.3 and 6.4 for details.

As concerns interesting applications of our results, we mention a companion paper [9],
which actually motivated the work at hand, and which deals with stability of solutions to
the stationary Navier-Stokes system with Oseen term,

−∆U + τ ∂1U + τ (U · ∇)U +∇Π = G, divU = 0 in Ω
c
,

under the assumptions that all eigenvalues of a certain linear operator have negative real
part. Some of our estimates from Theorem 6.1 and 6.3 constitute key elememts of the
theory developed in that reference.

Let us indicate how we proceed in order to prove our results. In section 2, we collect various
auxiliary results related to subjects like, for example, the Helmholtz decomposition, the
divergence equation divV = F, and the decay behaviour of functions V ∈ W 1,1

loc (Ω
c
) with

∇V ∈ Lp(Ωc
)3 for some p ∈ (1, 3). These results are essentially well known, so in order to

prove them, we limit ourselves to giving references, except for some details which we think
are not so well documented in literature. Section 3 recalls known results about differential
equation (1.2), (1.3) or (1.4). Concerning proofs, we are guided by the same principle as in
section 2: we cite references, additionally elaborating some details if this seems helpful for
the reader. The subject of Section 4 are Lp-estimates of solutions to the Oseen resolvent
system or to the Oseen system in the whole space R3. As our main tool in this context,
we represent these solutions by a convolution integral involving a fundamental solution of
the scalar Oseen resolvent equation −∆v + τ ∂1v + λ v = h or the scalar Oseen equation
−∆v+τ ∂1v = h. Section 5 provides uniqueness results for solutions of the Oseen resolvent
system and the Oseen system, respectively, first in the whole space case (Theorem 5.1),
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and then in the exterior domain case under Dirichlet boundary conditions (1.5) (Theorem
5.2). Although we only slightly generalize existing uniqueness results, a considerable effort
is necessary to achieve this generalization. Finally, in section 6, we turn to Lp-estimates
of solutions to boundary value problem (1.2), (1.5) (Oseen resolvent system) and (1.3),
(1.5) (Oseen system). Our general approach consists in reducing the estimates in question
to the whole space case and the bounded domain case. This approach was applied in [20]
to the Stokes system, in [3] to the Stokes resolvent problem (1.4), (1.5), and in [19] to
problem (1.2), (1.5). The reasoning we use in order to make this method work in our
context is rather technical. This should be expected, however, because Lp-estimates of
solutions to the Oseen resolvent system, with upper bounds depending on λ in an explicit
way or being independent of λ, are difficult to come by. We recall in this context that
estimate (1.6) of the Stokes resolvent is not easily accessible either.

In Theorem 6.1 and 6.4, solutions to problem (1.2) are estimated in the form ‖U‖p1 ≤
C ‖G‖q, ‖∇U‖p2 ≤ C ‖G‖q and ‖U‖p3 ≤ C |λ|κ ‖G‖q, with constants C independent of λ
and certain exponents κ, for a certain range of q, p1, p2 and p3. Actually a larger range
of values for p1, p2 and p3 may be admitted. This is because, firstly, the approach by
duality and interpolation in the proof of Theorem 6.4 may be applied in the case p3 6= q
as well, and secondly, because [11, Theorem 10], dealing with the whole space case and
reproduced as Theorem 4.1 below, can be extended to certain limit values of p1 and
p2 by applying the Hardy-Littlewood-Sobolev inequality instead of Young’s inequality in
the reasoning presented in [11]. That latter substitution was already used in the case
p1 = 6, p2 = 2, q = 6/5, which is addressed in [11, Theorem 10] and Theorem 6.1.
However, as concerns the inequality ‖D2U‖q ≤ C ‖G‖q, which we only proved for q = 2
in the case λ 6= 0 (see Theorem 6.1), we have doubts that it may be extended to a larger
range of q, in spite of a remark to the contrary in [19, beginning of the proof of Lemma
3.4]. In fact, it is not clear how to come by such an estimate in the whole space case (proof
of Theorem 4.2). As a consequence of this situation, we could not extend Theorem 6.3 to
cover an inequality of the form ‖∇U‖q ≤ C ‖G‖−1,q for some q 6= 2 if λ 6= 0 because such
an estimate reduces to an inequality of the form ‖D2U‖q ≤ C ‖G‖q (proof of Theorem
4.3).

Let us introduce some notation. The set Ω and the parameter τ ∈ (0,∞) introduced
in Section 1 will be kept fixed throughout. Recall that Ω is supposed to be open and
bounded, with C2-boundary and with Ω

c
connected. Put Kτ := {λ ∈ C : <λ ≥ 0, |λ| ≤

(τ/2)2}. For R ∈ (0,∞) with Ω ⊂ BR, we set ΩR := BR\Ω. It will be convenient to fix
a real number S ∈ (0,∞) with Ω ⊂ BS . For technical reasons, we will not only consider
differential equation (1.2), but also its adjoint equation. In order to work on both problems
simultaneously, we take µ ∈ {0, 1} and introduce the following boundary value problem:

−∆U + µ τ ∂1U + λU +∇Π = G, divU = 0 in Ω
c
, U |∂Ω = 0. (1.8) 10

In the proof of Theorem 5.1 and 6.4 below, some results preceding these theorems and
involving the quantity µ are exploited both in the case µ = 1 and µ = −1. Therefore the
parameter µ is not fixed. Instead, wherever it is involved, it should be considered as a
variable with range {−1, 1}. But this will not be stated explicitly in what follows.

We write <z for the real part, =z for the imaginary part and z for the complex conjugate
of a number z ∈ C. If A ⊂ R3, let Ac denote the complement R3\A of A in R3. The
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symbol | | designates the Euclidean norm in Rn, for any n ∈ N, the modulus of a complex
number, the length α1 +α2 +α3 of a multiindex α ∈ N3

0, as well as the Lebesgue measure
of measurable subsets of R3. For R > 0, x ∈ R3, put BR(x) := {y ∈ R3 : |x − y| < R}.
If x = 0, we write BR instead of BR(0). If A is some nonempty set and γ : A 7→ C a
function, we abbreviate |γ|∞ := sup{|γ(x)| : x ∈ A}. Let V : R3 7→ C and W : R3 7→ C
be measurable functions with

∫
R3 |V (x − y)| |W (y)| dy < ∞ for a. e. x ∈ R3. Then we

define (V ∗W )(x) :=
∫
R3 V (x− y)W (y) dy for a. e. x ∈ R3.

For p ∈ [1,∞], A ⊂ R3 measurable, we write Lp(A) for the usual Lebesgue space on
A associated with p, and ‖ ‖p for the usual norm of this space. Let A ⊂ R3 be open,
p ∈ [1,∞) and m ∈ N. Then the symbol Wm,p(A) stands for the usual Sobolev of order
m and exponent p. The standard norm of this space is designated by ‖ ‖m,p. The space
Wm,p

0 (A) is defined as the closure of C∞0 (A) with respect to the norm of Wm,p(A), and is
equipped with this norm. For any open set B ⊂ R3, and for p and m as before, the spaces
Lploc(B), Wm,p

loc (B) are to contain those functions v from B into C that satisfy the relations
v|A ∈ Lp(A) and v|A ∈ Wm,p(A), respectively, for any open and bounded set A ⊂ R3

with A ⊂ B. If A ⊂ R3 is an open set with bounded C2-boundary ∂A, then the Sobolev
space W r,p(∂A) with p ∈ (1,∞), r ∈ (1, 2) is to be defined as in [16, section 6.8.6].

Let n ∈ N, A a non-empty set and V a vector space consisting of functions from A into
C. Suppose a norm denoted by ‖ ‖ has been introduced on this space. Then we set

‖(f1, ..., fn)‖(n) :=
(∑n

j=1 ‖fj‖2
)1/2

for (f1, ..., fn) ∈ Vn. The mapping ‖ ‖(n) is a norm

on Vn, and we equip Vn with this norm. However, we will write ‖ ‖ for this norm too,
instead of ‖ ‖(n).

If A ⊂ R3 is open and p ∈ (1,∞), define Hp(A) as the closure of the set {φ ∈ C∞0 (A)3 :
divφ = 0} with respect to the norm ‖ ‖p of Lp(A)3. If in addition n ∈ N, we write

W−1,p
0 (A)n for the space dual to W 1,p′

0 (A)n. The norm ‖ ‖−1,p of W−1,p
0 (A)n is to be

understood as the operator norm of this space, that is, ‖F‖−1,p := sup{|F (V )|/‖V ‖1,p′ :

V ∈W 1,p′

0 (A)n, V 6= 0} for any linear bounded functional F on W 1,p′

0 (A)n. We define

D1,2
0 (Ω

c
) := {V ∈W 1,2

loc (Ω
c
) : ∇V ∈ L2(Ω

c
)9, V ∈ L6(V ) and V |∂Ω = 0}.

The mapping V 7→ ‖∇V ‖2, V ∈ D1,2
0 (Ω

c
), is a norm (Theorem 2.5); we equip the space

D1,2
0 (Ω

c
) with this norm. The Cantor completion of C∞0 (Ω

c
) with respect to the norm

V 7→ ‖∇V ‖2 on C∞0 (Ω
c
) is isomorphic to D1,2

0 (Ω
c
) ([17, p. 83-84, 105-106]). However, in

our context it is not practical to work with this completion. The space dual to D1,2
0 (Ω

c
)3

is denoted by D−1,2
0 (Ω

c
)3. It is equipped with its natural norm denoted by ‖ ‖−1,2 and

defined by

‖F‖−1,2 := sup{|F (γ)|/‖∇γ‖2 : γ ∈ D1,2
0 (Ω

c
)3, γ 6= 0},

for any linear and bounded functional F from D1,2
0 (Ω

c
)3 into C. We refer to Theorem 2.6

for more properties of this space. In this theorem, it is explained in which sense functions
with domain Ω

c
may belong to D−1,2

0 (Ω
c
)3. For functions V ∈ D−1,2

0 (Ω
c
)3 ∩ L2(Ω

c
)3, we

use the notation ‖V ‖∗ := ‖V ‖−1,2 + ‖V ‖2. If p ∈ (1,∞), n ∈ {1, 3} and G ∈ L1
loc(R3)n,

we define

‖G‖−1,p,R3 := sup
{∫

R3

G · γ dx/‖∇γ‖p′ : γ ∈ C∞0 (R3)n, γ 6= 0
}
.
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We further put D̃
−1,p

0 (R3)n := {G ∈ L1
loc(R3)n : ‖G‖−1,p,R3 < ∞}. The preceding two

notation should be considered as abbreviations. We will not use any functional analytic

properties of either the mapping ‖ ‖−1,p,R3 or the space D̃
−1,p

0 (R3)n. For convenience, we
will write ‖ ‖−1,p instead of ‖ ‖−1,p,R3 . Care has to be taken as concerns the quantity

‖φ‖−1,2 if φ ∈ C∞0 (Ω
c
)3. In fact, for any open set A ⊂ R3, we consider functions from

C∞0 (A) as functions with domain R3 (but, of course, with compact support in A). So,
if φ ∈ C∞0 (Ω

c
)3, we have to distinguish between ‖φ‖−1,2 and ‖φ|Ωc‖−1,2, with the first

expression denoting ‖φ‖−1,2,R3 , and the second involving the norm ‖ ‖−1,2 of D−1,2
0 (Ω

c
)3;

see Theorem 2.6 in this respect.

The symbol C is to denote numerical constants, and C(γ1, ..., γn) constants depending
exclusively on γ1, ..., γn ∈ (0,∞), for some n ∈ N. However, such precise indications on
how a constant depends on parameters will be given only at some places. In order to avoid
that our presentation becomes too unwieldy, most of the time we take the point of view
that the dependence of our constants on parameters should be clear from context. In that
situation the symbol C is used to denote generic constants. Often they depend on τ and on
Ω, in particular on the parameter S introduced above. The notation C(γ1, ..., γn) means
that we want to stress the dependence of the constant in question on γ1, ..., γn ∈ (0,∞),
for some n ∈ N. But a constant denoted in this way may depend on other quantities as
well.

We define N(x) := −(4π |x|)−1 for x ∈ R3\{0} (fundamental solution of the Poisson

equation), and E(λ)(x) := (4π |x|)−1 e−(λ+(τ/2)2)1/2 |x|+τ x1/2 for x ∈ R3\{0}, λ ∈ C with
<λ ≥ 0 (fundamental solution of the scalar Oseen equation −∆V + τ ∂1V = G if λ = 0,
and of the associated resolvent equation if λ 6= 0).

2. Various auxiliary results.

We start by indicating some properties of Sobolev spaces.
〈theoremT3.10〉

Theorem 2.1 ([17, Lemma II.6.1]) Let p ∈ (1,∞), A ⊂ R3 open, bounded, with Lip-
schitz boundary. Let B ∈ {A, Ac, R3}, and V ∈ W 1,1

loc (B) with ∇V ∈ Lp(B)3. Then

V ∈ W 1,p(A) in the case B = A, V ∈ W 1,p
loc (R3) in the case B = R3, and V |Ac ∩ BR ∈

W 1,p(A
c ∩BR) for any R ∈ (0,∞) with A ⊂ BR if B = A

c
.

〈lemmaL3.10〉
Lemma 2.1 Let p, q ∈ (1,∞). If V ∈ Lq(R3)∩Lp(R3), there is a sequence (φn) in C∞0 (R3)
with ‖V − φn‖s → 0 for s ∈ {p, q}.
Let V ∈W 1,1

loc (R3)∩Lp(R3) with ∇V ∈ Lq(R3)3. Then there is a sequence (ψn) in C∞0 (R3)
such that ‖V − ψn‖p → 0 and ‖∇V −∇ψn‖q → 0

Proof: Use Friedrich’s mollifier. �
〈theoremT3.20〉

Theorem 2.2 ([17, Theorem III.4.2]) Let p ∈ (1,∞) and V ∈W 1,p
0 (Ω

c
)3 with divV =

0. Then there is a sequence (φn) in C∞0 (Ω
c
)3 with divφn = 0 for n ∈ N and ‖φn−V ‖1,p →

0.

It is perhaps not so well known that Lq is compactly imbedded in W−1,q:
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〈theoremT3.30〉
Theorem 2.3 ([17, Theorem II.5.3]) Let A ⊂ R3 be open and bounded, q ∈ (1,∞),
and (Vn) a bounded sequence in Lq(A). Then there is V ∈ Lq(A) and a subsequence (Wn)
of (Vn) such that ‖Wn − V ‖−1,q → 0.

The next theorem deals with the decay behaviour of functions V in exterior domains A
c

with ∇V ∈ Lp(Ac)3 for some p ∈ (1, 3).
〈theoremT3.40〉

Theorem 2.4 Let A ⊂ R3 be either an open bounded nonempty set with Lipschitz bound-
ary, or A = ∅. Let q ∈ (1, 3) and V ∈W 1,1

loc (A
c
) with ∇V ∈ Lq(Ac)3. Then there is V ∗ ∈ R

such that V − V ∗ ∈ L3q/(3−q)(A
c
), and the following five assertion are equivalent:

1.) V ∈ Lr(Ac) for some r ∈ (1,∞); 2.) V ∈ L3q/(3−q)(A
c
); 3.)

∫
∂B1
|V (Rx)|q dox →

0 (R→∞); 4.)
∫
∂B1
|V (Rx)| dox → 0 (R→∞); 5.) V ∗ = 0.

If one – and therefore everyone – of these assertions holds, the ensuing inequality is valid:

‖V ‖3q/(3−q) ≤ C(q) ‖∇V ‖q. (2.1) T3.40.5

Proof: According to [17, Lemma II.6.3], the relation ∇V ∈ Lq(A
c
)3 implies there is

V ∗ ∈ R with
∫
∂B1
|(V (Rx) − V ∗|q dox → 0 (R → ∞). Moreover, by [17, Theorem II.6.1],

we have V − V ∗ ∈ L3q/(3−q)(A
c
). Starting from these relations, we showed elsewhere ([8,

Lemma 2.4], [10, Lemma 2.1]) that assertion 2.) follows from 1.). Suppose that assertion
3.) holds. Then we get from the convergence relation at the beginning of this proof that
V ∗ = 0, so assertion 2.) holds because V −V ∗ ∈ L3q/(3−q)(A

c
). If assertion 2.) is valid, we

may deduce from the preceding relation that V ∗ = 0, so 3.) follows from the convergence
result at the beginning of this proof. Suppose that assertion 4.) holds. Then we may
choose a sequence (Rn) in (0,∞) such that Rn → ∞ and V (Rn x) → 0 (n → ∞) for a.
e. x ∈ ∂B1. But again by the convergence result at the beginning of this proof, there is
a subsequence (Sn) of (Rn) such that |V (Sn x) − V ∗|q → 0 for a. e. x ∈ ∂B1. Recalling
the choice of (Rn), we may conclude that V ∗ = 0, so assertion 3.) follows by referring
once more to the beginning of this proof. Obviously 3.) implies 4.). Inequality (2.1) holds
according to [17, Theorem II.6.1]. �

As a consequence of the preceding theorem, we get that C∞0 (R3)3 ⊂ D̃
−1,p

0 (R3)3 if p > 3/2:
〈corollaryC3.15〉

Corollary 2.1 Let p ∈ (3/2, ∞) and φ ∈ C∞0 (R3)3. Then φ ∈ D̃
−1,p

0 (R3)3.

