

Evolution of morphological allometry

Christophe Pélabon, Cyril Firmat, Geir H. Bolstad, Kjetil L. Voje, David Houle, Jason Cassara, Arnaud Le Rouzic, Thomas F. Hansen

▶ To cite this version:

Christophe Pélabon, Cyril Firmat, Geir H. Bolstad, Kjetil L. Voje, David Houle, et al.. Evolution of morphological allometry. Annals of the New York Academy of Sciences, 2014, 1320 (1), pp.58-75. 10.1111/nyas.12470 . hal-01534649

HAL Id: hal-01534649 https://hal.science/hal-01534649v1

Submitted on 27 Mar 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Copyright

ANNALS *of* the New York Academy of sciences

Evolution of morphological allometry

Journal:	Annals of the New York Academy of Sciences
Manuscript ID:	Draft
Manuscript Type:	Review paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Pelabon, christophe; NTNU, Biology Firmat, Cyril; NTNU, Biology Bolstad, Geir; NTNU, Biology Voje, Kjetil; University of Oslo, Department of Biology Cassara, Jason; Florida State University, Department of Biological Science Le Rouzic, Arnaud; Centre National de la Recherche Scientifique, Laboratoire Evolution, Génomes, Spéciation Houle, David; Florida State University, Department of Biological Science Hansen, Thomas; University of Oslo, Department of Biology
Keywords:	allometry, adaptation, evolution

j		······································
1		Pélabon et al. The evolvability of allometry
2 3 4 5	1	Evolution of morphological allometry
6 7	2	
8 9 10	3	
10 11 12	4	
13 14	5	Christophe Pélabon ¹ , Cyril Firmat ¹ , Geir H. Bolstad ¹ , Kjetil L. Voje ² , David Houle ³ , Jason
15 16	6	Cassara ³ , Arnaud Le Rouzic ⁴ , Thomas F. Hansen ²
17 18 10	7	
20 21	8	
22 23	9	1 – Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of
24 25	10	Science and Technology, 7491 Trondheim, Norway
26 27 28	11	
29 30	12	2 – Department of Biology, Centre for Ecological and Evolutionary Synthesis, University of
31 32	13	Oslo, Oslo, Norway
33 34	14	
35 36 37	15	3 – Department of Biological Science, Florida State University, Tallahassee, FL, USA
38 39	16	
40 41	17	4 – Laboratoire Evolution, Génomes, Spéciation, Centre National de la Recherche
42 43	18	Scientifique UPR9034, Gif-sur-Yvette, France
44 45 46	19	
47 48	20	
49 50	21	
51 52 53	22	
54 55		
56 57 58		
59 60		-1-

The evolvability of allometry

6

23	Abstract
----	----------

24	Allometry refers to the power-law relationship that often occurs between body parts and total
25	body size. Whether measured during growth (ontogenetic allometry), among individuals at
26	similar developmental stage (static allometry) or among populations or species (evolutionary
27	allometry), allometric relationships are often surprisingly tight, and relatively invariant.
28	Consequently, it has been suggested that allometry could constrain phenotypic evolution, that
29	is, force evolving species along fixed trajectories. Alternatively allometric relationship may
30	result from selection. Despite nearly a century of active research on allometry, distinguishing
31	between these two alternatives remains difficult partly due to the use of a broad sense
32	definition of allometry where the meaning of relative growth was lost. Focusing on the
33	original narrow-sense definition of allometry, we review evidence for and against the
34	"allometry as a constraint" hypothesis. Although the low evolvability of the static allometric
35	slopes observed in some studies suggests a possible constraining effect of this parameter on
36	phenotypic evolution, the nearly complete absence of knowledge about selection on allometry
37	prevents any firm conclusion.
38	

39 Keywords: adaptation, microevolution, macroevolution, evolutionary constraint

- 41 Abstract: 166 words; Main text: 5565 words; 1 table; 5 figures; 2 boxes

Annals of the New York Academy of Sciences

Pélabon et al.

The evolvability of allometry

42 Introduction

Allometry is the study of the relationship between body size and other organismal traits. Allometry is important because variation in a wide variety of morphological, physiological and life history traits are highly correlated with organism size [1,2,3]. These relationships generate intuitive hypotheses for understanding trait variation; for example, the fact that humans are larger than mice can be used to explain why the basal metabolic rate of a human is much higher than the basal metabolic rate of a mouse. In most cases, traits show a non-linear relationship with size that is accurately captured by a power relationship of the form z = ax^{b} , where the trait value is z, the organism size is x, and a and b are parameters of the relationship. If b = 1, the relationship between the trait and size is linear, a condition referred to as isometry. When $b \neq 1$, the relationship is non-linear on the arithmetic scale. For example, the basal metabolic rate in mammals scales with body mass with a coefficient $b \approx$ 0.71 [4]; as a result, for every unit increase in mass, a larger organism will have a smaller increase in basal metabolic rate than a smaller organism. Consequently, humans have a basal metabolic rate 5 to 10 times smaller than a mouse when corrected for body size. The ubiquity of these power-law relationships has led biologists to refer to them as allometric relationships. Analyzed on log-transformed data these relationships become linear: log(z) = log(a) + log(a $b \times \log(x)$, where $\log(a)$ and b represent the allometric intercept and slope, respectively. Because size varies during growth, among individuals of similar age, or among populations or species, three types of allometry have been defined. Ontogenetic allometry refers to the allometric relationship when size varies during growth. Static allometry refers to the relationship when size varies among individuals measured at a similar developmental stage and evolutionary allometry refers to the allometric relationship when size varies among population or species means. Allometric relationships often fit very precisely when the range of sizes is large, which

```
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
```