Proof: We have p′ ∈ (1, 3), so we get with Hölder’s inequality and (2.1) that
∣∣∫

R3 φγ dx
∣∣ ≤

‖φ‖(1/3+1/p)−1 ‖γ‖3p′/(3−p′) ≤ C ‖φ‖(1/3+1/p)−1 ‖∇γ‖p′ for γ ∈ C∞0 (R3)3. �

In the ensuing lemma, we consider how functions V in exterior domains decay in the
Lq-norm if ∇V is an Lq-function and V and Lr-function, with q not necessarily equal to
r.

〈lemmaL3.30〉
Lemma 2.2 Let q, r ∈ (1,∞), R0 ∈ (0,∞). Then

R−1 ‖V |B2R\R‖q ≤ C(q, r, R0) (‖V |Bc
R‖r + ‖∇V |Bc

R‖q +R−1 ‖V ‖r +R−1 ‖∇V ‖q)

for R ∈ (R0,∞), V ∈W 1,1
loc (BR0

c
) ∩ Lr(BR0

c
) with ∇V ∈ Lq(BR0

c
)3.
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Proof: We proceed as in [17, p. 225]. Take R and V as in the lemma. First suppose that
q < 3. Then Hölder’s inequality yields ‖V |B2R\BR‖q ≤ CR ‖V |Bc

R‖3q/(3−q). On the other
hand, a scaling argument and (2.1) with A = BR0 imply

‖V |Bc
R‖3q/(3−q) = (R/R0)(3−q)/q ‖V

(
(R/R0) ·

)
|BR0

c‖3q/(3−q)

≤ C(R0, q) (R/R0)(3−q)/q ‖∇
[
V
(

(R/R0) ·
)
|BR0

c ]‖q = C(R0, q) ‖∇V |Bc
R‖q.

Thus, in the case q < 3, we have found that ‖V |B2R\BR‖q ≤ C(R0, q)R ‖∇V |Bc
R‖q. Next

suppose that q ≥ 3 and q ≤ r. Due to the second assumption, we get by Hölder’s inequality
that ‖V |B2R\BR‖q ≤ C R3 (1/q−1/r) ‖V |Bc

R‖r. But q ≥ 3 and R ≥ R0, so we may conclude

that ‖V |B2R\BR‖q ≤ C R3 (1/q−1/r−1/3)
0 R ‖V |Bc

R‖r.
Finally suppose that q ≥ 3 and q > r. Then a := (1/r − 1/q)/(1/r − 1/q + 1/3) ∈ (0, 1).
Obviously 1/q = a (1/q − 1/3) + (1 − a)/r, so by [17, Lemma II.3.3], we obtain ‖W‖q ≤
C(q, r) ‖∇W‖aq ‖W‖1−ar ≤ C(q, r) (‖∇W‖q + ‖W‖r) for W ∈ W 1,1

loc (R3) ∩ Lr(R3) with

∇W ∈ Lq(R3)3. Now we split V into a sum of a W 1,1
loc -function on R3 and a W 1,1

loc -function
on a bounded domain. To this end, we set B := BR0+1\BR0 , and take ϕ ∈ C∞(R3) with
ϕ|Bc

R0+3/4 = 1 and ϕ|BR0+1/4 = 0. Obviously ϕV ∈ W 1,1
loc (R3) ∩ Lr(R3). According to

Theorem 2.1, we have V |B ∈ W 1,q(B), so ∇(ϕV ) ∈ Lq(R3). Now the above estimate of
‖W‖q yields ‖ϕV ‖q ≤ C(q, r, R0) (‖∇V ‖q + ‖V |B‖q + ‖V ‖r). Hence

‖V ‖q ≤ ‖ϕV ‖q + ‖(1− ϕ)V ‖q ≤ C(q, r, R0) (‖∇V ‖q + ‖V |B‖q + ‖V ‖r). (2.2) L3.30.20

But the term ‖V |B‖q my be estimated by Poincaré’s inequality for functions with mean
value zero. In fact, abbreviate m := |B|−1

∫
B V dx. Then ‖V |B‖q ≤ ‖(V − m)|B‖q +

|m| |B|1/q, with ‖(V − m)|B‖q bounded by C(q,R0) ‖∇V |B‖q, whereas |m| |B|1/q may
be estimated by |B|−1+1/q ‖V |B‖1, and thus by C(q, r, R0) ‖V ‖r. Therefore from (2.2),
‖V ‖q ≤ C(r,R0) (‖∇V ‖q + ‖V ‖r). The lemma follows from the preceding inequality and
from our estimates of ‖V |B2R\BR‖q in the cases q < 3 and q ≥ 3, q ≤ r, respectively. �

Next we collect some properties of D1,2
0 (Ω

c
) and D−1,2

0 (Ω
c
).

〈theoremT3.60〉
Theorem 2.5 The mapping (V,W ) 7→

∫
Ω

c ∇V · ∇W dx is a scalar product on D1,2
0 (Ω

c
),

and D1,2
0 (Ω

c
) equipped with this scalar product is a Hilbert space, with associated norm

V 7→ ‖∇V ‖2. Moreover the inequality ‖V ‖6 ≤ C ‖∇V ‖2 holds for V ∈ D1,2
0 (Ω

c
), and the

set C∞0 (Ω
c
) is dense in D1,2

0 (Ω
c
).

Proof: For the Hilbert space property, we refer to [17, p. 105] or [24, Theorem I.2.2,
I.2.8]. The inequality ‖V ‖6 ≤ C ‖∇V ‖2 holds according to (2.1). As concerns density of
C∞0 (Ω

c
) in D1,2

0 (Ω
c
), we refer to Theorem 2.4 and [17, Theorem II.7.1], or to [24, Theorem

I.2.8]. �
〈theoremT3.70〉

Theorem 2.6 Let g ∈ L1
loc(Ω

c
)3 and put Gg(ϕ) :=

∫
Ω

c g ·ϕdx for ϕ ∈ C∞0 (Ω
c
)3. Suppose

that ‖g‖∗−1,2 := sup{Gg(ϕ)/‖∇ϕ‖2 : ϕ ∈ C∞0 (Ω
c
)3, ϕ 6= 0} < ∞. Then there is a unique

element Fg ∈ D−1,2
0 (Ω

c
)3 with Fg|C∞0 (Ω

c
)3 = Gg, and the relation ‖g‖∗−1,2 = ‖Fg‖−1,2

holds. In this case, we write g instead of Fg, and g ∈ D−1,2
0 (Ω

c
)3 instead of ‖g‖∗−1,2 <∞.

If g ∈ L6/5(Ω
c
)3, then g ∈ D−1,2

0 (Ω
c
)3, Fg(ϕ) =

∫
Ω

c g · ϕdx for any ϕ ∈ D1,2
0 (Ω

c
)3, and

‖g‖−1,2 ≤ C(Ω) ‖g‖6/5.
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For any h ∈ D−1,2
0 (Ω

c
)3, there is a sequence (ϕn) in C∞0 (Ω

c
)3 with ‖h− ϕn‖−1,2 → 0.

Proof: Hahn-Banach’s theorem and the definition of ‖g‖∗−1,2 yield existence of Fg ∈
D−1,2

0 (Ω
c
)3 with Fg|C∞0 (Ω

c
)3 = Gg and ‖g‖∗−1,2 = ‖Fg‖−1,2. Uniqueness of Fg follows

from the density of C∞0 (Ω
c
) in D1,2

0 (Ω
c
) (Theorem 2.5). By Hölder’s inequality and the

estimate ‖ϕ‖6 ≤ C ‖∇ϕ‖2 (Theorem 2.5), we get that
∫

Ω
c |g · ϕ| dx ≤ ‖g‖6/5 ‖∇ϕ‖2 for

ϕ ∈ C∞0 (Ω
c
)3, so the claims of the theorem related to the case g ∈ L6/5(Ω

c
)3 are true.

The last statement of the theorem holds according to [17, Theorem II.8.1]. �

We turn to the boundary value problem divV = G in B, V |∂B = 0, for annular domains
B ⊂ R3.

〈theoremT3.80〉
Theorem 2.7 ([4, Theorem 2.4]) Let R, R̃ ∈ (0,∞) with R < R̃, and put B :=
B
R̃
\BR. Then, for any q ∈ (1,∞) and m ∈ {0, 1}, there is a linear operator D :=

D(q,m,R, R̃) from
{
g ∈Wm,q

0 (B) :
∫
B g dx = 0

}
into Wm+1,q

0 (B)3 such that divD(g) =

g and ‖D(g)‖m+1, q ≤ C(q,m,R, R̃) ‖g‖m,q for g ∈Wm,q
0 (B) with

∫
B g dx = 0.

Moreover, for p, m as before, and for g ∈ C∞0 (B) with
∫
B g dx = 0, the function D(g) (or

more precisely: the zero extension of D(g|B) to R3) belongs to C∞0 (B)3.

Finally, if p, q ∈ (1,∞), m, n ∈ {0, 1} and g ∈ C∞0 (B) with
∫
B g dx = 0, then the

functions D(p,m,R, R̃)(g) and D(q, n,R, R̃)(g) coincide.

The ensuing lemma deals with solutions to the boundary value problem divV = G in
B, V |∂B = 0, with B belonging to the set {B2n\Bn :, n ∈ N} of annular domains. The
lemma indicates how the Lp-norm of these solutions depends on n.

〈lemmaL3.50〉
Lemma 2.3 Let q ∈ (1,∞), ν ∈ {0, 1}, C0 > 0, Wn := {g ∈ W ν,q

0 (B2n\Bn) :∫
B2n\Bn

g dx = 0} for n ∈ N, D :W1 7→W ν+1,q
0 (B2\B1)3 a mapping such that divD(g) =

g and ‖D(g)‖1+ν, q ≤ C0 ‖g‖ν,q for g ∈ W1. For n ∈ N, g ∈ Wn, x ∈ B2n\Bn, set
Dn(g)(x) := nD

(
g ◦ (n idB2\B1

)
)(

(1/n)x
)
, with idB2\B1

the identity function on B2\B1.

Then, for n ∈ N, g ∈ Wn, we have Dn(g) ∈ W ν+1,q
0 (B2n\Bn)3, divDn(g) = g and

‖∂αDn(g)‖q ≤ C0 n
1−|α| ‖g‖q for α ∈ N3

0 with |α| ≤ 1 in the case ν = 0, as well as
‖∂l∂mDn(g)‖q ≤ C0 ‖g‖1,q for l,m ∈ {1, 2, 3} in the case ν = 1.

Proof: Direct calculation, via scaling. �

Next we recall some results related to Poisson’s equation ∆V = G.
〈theoremT3.90〉

Theorem 2.8 (Weyl’s lemma) Let A ⊂ R3 be open and V ∈ L1
loc(A) such that the

integral
∫
A V ∆ϕdx vanishes for any ϕ ∈ C∞0 (A). Then V ∈ C∞(A) and ∆V = 0.

Proof: An elementary proof may be found in [24, Appendix]. �

The consequence of Theorem 2.8 we have in mind is the ensuing corollary, which in prin-
ciple is well known, but which we indicate because we do not know a direct reference.

〈corollaryC3.20〉
Corollary 2.2 Let A ⊂ R3 be open and connected, Π ∈ W 1,1

loc (A) with ∇Π = 0. Then
there is c ∈ R with Π(x) = c for a. e. x ∈ A.

Proof: Theorem 2.8 yields Π ∈ C∞0 (A). �
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The following theorem deals with the Newton potential. Since some subtleties of this
potential play an important role in what follows, we state them here. Concerning proofs,
they are, of course, well known. We only mention for completeness that the relations in
(2.3) follow by integration by parts and Lebesgue’s theorem, the estimates in (2.5) and
(2.6) are a consequence of Hardy-Littlewood-Sobolev’s inequality, whereas inequality (2.4)
may deduced from Calderon-Zygmund’s inequality. The other claims of the theorem follow
from these inequalities via density arguments. Lemma 2.1 is useful in this context.

〈theoremT3.100〉
Theorem 2.9 Let φ ∈ C∞0 (R3). Then the integral

∫
R3 |∂αN(x− y) ∂βφ(y)| dy is finite for

x ∈ R3, α ∈ N3
0 with |α| ≤ 1, β ∈ N3

0, and

N ∗ φ ∈ C∞(R3), ∂β(N ∗ φ) = N ∗ ∂β(φ) for β ∈ N3
0, (2.3) T3.100.10

∂l(N ∗ φ) = (∂lN) ∗ φ for 1 ≤ l ≤ 3, ∆(N ∗ φ) = φ,

‖∂l∂m(N ∗ φ)‖q ≤ C(q) ‖φ‖q for 1 ≤ l,m ≤ 3, q ∈ (1,∞). (2.4) T3.100.20

Let q ∈ (1, 3/2), φ ∈ Lq(R3). Then

‖N ∗ |φ|‖3 q/(3−2 q) ≤ C(q) ‖φ‖q, (2.5) T3.100.30

in particular N ∗ φ ∈ L3 q/(3−2 q)(R3) and
∫
R3 |N(x − y)φ(y)| dy < ∞ for a. e. x ∈ R3.

Moreover N ∗ φ ∈W 2,1
loc (R3).

Let q ∈ (1, 3), φ ∈ Lq(R3). Then

‖|∂lN | ∗ |φ|‖3 q/(3−q) ≤ C(q) ‖Φ‖q for 1 ≤ l ≤ 3, (2.6) T3.100.40

in particular ∂lN ∗φ ∈ L3 q/(3−q)(R3) and
∫
R3 |∂lN(x− y)| |φ(y)| dy <∞ for a. e. x ∈ R3.

Moreover (∂lN) ∗ φ ∈W 1,1
loc (R3) and div

(
(∂lN) ∗ φ

)
1≤l≤3

= φ.

If q ∈ (1, 3/2), φ ∈ Lq(R3), then ∂l(N ∗ φ) = (∂lN) ∗ φ (1 ≤ l ≤ 3). If q ∈ (1, 3), p ∈
(1,∞), φ ∈ Lq(R3) ∩ Lp(R3), then

‖∂m
(

(∂lN) ∗ φ
)
‖p ≤ C(p) ‖φ‖p (1 ≤ l,m ≤ 3). (2.7) T3.100.50

In addition ∂l(N ∗ φ) ∈ Lr(R3) for any r ∈ (3/2, ∞) if φ ∈ Lq(R3) for any q ∈ (1, 3), and
∂m∂l(N ∗ φ) ∈ Lr(R3) for any r ∈ (1,∞) if φ ∈ Lq(R3) for any q ∈ (1,∞).

〈corollaryC3.30〉
Corollary 2.3 Let p ∈ (1,∞), φ ∈ ∪q∈(1,3)L

q(R3) ∩ D̃
−1, p

0 (R3), l ∈ {1, 2, 3}. Then
‖(∂lN) ∗ φ‖p ≤ C(p) ‖φ‖−1,p.

Proof: We simplify the argument from [17, p. 457-458]. By the assumptions on φ, we
may choose q ∈ (1, 3) with φ ∈ Lq(R3), so (∂lN) ∗ φ ∈ L3 q/(3−q)(R3) (Theorem 2.9).
Let ψ ∈ C∞0 (R3). In view of (2.6), we may apply Fubini’s theorem, to obtain

∫
R3

(
(∂lN) ∗

φ
)
ψ dx = −

∫
R3

(
(∂lN)∗ψ

)
φdx. Since q < 3, we have q′ > 3/2, so (∂lN)∗ψ ∈ Lq′(R3) and

also ∇
(

(∂lN) ∗ ψ
)
∈ Lp′(R3)3 by (2.3) and the last two assertions of Theorem 2.9. Thus,

by Lemma 2.1, we may choose a sequence (γn) in C∞0 (R3) such that ‖(∂lN)∗ψ−γn‖q′ → 0
and ‖∇

(
(∂lN) ∗ ψ

)
−∇γn‖p′ → 0. We now find∣∣∣∫

R3

(
(∂lN) ∗ φ

)
ψ dx

∣∣∣ ≤ lim sup
n→∞

∣∣∣∫
R3

γn φdx
∣∣∣ ≤ lim sup

n→∞
‖φ‖−1,p ‖∇γn‖p′

≤ ‖φ‖−1,p ‖∇
(

(∂lN) ∗ ψ
)
‖p′ ≤ ‖φ‖−1,p ‖ ‖ψ‖p′ ,
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where the last inequality follows from (2.7). �

In the rest of this section, we deal with the Helmholtz projection, starting with the whole
space case. The special feature of that case is that the projection in question applied to a
smooth function is given in an explicit way.