The evolvability of allometry

is usually the case at the ontogenetic and evolutionary levels. Furthermore, ontogenetic and static allometric slopes usually vary little among closely related species. These observations have led several authors to suggest that allometric slopes most likely reflect strong physical, physiological or biological mechanisms that somehow constrain the rate and direction of evolution [5,6,7]. For example, the scaling of metabolism with body size, referred to above, may be explained by the limits of diffusion through the limited surface area per volume of the larger human than the smaller mouse [8]. Accordingly, allometric relationships have been taken as prime evidence against the dominance of natural selection as an evolutionary force [9]. This constraint hypothesis has been widely accepted for physiological and life history traits [10,11], but has become more controversial for morphological traits. The alternative to the constraint hypothesis of allometry is that natural selection persistently favors the particular power relationships between traits and size that are observed. This hypothesis is at least implicitly widely accepted in the traditional studies of functional allometry [2]. For example, the relationship between the cross-sectional area of the skeleton with body mass may be explained in terms of optimal allocation, balancing the chances of breakage – favoring a robust skeleton – with the costs of locomotion – favoring a lighter skeleton. Accordingly, several authors have suggested that allometric slope could evolve under selection [12,13,14,15]. In this context, the evolution of the static allometry of sexually selected traits has been a particularly popular topic. Secondary sexual displays have been predicted to evolve particularly steep slopes (i.e. positive allometry: b>1) under handicap models [12,13,16,17,18], while genitalia are expected to show negative allometry (b < 1) due to stabilizing selection on trait size [14, 19, 20].

Optimally, it should be possible to distinguish between the constraint and selective
explanations for allometry by quantifying both the selection forces and the evolvability of
allometry (i.e. its capacity to evolve) and compare the predicted and observed patterns of

56
57
58
59
60

-4-

Annals of the New York Academy of Sciences

Pélabon et al.

The evolvability of allometry

evolution in allometry. The general prediction is that a constrained slope will either be incapable of evolving (an absolute constraint, [21]), or that fitness will decrease so rapidly when moved away from the optimal value that the possible advantages of the altered slope would not outweigh the fitness costs. Unfortunately, despite renewed interest in allometry in the last two decades, progress in understanding the evolution of morphological allometry has been slow. A key reason for this is the rise of a 'broad sense' definition of allometry as any monotonic relationship between trait size and body size [22, 23] (Box 1). This divorces the study of scaling from the prevalence of power relationships (Box 2), and in particular from the centrality of the slope as the essence of allometry [24]. The result is a body of literature that has measured quantities that cannot be interpreted as parameters of a power relationship. Our aim in the current contribution is therefore to define clear predictions concerning the constraint and selection hypotheses on morphological allometries and review the recent literature in the light of these predictions. Evolutionary constraint and allometry Evolutionary constraints are defined as any processes that preclude a trait from reaching a phenotypic optimum, or slow down its evolution towards this optimum [25]. Depending on the perspective and processes involved, many types of constraint have been defined [25,26]. Initially, allometry has been classified as developmental constraint, that is, constraint imposed by the developmental architecture in the production of variant phenotypes [27]. Although developmental constraints may themselves result from selection [28,29], they may still limit the direction of phenotypic evolution. Such perspective of allometry as developmental constraint corresponds to the view defended by early students of allometry and heterochrony [5, 6, 7, 30, 31], who explained patterns of species divergence by changes in timing or rate of development along constant ontogenetic processes.

The evolvability of allometry

117	The introduction of the quantitative genetics framework in the study of allometry [32,
118	33, 34, 35] has shifted the hypothesis of allometry as a constraint from a developmental to a
119	genetic perspective. Genetic constraints occur when the amount or pattern of genetic variation
120	limits or channels the response to selection. Although these two perspectives are intimately
121	linked because genetic constraints often result from developmental constraints, this change in
122	perspective may have weakened the constraint hypothesis, given the ubiquity of genetic
123	variation generally found [36]. But more recently, the hypothesis of constraint due to low
124	genetic variation has been refueled by the realization that genetic correlations among traits
125	due to pleiotropy could seriously influence the direction of phenotypic evolution [21, 37, 38,
126	39, 40, 41, 42, 43], allometry being a perfect example of such a constraint.
127	Importantly, the quantitative genetics approach of allometry underlines the fact that
128	understanding the evolution of allometry, and testing whether allometry represents an
129	evolutionary constraint requires quantifying the evolvability of allometry and comparing the
130	observed evolutionary patterns with those patterns expected under specific selection
131	pressures. If we are to test the "allometry as a constraint" hypothesis, we should therefore
132	answer the following questions; 1) Is allometry evolvable? 2) Does allometry constrains
133	patterns of phenotypic evolution? Static allometry represents the pivotal level at which these
134	questions should be asked. Indeed, it is the level at which developmental constraints will be
135	expressed, and patterns of static allometry will allow us to make predictions about phenotypic
136	evolution.
137	
138	Is static allometry evolvable?
139	Testing whether a trait is evolvable or not may be achieved by quantifying either its
140	propensity to vary (i.e. its evolvability; [44]), or its evolution, that is, quantifying the changes
141	in the trait when selected. In the following, after considering the possible sources of constraint

Annals of the New York Academy of Sciences

Pélabon et al.