〈theoremT3.150〉
Theorem 2.10 Let q ∈ (1,∞). Then there are linear operators Pq : Lq(R3)3 7→ Hq(R3)

and Qq : Lq(R3) 7→ W 1,q
loc (R3) such that P 2

q = Pq, G = Pq(G) + ∇Qq(G), ‖Pq(G)‖q +
‖∇Qq(G)‖q ≤ C(q) ‖G‖q (in particular ∇Qq(G) ∈ Lq(R3)3 and Pq

(
∇Qq(G)

)
= 0) for

G ∈ Lq(R3)3, and Qq(G) = N ∗divG, Pq(G) = G−
(

(∂lN)∗divG
)

1≤l≤3
for G ∈ C∞0 (R3)3.

Proof: See [17, Section III.1, in particular p. 147-148 and Theorem III.1.2]. �
〈corollaryC3.50〉

Corollary 2.4 Let p, q ∈ (1,∞) and G ∈ Lp(R3)3 ∩ Lq(R3)3. Then Pp(G) = Pq(G).

Proof: See [11, Theorem 5] or use Lemma 2.1 and Theorem 2.10. �

In the ensuing Theorem 2.11, we introduce the Helmholtz projection on Lp(Ω)3, denoted
by Pp, and an operator Gp corresponding to the complement of Hp(Ω

c
) in Lp(Ω

c
)3. Some

additional facts that may be deduced from Theorem 2.11 are presented in Corollary 2.5.
〈theoremT2.10〉

Theorem 2.11 Let P2 : L2(Ω
c
)3 7→ H2(Ω

c
) denote the usual projection operator onto the

closed subspace H2(Ω) of L2(Ω
c
)3. Let p ∈ (1,∞). Then there are linear operators Pp :

Lp(Ω
c
)3 7→ Hp(Ω

c
), Gp : Lp(Ω

c
)3 7→W 1,p

loc (Ω
c
) such that P2

p = Pp, V = Pp(V ) + Gp(V ),

‖Pp(V )‖p + ‖∇G(V )‖p ≤ C(p) ‖V ‖p, (2.8) T2.10.10

in particular ∇Gp(V ) ∈ Lp(Ωc
)3 and Pp

(
∇Gp(V )

)
= 0, for V ∈ Lp(Ωc

)3, and such that

Pp(V ) = P2(V ) for V ∈ C∞0 (Ω
c
)3.

Proof: See [17, Section III.1, in particular p. 149-152], [15], [21] or [23]. �
〈corollaryC3.60〉

Corollary 2.5 Let p, q ∈ (1,∞). Then Pp(G) = Pq(G) for G ∈ Lp(Ω
c
)3 ∩ Lq(Ωc

)3.

Moreover (Pp)′ = Pp′ and Pq(∇Π) = 0 for Π ∈W 1,q
loc (Ω

c
) with ∇Π ∈ Lq(Ωc

)3. In addition,
Pp(G) = G for G ∈ Hp(Ω

c
).

Proof: The first claim of the corollary follows from Lemma 2.1, (2.8) and the last equation
in Theorem 2.11. Concerning the proof of the second statement, let G ∈ Lp(Ωc

)3, H ∈
Lp
′
(Ω

c
)3. We may choose a sequence (φn) in C∞0 (Ω

c
)3 with divφn = 0 for n ∈ N and

‖φn−Pp′(H)‖p′ → 0. Then, since∇Gp(G) ∈ Lp(Ωc
)3 (Theorem 2.11), we have

∫
Ω

c ∇Gp(G)·
Pp′(H) dx = limn→∞

∫
Ω

c ∇Gp(G) ·φn dx = 0, so
∫

Ω
c G ·Pp′(H) dx =

∫
Ω

c Pp(G) ·Pp′(H) dx
by Theorem 2.11. An analogous equation holds with Pp(G) ·H in the place of G · Pp′(H)
on the left-hand side. The second equation of the corollary follows. The same type of
argument yields that

∫
Ω

c V · ∇Π dx = 0 for V ∈ Hq′(Ω
c
) and for Π as in the corollary.

This equation and the second statement of the corollary yield the third. Finally the
preceding equation, the second equation the corollary and Theorem 2.11 imply

∫
Ω

c

(
G −

Pp(G)
)
·W dx = 0 for G ∈ Hp(Ω

c
)3, W ∈ Lp′(Ωc

)3. This proves the last claim of the
corollary. �
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3. The Stokes and Oseen system and associated resolvent
problems: some known results.

We observe that for any weak solution of the Oseen or the Oseen resolvent system, there
exists an associated pressure.

〈theoremT4.20〉
Theorem 3.1 Let A ⊂ R3 be open, q ∈ (1,∞), λ ∈ C, G ∈ Lqloc(A), V ∈ W 1,1

loc (A)3 with
∇V ∈ Lqloc(A)9, divV = 0,∫

A

(
∇V · ∇ψ + (µ τ ∂1V + λV −G) · ψ

)
dx = 0 for ψ ∈ C∞0 (A)3 with divψ = 0. (3.1) T4.20.10

Then there is Π ∈ Lqloc(A) (”pressure associated with V ”) such that∫
A

(
∇V · ∇ψ + (µ τ ∂1V + λV −G) · ψ)−Π divψ

)
dx = 0 for ψ ∈ C∞0 (A)3. (3.2) T4.20.20

Proof: Theorem 2.1 yields V |Bε ∈ Lq
(
Bε(x)

)3
for any x ∈ A, ε > 0 with Bε(x) ⊂ A.

Thus V ∈ Lqloc(A)3, and we may conclude that −µ τ ∂1V − λV + G ∈ Lqloc(A)3. Now
Theorem 3.1 follows from [17, Lemma IV.1.1] and (3.1). �

We cite a theorem on interior regularity of solutions to the Stokes system.
〈theoremT4.30〉

Theorem 3.2 ([17, Theorem IV.4.1]) Let A ⊂ R3 be open, m ∈ N0, r ∈ (1,∞), G ∈
Wm,r
loc (A)3, V ∈W 1,1

loc (A)3 with ∇V ∈ Lrloc(A)9, divV = 0 and∫
A

(∇V · ∇ψ −G · ψ) dx = 0 for ψ ∈ C∞0 (A)3 with divψ = 0 (3.3) T4.30.10

(V weak solution of the Stokes system). Then V ∈W 2+m,r
loc (A)3. Let Π ∈ Lrloc(A) with∫

A
(∇V · ∇ψ −Π divψ −G · ψ) dx = 0 for ψ ∈ C∞0 (A)3 (3.4) T4.30.20

(”pressure associated with V ”). Then Π ∈W 1+m,r
loc (A) and −∆V +∇Π = G.

The preceding theorem implies interior regularity for solutions of the Oseen resolvent
problem (if λ = 0: Oseen system). For the convenience of the reader, we indicate a proof.

〈corollaryC4.10〉
Corollary 3.1 Let A ⊂ R3 be open, q, s ∈ (1,∞), λ ∈ C, G ∈ Lqloc(A)3, V ∈ W 1,1

loc (A)3

with ∇V ∈ Lsloc(A)9 and divV = 0. Suppose that (3.1) holds. Then V ∈ W 2,q
loc (A)3. Let

Π ∈ Lsloc(A) be a pressure associated with V (Theorem 3.1). Then Π ∈W 1,q
loc (A) and

−∆V + µ τ ∂1V + λV +∇Π = G, divV = 0. (3.5) C4.10.10

Proof: Theorem 2.1 yields V ∈ W 1,s
loc (A)3. Abbreviate H := −µ τ ∂1V − λV + G. Put

r1 := min{q, s}. Then H and ∇V are Lr1loc-functions in A, so Theorem 3.2 implies that

V ∈ W 2,r1
loc (A)3, Π ∈ W 1,r1

loc (A) and (3.5) holds. If q ≤ s, Corollary 3.1 is proved. Else we

apply a Sobolev inequality to obtain V ∈W 1,3/2
loc (A)3. Put r2 := min{q, 3/2}. Then we may
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conclude that ∇V and H are Lr2loc-functions in A, so V ∈ W 2,r2
loc (A)3 and Π ∈ W 1,r2

loc (A)

by Theorem 3.2. Thus we are done if q ≤ 3/2, otherwise V ∈ W 2,3/2
loc (A)3 ⊂ W 1,3

loc (A)3.
Setting r3 := min{q, 3}, we thus have ∂lV, H ∈ Lr3loc(A)3 (1 ≤ l ≤ 3). Another reference to

Theorem 3.2 yields V ∈ W r3,2
loc (A)3 and Π ∈ W 1,r3

loc (A). This settles the case q ≤ 3. Else

V ∈ W 3,2
loc (A)3 ⊂ W 1,q

loc (A)3, hence H ∈ Lqloc(A)3, so Corollary 3.1 follows by once more
referring to Theorem 3.2. �

Concerning regularity near the boundary, we again start with a result about Stokes flows:
〈theoremT4.40〉

Theorem 3.3 ([17, Lemma IV.6.1]) Let A ⊂ R3 be open and bounded, with C2-boun-
dary, r ∈ (1,∞), G ∈ Lr(A)3, V ∈ W 1,1

loc (A)3 with ∇V ∈ Lr(A)9 (hence V ∈ W 1,r(A)3

by Theorem 2.1), V |∂A ∈ W 2−1/r,r(∂A)3, divV = 0, and with V satifying (3.3) (weak
solution of the Stokes system). Then V ∈W 2,r(A)3. Let Π ∈ Lrloc(A) be such that (3.4) is
satisfied (associated pressure). Then Π ∈W 1,r(A) and −∆V +∇Π = G.

〈corollaryC4.20〉
Corollary 3.2 Let A ⊂ R3 be open and bounded, with C2-boundary, s, q ∈ (1,∞), λ ∈
C, G ∈ Lq(A)3, V ∈ W 1,1

loc (A)3 with ∇V ∈ Ls(A)9 (hence V ∈ W 1,s(A)3 by Theorem
2.1), V |∂A ∈ W 2−1/q,q(∂A)3, divV = 0, and with V satifying (3.1) (V weak solution of
(3.5)). Then V ∈ W 2,q(A)3. Let Π ∈ Lsloc(A) be a pressure associated with V (Theorem
3.1). Then Π ∈W 1,q(A) and equation (3.5) holds.

Proof: We have V |∂A ∈ W 2−1/r,r(∂A)3 for r ∈ [1, q]. Thus we may proceed in the same
iterative way as in the proof of Corollary 3.1, but with the references to Theorem 3.2
replaced by ones to Theorem 3.3. �

〈corollaryC4.30〉
Corollary 3.3 Let s, q ∈ (1,∞), λ ∈ C, G ∈ Lqloc(R

3)3, V ∈ W 1,1
loc (Ω

c
)3 with ∇V |ΩR ∈

Ls(ΩR)9 (hence V |ΩR ∈ W 1,s(ΩR)3 by Theorem 2.1) for any R ∈ [S,∞), V |∂Ω ∈
W 2−1/q,q(∂Ω)3, divV = 0. Further suppose that V satifies (3.1) with A = Ω

c
. Then

V |ΩR ∈ W 2,q(ΩR)3 for R ∈ [S,∞). Let Π ∈ Lsloc(Ω
c
) be a pressure associated with V

(Theorem 3.1). Then Π|ΩR ∈W 1,q(ΩR) for R ∈ [S,∞), and equation (3.5) holds.

Proof: Corollary 3.1 yields V ∈ W 2,q
loc (Ω

c
)3, Π ∈ W 1,q

loc (Ω
c
) as well as (3.5). Let R ∈

[S,∞). Since V ∈ W 2,q
loc (Ω

c
)3, we have V |∂BR ∈ W 2−1/q,q(∂BR)3. Thus, recalling the

assumption on V |∂Ω, we obtain V |∂ΩR ∈ W 2−1/q,q(∂ΩR)3. Now Corollary 3.2 yields
V |ΩR ∈W 2,q(ΩR)3, Π|ΩR ∈W 1,q(ΩR). �

Next we present a criterion on C∞-regularity.
〈corollaryC4.40〉

Corollary 3.4 Let A ⊂ R3 be open, q ∈ (1,∞), λ ∈ C, G ∈ C∞(A)3, V ∈ W 1,1
loc (A)3

with ∇V ∈ Lq(A)9, divV = 0, and with V satisfying (3.1). Let Π ∈ Lqloc(A) be a pressure
associated with V (Theorem 3.1). Then V ∈ C∞(A)3, Π ∈ C∞(A) and equation (3.5)
holds.

Proof: In the case λ = 0, we may refer to [17, Theorem VII.1.1]. But both the case
λ = 0 and λ 6= 0 may be reduced to Theorem 3.2. In fact, by Corollary 3.1, we have
V ∈ W 2,q

loc (A)3, Π ∈ W 1,q
loc (A), and equation (3.5) holds. Suppose that n ∈ N0 and

V ∈ W 2+n,q
loc (A)3, Π ∈ W 1+n,q

loc (A). Then −µ τ ∂1V − λV +G ∈ W 1+n,q
loc (A)3, so Theorem

3.2 implies V ∈ W 3+n,q
loc (A)3 and Π ∈ W 2+n,q

loc (A). Therefore it follows by induction that
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V ∈ Wm,q
loc (A)3 and Π ∈ Wm−1,q

loc (A) for any m ∈ N, m ≥ 2. Corollary 3.4 follows by
applying a Sobolev inequality to V |Bε(x) and Π|Bε(x), where x is an arbitrary point in A
and ε > 0 is chosen in such a way that Bε(x) ⊂ A. �

We cite an existence result for weak solutions of the Oseen system ((3.5) with λ = 0).
〈theoremT4.50〉

Theorem 3.4 ([1, Proposition 4.2]) Let A ⊂ R3 be open and bounded, with C2-boun-
dary, p ∈ (1,∞), G ∈ W−1,p

0 (A)3. Then there is a unique function V ∈ W 1,p
0 (A)3 and

a function Π ∈ Lq(A), unique up to a constant, such that divu = 0, and such that (3.2)
holds with λ = 0 (Oseen system) and

∫
AG · ψ dx replaced by G(ψ).

We are going to exploit this theorem in order to obtain weak solutions of the resolvent
problem (3.5). These weak solutions have the special feature that the pressure belongs to
a uniqueness class that will be convenient in what follows. A proof of this result is well
known in principle: it makes use of the fact that on bounded domains, the resolvent term
λV may be considered as a compact perturbation of the Laplace operator. However, since
some details are perhaps less evident, and for the convenience of the reader, we indicate
the main elements of this proof.

〈corollaryC4.50〉
Corollary 3.5 Let A ⊂ R3 be open and bounded, with C2-boundary. Let ζ ∈ C∞0 (A) with
ζ ≥ 0,

∫
A ζ dx > 0. Let p ∈ (1,∞). Then, for any λ ∈ Kτ , G ∈ W−1,p

0 (A)3, there is a

unique pair of functions (V,Π) ∈ W 1,p
0 (A)3 × Lp(A) such that

∫
A ζ Π dx = 0, divV = 0,

and such that (3.2) holds with
∫
AG · ψ dx replaced by G(ψ). Moreover ‖V ‖1,p + ‖Π‖p ≤

C(p) ‖G‖−1,p. If p < 3, s ∈ [p, (1/p− 1/3)−1], we additionally have ‖V ‖s ≤ C(p) ‖G‖−1,p.

Proof: Put W 1,p
0,σ := {W ∈ W 1,p

0 (A)3 : divW = 0}, Lpζ := {ϕ ∈ Lp(A) :
∫
A ϕ ζ dx =

0}, Wp := W 1,p
0,σ × L

p
ζ , ‖|(V,Π)‖| := ‖V ‖1,p + ‖Π‖p for (V,Π) ∈Wp. Then Wp is a vector

space, the mapping ‖| ‖| is a norm on Wp, and Wp equipped with this norm is a Banach

space. Define F : Wp 7→W−1,p
0 (A)3 by F(V,Π)(ψ) :=

∫
A(∇V ·∇ψ+µ τ ∂1V ·ψ−Π divψ) dx

for ψ ∈ W 1,p′

0 (A)3, (V,Π) ∈ Wp. Obviously the operator F is well defined, linear and
bounded, and by Theorem 3.4, it is onto. In addition, due to this theorem and because
the zero function is the only constant function in Lpζ , this operator is one-to-one. Thus
F is bijective, so the open mapping theorem implies there is a constant C0 > 0 with
‖V ‖1,p+‖Π‖p ≤ C0 ‖F(V,Π)‖−1,p for (V,Π) ∈Wp. For % ∈ C, define K% : Wp 7→W−1,p

0 (A)3

by K%(V,Π)(ψ) :=
∫
A % V ·ψ dx for (V,Π) ∈Wp, ψ ∈W 1,p′

0 (A)3. This operator K% is linear,
bounded and compact. Let % ∈ C\{0} with <% ≥ 0. If p ≥ 2, it may be shown by some
partial integrations that <(F+K%)(V,Π)(V ) > 0 for (V,Π) ∈Wp with V 6= 0. Thus we get
with Corollary 3.1 and 2.2 that the operator F + K% is one-to-one if p ≥ 2. Suppose that
p < 2 and the pair (V,Π) ∈Wp satisfies the equation (F + K%)(V,Π) = 0. Then Corollary
3.2 yields V ∈ W 2,p′(A)3, Π ∈ W 1,p′(A). Therefore the term (F + K%)(V,Π)(V ) is well
defined, and again by partial integration we may conclude this term is strictly positive if
V 6= 0. As a consequence, the operator F + K% is one-to-one in the case p < 2, too. On
the other hand, since F is linear, bounded and bijective and K% is linear and compact,
the sum F + K% is Fredholm with index zero. All these observations taken together imply
that F+K% is bijective, so by the open mapping theorem, there is a constant C% > 0 with
‖V ‖1,p + ‖Π‖p ≤ C% ‖(F + K%)(V,Π)‖−1,p for (V,Π) ∈Wp. Recall we supposed % ∈ C\{0}
with <% ≥ 0, and in the case % = 0, the preceding inequality was proved further above.
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As a consequence of these estimates, we get for %, %̃ ∈ C with <% ≥ 0, (V,Π) ∈ Wp that
‖(F+K%̃)(V,Π)‖−1,p ≥ ‖(F+K%)(V,Π)‖−1,p−|%−%̃| ‖V ‖p ≥ (C−1

% −|%−%̃|) (‖V ‖1,p+‖Π‖p).
Thus, for any %0 ∈ C with <%0 ≥ 0, there is some ε(%0) such that for any % ∈ C with
|% − %0| ≤ ε(%0), we have ‖V ‖1,p + ‖Π‖p ≤ 2C%0 ‖(F + K%)(V,Π)‖−1,p for (V,Π) ∈ Wp.
Now the first estimate at the end of Corollary 3.5 follows by an open covering argument,
whereas the second may be deduced from the first by a Sobolev inequality. �

We turn to strong solutions of (3.5) on bounded domains.
〈theoremT4.60〉

Theorem 3.5 Let A ⊂ R3 be open and bounded, with C2-boundary, q ∈ (1,∞), λ ∈
Kτ , G ∈ Lp(A)3. Then there is a unique pair of functions (V,Π) ∈ W 2,q(A)3 ×W 1,q(A)
with V ∈ W 1,q

0 (A)3, divV = 0,
∫
A Π dx = 0, and with (V,Π) satisfying (3.5). This pair

satifies the estimate ‖V ‖2,q + ‖Π‖1,q ≤ C(q) ‖G‖q.

Proof: A direct reference is [19, Proposition 2.6], where a much more detailed result is
provided. But Theorem 3.5 may also be deduced by starting with an existence and a
uniqueness result for strong solutions of the Oseen system on bounded domains (see [1,
Proposition 4.3] for example), and then proceed with a perturbation argument as in the
proof of Corollary 3.5. �

〈corollaryC4.60〉
Corollary 3.6 In the situation of the preceding theorem, we have ‖V ‖p ≤ C(p, q, ε) ‖G‖q
for p ∈ [1, (1/q−2/3)−1] if q < 3/2, and for p ∈ [1,∞) if q ≥ 3/2; ‖∇V ‖p ≤ C(p, q, ε) ‖G‖q
for p ∈ [1, (1/q − 1/3)−1] if q < 3, and for p ∈ [1,∞) if q ≥ 3. Moreover, if λ 6= 0, q ≤
2, p ∈ [q, 2], the estimate ‖V ‖p ≤ C(p, q, ε) |λ|−2+4 (1/q−1/p) ‖G‖q is valid.

Proof: The corollary follows from Theorem 3.5 and Sobolev estimates. Concerning the
last estimate in the corollary, we note that −2 + 4 (1/q − 1/p) ≤ 0 if q ≤ 2, p ∈ [q, 2], so
that in the case λ 6= 0, we have 1 ≤ C(p, q, ε) |λ|−2+4 (1/q−1/p). �

In the ensuing two theorems, we consider problem (1.8) (Oseen resolvent system in Ω
c
,

with Dirichlet boundary conditions), first for λ = 0 (Oseen system), and then for λ 6= 0.
〈theoremT4.70〉

Theorem 3.6 ([17, Theorem VII.7.1]) Let q ∈ (1, 2), G ∈ Lq(Ω
c
)3. Then there are

functions V ∈W 2,q
loc (Ω

c
)3 ∩ L(1/q−1/2)−1

(Ω
c
)3, Π ∈W 1,q

loc (Ω
c
) such that the relations ∇V ∈

L(1/q−1/4)−1
(Ω

c
)9, ∂l∂jVk, ∂jΠ ∈ Lq(Ω

c
) (1 ≤ j, k, l ≤ 3) hold, the pair (V, Π) satisfies

(1.8) with λ = 0, and ‖V ‖(1/q−1/2)−1 + ‖∇V ‖(1/q−1/4)−1 + ‖D2V ‖q + ‖∇Π‖q ≤ C(q) ‖G‖q.
〈theoremT4.80〉

Theorem 3.7 Let p ∈ (1,∞), λ ∈ C\{0} with <λ ≥ 0, G ∈ Lp(Ωc
)3. Then there is a

unique function V ∈ W 2,p(Ω
c
)3 ∩W 1,p

0 (Ω
c
)3 and a function Π ∈ W 1,p

loc (Ω
c
), unique up to

a constant, such that ∇Π ∈ Lp(Ωc
)3, the pair (V,Π) fulfills (1.8), and ‖V ‖2,p + ‖∇Π‖p ≤

C(p, λ) ‖G‖p.

Proof: See [19, Theorem 4.4] and the proof of this theorem in [19, p. 29]. �

4. Oseen resolvent estimates in the whole space R3.

In this section, we extend some results from [11] concerning solutions to the Oseen re-
solvent (3.5) in the whole space R3. As in [11], our theory is based on the use of the

15



fundamental solution E(λ) (see Section 2) of the scalar Oseen system. This approach has
the inconvenient feature that the Helmholtz projection Pq (Theorem 2.10) is involved when
we represent solutions to (3.5) by means of convolutions with E(λ). However, although a
fundamental solution to (3.5) is available ([19, p. 19-20]), we were not able to estimate it
in a satisfactory way. We begin by stating some basic facts about convolutions with E(λ),
most of them taken from [11].

〈theoremT5.10〉
Theorem 4.1 Let λ ∈ Kτ . Suppose that H ∈ Lp(R3) for some p ∈ (3,∞) and for some
p ∈ (1, 3/2). Let α ∈ N3

0 with |α| ≤ 1. Then
∫
R3 |∂αE(λ)(x − y)| |H(y)| dy < ∞ for any

x ∈ R3.

Let q ∈ [1, 2) and p ∈
(

(1/q−1/2)−1, ∞
]

if q ≥ 3/2, or p ∈
(

(1/q−1/2)−1, (1/q−2/3)−1
)

if q < 3/2, or p = 6 if q = 6/5. Then ‖|E(λ)| ∗ |G|‖p ≤ C(p, q, τ) ‖G‖q for G ∈ Lq(R3). In
particular, the function |Eλ(x− y)| ∗ |G(y)| is integrable with respect to y ∈ R3, for a. e.
x ∈ R3.

Let q ∈ [1, 3], p ∈
(

(1/q − 1/4)−1, (1/q − 1/3)−1
)
, or p = 2 if q = 6/5, and let l ∈

{1, 2, 3}. Then ‖|∂lE(λ)| ∗ |G|‖p ≤ C(p, q, τ) ‖G‖q for G ∈ Lq(R3). In particular, the
function |∂lEλ(x− y)| ∗ |G(y)| is integrable with respect to y ∈ R3, for a. e. x ∈ R3.

If λ 6= 0, q ∈ [1, 2], p ∈ [q, 2] and q > 1 or p < 2, then

‖|E(λ)| ∗ |G|‖p ≤ C(p, q, τ) |λ|−2+4 (1/q−1/p) ‖G‖q for G ∈ Lq(R3).

Also for such p and q, the function |Eλ(x−y)| ∗ |G(y)| is integrable with respect to y ∈ R3,
for a. e. x ∈ R3.

Let φ ∈ C∞0 (R3), and put V := E(λ) ∗ φ. Then V ∈ C∞(R3), ∂βV = E(λ) ∗ ∂βφ for
β ∈ N3

0, ∂lV = (∂lE
(λ)) ∗ φ for 1 ≤ l ≤ 3, −∆V + τ ∂1V + λV = φ, and ‖D2V |BR‖q ≤

C(R, q, τ) ‖φ‖q for q ∈ (1,∞), R ∈ (0,∞).

Proof: We have |∂αE(λ)(z)| ≤ C(τ)
(
χ(0,1)(|z|) |z|−1−|α| + χ[1,∞)(|z|) |z|−1−|α|/2 for z ∈

R3\{0}, α ∈ N3
0 with |α| ≤ 1 by [11, Theorem 9]. Let x ∈ R3, and take α as before.

Then, by Hölder’s inequality and the preceding estimate, the function |∂αE(λ)| |H(y)| is
integrable with respect to y ∈ B1(x) because H ∈ Lp(R3) for some p ∈ (3,∞), and with
respect to y ∈ B1(x)c since H ∈ Lp(R3) for some p ∈ (1, 3/2). The inequalities stated in
the theorem, except the last one, hold according to [11, Theorem 10]. As for the last part
of the theorem, pertaining to the function V , we refer to [11, Theorem 11].

〈theoremT5.20〉
Theorem 4.2 Let λ ∈ Kτ and q ∈ (1,∞). Then ‖D2(E(λ) ∗ φ)‖q ≤ C(q, τ) ‖φ‖q for
φ ∈ C∞0 (R3) if λ = 0 or if q = 2. This means in particular that in the case q = 2, the
constant C(q, τ) does not depend on λ, even if λ 6= 0. In that latter case, we further have
‖E(λ) ∗ φ‖1,q ≤ C(q, λ, τ) ‖φ‖q for φ ∈ C∞0 (R3).

Proof: For f ∈ L1(R3), define f̂(ξ) := (2π)−3/2
∫
R3 e

−i ξ·η f(η) dη for ξ ∈ R3 (Fourier

transform of f). Let φ ∈ C∞0 (R3), l,m ∈ {1, 2, 3}. Then ∂l∂m(E(λ) ∗ φ) = E(λ) ∗ (∂l∂mφ)
by Theorem 4.1, so we get from [13, proof of Corollary 4.1] in the case λ = 0, and
from [12, Theorem 2.1] if λ 6= 0 that ∂l∂m(E(λ) ∗ φ)(x) =

∫
R3 e

i x·η (2π)−3/2 (λ + |η|2 +

i τ η1)−1 ηl ηm φ̂(η) dη for x ∈ R3. In this situation it is shown in [17, p. 447-450] (in
particular see [17, (VII.4.14)]), on the basis of Lizorkin’s multiplier theorem, that the
first estimate in Theorem 4.2 is valid in the case λ = 0. Now suppose that λ 6= 0. We
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have |ηl ηm (λ + |η|2 + i τ η1)−1| ≤ C for η ∈ R3\{0} because <λ ≥ 0. This estimate

combined with the equations ∂l∂m(E(λ) ∗φ) = E(λ) ∗ (∂l∂mφ) and Ê(λ)(η) = (2π)−3/2 (λ+
|η|2 + i τ η1)−1 (η ∈ R3\{0}) ([12, Theorem 2.1]) and with Plancherel’s theorem yield the
first estimate in Theorem 4.2 for q = 2. According to [11, (3.2)], we have |∂αE(λ)(z)| ≤
C(τ, λ)

(
χ(0,1)(|z|) |z|−1−|α| + χ[1,∞)(|z|) e−σ |λ|

2 |z| ) for z ∈ R3\{0}, α ∈ N3
0 with |α| ≤ 1,

where σ > 0 is a constant independent of z and λ. It follows that ∂αE(λ) ∈ L1(R3) for α as
before. Thus, by Young’s inequality ([22, Part I, Theorem I.2]), we get ‖(∂αE(λ)) ∗ φ‖q ≤
C(τ, λ) ‖φ‖q, for α as before and for φ ∈ C∞0 (R3), so ‖E(λ) ∗ φ‖1,q ≤ C(τ, λ) ‖φ‖q. �

〈corollaryC5.10〉
Corollary 4.1 Let λ ∈ Kτ and G ∈ C∞0 (R3)3. Then P2(G) ∈ Lp(R3)3 for p ∈ (1,∞),
so we may define V := E(λ) ∗ P2(G). Put Π := Q2(G) (Theorem 2.10). Then V ∈
C∞(R3)3, Π ∈ C∞(R3), and (3.5) holds.

In addition ‖V ‖p ≤ C(p, q, τ) ‖G‖q, ‖∇V ‖p ≤ C(p, q, τ) ‖G‖q, with the range of p and q
being the same as in the corresponding estimates in Theorem 4.1, except for the additional
restriction q > 1.

Moreover, ‖D2V |BR‖q ≤ C(q,R, τ) ‖G‖q for q ∈ (1,∞), R ∈ (0,∞), and ‖D2V ‖2 ≤
C(τ) ‖G‖2. If λ = 0, the inequality ‖D2V ‖q ≤ C(q, τ) ‖G‖q holds for q ∈ (1,∞).

If λ 6= 0, we further have ‖V ‖1,q ≤ C(q, λ, τ) ‖G‖q for q ∈ (1,∞). Moreover the estimate
‖V ‖p ≤ C(p, q, τ) |λ|−2+4 (1/q−1/p) ‖G‖q is valid for p, q as in the corresponding inequality
in Theorem 4.1, but with the additional condition q > 1. Finally ‖∇Π‖q ≤ C(q) ‖G‖q for
q ∈ (1,∞).

Proof: From Theorem 2.10 and (2.3), we get P2(G), Q2(G) ∈ C∞(R3). It further follows
from Theorem 2.10 and Corollary 2.4 that P2(G) ∈ Hq(R3) and ‖∇Q2(G)‖q ≤ C(q) ‖G‖q
for q ∈ (1,∞). In particular the last inequality in Corollary 4.1 is valid. Let p ∈ (1,∞).
By Lemma 2.1, we may choose a sequence (φn) in C∞0 (R3)3 with ‖P2(G) − φn‖6/5 → 0

and ‖P2(G) − φn‖p → 0. By Theorem 4.1 with q = 6/5, we have ‖V − E(λ) ∗ φn‖6 → 0.
The same reference yields ‖(∂lE(λ)) ∗ P2(G) − ∂l(E(λ) ∗ φn)‖2 → 0 for 1 ≤ l ≤ 3. Again
by Theorem 4.1, we see that the sequence

(
D2(E(λ) ∗φn)|BR

)
n≥0

converges in Lp(BR)27,

for any R ∈ (0,∞). These relations imply that V ∈ W 2,1
loc (R3)3, ∂lV = (∂lE

(λ)) ∗ P2(G)
for 1 ≤ l ≤ 3, and ‖D2V −D2(E(λ) ∗ φn)|BR‖p → 0 (n → ∞) for any R ∈ (0,∞). Now
we may conclude from Theorem 4.1 that −∆V + τ ∂1V +λV = P2(G). The first equation
in (3.5) now follows by Theorem 2.10 and the definition of Π. Since P2(G) ∈ H6/5(R3)
(Corollary 2.4), we may choose a sequence (ψn) in C∞0 (R3)3 with divψn = 0 for n ∈ N
and ‖P2(G) − ψn‖6/5 → 0. But ∂lV = (∂lE

(λ)) ∗ P2(G) (see above), so we may deduce

from Theorem 4.1 with q = 6/5 that ‖∂lV − (∂lE
(λ)) ∗ ψn‖2 → 0 for 1 ≤ l ≤ 3. We again

refer to Theorem 4.1 to obtain div (E(λ) ∗ ψn) = E(λ) ∗ divψn = 0 for n ∈ N. Thus we
get divV = 0, so (3.5) is proved. Corollary 3.4 now yields V ∈ C∞(R3). The estimates
of ‖V ‖p and ‖∇V ‖p claimed in the corollary follow from Theorem 4.1, 2.10, Corollary
2.4 and the equation ∂lV = (∂lE

(λ)) ∗ P2(G) proved above. As concerns the estimates
of ‖D2V |BR‖q, ‖D2V ‖2 and ‖D2V ‖q, we refer to Theorem 4.1, 4.2, 2.10 and Corollary
2.4, and to the approximation of D2V |BR shown above. Finally, if λ 6= 0, the estimate of
‖V ‖1,q follows from Theorem 4.2, 2.10 and Corollary 2.4. �

〈corollaryC5.20〉
Corollary 4.2 Let λ ∈ Kτ and q ∈ (1,∞). Suppose that λ = 0 or q = 2. Let p ∈
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(1, 2), φ ∈ W 1,1
loc (R3) ∩ Lq(R3) with ∇φ ∈ Lp(R3)3, l ∈ {1, 2, 3}. Then E(λ) ∗ ∂lφ ∈

W 1,1
loc (R3) and ‖∂m(E(λ) ∗ ∂lφ)‖q ≤ C(q, τ) ‖φ‖q (1 ≤ m ≤ 3). If q < 3, we additionally

have E(λ) ∗ ∂lφ = (∂lE
(λ)) ∗ φ.