The evolvability of allometry

and selection acting on static allometry, we review evidence for both the evolution of staticallometry at the microevolutionary scale and its evolvability.

145 Sources of constraint

Evolution of static allometry depends on the evolution of the static allometric slopes and intercepts. One key challenge is that an individual organism expresses neither a slope nor an intercept. Therefore, if these parameters represent quantitative traits, estimating their genetic variation requires clonal organisms where genetically similar organisms of different size can be measured, measurement of "allometries" across relatives in family groups, or across modules in modular organisms. Alternatively, because ontogenetic, static and evolutionary allometries of morphological traits all result from a single process, namely growth, testing the evolvability of static allometry could be achieved by estimating the evolvability of the growth processes that generate covariance among traits. Several growth models have been suggested to explain how static allometry is generated from simple growth patterns [5, 16, 31, 45, 46]. Using these models one can identify possible constraints on the variation of static allometry. From Huxley's (1932) [5] model of relative growth (Box 1), it can be shown that when two traits present an ontogenetic allometry such as z = a + bx, with x and z varying during growth, the static allometric slope at any specific time *t* can be expressed as:

161
$$b_s = \overline{b} + \frac{Cov(x_t, a) + \overline{x}_t Cov(x_t, b)}{Var(x)},$$
(1)

163 where \overline{b} is the ontogenetic allometric slope averaged across all individuals, (i.e. the mean 164 ontogenetic allometry of the population), and \overline{x}_t , the mean body size at time *t* [47]. This 165 shows that the static allometric slope is affected by both the average slope of the ontogenetic

-7-

Pélabon et al.

The evolvability of allometry

allometry and the covariance between the parameters of the ontogenetic allometry (slope and intercept) and body size. Similarly, parameters of the ontogenetic allometry will affect the average value of the trait over the entire range of sizes. This effect can be expressed in terms of the mean trait at the population mean body size, \bar{x}_t , in the following way:

171
$$\overline{z}_t = \overline{a} + E(bx_t) = \overline{a} + \overline{b}\overline{x}_t + \sigma(b, x_t),$$
 (2)

where \overline{a} is the average ontogenetic intercept across all individuals. Therefore a positive covariance between the ontogenetic slope and body size at stage t will increase the mean value, while a negative covariance will decrease it. This model illustrates how variation in the static allometric slope and intercept can be generated by variation of the ontogenetic parameters. Importantly, it also shows that when ontogenetic and static allometries are different ($Cov(x, b) \neq 0$ or $Cov(x, a) \neq 0$), invariance of static allometry across populations with different mean body size implies changes in the ontogenetic parameters. Comparing ontogenetic and static allometries and estimating the variation of the ontogenetic parameters should therefore provide valuable insight in the possibility for static allometry to evolve. Different body parts do not always grow simultaneously; some traits grow most rapidly early in development (e.g. mammalian brain, [48]) while others continue to grow after body mass has stopped increasing (e.g. appendages in holometabolous insects, secondary sexual traits in vertebrates [49], and see [50] for the special case of deer antlers). Ontogenetic allometry resulting from this type of growth pattern is necessarily non-linear [e.g. 45, 46], and sometimes the link between ontogenetic and static allometry can be difficult to establish. Nevertheless, even in such cases the overall growth of the trait may be coordinated with the expected body size, despite the difference in the timing of growth. Static allometry could then be interpreted as the reaction norm of a trait to changes in body size which represents the

-8-

Annals of the New York Academy of Sciences

Pélabon et al.

The evolvability of allometry

191 growth environment (see [16] for such a model). Variation in the allometric slope could then 192 have a component due to variation in the trait sensitivity to the growth state of the whole 193 organism. Lack of genetic variance in trait growth sensitivity to the size of the body or the 194 sharing of a large proportion of the developmental pathway therefore seem the most likely 195 sources of constraint on changes in static allometry. Importantly, such constraints would 196 affect the allometric slope, but not necessarily the intercept.

198 Sources of selection

Selection on trait and body size – Change in the allometric slope may occur as a side effect of directional selection on trait or body size. This type of selection probably represents the most common selection in the wild, as demonstrated by variation in size among populations and closely related species. Following the model described above (Eq. 1 and 2), in absence of covariance between body size and the ontogenetic parameters, ontogenetic and static allometry should be similar, and changes in body size should not affect the static allometric slope (Fig. 1; scenario A), except if the ontogenetic allometry is non-linear. If one of the covariance terms between body size and the slope or the intercept of the ontogenetic allometry is different from zero and constant, changes in body size should generate changes in static allometric slope (Fig. 1; scenario D). Finally, changes in the mean trait (\overline{z} ,) are expected to affect either the mean ontogenetic intercept (\overline{a} , Fig. 1 scenario C), the mean body size (\overline{x} , Fig. 1 scenario A), the mean ontogenetic slope (\overline{b}), the covariance between these last two terms $\sigma(b, x_t)$, or any combination of these parameters. Changes in static allometric slope with increasing body size may also occur if the sensitivity of trait growth to the growth environment is non-linear. In presence of threshold or saturation effects, one can predict that changes in body size may result in changes in the static allometric slope.