Proof: By Lemma 2.1, we may choose a sequence (φn) in C∞0 (R3) such that ‖φn−φ‖q → 0
and ‖∇(φn−φ)‖p → 0. Fix some r ∈

(
(1/p−1/2)−1, ∞) with r < (1/p−2/3)−1 in the case

p < 3/2. Then ‖E(λ)∗∂lφ−E(λ)∗∂lφn‖r → 0 by Theorem 4.1, and ‖∂m∂l(E(λ)∗φn−E(λ)∗
φk)‖q ≤ C(q) ‖φn − φk‖q for n, k ∈ N, 1 ≤ m ≤ 3 by Theorem 4.2. The latter inequality
implies that the sequence

(
∂m∂l(E

(λ) ∗ φn)
)
n≥0

converges in Lq(R3), for 1 ≤ m ≤ 3.

Moreover ∂m∂l(E
(λ) ∗ φn) = ∂m(E(λ) ∗ ∂lφn) for n ∈ N, 1 ≤ m ≤ 3, again by Theorem

4.1. Thus we may conclude that E(λ) ∗ ∂lφ ∈ W 1,1
loc (R3), ∂m(E(λ) ∗ ∂lφ) ∈ Lq(R3) and

‖∂m∂l(E(λ) ∗ φn) − ∂m(E(λ) ∗ ∂lφ)‖q → 0. Since ‖∂m∂l(E(λ) ∗ φn)‖q ≤ C(q, τ) ‖φn‖q (n ∈
N, 1 ≤ m ≤ 3) by Theorem 4.2, we obtain the estimate stated in Corollary 4.2. Now
suppose that q < 3. Choose s ∈

(
(1/q − 1/4)−1, (1/q − 1/3)−1

)
. By Theorem 4.1, we get

‖(∂lE(λ)) ∗ φ − (∂lE
(λ)) ∗ φn‖s → 0. On the other hand, (∂lE

(λ)) ∗ φn = E(λ) ∗ ∂lφn for
n ∈ N by Theorem 4.1. Since E(λ) ∗∂lφn → E(λ) ∗∂lφ in Lr(R3)3, as noted above, we thus
obtain the equation stated at the end of Corollary 4.2. �

For the proof of the ensuing theorem, we adapt an approach from [17, p. 454-456].
〈theoremT5.30〉

Theorem 4.3 Let λ ∈ Kτ and q ∈ (1,∞), with λ = 0 or q = 2. Let G ∈ C∞0 (R3)3 ∩
D̃
−1,q

0 (R3)3. (According to Corollary 2.1, in the case q > 3/2, it suffices to require G ∈
C∞0 (R3)3). Then ‖∂k

(
E(λ) ∗ P2(G)

)
‖q ≤ C(q, τ) ‖G‖−1,q (1 ≤ k ≤ 3). If q < 3 and

s ∈
(

(1/q− 1/4)−1, (1/q− 1/3)−1
)
, we further have ‖E(λ) ∗P2(G)‖s ≤ C(q, s, τ) ‖G‖−1,q.

Proof: Corollary 2.4 yields P2(G) ∈ Lr(R3)3 for any r ∈ (1,∞). By referring to (2.3) and
to Corollary 2.3 with q in the place of p, we get for ψ ∈ C∞0 (R3)3, 1 ≤ l ≤ 3 that∣∣∣∫

R3

(
(∂lN) ∗ divG

)
ψ dx

∣∣∣ =
∣∣∣∫

R3

(
(∂lN) ∗G

)
· ∇ψ dx

∣∣∣ ≤ ‖(∂lN) ∗G‖q ‖∇ψ‖q′

≤ C(q) ‖G‖−1,q ‖∇ψ‖q′ .

Hence ‖(∂lN) ∗ divG‖−1,q ≤ C(q) ‖G‖−1,q for 1 ≤ l ≤ 3. Thus we may conclude from
Theorem 2.10 that ‖P2(G)‖−1,q ≤ C(q) ‖G‖−1,q. Again referring to Corollary 2.3, we then
arrive at the estimate

‖(∂lN) ∗ P2(G)‖q ≤ C(q, τ) ‖G‖−1,q (1 ≤ l ≤ 3). (4.1) T5.30.10

By the first sentence of this proof and by Theorem 2.9, we know that N ∗ P2(G) ∈
W 2,1
loc (R3)3, (∂lN) ∗ P2(G) = ∂l

(
N ∗ P2(G)

)
, D2

(
N ∗ P2(G)

)
∈ Lp(R3)27 for p > 1, and

div
(

(∂lN) ∗ P2(G)j
)

1≤l≤3
= P2(G)j for 1 ≤ j ≤ 3. (4.2) T5.30.20

We may conclude with (4.1) that

(∂lN) ∗ P2(G) ∈W 1,1
loc (R3)3 ∩ Lq(R3)3, ∇

(
(∂lN) ∗ P2(G)

)
∈ Lp(R3)9 (4.3) T5.30.30

for any p ∈ (1,∞). Thus we may apply Corollary 4.2 with φ replaced by (∂lN) ∗ P2(G).
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By (4.2), this corollary and (4.1), we get

‖∂k
(
E(λ) ∗ P2(G)

)
‖q ≤

3∑
l=1

‖∂k
[
E(λ) ∗ ∂l

(
(∂lN) ∗ P2(G)

) ]
‖q (4.4) T5.30.25

≤ C(q)
3∑
l=1

‖(∂lN) ∗ P2(G)‖q ≤ C(q) ‖G‖−1,q (1 ≤ k ≤ 3),

so the first estimate in Theorem 4.3 is proved. Now suppose that q < 3 and s ∈
(

(1/q −
1/4)−1, (1/q − 1/3)−1

)
. Then Corollary 4.2 and (4.3) yield E(λ) ∗ ∂l

(
(∂lN) ∗ P2(G)

)
=

(∂lE
(λ)) ∗

(
(∂lN) ∗ P2(G)

)
, so the last inequality in Theorem 4.3 follows from Theorem

4.1 and (4.1), by an estimate as in (4.4). �
〈lemmaL5.10〉

Lemma 4.1 Let q ∈ (1,∞), G ∈ C∞0 (R3)3∩D̃
−1,q

0 (R3)3. Then ‖Q2(G)‖q ≤ C(q) ‖G‖−1,q.

Proof: Combine Theorem 2.10, the equation N ∗ divG =
∑3

l=1(∂lN) ∗Gl (see (2.3)) and
Corollary 2.3. �

The results of this section imply the following existence results for solutions to the Oseen
system and to the Oseen resolvent system (3.5).

〈corollaryC5.40〉
Corollary 4.3 Let λ ∈ Kτ and G ∈ C∞0 (R3)3. Put V := E(λ) ∗ P2(G), Π := Q2(G).
Then V ∈ C∞(R3)3, Π ∈ C∞(R3), and the pair (V,Π) solves (3.5). Moreover, if λ 6= 0,
we have V ∈ W 1,p(R3) for any p ∈ (1,∞), and D2V ∈ L2(R3)27. If λ = 0, we have
V ∈ Lp(R3)3 for p ∈ (2,∞), ∇V ∈ Lp(R3)9 for p ∈ (4/3,∞), and D2V ∈ Lp(R3)27 for
p ∈ (1,∞). Moreover Π ∈ Lp(R3) for p ∈ (3/2, ∞) and ∇Π ∈ Lp(R3)3 for p ∈ (1,∞).

If λ = 0 and G ∈ C∞0 (R3)3 ∩ D̃
−1,p

0 (R3)3 for any p ∈ (1,∞), we get V ∈ Lp(R3)3 for p ∈
(4/3,∞) and ∇V ∈ Lp(R3)9 for p ∈ (1,∞). Moreover, if again G ∈ C∞0 (R3)3∩D̃

−1,p

0 (R3)3

for any p ∈ (1,∞), but with non restriction on λ, we get Π ∈ Lp(R3) for such p.

Proof: According to Corollary 4.1, we have Vj , Π ∈ C∞(R3) for 1 ≤ j ≤ 3, and the
pair (V,Π) solves (3.5). If λ 6= 0, Corollary 4.1 yields that V ∈ W 1,p(R3)3 for p ∈ (1,∞)
and D2V ∈ L2(R3)27. In the case λ = 0, the integrability relations stated for V, ∇V and

D2V follow from Corollary 4.1, and if G ∈ C∞0 (R3)3 ∩ D̃
−1,p

0 (R3)3 for p ∈ (1,∞), from
Theorem 4.3. Due to Theorem 2.10, (2.3) and the second last statement of Theorem 2.9,

we know that Π ∈ Lp(R3) for p ∈ (3/2,∞). In the case G ∈ C∞0 (R3)3 ∩ D̃
−1,p

0 (R3)3 for
p ∈ (1,∞), Lemma 4.1 yields Π ∈ Lp(R3) for this range of p. Lp-integrability of ∇Π for
any p ∈ (1,∞) holds according to Corollary 4.1. �

5. Uniqueness theorems for solutions to (1.8).

We first consider the whole space case, then exploit the results we obtain for this case
to determine a uniqueness class for weak solutions of (1.8) (exterior domain case). Our
results are more general than what is available in literature because we do not suppose
that the gradient of the velocity is an Lp-function for a single p ∈ (1,∞). Instead it may

19



be split into a sum of gradients each of which is Lpi-integrable with respect to a different
exponent pi ∈ (1,∞). Unfortunately this seemingly small generalization complicates the
argument considerably. For technical reasons, we first consider a splitting into a sum of
three terms (whole space case), and then into a sum of two terms (exterior domain case).

〈theoremT6.10〉
Theorem 5.1 Let λ ∈ Kτ . For i ∈ {1, 2, 3}, let qi, ri ∈ (1,∞), Ri ∈ (0,∞) and V (i) ∈
W 1,1
loc (R3)3 with V (i)|Bc

Ri
∈ Lri(Bc

Ri
)3, ∇V (i) ∈ Lqi(R3)9. Suppose that div (

∑3
i=1 V

(i)) = 0

and (3.1) is satisfied with A = R3, G = 0, V =
∑3

i=1 V
(i). Then

∑3
i=1 V

(i) = 0.

Proof: Abbreviate V :=
∑3

i=1 V
(i), q := min{q1, q2, q3}. Then V ∈ W 1,1

loc (R3)3, ∇V ∈
Lqloc(R

3)9, divV = 0, and (3.1) is satisfied with A = R3, G = 0. Corollary 3.4 yields that
V ∈ C∞(R3)3, and that there is Π ∈ C∞(R3) such that (3.5) is valid with G = 0.

Fix some function ϕ ∈ C∞0 (B7/4)3 with ϕ|B5/4 = 1, 0 ≤ ϕ ≤ 1, and put ϕn(x) :=
ϕ
(

(1/n)x
)

for n ∈ N, x ∈ R3. Note that ϕn ∈ C∞0 (B7n/4), 0 ≤ ϕn ≤ 1, ϕ|B5n/4 = 1,

|∇ϕ|∞ ≤ Cn−1, |∂l∂mϕ|∞ ≤ Cn−2 for n ∈ N, 1 ≤ l,m ≤ 3. (5.1) T6.10.10

Let l ∈ {1, 2, 3}, φ ∈ C∞0 (R3)3. Obviously ∂lφ ∈ C∞0 (R3)3∩D̃
−1,p

0 (R3)3 for any p ∈ (1,∞).
Therefore, according to Corollary 4.3, we may choose functions W ∈ C∞(R3)3, Γ ∈
C∞(R3) such that the pair (W,Γ) solves (3.5) with W, Γ, ∂lφ,−µ τ in the place of V, Π, G,
µ τ , respectively, and such that W ∈ Lp(R3)3 for p ∈ (4/3, ∞), ∂jWk, Γ ∈ Lp(R3) for
p ∈ (1,∞), 1 ≤ j, k ≤ 3. In the case λ 6= 0, we may require W ∈ Lp(R3)3 even for any
p ∈ (1,∞). On taking account of the fact that φ has compact support, we get

∫
R3

∂lV · φdx = −
∫
R3

V · ∂lφdx = − lim
n→∞

∫
R3

V · ∂lφϕn dx (5.2) T6.10.20

= − lim
n→∞

∫
R3

V · (−∆W − µ τ∂1W + λW +∇Γ)ϕn dx.

Let n ∈ N, and abbreviate An := B2n\Bn. Since divW = 0 and supp(∇ϕn) ⊂ An, we
have ∇ϕn ·W ∈ C∞0 (An) and

∫
An
∇ϕn ·W dx = 0. Thus we may refer to Theorem 2.7

and Lemma 2.3 to define Dn := nD(2, 1, 1, 2)
[
(−∇ϕn ·W ) ◦ (n idB2\B1

)
](

(1/n)x
)

for

x ∈ R3. Theorem 2.7 and Lemma 2.3 yield that Dn ∈ C∞0 (An)3 and div (ϕnW +Dn) = 0.
It further follows from Theorem 2.7, in particular its last statement, and from Lemma 2.3
and (5.1) that

‖Dn‖p ≤ C(p) ‖W |An‖p, ‖∂αDn‖p ≤ C(p)n−1 ‖W |An‖1,p, (5.3) T6.10.30

for any α ∈ N3
0 with 1 ≤ |α| ≤ 2, and for any p ∈ (1,∞). On the other hand, as remarked

above, equation (3.5) is valid for (V,Π) with G = 0. Observing that ϕnW + Dn ∈
C∞0 (B2n)3, and recalling that div (ϕnW + Dn) = 0 for n ∈ N, we may thus deduce from
(5.2) by some integrations by parts that

∫
R3 ∂lV · φdx = limn→∞An, with

An := −
∫
R3

V ·
(

2
3∑

k=1

∂kϕn ∂kW + ∆ϕnW + µ τ ∂1ϕnW + ∆Dn + µ τ ∂1Dn

−λDn − Γ∇ϕn
)
dx for n ∈ N.
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Since the support of any derivative of ϕn is a subset of An, and because of (5.1), we get
for n ∈ N with n ≥ R0 := max{R1, R2, R3} that

|An| ≤ C

3∑
i=1

‖V (i)|Bc
n‖ri

(
‖∇W |An‖r′i + n−1 ‖W |An‖r′i +

∑
α∈N3

0, 1≤|α|≤2

‖∂αDn‖r′i

+|λ| ‖Dn‖r′i + ‖Γ|An‖r′i
)
.

Next we apply (5.3) to obtain

|An| ≤ C

3∑
i=1

‖V (i)|Bc
n‖ri

(
‖∇W |An‖r′i + n−1 ‖W |An‖1,r′i (5.4) T6.10.40

+|λ| ‖W |An‖r′i + ‖Γ|An‖r′i
)

(n ∈ N, n ≥ R0).

Lemma 2.2 yields that

n−1 ‖W |An‖r′i ≤ C (‖W |Bn
c‖3 + ‖∇W |Bn

c‖r′i + n−1 ‖W‖3 + n−1 ‖∇W‖r′i)

for n ∈ N, n ≥ R0. So we may deduce from (5.4) that

|An| ≤ C

3∑
i=1

‖V (i)|Bc
n‖ri

(
‖W |Bc

n‖3 + ‖∇W |Bc
n‖r′i + n−1 ‖W‖3 (5.5) T6.10.50

+n−1 ‖∇W‖r′i + |λ| ‖W |An‖r′i + ‖Γ|Bc
n‖r′i

)
(n ∈ N, n ≥ R0).

As the reader may recall, we have W ∈ Lp(R3)3 for p ∈ (4/3, ∞), ∇W ∈ Lp(R3)3

for p > 1. Thus we may conclude that ‖∇W |Bc
n‖r′i + ‖W |Bc

n‖3 → 0 and n−1 ‖W‖3 +

n−1 ‖∇W‖r′i → 0 (n → ∞) for 1 ≤ i ≤ 3. Similarly, recalling that Γ ∈ Lp(R3) for
p ∈ (1,∞), we get ‖Γ|Bc

n‖r′i → 0 (n → ∞, 1 ≤ i ≤ 3). Finally, if λ 6= 0, we have

W ∈ Lp(R3)3 for p > 1, so |λ| ‖W |An‖r′i → 0 (n → ∞, 1 ≤ i ≤ 3). Therefore inequality

(5.5) implies that |An| → 0. Since
∫
R3 ∂V · φdx = limn→∞An, as observed above, this

means that
∫
R3 ∂lV · φdx = 0. But the function φ was arbitrarily chosen in C∞0 (R3)3, so

∂lV = 0. This is true for any l ∈ {1, 2, 3}.
Recalling that V ∈ C∞(R3)3, we thus see there is c ∈ C3 with V = c. But for ε >
0, i ∈ {1, 2, 3}, the relation |{x ∈ Bc

R0
: |V (i)(x)| ≥ ε}| < ∞ holds because otherwise

the assumption V (i)|Bc
Ri
∈ Lri(Bc

Ri
)3 could not be true. Now suppose that c 6= 0. Then

{x ∈ Bc
R0

: V (x) = c} ⊂ ∪3
i=1{x ∈ Bc

R0
: |V (i)(x)| ≥ |c|/6}. On the other hand, the

equation V = c means that {x ∈ Bc
R0

: V (x) = c} = Bc
R0

, so there must be a number

i ∈ {1, 2, 3} with |{x ∈ Bc
R0

: |V (i)(x)| ≥ |c|/6}| = ∞, a contradiction! Therefore c = 0,
so the theorem is proved. �

Now we consider the exterior domain case (weak solutions to problem (1.8)).
〈theoremT6.20〉

Theorem 5.2 Let λ ∈ Kτ and R0 ∈ [S,∞). For i ∈ {1, 2}, let qi, si ∈ (1,∞), V (i) ∈
W 1,1
loc (Ω

c
)3 with ∇V (i) ∈ Lqi(Ωc

)9 (hence V (i)|ΩR ∈W 1,qi(ΩR)3 for R ∈ [S,∞) by Theorem
2.1), and V (i)|Bc

R0
∈ Lsi(Bc

R0
)3. Further suppose that div (V (1) − V (2)) = 0, V (1) −

V (2)|∂Ω = 0, and that (3.1) holds with A = Ω
c
, G = 0, V = V (1)−V (2). Then V (1)−V (2) =

0.
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Proof: Put V := V (1) − V (2), q := min{q1, q2}. Then V ∈ W 1,1
loc (Ω

c
)3, ∇V ∈ Lqloc(Ω

c
)9

(hence V |ΩR ∈ W 1,q(ΩR)3 for R ∈ [S,∞) by Theorem 2.1), V |∂Ω = 0, V is solenoidal,
and equation (3.1) holds with A = Ω

c
, G = 0. In particular, there is a pressure Π ∈

Lqloc(Ω
c
) associated with V (Theorem 3.1). From Corollary 3.4, we may conclude that

Vj , Π ∈ C∞(Ω
c
) (1 ≤ j ≤ 3), and equation (3.5) is valid with G = 0. In addition,

Corollary 3.3 yields that

V |ΩR ∈W 2,p(ΩR)3, Π|ΩR ∈W 1,p(ΩR)3 for R ∈ [S,∞), p ∈ (1,∞). (5.6) T6.20.10

Fix a function ϕ ∈ C∞(R3) with 0 ≤ ϕ ≤ 1, ϕ|BR0+1/4 = 0, ϕ|Bc
R0+3/4 = 1, and

abbreviate B := BR0+1\BR0 . By Theorem 2.1 and our assumptions on V (i), we get

∇(ϕV (i)) ∈ Lqi(R3)9, ϕ V (i)|Bc
R0+1 = V (i)|Bc

R0+1 ∈ Lsi(Bc
R0+1)3 (i ∈ {1, 2}). (5.7) T6.20.20

Since ∇ϕ · V ∈ C∞0 (B), V |∂Ω = 0 and divV = 0, we have
∫
B∇ϕ · V dx = 0. Thus

we may apply Theorem 2.7, setting D := D(2, 1, R0, R0 + 1)(−∇ϕ · V |B). Note that
D ∈ C∞0 (B)3. We further define Ṽ , Π̃, F̃ as the zero extension to R3 of ϕV +D, ϕΠ and
−2

∑3
k=1 ∂kϕ∂kV −∆ϕV + τ ∂1ϕV −∆D + τ ∂1D + λD + Π∇ϕ, respectively. By the

choice of D and Theorem 2.7, we have div Ṽ = 0. Moreover Ṽj , Π̃ ∈ C∞(R3) (1 ≤ j ≤
3), F̃ ∈ C∞0 (B)3, and the pair (Ṽ , Π̃) satisfies (3.5) with V, Π, G replaced by Ṽ , Π̃, F̃ ,

respectively. Since F̃ ∈ C∞0 (B)3, we may apply Corollary 4.3, allowing us to choose
functions W ∈ C∞(R3)3, Γ ∈ C∞(R3) such that the pair (W,Γ) solves (3.5) with V, Π, G
replaced by W, Γ, F̃ , respectively, and such that in addition W ∈ W 2,2(R3)3 in the case
λ 6= 0, and W ∈ Lp(R3)3 for p ∈ (2,∞), ∇W ∈ Lp(R3)9 for p ∈ (4/3, ∞), D2W ∈
Lp(R3)27 for p ∈ (1,∞) if λ = 0. In particular ϕV (1) − ϕV (2) −W + D = Ṽ −W ∈
W 1,1
loc (R3)3, div (Ṽ −W ) = 0, and the function Ṽ −W satisfies (3.1) with A = R3, G =

0, V = Ṽ −W . Recalling (5.7) and the relations D ∈ C∞0 (B), W ∈ C∞(R3)3 ∩ Lp(R3)
for p > 2 (λ = 0) or p = 2 (λ 6= 0), ∇W ∈ L2(R3)9, we see we may apply Theorem 5.1
with V (1), V (2), V (3) replaced by ϕV (1), −ϕV (2), −W + D, respectively. This theorem
yields that ϕV (1) − ϕV (2) −W + D = 0, that is, Ṽ −W = 0. As a consequence, in view
of the equation in (5.7) and the relation D ∈ C∞0 (B)3, we have V |Bc

R0+1 = Ṽ |Bc
R0+1 =

W |Bc
R0+1. This equation, (5.6) and the integrability properties of W listed above yield

that V ∈ W 2,2(Ω
c
)3 if λ 6= 0, as well as V ∈ Lp(Ωc

)3 for p ∈ (2,∞), ∇V ∈ Lp(Ωc
)9 for

p ∈ (4/3, ∞), D2V ∈ Lp(Ωc
)27 for p ∈ (1,∞) if λ = 0.

Now choose p = 2 in the case λ 6= 0, and p = 3 if λ = 0. Then, by the integrability
properties of V we have just proved, it follows that V ∈ W 1,p(Ω

c
)3 and ∇V ∈ Lp′(Ωc

)9

Since V |∂Ω = 0 by our assumptions, we get V ∈ W 1,p
0 (Ω

c
)3. But divV = 0 also by our

assumptions, so Theorem 2.2 yields there is a sequence (φn) in C∞0 (Ω
c
)3 with divφn = 0

for n ∈ N and ‖V − φn‖1,p → 0. Using φn as test function in (3.1), letting n tend to
infinity, and taking account of the fact that G = 0 in (3.1) and ∇V ∈ Lp′(Ω)9, we arrive
at an equation whose real part is given by ‖∇V ‖22 + <

∫
Ω

c ∂1V · V dx + γ(V ) = 0, where
γ(V ) = 0 if λ = 0, and γ(V ) := <λ ‖V ‖22 else.

Fix some function ψ ∈ C∞0 (B2) with ψ|B1 = 1, and define ψn(x) := ψ(n−1 x) for x ∈
R3, n ∈ N. Then ψn ∈ C∞0 (B2n), ψn|Bn = 1, and |∇ψn|∞ ≤ Cn−1. On the other hand,
since ∂1V ∈ Lp

′
(Ω

c
)3, V ∈ Lp(Ωc

)3 by our choice of p, hence ∂1V · V ∈ L1(Ω
c
)3, we have
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∫
Ω

c ∂1V · V dx = limn→∞
∫

Ω
c ∂1V · V ψn dx. But V ∈ C∞(R3)3, so

<
∫

Ω
c
∂1V · V ψn dx =

∫
Ω

c

[
∂1(<V ) · <V + ∂1(=V ) · =V

]
ψn dx = −

∫
Ω

c
|V |2 ∂1ψ dx/2.

But |V |2 ∈ Lr(Ωc
) for any r ∈ (1,∞), as is immediately clear if λ = 0, and follows from

the relation V ∈W 2,2(Ω
c
)3 by Sobolev inequalities in the case λ 6= 0. In addition we have( ∫

Ω
c |∂1ψn|s dx

)1/s ≤ Cn−1+3/s for s ∈ (1,∞). Therefore
∫

Ω
c |V |2 ∂1ψ dx→ 0 for n→∞,

so we obtain ‖∇V ‖22 + γ(V ) = 0. As a consequence ∇V = 0. Since V ∈ C∞(Ω
c
)3, we may

conclude that V = 0. �

6. Oseen resolvent estimates.

We begin by presenting two corollaries where we collect some features of solutions to (1.8)
following immediately from the existence results in Theorem 3.6 and 3.7, and from the
uniqueness properties stated in Theorem 5.2 and Corollary 2.2. The notation we introduce
for these solutions in the two corollaries in question will be used frequently in what follows.

〈corollaryC7.10〉
Corollary 6.1 Let λ ∈ Kτ\{0}. For any G ∈ ∪q∈(1,∞)L

q(Ω
c
)3 or G ∈ ∪q∈(1,∞)L

q(R3)3,

there is a unique function V := V(λ,G) ∈ ∪q∈(1,∞)W
2,q(Ω

c
)3 and a unique function

Π := Π(λ,G) ∈ ∪q∈(1,∞)W
1,q
loc (Ω

c
) such that

∫
ΩS+1

Π dx = 0 and the pair (V,Π) solves

(1.8), with G|Ωc
instead of G if G ∈ ∪q∈(1,∞)L

q(R3)3.

If p ∈ (1,∞) and G ∈ Lp(Ωc
)3 ∪ Lp(R3)3, then V ∈W 2,p(Ω

c
)3 and ∇Π ∈ Lp(Ωc

)3.

In particular, if G ∈ C∞0 (Ω
c
)3, we have V ∈ W 2,p(Ω

c
)3 and ∇Π ∈ Lp(Ω

c
)3 for any

p ∈ (1,∞).

〈corollaryC7.20〉
Corollary 6.2 For any G ∈ ∪q∈(1,2)L

q(Ω
c
)3 or G ∈ ∪q∈(1,2)L

q(R3)3, there is a unique

function V := V(0, G) ∈ W 2,1
loc (Ω

c
)3 and a unique function Π := Π(0, G) ∈ W 1,1

loc (Ω
c
)

such that
∫

ΩS+1
Π dx = 0, V ∈ ∪q∈(2,∞)L

q(Ω
c
)3, ∇V ∈ ∪q∈(4/3,∞)L

q(Ω
c
)9, D2V ∈

∪q∈(1,∞)L
q(Ω

c
)27, ∇Π ∈ ∪q∈(1,∞)L

q(Ω
c
)3, and such that (1.8) holds with λ = 0, and

with with G|Ωc
instead of G if G ∈ ∪q∈(1,2)L

q(R3)3.

If p ∈ (1, 2) and G ∈ Lp(Ωc
)3 ∪ Lp(R3)3, then the relations V ∈ L(1/p−1/2)−1

(Ω
c
)3, ∇V ∈

L(1/p−1/4)−1
(Ω

c
)9, D2V ∈ Lp(Ωc

)27, ∇Π ∈ Lp(Ωc
)3, hold, in particular V |ΩR ∈W 2,p(ΩR)3

for R ∈ [S,∞).

Moreover, if G ∈ C∞0 (Ω
c
)3, then V ∈ Lp(Ω

c
)3 for p ∈ (2,∞), ∇V ∈ Lp(Ω

c
)9 for p ∈

(4/3, ∞), D2V ∈ Lp(Ωc
)27 and ∇Π ∈ Lp(Ωc

)3 for p ∈ (1,∞).

The inequalities stated in the next theorem are preliminary versions of our resolvent esti-
mates. In these first versions, the unknowns still appear on the right-hand side.

〈corollaryC7.30〉
Corollary 6.3 Let λ ∈ Kτ and G ∈ C∞0 (Ω

c
)3. Put V := V(λ,G), Π := Π(λ,G). Then

V ∈ C∞(Ω
c
)3 and Π ∈ C∞(Ω

c
).

Abbreviate Kq(G,V,Π) := ‖G‖q + ‖∇V |ΩS+1‖q + ‖Π|ΩS+1‖q for q ∈ (1,∞).
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Then ‖V ‖p ≤ C(p, q)Kq(G,V,Π) for q ∈ (1, 2), p ∈
(

(1/q − 1/2)−1, ∞
)

if q ≥ 3/2, p ∈(
(1/q − 1/2)−1, (1/q − 2/3)−1

)
if q < 3/2, and for (p, q) = (6, 6/5) .

Moreover ‖∇V ‖p ≤ C(p, q)Kq(G,V,Π) for q ∈ (1, 3], p ∈
(

(1/q− 1/4)−1, (1/q− 1/3)−1
)
,

and for (p, q) = (2, 6/5).

Furthermore ‖D2V |ΩR‖q ≤ C(q,R)Kq(G,V,Π) for q ∈ (1,∞), R ∈ [S,∞), ‖D2V ‖2 ≤
CK2(G,V,Π), ‖∇Π‖q ≤ C(q)Kq(G,V,Π) for q ∈ (1,∞).

In addition, if λ 6= 0, the inequality ‖V ‖p ≤ C(p, q) |λ|−2+4 (1/q−1/p) Kq(G,V,Π) holds for
q ∈ (1, 2], p ∈ [q, 2].

There is c0 ∈ C such that Π + c0 ∈ Lp(Ω
c
) for p ∈ (3/2, ∞). Put B := BS+1\BS . Then

for p ∈ (4, 6),

‖V ‖p + ‖∇V ‖2 + ‖Π + c0‖2 ≤ C(p) (‖G|Ωc‖−1,2 + ‖V |B‖2 + ‖Π|B‖−1,2). (6.1) C7.30.60

Proof: By Corollary 3.4, we have V ∈ C∞(Ω
c
)3 and Π ∈ C∞(Ω

c
). Moreover Corollary

3.3 yields

V |ΩR ∈W 2,p(ΩR)3, Π|ΩR ∈W 1,p(ΩR) for p ∈ (1,∞), R ∈ [S,∞). (6.2) C7.30.100

Recall that B = BS+1\BS . Choose some function ϕ ∈ C∞0 (R3) satisfying the relations
0 ≤ ϕ ≤ 1, ϕ|BS+1/4 = 1, ϕ|Bc

S+3/4 = 0. Then ∇ϕ · V ∈ C∞0 (B). Recalling that the pair

(V,Π) is a solution to (1.8), we note that V |∂Ω = 0 and divV = 0, so
∫
B∇ · V dx = 0.

Therefore we may apply Theorem 2.7, setting D := D(2, 1, S, S + 1)(∇ϕ · V |B). This
means in particular that D ∈ C∞0 (B)3. Moreover, taking account of the last statement of
Theorem 2.7, we get

‖D‖2,p ≤ C(p) ‖∇ϕ · V ‖1,p ≤ C(p) ‖V |B‖1,p for p ∈ (1,∞). (6.3) C7.30.110

Let Ṽ , Π̃, H denote the zero extension to R3 of (1−ϕ)V+D, (1−ϕ) Π and 2
∑3

k=1 ∂kϕ∂kV
+∆ϕV − τ ∂1ϕV −∆D+ τ ∂1D+ λD−Π∇ϕ, respectively. Note that H ∈ C∞0 (B)3. By

Theorem 2.7 and the choice of D, we have div Ṽ = 0. Thus the pair (Ṽ , Π̃) solves (3.5) with
V, Π, G replaced by Ṽ , Π̃ and (1−ϕ)G+H, respectively. In view of Corollary 6.1 and 6.2,
we know that V ∈ Lp(Ωc

)3 and ∇V ∈ Lr(Ωc
)9 for certain p, r ∈ (1,∞). Therefore and be-

cause of the relations D ∈ C∞0 (B)3, Vj , Π ∈ C∞(Ω
c
) for 1 ≤ j ≤ 3, an analogous property

is true for Ṽ and ∇Ṽ , respectively. On the other hand, since (1− ϕ)G+H ∈ C∞0 (R3)3,
the functions V := E(λ) ∗ P2

(
(1 − ϕ)G + H

)
, Π := Q2

(
(1 − ϕ)G + H

)
satisfy all the

properties listed in the first part of Corollary 4.3, with V , Π, (1 − ϕ)G + H in the place
of V, Π, G, respectively. Thus we may apply Theorem 5.1 to obtain Ṽ = V . This implies
there is c0 ∈ C with Π̃ + c0 = Π. In view of the choice of ϕ, and because D ∈ C∞0 (B)3, we
may conclude that

V |Bc
S+1 = Ṽ |Bc

S+1 = V |Bc
S+1, Π + c0|Bc

S+1 = Π̃ + c0|Bc
S+1 = Π|Bc

S+1. (6.4) C7.30.120

From (6.2), (6.4) and the fact that Π possesses all the properties stated for Π in Corollary
4.3, we may conclude that Π + c0 ∈ Lp(Ω

c
) for p ∈ (3/2, ∞), as claimed in Corollary 6.3.