 Page 10 of 43

selection on the slope itself, with no change in \overline{x}_i or \overline{z}_i (Fig. 1, scenario B), which is equivalent to assuming correlated selection on size and the trait. With correlated selection, there will be an adaptive ridge that links the bivariate distribution of the traits to fitness (Fig. 2A). We can completely separate selection on the allometric slope from selection on trait means by imagining an adaptive landscape that selects on trait (co)variances but not on trait mean (i.e. no directional selection). We generally expect that trait means will evolve more rapidly than trait variation, so when a change in selection regime affects both means and (co)variances, we will rapidly approach the situation where only the (co)variances continue to be selected. A simple example of such changes would be selection for a decrease in trait variance combined with either an increase or constant variance in body size, which would decrease the allometric slope. Selection for increasing variance in trait size combined with a decreasing variance in body size should generate an increase in the allometric slope. Figure 2B shows a case of disruptive selection favoring extreme combinations of trait and body size over those near the means. This type of selection maximizes selection on variances and covariances, and therefore should lead to the maximum rate of response in the allometric slope. Strong disruptive selection balanced precisely to lead to no directional selection is probably an extremely rare event in nature, however. In theory, the presence of a selective ridge should be sufficient to favor a particular slope in the absence of disruptive selection, but the strength of selection on the slope will be quite weak, because many individuals the center of the distribution (i.e. with non-informative genotype) will be selected (Compare Fig. 2A and B). Verbal models of selection on allometric slope have been proposed to explain the

positive allometry often observed in sexually selected traits [12,13, 17, 18, 51]. In these

models, positive allometry evolves either because large males, presumably in better condition,

Annals of the New York Academy of Sciences

Pélabon et al.

The evolvability of allometry

are able to invest more in costly traits, or because the benefits of large traits increased with body size. By applying various selection regimes on an allocation model of growth, Bonduriansky and Day (2003) [16] showed that the conditions under which positive allometry evolved were more restrictive than previously thought, but that an increase in the relative fitness gain for larger traits with an increase in body size should select for positive allometry. Canalizing selection on trait size, on the other hand, has also been suggested to affect static allometry by generating negative allometries as for example for male copulatory organs in insects [14, 19].

The variational properties that generate variance and covariance among traits are pivotal to the evolution of static allometry. Although selection experiments have suggested that variation may respond to selection [52] it remains unclear how efficiently selection can mold genetic and environmental variation [53, 54, 55, 56]. The evolution of covariance between trait size and body size directly links the evolution of the static allometric slope with the evolution of the phenotypic and genetic covariance matrices (P and G on log scale). Much theoretical and empirical work shows that genetic covariances do evolve [54, 57, 58, 59, 60]. but it remains unclear what forces drive these changes, and how rapidly they can take place. The various hypotheses listed here suggest that, in many cases, selection on the allometric slope is rather weak and indirect. If combined with a low evolvability, this may result in slow evolutionary change in allometry.

Evolvability and evolution in static allometry

Because changes in ontogenetic allometry are expected to provoke changes in static allometry
(Eq. 1), we first consider here evidence for the evolution of ontogenetic allometry. Such
evidence is provided by several studies comparing ontogenetic allometries among species
[e.g. 61, 62, 63, 64]. However, few studies have tested the relationship between ontogenetic

The evolvability of allometry

266	and static allometry [34, 65, 66, 67, 68], and fewer have analyzed how variation in the
267	parameters of ontogenetic allometry affected static allometry. The only study, to our
268	knowledge, that compared the relationship between ontogenetic and static allometry among
269	populations [47], showed that static allometry between caudal fin length and body length in
270	female Guppies (Poecilia reticulata) was stepper than the ontogenetic allometry, but was
271	similar among three populations with different adult female length. This was achieved, among
272	other things, by differences in the average ontogenetic allometric slope among populations.
273	The relevance of these results regarding the rate at which ontogenetic allometry evolve is
274	unclear, however, because guppy populations from different drainages may have been
275	separated for hundred thousands of generations [69]. Furthermore, although individual
276	variation in ontogenetic allometry has been observed [47], the genetic basis of this variation
277	remains unknown, and overall we found only one study that reported heritability of
278	ontogenetic slopes of chest circumference ($h^2 = 0.25 \pm 0.07$) and tail length ($h^2 = 0.39 \pm 0.08$)
279	on body weight within six laboratory strains of rats selected for larger or smaller weight [70].
280	Microevolutionary changes in phenotypic covariances among traits are suggested by
281	studies reporting rapid changes in the G- or P- matrices within populations [71, 72, 73]. These
282	observations are difficult to interpret in terms of evolution of allometry, however, because
283	traits are not always strongly correlated in the first place and G-matrices are rarely analyzed
284	on log scale. Furthermore, studies analyzing changes in the P-matrix cannot distinguish
285	between environmental and genetic changes in the patterns of covariation among traits.
286	Estimates of genetic variance in static allometric slopes are scarce, and we found only
287	one study reporting heritabilities of allometric slopes measured on log scale [74]. In this
288	study, heritabilities of the static allometric slope between the length of several bones and the
289	cubic root of body weight, and between the weight of internal organs and body weight were
290	all statistically significant but relatively small (all $h^2 < 0.13$) despite being measured in the lab.

Annals of the New York Academy of Sciences

Pélabon et al.

The evolvability of allometry

291	Alternatively, artificial selection can be used to uncover genetic variation and
292	covariation in quantitative traits [75]. During the last two decades, several authors have
293	claimed to have altered patterns of static allometry by artificial selection. In addition, a few
294	artificial selection studies on size have shown changes in the covariance patterns between the
295	size of some traits and body size. Unfortunately, most of these studies have adopted the
296	broad-sense definition of allometry, seriously hampering our ability to interpret their results in
297	terms of the evolution of allometry [23]. For example, in a study on a stalk-eyed fly
298	(Cyrtodiopsis dalmanni), selection exerted on the ratio between eye span and body length
299	significantly affected the covariance between the two traits when measured on arithmetic
300	scale [76]. Reanalysis of the regression line on the log scale shows that changes in the
301	allometric slope are still present but much weaker than those reported in the original study
302	(Table 1). A similar selection procedure was used in two experiments on the butterfly
303	Bicyclus anynana [77, 78]. In both experiments, the intercepts of the relationships on
304	arithmetic scale were strongly affected by selection, but the slopes were apparently not,
305	although no formal tests of change in slope were reported. What were the consequences of the
306	selection on the allometric slope remains unknown.
307	The only artificial selection experiment on narrow-sense allometry conducted so far
308	combined stabilizing and disruptive selection on body area and caudal fin area to select for a
309	change in static allometric slope (procedure similar as the one described in Fig. 2B; [79].
310	Selection to increase and decrease the intercept was also applied on two separate lines.
311	Results suggested that the allometric slopes had very little capacity to vary compared to the
312	allometric intercepts. This conclusion, however, was weakened by the small number of
313	generations of selection.
314	Two studies investigating the effects of artificial selection on body size on correlated
315	traits provide some evidence for rapid change in static allometric slope. In a selection

The evolvability of allometry

316	experiment to increase or decrease body mass in the moth Manduca sexta, static allometry
317	between wing mass and body mass became steeper in the line selected for smaller body mass
318	and shallower in the line selected for larger body mass after 10 generations of selection ([80];
319	and see [23] for reanalysis using standard regression). Similarly, estimation of the static
320	allometric slopes in the different lines of a selection experiment to increase body size in
321	Drosophila melanogaster [81] reveals that allometries between wing length and thorax length
322	or between wing length and tibia length increased in the line selected for smaller thorax
323	length, and decreased in the line selected for larger thorax length (Table 1). Additionally,
324	Cayetano et al. (2011) [82] while relaxing sexual selection for ca. 21 generations in the seed
325	beetle Callosobruchus maculatus observed a change in the allometry between two traits of the
326	genital apparatus in males and elytron length. The reanalysis of the data from this last
327	experiment showed, however, a very poor fit of the traits with the allometric model and casted
328	doubt on the validity of the interpretation of the results [23].
329	One factor that has not been considered in these experiments, however, is the
330	possibility of plasticity in the allometric slope. Plasticity in allometric relationships has been
331	little studied, but one study clearly shows that static allometry varies in response to different
332	environmental treatments [83]. Similarly, a selection experiment on Drosophila wings in
333	which selection was performed on the relative position of some veins [55, 84, 85] shows
334	erratic but sometimes statistically significant variation in static allometry (Fig. 3). The
335	differences in slope apparent in Figure 3, could, if observed in isolation, be misinterpreted as
336	change in allometry due to selection. To avoid such problem we strongly recommend
337	following the changes in allometry from generation to generation, and experiments that fail to
338	do so should be interpreted with caution.
339	The dissection of the insulin/IGF signaling pathway that controls trait size in animals
340	provides a nice illustration of how the growth of specific traits responds to changes in the

Annals of the New York Academy of Sciences

	Pélabon et al. The evolvability of allometry
341	growth environment, that is, changes in body size [86, 87]. Interestingly, recent experiments
342	have uncovered mutations at specific loci that could affect the organ sensitivity to variation in
343	the growth environment and therefore affect the slope of the static allometry [74, 88].
344	Although these studies provide clear evidence for genetic variation in allometric slope, they
345	also suggest that this variation results from complex genetic architecture [74] that may not
346	easily respond to selection.
347	Neither inter-population variation nor quantitative genetics experiments provide
348	conclusive evidence for genetic variation in the allometric slope. For the intercept,
349	quantitative genetic studies provide clear evidence for high evolvability.
350	
351	Does static allometry constrain phenotypic evolution?
352	
353	Theoretical considerations
354	Micro-evolutionary studies reviewed in the last section suggest that the evolvability of the
355	allometric slope is low relative to the evolvability of the intercept. At the macro-evolutionary
356	level, reviews on allometry of secondary sexual characters clearly show that allometry of
357	homologous traits can vary among sexes from the same species or among species [89, 90].
358	Such information is by itself, not very informative about the constraint hypothesis because we
359	do not know anything about the strength of selection on the allometric relationships, and the
360	time scale for divergence can be very long. Therefore, it remains unclear whether there are
361	meaningful evolutionary constraints due to allometry.
362	In the absence of empirical knowledge regarding selection on allometry, we are left
363	with the option of generating predictions based on scenarios where static allometry constrains
364	phenotypic evolution under various hypothetical selection regimes. In this context, a general
365	prediction is that, if static allometric parameters represent evolutionary constraints they