In view of (6.3), we get

‖H‖p ≤ C(p) (‖V |B‖1,p + ‖Π|B‖p) for p ∈ (1,∞). (6.5) C7.30.80
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Since V |∂Ω = 0, Poincaré’s inequality applied on ΩS+1 yields

‖G‖p + ‖V |B‖1,p + ‖Π|B‖p ≤ C(p)Kp(G,V,Π) for p ∈ (1,∞). (6.6) C7.30.130

At this point we observe that the functions V and Π may be estimated by applying
Corollary 4.1 with G replaced by (1 − ϕ)G + H, and then referring to (6.5) and (6.6).
Taking account of the equations V = Ṽ and Π = Π̃ + c0, we thus see that the inequalities
in Corollary 6.3 up to but excluding (6.1), with Ṽ , Π̃ in the role of V and Π, respectively,
follow from Corollary 4.1.

Put W := ϕV − D, Γ := ϕΠ. Then W ∈ C∞(Ω
c
)3, Γ ∈ C∞(Ω

c
), and the equa-

tions in (3.5) hold with V, Π, G replaced by W, Γ, ϕG−H, respectively. From (6.2), we
conclude that W |ΩS+1 ∈ W 2,q(ΩS+1)3 and Π|ΩS+1 ∈ W 1,q(ΩS+1) for any q ∈ (1,∞).
Moreover, since D ∈ C∞0 (B)3 and by the choice of ϕ and G, we have ϕG − H ∈
C∞0 (ΩS+1)3, W |Bc

S+3/4 = 0, Γ|Bc
S+3/4 = 0 and W |∂Ω = V |∂Ω = 0. This means in

particular that W |ΩS+1 ∈W 1,q
0 (ΩS+1)3 for any q ∈ (1,∞).

Thus we see that we may apply Theorem 3.5, in particular the estimate at the end of
this theorem, as well as Corollary 3.6 with A = ΩS+1 and with V, Π, G replaced by
W |ΩS+1, Γ|ΩS+1, ϕG −H|ΩS+1, respectively. Again taking account of (6.5) and (6.6),
and recalling that W and Γ vanish outside BS+1, we conclude that the first, second and
sixth (if λ 6= 0) inequality in Corollary 6.3 with V replaced by W on the left-hand side
follow from Corollary 3.6. Inequalities (6.5) and (6.6) and the estimate at the end of
Theorem 3.5 yield that ‖D2W‖q + ‖∇Π‖q is bounded by C(q)Kq(G,V,Π) for q ∈ (1,∞).
This means that the third, forth and fifth estimate in Corollary 6.3 hold with V, Π replaced
by W, Γ, respectively, on the left-hand side. Since V = Ṽ +W, Π = Π̃ + Γ, we have thus
proved the estimates up to but excluding (6.1) in Corollary 6.3.

In order to derive (6.1), take γ ∈ C∞0 (R3)3. With (2.1), we get ‖γ|B‖2 ≤ C(S) ‖γ|B‖6 ≤
C(S) ‖γ|BS

c‖6 ≤ C(S) ‖∇γ‖2. Moreover, by Theorem 2.7, in particular by its last state-
ment, we obtain ‖D‖1,2 ≤ C ‖∇ϕ · V ‖2 ≤ ‖V |B‖2. Using these inequalities, as well as the
relations D ∈ C∞0 (B)3 and supp(∇ϕ) ⊂ B, we get∣∣∣∫

R3

∆D · γ dx
∣∣∣ ≤ C ‖∇D‖2 ‖∇γ‖2 ≤ C ‖V |B‖2 ‖∇γ‖2,

∣∣∣λ ∫
R3

D · γ dx
∣∣∣ ≤ C ‖D‖2 ‖γ|B‖2 ≤ C ‖V |B‖2 ‖∇γ‖2,

∣∣∣∫
R3

3∑
k=1

∂kϕ∂kV · γ dx
∣∣∣ =

∣∣∣∫
R3

(∆ϕγ −
3∑

k=1

∂kϕ∂kγ) · V dx
∣∣∣ ≤ C ‖V |B‖2 ‖∇γ‖2,

∣∣∣∫
R3

Π∇ϕ · γ dx
∣∣∣ ≤ ‖Π|B‖−1,2 ‖∇ϕ · γ‖1,2 ≤ C ‖Π|B‖−1,2 ‖∇γ‖2.

It is obvious how to handle the remaining terms of the integral
∫
R3 H ·γ dx. Thus, collecting

the preceding estimates, we arrive at the inequality ‖H‖−1,2 ≤ C (‖V |B‖2 + ‖Π|B‖−1,2).
Noting that supp(1 − ϕ) ⊂ BS+1/4

c
and Ω ⊂ BS , we obtain (1 − ϕ) γ ∈ C∞0 (Ω

c
)3 for

γ ∈ C∞0 (R3)3. On recalling that supp(∇ϕ) ⊂ B and ‖γ|B‖2 ≤ C ‖∇γ‖2, we further find
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that ‖∇
(

(1− ϕ) γ
)
‖2 ≤ C ‖∇γ‖2 for γ ∈ C∞0 (R3)3. As a consequence ‖(1− ϕ)G‖−1,2 ≤

C ‖G|Ωc‖−1,2. In view of the estimate of ‖H‖−1,2 given above, this means

‖(1− ϕ)G+H‖−1,2 ≤ C (‖G|Ωc‖−1,2 + ‖V |B‖2 + ‖Π|B‖−1,2). (6.7) C7.30.140

Next we remark that the functions V and Π may be estimated by making use of Theorem
4.3 and Lemma 4.1 with G replaced by (1 − ϕ)G + H. Again recalling that V = Ṽ and
Π = Π̃ + c0, we may then conclude that inequality (6.1) with V, Π replaced by Ṽ , Π̃,
respectively, follows from Theorem 4.3, Lemma 4.1 and (6.7).

In order to estimate W and Γ, we fix a function ζ ∈ C∞0 (B) with ζ ≥ 0 and
∫
B ζ dx > 0.

Put cζ :=
(∫

B ζ dx)−1
∫
B Γ ζ dx. Corollary 3.5 with A = ΩS+1 and with G replaced by

ϕG−H|ΩS+1 imply that

‖W‖1,2 + ‖W‖p + ‖Γ− cζ |ΩS+1‖2 ≤ C(p) ‖ϕG−H|ΩS+1‖−1,2 for p ∈ (4, 6).

Obviously ‖ϕG−H|ΩS+1‖−1,2 ≤ ‖ϕG−H|Ω
c‖−1,2 ≤ ‖ϕG|Ω

c‖−1,2 +‖H‖−1,2, so we may
conclude with the estimate of ‖H‖−1,2 we derived above that for p ∈ (4, 6),

‖W‖1,2 + ‖W‖p + ‖Γ− cζ |ΩS+1‖2 ≤ C(p) (‖G|Ωc‖−1,2 + ‖V |B‖2 + ‖Π|B‖−1,2).

Since V = Ṽ +W, Π = Π̃+Γ, we arrive at inequality (6.1), but with the term C·‖cζ |ΩS+1‖2
added on the right-hand side. However, since ζ ∈ C∞0 (B), hence ϕ ζ ∈ C∞0 (B), we get
with Poincaré’s inequality on B and the definition of Γ that

‖cζ |ΩS+1‖2 ≤ C |cζ | ≤ C
∣∣∣∫
B

Πϕ ζ dx
∣∣∣ ≤ C ‖Π|B‖−1,2 ‖ϕ ζ‖1,2 ≤ C ‖Π|B‖−1,2. (6.8) C7.30.150

In the last inequality, we subsumed the term ‖ϕ ζ‖1,2 in the constant C. It is in view
of (6.8) that we introduced the condition

∫
A π ζ dx = 0 in Corollary 3.5. Estimate (6.8)

completes the proof of (6.1). �

Now we may prove our main results, beginning with
〈theoremT7.10〉

Theorem 6.1 Let λ ∈ Kτ , q ∈ (1, 2), G ∈ Lq(Ωc
)3.

Then ‖V(λ,G)‖p1 ≤ C(p1, q) ‖G‖q for p1 ∈
(

(1/q − 1/2)−1, ∞
)

if q ≥ 3/2, p1 ∈
(

(1/q −
1/2)−1, (1/q − 2/3)−1

)
in the case q < 3/2, and for p1 = 6 if q = 6/5.

Moreover ‖∇V(λ,G)‖p2 ≤ C(p2, q) ‖G‖q for p2 ∈
(

(1/q− 1/4)−1, (1/q− 1/3)−1
)
, and for

p2 = 2 if q = 6/5.

In addition, if λ 6= 0, we have ‖V(λ,G)‖p3 ≤ C(3, q) |λ|−2+4 (1/q−1/p3) ‖G‖q for p3 ∈ [q, 2].

Finally ‖D2V(λ,G)|ΩR‖q ≤ C(q,R) ‖G‖q for q ∈ (1,∞), R ∈ [S,∞), and ‖∇Π(λ,G)‖q ≤
C(q) ‖G‖q for q ∈ (1,∞).

Proof: We proceed by contradiction, similarly to the approach in [20] and [3]. Take
p1, p2, p3 as in the theorem, and let R ∈ [S + 1, ∞). Abbreviate κ := 2− 4 (1/q − 1/p3).
Suppose there is no constant C0 > 0 such that

‖V(%, φ)‖p1 + ‖∇V(%, φ)‖p2 + sup
T>0
|%|κ ‖χBT

V(%, φ)‖p3 + ‖D2V(%, φ)|ΩR‖q (6.9) T7.10.60

+‖∇Π(%, φ)‖q ≤ C0 ‖φ‖q for φ ∈ C∞0 (Ω
c
)3, % ∈ Kτ .
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Then, for any n ∈ N, there is some %n ∈ Kτ and some function φn ∈ C∞0 (Ω
c
)3 with γn ≥

n ‖φn‖q, where γn := ‖V(%n, φn)‖p1 + ‖∇V(%n, φn)‖p2 + supT>0 |%n|κ ‖χBT
V(%n, φn)‖p3 +

‖D2V(%n, φn)|ΩR‖q+‖∇Π(%n, φn)‖q. Note that by the regularity properties listed in Corol-
lary 6.1 (%n 6= 0) or (6.2) (%n = 0), we have γn < ∞ for n ∈ N. This is true even
if %n = 0 for some n ∈ N, in which case the function V(%n, φn) need not belong to
Lp3(Ω

c
)3. However the term supT>0 |%n|κ ‖χBT

V(%n, φn)‖p3 then vanishes. We do not
use the expression |%n|κ ‖V(%n, φn)‖p3 for % ∈ Kτ , φ ∈ C∞0 (Ω

c
)3 because in the case

% = 0, it might lead to products of the form 0 · ∞, which we want to avoid. Define
vn := γ−1

n V(%n, φn), σn := γ−1
n Π(%n, φn), gn := γ−1

n φn for n ∈ N. Then Corollary 6.1 –
6.3 and 3.4 yield vn ∈ C∞(Ω

c
)3, σn ∈ C∞(Ω

c
)3, vn|ΩR ∈W 2,q(ΩR)3,

−∆vn + τ ∂1vn + %n vn +∇σn = gn, div vn = 0, vn|∂Ω = 0 for n ∈ N. (6.10) T7.10.70

Since γn ≥ n ‖φn‖q, we further get

‖vn‖p1 + ‖∇vn‖p2 + sup
T>0
|%n|κ ‖χBT

vn‖p3 + ‖D2vn|ΩR‖q + ‖∇σn‖q = 1 ≥ n ‖gn‖q (6.11) T7.10.80

for n ∈ N. As a first consequence of (6.11), we note that ‖gn‖q → 0. By the choice
of Π(%n, φn) (Corollary 6.1 and 6.2), we have

∫
ΩS+1

σn dx = 0, hence by a Poincaré’s

inequality ‖σn|ΩS+1‖q ≤ C(q) ‖∇σn|ΩS+1‖q ≤ C(q) ‖∇σn‖q for n ∈ N. Thus we may
conclude from (6.11) that the sequence (σn|ΩS+1)n≥1 is bounded in W 1,q(ΩS+1). Since
p1 ≥ q, p2 ≥ q, R ≥ S+1, it further follows from (6.11) that the sequence (vn|ΩS+1)n≥1 is
bounded in W 2,q(ΩS+1)3. We may conclude from (6.11) and from the preceding remarks
on (σn|ΩS+1)n≥1 and (vn|ΩS+1)n≥1) that there is a subsequence of

(
(vn, σn, %n)

)
, also

denoted by
(

(vn, σn, %n)
)
, with the following properties: vn ⇀ V in Lp1(Ω

c
)3 for some

V ∈ Lp1(Ω
c
)3, ∂lvn ⇀ V (l) in Lp2(Ω

c
)3 for some V (l) ∈ Lp2(Ω

c
)3 (1 ≤ l ≤ 3), ∇σn ⇀ γ

in Lq(Ω
c
)3 for some γ ∈ Lq(Ω

c
)3, ‖vn|ΩS+1 − Z‖1,q → 0 for some Z ∈ W 1,q(ΩS+1)3,

‖σn|ΩS+1 − Y ‖q → 0 for some Y ∈ Lq(ΩS+1)3, and %n → % in C for some % ∈ Kτ .

By considering the sequences (
∫

Ω
c vn · ∂lψ dx) and (

∫
Ω

c ∂lvn ·ψ dx) with l ∈ {1, 2, 3}, ψ ∈
C∞0 (Ω

c
)3, we find that V ∈ W 1,1

loc (Ω
c
)3 and ∂lV = V (l) for 1 ≤ l ≤ 3. Similarly we

get V |ΩS+1 = Z, Y ∈ W 1,1
loc (ΩS+1), ∇Y = γ|ΩS+1. Since ∂lV = V (l) (1 ≤ l ≤ 3), we

conclude that ∇V ∈ Lp2(Ω
c
)9. The equation

∫
ΩS+1

σn dx = 0 for n ∈ N and the fact that

‖σn|ΩS+1−Y ‖q → 0 yield
∫

ΩS+1
Y dx = 0. We further conclude that ‖vn−V |ΩS+1‖1,q → 0,

so V |∂Ω = 0 by (6.10). The latter reference, the relation ‖gn‖q → 0 and the equation
∂lV = V (l) (1 ≤ l ≤ 3) imply that divV = 0 and that (3.1) as well as (3.2) hold with
A = Ω

c
, G = 0, λ = %, and with the term −Π divψ in (3.2) replaced by γ·ψ. Recalling that

V ∈ Lp1(Ω
c
)3, ∇V ∈ Lp2(Ω

c
)9, we may now apply Theorem 5.2 to obtain V = 0. Thus

(3.2) reduces to the equation
∫

Ω
c γ · ψ dx = 0 for ψ ∈ C∞0 (Ω

c
)3, which means that γ = 0.

Since ∇Y = γ|ΩS+1 and
∫

ΩS+1
Y dx = 0, as mentioned above, we get Y = 0 (Corollary

2.2). In this way we arrive at the relations ‖vn|ΩS+1‖1,q → 0 and ‖σn|ΩS+1‖q → 0.

On the other hand, referring to Corollary 6.3 with V, Π replaced by vn = V(%n, γ
−1
n φn)

and σn = Π(%n, γ
−1
n φn), respectively, we see that the left-hand side of (6.11) is bounded

by a constant times ‖gn‖q + ‖vn|ΩS+1‖1,q + ‖σn|ΩS+1‖q (n ∈ N). But by what we have
found before, this latter term tends to zero for n→∞. Thus the left-hand side of (6.11)
must equally tend to zero, which is a contradiction to (6.11). So we have shown there is
C0 > 0 such that inequality (6.9) holds for φ ∈ C∞0 (Ω

c
)3 and % ∈ Kτ .
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In order to extend this result to G ∈ Lq(Ωc
)3, fix some such function G, and let (φn) be

a sequence in C∞0 (Ω
c
)3 with ‖G − φn‖q → 0. Let % ∈ Kτ . If % 6= 0, then the estimate

in Theorem 3.7 yields ‖V − Vn‖2,q → 0 and ‖∇Π − ∇Πn‖q → 0, where we used the
abbreviations V = V(%,G), Π = Π(%,G), Vn = V(%, φn) and Πn = Π(%n, φn), for n ∈ N.
If % = 0, we use Theorem 3.6 to obtain ‖V − Vn‖2 q/(2−q) → 0, ‖∇(V − Vn)‖4 q/(4−q) →
0, ‖D2(V − Vn)‖q → 0 and ‖∇(Π − Πn)‖q → 0. On the other hand, since inequality
(6.9) was shown to be valid for φ ∈ C∞0 (Ω

c
)3, we see that the sequence (Vn) converges

in Lp1(Ω
c
)3, (∇Vn) in Lp2(Ω

c
)9, (|%|κ Vn) in Lp3(Ω

c
)3 if % 6= 0, (D2Vn|ΩR) in Lq(ΩR)27

and (∇Πn) in Lq(Ω
c
)3. Since Lp-convergence implies pointwise convergence a. e. of a

subsequence, we may now conclude that the limit functions of the preceding sequences are
V, ∇V, |%|κ V, D2V |ΩR and ∇Π, respectively. Thus inequality (6.9) remains valid when φ
is replaced by G. This proves the theorem. �

〈theoremT7.20〉
Theorem 6.2 Let p ∈ (4, 6), λ ∈ Kτ and G ∈ C∞0 (Ω

c
)3. Then, for some c0 ∈ R, we have

‖V(λ,G)‖p + ‖∇V(λ,G)‖2 + ‖Π(λ,G) + c0‖2 ≤ C(p) ‖G|Ωc‖−1,2. (6.12) T7.20.10

Proof: We again proceed by contradiction. Suppose there is no constant C0 > 0 such
that

‖V(%, φ)‖p + ‖∇V(%, φ)‖2 + ‖Π(%, φ) + c(%, φ)‖2 ≤ C0 ‖φ|Ω
c‖−1,2 (6.13) T7.20.30

for % ∈ Kτ , φ ∈ C∞0 (Ω
c
)3, where c(%, φ) ∈ C is chosen in such a way that Π(%, φ)+c(%, φ) ∈

Lr(Ω
c
) for any r ∈ (3/2, ∞); see Corollary 6.3. Then, for any n ∈ N, there exists

%n ∈ Kτ and φn ∈ C∞0 (Ω
c
)3 such that γn ≥ n ‖φn|Ω

c‖−1,2, where γn := ‖V(%n, φn)‖p +
‖∇V(%n, φn)‖2 + ‖Π(%n, φn) + c(%n, φn)‖2. Note that γn < ∞ for n ∈ N by the choice of
c(%n, φn) and by Corollary 6.1 and 6.2. We define

vn := γ−1
n V(%n, φn), σn := γ−1

n

(
Π(%n, φn) + c(%n, φn)

)
, gn := γ−1

n φn for n ∈ N.