The evolvability of allometry

366	should strongly shape patterns of populations and species divergence. This was initially
367	suggested by Gould [6, 7] and placed in a quantitative genetic framework by Lande [32, 33]
368	who showed that, under constant patterns of covariance between traits (constant G-matrix),
369	selection acting only on the body size (x) , will generate a correlated response on the trait size
370	(z). In this case, the evolutionary allometric slope (b_e) along which populations and species
371	evolve, will correspond to the ratio of the correlated response in z divided by the direct
372	response in x, that is, the slope of the genetic regression between the two traits: $b_s = \sigma_A(x,z)$
373	$/\sigma_A^2(x)$, where $\sigma_A^2(x)$ and $\sigma_A(x,z)$ are the additive genetic variance in x and the covariance
374	between x and z, respectively (Fig. 4 scenario A).
375	Because static allometry is defined at the phenotypic level, the static allometric slope
376	(b_s) combines both additive genetic and residual variances and covariances: $b_s =$
377	$[\sigma_A(x,z) + \sigma_R(x,z)] / [\sigma_A^2(x) + \sigma_R^2(x)]$, where <i>R</i> denotes all other residual components of the
378	variance, including environmental and non-additive genetic variance. Static and evolutionary
379	regression coefficients, b_s and b_e , will be similar when the relative contributions of the
380	residual variance and covariance are similar to the relative contributions of their additive
381	genetic counterparts. In this case, the genetic and phenotypic variance-covariance matrices, G
382	and P, will be proportional for these elements. If this condition is not fulfilled, evolutionary
383	allometry will not follow the trajectory defined by the static allometry, contrary to previous
384	claims by Gould [91] and others (Fig. 4 scenarios B and C; [33]). Furthermore, if the additive
385	genetic and residual contributions to static allometry are different but remain constant, the
386	static allometric slope should remain constant across populations and species while the
387	intercept will change with changing mean size (Fig. 4 scenario B and C).
388	It is important to realize that when Lande's model [33] is generalized to allow
389	selection on the trait and both size, and there is at least some additive genetic variation in
390	both, the means obtained in the long term depend only on the selective optima for size and the
	10

Annals of the New York Academy of Sciences

Pélabon et al.

The evolvability of allometry

391	trait, and not at all on the patterns of covariance among them [35]. If this is the case, and if
392	selective optima are spread more or less randomly in the bivariate morphospace, we would
393	expect no relationship between evolutionary and static allometry (Fig. 4 Scenario C and D).
394	Scenario C represents a situation where the slope is an absolute constraint but the trait and
395	body size means can evolve more or less freely in the morphospace (Fig. 4 Scenario C). This
396	provides the other major explanation for evolutionary allometry: it is not the pattern of genetic
397	variation, but the pattern of natural and sexual selection that dictates allometry.

These considerations underline the problem we have of testing the allometry as a constraint hypothesis without knowing the selection patterns acting on allometric relationships, and in most cases, only speculative interpretation of the macro-evolutionary patterns can be achieved. Although specific predictions have been suggested regarding the effect of selection on allometric slope for genitals and secondary sexual characters, these predictions only concerned the type of allometry expected (positive or negative allometry), but not the strength of selection. Furthermore, in the case of secondary sexual characters, it has been shown that positive allometry was only expected under specific selection pressures [16]. and a later review [89] confirmed that static allometric slopes in this type of character was not necessarily larger than one.

Empirical patterns

Although many studies have compared relationships between trait size and body size among populations and species, Voje et al. [23] identified only 10 studies that allowed estimation of the variation in static allometric slope and intercept (studies on log scale with sufficient information about the allometric parameters). Excluding genital traits, their analysis revealed inter-specific variation in static allometric slope within genera (median standard deviation corrected for sampling error: SD = 0.27). Within species, the static allometric slope varies

-17-

Pélabon et al.

Page 18 of 43

The evolvability of allometry

416 among populations but this variation is more limited (median SD = 0.07). For the allometric 417 intercept, patterns of variation were similar with higher variation among species (median SD 418 = 0.15) than among populations (median SD = 0.02).

Because the slope and intercept are on different scales, their level of variation is not directly comparable. Using the concept of conditional variance [39, 41], Voie et al. [23] estimated the influence of changes in size or in allometric slope and intercept in the evolution of trait size. This method allowed them to compare variation in slope and intercept on a common scale (variance in trait size). At the interspecific level, 74% of the variation in trait size was associated with changes in species mean size. The contribution of the changes in static allometric slope or intercept were more limited (13% and 29% of the log trait variance explained, respectively, e.g. Fig. 5A). The contributions of these three parameters to trait diversification at the among-population level were similar, with size variation explaining 71%, slope explaining 36%, and intercept variation explaining 40%. However, as previously mentioned, much less variation in static allometry was observed among populations, and the evolutionary allometry was often very similar to the pattern of static allometry (Fig. 5B). Finally, Voje et al. [23] showed that within species, the average static allometry across populations was a good predictor of the evolutionary allometry, while across species within genera the average static allometry was poorly correlated with the evolutionary allometry. These results are compatible with the "allometry as a constraint" hypothesis if selective optima were spread more or less randomly in the bivariate morphospace. Indeed, morphological evolution more constrained along static allometric trajectories at the within-species level than at the among-species level could be interpreted as signature of evolutionary constraint.

439 In an attempt to estimate the rate of morphological evolution towards a predicted
440 optimum, Voje and Hansen [92] reanalyzed data on the evolution of the static allometry

-18-

http://www.nyas.org/forthcoming

Annals of the New York Academy of Sciences

Pélabon et al.

The evolvability of allometry

2 3	441	between eye-span and body length in various species of stalk-eyed fly (Diopsidae). Using
4 5 6	442	sexual size dimorphism as a measure of the strength of sexual selection in order to estimate
7 8	443	optima, they showed that the static allometric slope in male trait was tracking these optima,
9 10	444	but this took millions of years to accomplish.
11 12	445	
13 14	446	The "one size fits all" hypothesis
15 16 17	447	The various studies analyzing static allometry of genital traits in arthropods and vertebrates
18 19	448	showed consistently shallow static allometric slopes (β <1) for these traits, as expected from
20 21 22	449	the "one size fits all" hypothesis [14, 19]. Eberhardt [19] reported few exceptions to this
22 23 24	450	pattern. However, all these exceptions came from studies where static allometry was
25 26	451	estimated using major axis regression, a method that will over-estimate the slope for
27 28	452	relationships with low r^2 . Accordingly, for all exceptions reported, the relationship between
29 30	453	the genitalia and the measure of body size was poor (range r^2 : 0.0 – 0.58). In all cases where
31 32 32	454	data were reanalyzed using standard regression methods, genital traits showed negative $(b < 1)$
33 34 35	455	static allometry [23, 93].
36 37	456	The "one size fits all" hypothesis has also been extended for reproductive organs in
38 39	457	flowering plants with insect pollination, where the fit between pollen donor and pollen
40 41	458	receiver organs and pollinators of relatively constant size and behavior is expected to produce
42 43 44	459	stabilizing selection [94]. Several studies have provided clear evidence for the relative
44 45 46	460	invariance of floral traits compared to vegetative traits [95, 96] and the two studies that have
47 48	461	tested the effect of pollination accuracy on the allometry of the pollen transport organs both
49 50	462	reported shallow allometry for these traits [97, 98].
51 52 52	463	If results from studies on the "one size fits all" hypothesis provide clear evidence of a
53 54 55	464	possible effect of selection on static allometry, they do not provide evidence for high
56 57 58 59	465	evolvability of the allometric slope. Indeed, intraspecific comparison of static allometry in

Pélabon et al.

The evolvability of allometry

insect genitalia show that variation in the allometric slope explains only a small proportion of
the variation in genitalia size, 92% of the variance of log-size genitalia being independent of
the variation in allometric slope [23]. This is particularly clear when observing the allometric
slope between genitalia size and body size in various populations of the beetle species *Dorcus titanus* (Fig 5C).

472 Conclusions

Despite the huge interest morphological allometry has focused among evolutionary biologists for nearly a century, we are left with a limited understanding of its evolution. Key observations such as genetic variation in ontogenetic allometry or in the static allometric slope are surprisingly scarce. Although micro- and macroevolutionary patterns seem to point at a constraining effect of morphological allometry on phenotypic evolution, the complete lack of data on the nature of direct or indirect selection on allometry, and the near absence of data on genetic variation in allometric parameters precludes the interpretation of these patterns as evidence for or against the constraint and adaptation hypotheses. Until such data are obtained the evolution of allometry will remain a mystery. **Acknowledgments** The authors want to thank Jarle Tufto for great discussions on allometry. This work was supported by grant 196434/V40 from the Norwegian Research Council to CP at NTNU.

Annals of the New York Academy of Sciences

The evolvability of allometry

Pélabon et al.

References 1 - Calder, W.A. 1984. Size, function and life history. Harvard University Press. 2 - Schmidt-Nielsen, K. 1984. Scaling: Why is animal size so important? Cambridge University Press, Cambridge. 3 - Brown, J.H. & G.B. West 2000. Scaling in biology. Oxford University Press, Oxford. 4 - Hudson, L.N., Isaac, N.J.B. & D.C. Reuman. 2013. The relationship between body mass and field metabolic rate among individual birds and mammals. J. Anim. Ecol. 82: 1009 - 1020. 5 - Huxley, J. S. 1932. Problems of relative growth. L. MacVeagh, New York. 6 - Gould, S.J. 1966. Allometry and size in ontogeny and phylogeny. Biol. Rev. Camb. Philos. Soc. 41:587-640. 7 - Gould, S.J. 1977. Ontogeny and phylogeny. Harvard Univ. Press. Cambridge MA, USA. 8 - Darveau CA, Suarez RK, Andrews RD, Hochachka PW (2002) Allometric cascade as a unifying principle of body mass effects on metabolism. *Nature* 417:166–170. 9 - Gould, S.J., & R.C. Lewontin. 1979. The spandrels of San Marco and the panglossian paradigm: A critique of the adaptationist programme. Phil. Trans. R. Soc. London B. 205:581-598. 10 - Charnov, E.L. 1993. Life History Invariants: Some Explorations of Symmetry in Evolutionary Ecology. Oxford University Press, Oxford. 11 - West, G.B. & J.H. Brown. 2005. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. 208: 1575-1592. 12 - Petrie, M. 1988. Intraspecific variation in structures that display competitive ability: large animals invest relatively more. Anim. Behav. 36: 1174-1179. 13 - Petrie, M. 1992. Are all secondary sexual display structures positively allometric and, if