Then, as in the proof of Theorem 6.1, the pair (vn, %n) satisfies (6.10) (n ∈ N). The
regularity properties listed in Corollary 6.1 in the case %n 6= 0 and in Corollary 6.2 if
%n = 0 are valid for vn, σn in the place of V and Π, respectively. Moreover Corollary 6.3
yields σn ∈ Lr(Ω

c
)3 and vn,j , σn ∈ C∞(Ω

c
) for r ∈ (3/2, ∞), n ∈ N, 1 ≤ j ≤ 3. The

inequality γn ≥ n ‖φn|Ω
c‖−1,2 implies that

‖vn‖p + ‖∇vn‖2 + ‖σn‖2 = 1 ≥ n ‖gn|Ω
c‖−1,2 for n ∈ N. (6.14) T7.20.40

As a first consequence of (6.14), we note that ‖gn|Ω
c‖−1,2 → 0. Fix some function

ζ ∈ C∞0 (BS+1) with ζ|BS = 1. Put B := BS+1\BS . Since vn|∂Ω = 0 according to
(6.10), and because p > 2, vn ∈ Lp(Ω

c
)3 and ∇vn ∈ L2(Ω

c
)9, it follows that ζ vn|ΩS+1 ∈

W 1,2
0 (ΩS+1)3 and ‖ζ vn|ΩS+1‖1,2 ≤ C(p) (‖vn‖p + ‖∇vn‖2), and similarly ‖vn|B‖1,2 ≤

C(p) (‖vn‖p + ‖∇vn‖2), for n ∈ N. These observations, (6.14) and Theorem 2.3 allow us to
choose a subsequence of

(
(vn, σn, %n)

)
, also denoted by

(
(vn, σn, %n)

)
, with the following

properties: vn ⇀ V in Lp(Ω
c
)3 for some V ∈ Lp(Ωc

)3, ∂lvn ⇀ V (l) in L2(Ω
c
)3 for some

V (l) ∈ L2(Ω
c
)3 (1 ≤ l ≤ 3), ζ vn|ΩS+1 ⇀ Z in W 1,2

0 (ΩS+1)3 for some Z ∈ W 1,2
0 (ΩS+1)3,

‖vn|B − Y ‖2 → 0 for some Y ∈ L2(B)3, σn ⇀ Π in L2(Ω
c
)3 for some Π ∈ L2(Ω

c
)3,

‖σn|B − Γ‖−1,2 → 0 for some Γ ∈ L2(B), and %n → % in C for some % ∈ Kτ .
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By the reasoning indicated in the proof of Theorem 6.1, we may conclude that V ∈
W 1,1
loc (Ω

c
)3, ∂lV = V (l) for 1 ≤ l ≤ 3, ζ V |ΩS+1 = Z, V |B = Y, Π|B = Γ. Therefore

∇V ∈ L2(Ω
c
)9, ‖vn − V |B‖2 → 0 and ‖σn − Π|B‖−1,2 → 0. Since ζ V |ΩS+1 = Z ∈

W 1,2
0 (ΩS+1)3, ζ|BS = 1 and Ω ⊂ BS , we get V |∂Ω = 0. Moreover, recalling that ∂lV =

V (l) for 1 ≤ l ≤ 3 and ‖gn|Ω
c‖−1,2 → 0, we may deduce from (6.10) that divV = 0 and

that (3.1) as well as (3.2) hold with A = Ω
c
, G = 0 and λ = %. Since V ∈ Lp(Ωc

)3 and
∇V ∈ L2(Ω

c
)9, we may at this point apply Theorem 5.2 to obtain V = 0. Now (3.2)

yields
∫

Ω
c Π divψ = 0 for ψ ∈ C∞0 (Ω

c
)3, implying that Π ∈ W 1,1

loc (Ω
c
)3 with ∇Π = 0. As

a consequence Π = c a. e. for some c ∈ C (Corollary 2.2). But Π ∈ L2(Ω
c
), so Π = 0. In

this way we arrive at the relations ‖vn|B‖2 → 0 and ‖σn|B‖−1,2 → 0.

On the other hand we may apply (6.1) with V, Π replaced by vn = V(%n, γ
−1
n φn), σn =

Π(%n, γ
−1
n φn) + γ−1

n c(%n, φn), to obtain

‖vn‖p + ‖∇vn‖2 + ‖σn‖2 ≤ C(p) (‖gn|Ω
c‖−1,2 + ‖vn|B‖2 + ‖%n|B‖−1,2) for n ∈ N.

It follows that the left-hand side of this estimate tends to zero for n → ∞, which is a
contradiction to (6.14). As a consequence, there must be a constant C0 > 0 such that
(6.13) holds. This proves Theorem 6.2. �

〈theoremT7.40〉
Theorem 6.3 Let λ ∈ Kτ and G ∈ D−1,2

0 (Ω
c
)3. Then there is a unique function V :=

Ṽ(λ,G) ∈ D1,2
0 (Ω

c
)3 such that divV = 0,∫

Ω
c
(∇V · ∇ψ + τ ∂1V ψ + λV · ψ) dx = G(ψ) for ψ ∈ C∞0 (Ω

c
)3 with divψ = 0. (6.15) T7.40.10

This function V satisfies the inequality ‖V ‖p + ‖∇V ‖2 ≤ C(p) ‖G‖−1,2 for p ∈ (4, 6].

Proof: Since D1,2
0 (Ω

c
)3 ⊂ L6(Ω

c
)3, ∇W ∈ L2(Ω

c
)9 and W |∂Ω = 0 for W ∈ D1,2

0 (Ω
c
)3,

the uniqueness statement in Theorem 6.3 follows from Theorem 5.2. Concerning existence,
Theorem 2.6 yields a sequence (φn) in C∞0 (Ω

c
)3 with ‖G − φn‖−1,2 → 0. Therefore, by

the estimate in Theorem 2.5 and (6.12), the sequence
(
V(λ, φn)

)
converges in L6(Ω

c
)3,

and the sequence
(
∇V(λ, φn)

)
in L2(Ω

c
)9. Thus there is a function V := Ṽ(λ,G) ∈

L6(Ω
c
)3 ∩ W 1,1

loc (Ω
c
)3 with ∇V ∈ L2(Ω

c
)9 such that ‖V − V(λ, φn)‖6 → 0 and ‖∇V −

∇V(λ, φn)‖2 → 0. Then ‖V − V(λ, φn)|ΩS‖1,2 → 0, so V |∂Ω = 0. We thus have found

that V ∈ D1,2
0 (Ω

c
)3. The relations ‖V − V(λ, φn)‖6 → 0 and ‖∇V − ∇V(λ, φn)‖2 → 0

and the fact that V(λ, φn) satisfies (1.8) with φn in the place of G imply (6.15). Again
referring to (6.12), we get ‖V(λ, φn)‖p + ‖∇V(λ, φn)‖2 ≤ C ‖φn|Ω

c‖−1,2 for n ∈ N and
p ∈ (4, 6). In view of the estimate in Theorem 2.5, the preceding inequality also holds for
p = 6. These observations imply the estimate stated in Theorem 6.3. �

As an immediate consequence of Theorem 2.6, 5.2 and the regularity properties of solutions
to (1.8) mentioned in Corollary 6.1, 6.2 and in Theorem 6.3, we obtain that the functions
V(λ,G) and Ṽ(λ,G) coincide if G has suitable regularity:

Corollary 6.4 Let λ ∈ Kτ and p ∈ (1,∞), with either λ 6= 0 or p < 2. Let G ∈
Lp(Ω

c
)3 ∩ D−1,2

0 (Ω
c
)3. Then the function V(λ,G), as defined in Corollary 6.1 (λ 6= 0) or

6.2 (λ = 0), and the function Ṽ(λ,G) introduced in Theorem 6.3 coincide.
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We add a technical remark which is relevant for the proof of the ensuing theorem, which
is another one of our main results.

〈lemmaL7.10〉
Lemma 6.1 Let λ ∈ Kτ , p ∈ (1, 2) in the case λ = 0, p ∈ (1,∞) if λ 6= 0, G ∈ Lp(Ωc

)3.
Then V(λ,G) = V

(
λ, Pp(G)

)
.

Proof: For ψ ∈ C∞0 (Ω
c
)3 with divψ = 0, we have

∫
Ω

c G · ψ dx =
∫

Ω
c Pp(G) · ψ dx

(second and forth equation in Corollary 2.5). Therefore (3.1) is satisfied with V =
V(λ,G) and V = V

(
λ, Pp(G)

)
. Thus, due to the integrability properties of V(λ,G)

and V
(
λ, Pp(G)

)
mentioned in Corollary 6.1 (λ 6= 0) and 6.2 (λ = 0), and because

V(λ,G)|∂Ω = V
(
λ,Pp(G)

)
|∂Ω = 0. we may apply Theorem 5.2, which yields V(λ,G) =

V
(
λ, Pp(G)

)
. �

〈theoremT7.30〉
Theorem 6.4 For p ∈ (1,∞), the estimate ‖V(λ,G)‖p ≤ C(p) |λ|−2 ‖G‖p holds for G ∈
Lp(Ω

c
)3, λ ∈ Kτ\{0}.

Proof: Let λ ∈ Kτ\{0}. For p ∈ (1,∞), put Dp := Hp(Ω
c
) ∩W 2,p(Ω

c
)3 ∩W 1,p

0 (Ω
c
)3. We

will apply some of our preceding results both for µ = 1 and µ = −1, with µ being the pa-
rameter fixing the sign of the Oseen term in (1.8), (3.1), (3.2) and (3.5). Therefore we have
this parameter appear explicitly in our notation, denoting by

(
V(µ)(λ,G), Π(µ)(λ,G)

)
the

solution of (1.8) introduced in Corollary 6.1, for p ∈ (1,∞), G ∈ Lp(Ωc
)3, µ ∈ {−1, 1}.

In addition we set A
(µ)
p (V ) := Pp(−∆V + µ τ ∂1V + λV ) for V ∈ Dp.

Let µ ∈ {−1, 1}, p ∈ (1,∞), G ∈ Hp(Ω
c
), and abbreviate V := V(µ)(λ,G), Π :=

Π(µ)(λ,G). Then V ∈ W 2,p(Ω
c
)3, and the pair (V,Π) is a solution of (1.8); see Corollary

6.1. In particular we have V |∂Ω = 0 (hence V ∈W 1,p
0 (Ω

c
)3) and divV = 0. Thus Theorem

2.2 implies in particular that V ∈ Hp(Ω
c
). These observations mean that V ∈ Dp. Since

∇Π ∈ Lp(Ω
c
)3 and the pair (V,Π) solves (1.8), it follows with the third equation in

Corollary 2.5 that A
(µ)
p (V ) = Pp(G). But G ∈ Hp(Ω

c
), so A

(µ)
p (V ) = G again by Corollary

2.5. We have thus shown that A
(µ)
p : Dp 7→ Hp(Ω

c
) is onto, with

A(µ)
p

(
V(µ)(λ,G)

)
= G for G ∈ Hp(Ω

c
). (6.16) T7.30.20

Let V ∈ Dp with A
(µ)
p (V ) = 0. Obviously −∆V + µ τ ∂1V + λV ∈ Lp(Ωc

)3, so we may

put Π := −Gp(−∆V + µ τ ∂1V + λV ). Note that Π ∈ W 1,p
loc (Ω

c
) with ∇Π ∈ Lp(Ω

c
)3

by Theorem 2.11. This latter reference and the assumption A
(µ)
p (V ) = 0 imply the pair

(V,Π) is a solution of (3.5) with G = 0. Since V ∈ Dp ⊂W 1,p
0 (Ω

c
)3, we additionally have

V |∂Ω = 0, so the pair is a solution of (1.8) with G = 0. Theorem 5.2 now yields V = 0.

Thus the operator A
(µ)
p is one-to-one. At this point we have found that A

(µ)
p : Dp 7→ Hp(Ω

c
)

is bijective, with (6.16) implying

(A(µ)
p )−1(G) = V(µ)(λ,G) for G ∈ Hp(Ω

c
). (6.17) T7.30.30

This latter equation, the fact that V(µ)(λ,G) ∈ Dp, and Theorem 3.7 yield that (A
(µ)
p )−1 :

Hp(Ω
c
) 7→ Hp(Ω

c
) is bounded.

Let us write A+, A− instead of A(1) and A(−1), respectively. The notation V+(λ,G) and
V−(λ,G) are to be understood in an analogous way, for G ∈ Lp(Ωc

)3, p ∈ (1,∞).
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Integrations by parts and the second and forth equation in Corollary 2.5 yield
∫

Ω
c A+

p (V ) ·
W dx =

∫
Ω V ·A

−
p (W ) dx for p ∈ (1,∞), V ∈ Dp, W ∈ Dp′ , and for p ∈ (1,∞). It follows

again with the second and forth equation in Corollary 2.5 that the operator (A−p′)
−1 ◦ Pp′

is dual in Lp(Ω
c
)3 to (A+

p )−1 ◦ Pp
(
p ∈ (1,∞)

)
.

Let the operator norm of linear bounded operators F : Lp(Ω
c
)3 7→ Lp(Ω

c
)3 be denoted by

‖| ‖|p, that is, ‖|F‖|p := sup{‖F(V )‖p/‖V ‖p : V ∈ Lp(Ωc
)3, V 6= 0}, for p ∈ (1,∞). Then

a functional analytical principle allows us to conclude that

‖|(A+
p )−1 ◦ Pp‖|p = ‖|(A−p′)

−1 ◦ Pp′‖|p′
(
p ∈ (1,∞)

)
. (6.18) T7.30.40

Now let p ∈ (2,∞). Then p′ ∈ (1, 2), so by Theorem 6.1 with q = p3 = p′ we know
that ‖V−(λ,G)‖p′ ≤ C(p′) |λ|−2 ‖G‖p′ for G ∈ Lp

′
(Ω

c
)3. Using (2.8) and (6.17), we

may conclude that ‖|(A−p′)
−1 ◦ Pp′‖|p′ ≤ C(p′) |λ|−2. In view of (6.18), we thus obtain

‖|(A+
p )−1 ◦ Pp‖|p ≤ C(p) |λ|−2. Here p was arbitrarily taken from (2,∞). If p ∈ (1, 2), the

preceding inequality follows directly from Theorem 6.1, (6.17) and (2.8). In order to handle
the case p = 2, we interpolate between L3(Ω

c
)3 and L3/2(Ω

c
)3. To this end, we note that

by (6.17), Lemma 6.1 and the first equation in Corollary 2.5, we get (A+
3 )−1

(
P3(G)

)
=

V+
(
λ, P3(G)

)
= V+(λ,G) = V+

(
λ, P3/2(G)

)
= (A+

3/2)−1
(
P3/2(G)

)
for G ∈ L3(Ω

c
)3 ∩

L3/2(Ω
c
)3. Since we showed that the estimate ‖|(A+

p )−1 ◦ Pp‖|p ≤ C(p) |λ|−2 is valid for
p ∈ (1,∞)\{2}, we may now conclude by the Riesz-Thorin interpolation theorem that it
holds for p = 2 as well. Thus we have proved this estimate for any p ∈ (1,∞). Com-
bining it with Lemma 6.1 and (6.17), we finally get ‖V+(λ,G)‖p = ‖V+

(
λ, Pp(G)

)
‖p =

‖(A+
p )−1

(
Pp(G)

)
‖p ≤ C(p) |λ|−2 ‖G‖p for G ∈ Lp(Ωc

)3, p ∈ (1,∞). �
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