513	so, why? Anim. Behav. 43: 173-175.
514	14 - Eberhard, W.G., Huber, B.A., Rodriguez, R.L., Briceno, R.D., Salas, I., & V. Rodriquez.
515	1998. One size fits all? Relationships between the size and degree of variation in
516	genitalia and other body parts in twenty species of insects and spiders. Evolution.
517	52:415-431.
518	15 - Frankino, W.A., Emlen, D.J. & A.W. Shingleton. 2009. Experimental approaches to
519	studying the evolution of animal form. In Garland Jr., T, and Rose, M. R. (Eds.)
520	Experimental evolution: Concepts, methods, and applications of selection
521	experiments. University of California Press, Ltd, Berkeley. Pp: 419-478.
522	16 - Bonduriansky, R., & T. Day. 2003. The evolution of static allometry in sexually selected
523	traits. Evolution. 57: 2450-2458.
524	17 - Green, A. 1992 Positive allometry is likely with mate choice, competitive display and
525	other functions. Anim. Behav. 43: 170-172.
526	18 - Kodric-Brown, A., Sibly, R.M. & J.H. Brown. 2006. The allometry of ornaments and
527	weapons. Proc. Natl. Acad. Sci. USA. 103:8733-8738.
528	19 - Eberhard, W.G. 2009. Static allometry and animal genitalia. Evolution. 63:48-66.
529	20 - Eberhard, W., Rodriguez, R. L. & M. Polihronakis, M. 2009. Pitfalls in understanding the
530	functional significance of genital allometry. J. Evol. Biol. 22: 435-445.
531	21 - Mezey J.G. & D. Houle. 2005. The dimensionality of genetic variation for wing shape in
532	Drosophila melanogaster. Evolution. 59: 1027-1038.
533	22 - Houle, D., Pélabon, C., Wagner, G. P. & T.F. Hansen. 2011. Measurement and meaning
534	in biology. Q. Rev. Biol. 86: 3–34.
535	23 - Voje K.J., Hansen, T.F., Egset, C.K., Bolstad, G.H., & C. Pélabon. 2014. Allometric
536	constraints and the evolution of allometry. Evolution. (in press).
537	24 - Haldane, J.B.S. 1932. The causes of evolution. Princeton University Press, Princeton.

1		Pélabon et al. The evolvability of allometry
2 3	538	25 - Hansen, T. F. 2014. Evolutionary constraints. In Oxford Bibliographies in Evolutionary
4 5	539	Biology. Ed. Losos, J. New York. Oxford University Press. In review.
6 7 9	540	26 - Arnold, S.J. 1992. Constraints on phenotypic evolution. Am. Nat. 140: 85-107.
9 10	541	27 - Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B.,
11 12	542	Lande, R., Raup, D. & L. Wolpert. 1985. Developmental Constraints and Evolution: A
13 14 15	543	Perspective from the Mountain Lake Conference on Development and Evolution.
16 17	544	Quart. Rev. Biol. 60:265-287.
18 19	545	28 - Wagner G.P. & K. Schwenk. 2000. Evolutionarily stable configurations: Functional
20 21	546	integration and the evolution of phenotypic stability Evol. Biol. 31:155 -217.
22 23	547	29 - Schwenk K. & G.P. Wagner. 2004. The relativism of constraints on phenotypic
24 25 26	548	evolution. In M. Pigliucci and K. Preston, (Eds.): Phenotypic integration. Oxford
20 27 28	549	University Press, Oxford. Pp 390-408.
29 30	550	30 - Gould, S.J. 1974. The origin and function of "bizarre" structures: antler size and skull
31 32	551	size in the "Irish Elk" Megaloceros giganteus. Evolution 28:191-220.
33 34	552	31 - Alberch, P., Gould, S.J., Oster, G.F. & D. B. Wake. 1979. Size and Shape in Ontogeny
35 36 37	553	and Phylogeny. Paleobiol. 5: 296-317.
38 39	554	32 - Lande, R. 1979. Quantitative genetic analysis of multivariate evolution, applied to brain –
40 41	555	body size allometry. <i>Evolution</i> . 33:402–416.
42 43	556	33 - Lande, R. 1985. Genetic and evolutionary aspects of allometry. In W. L. Jungers (Ed.).
44 45	557	Size and scaling in primate biology. Plenum Press, New York.
40 47 48	558	34 - Cheverud, J. M. 1982. Relationships among ontogenetic, static, and evolutionary
49 50	559	allometry. Am. J. Phys. Anthropol. 59:139-149.
51 52	560	35 - Zeng, Z.B. 1988. Long-term correlated response, interpopulation covariation, and
53 54	561	interspecific allometry. Evolution. 42:363-374.
55 56 57 58	562	36 - Hansen, T.F., Pélabon, C. & D. Houle. 2011. Heritability is not evolvability. Evol. Biol.
59 60		-23-

-23-

The evolvability of allometry

563 38:258–277.

- 37 Björklund, M. 1996. The importance of evolutionary constraints in ecological time
 scales. *Evol. Ecol.* 10:423-431.
- 566 38 Schluter, D. 1996. 1996. Adaptive radiation along genetic lines of least resistance.
 567 *Evolution* 50: 1766–1774.
- 39 Hansen, T.F., Armbruster, W.S., Carlson, M.L., & C. Pélabon. 2003. Evolvability and
 genetic constraint in *Dalechampia* blossoms: Genetic correlations and conditional
 evolvability. *J. Exp. Zool.* 296B:23-39.
- 40 Hansen, T.F. & D. Houle. 2004. Evolvability, stabilizing selection, and the problem of
- stasis. In M. Pigliucci and K. Preston, (Eds.): *Phenotypic integration*. Oxford
 University Press, Oxford. Pp. 130-150.
- 41 Hansen, T.F. & D. Houle. 2008. Measuring and comparing evolvability and constraint in
 multivariate characters. *J. Evol. Biol.* 21:1201-1219.
 - 576 42 Blows, M.W. & A.A. Hoffman. 2005. A reassessment of genetic limits to evolutionary
 577 change. *Ecology*. 86: 1371-1384.
- 578 43 Walsh, B. & M.W. Blows. 2009. Abundant genetic variation + strong selection =
- 579 multivariate genetic constraints: A geometric view of adaptation. *Annu. Rev. Ecol.*
 - *Evol. Syst.* 40:41–59.
 - 581 44 Wagner, G.P. & L. Altenberg. 1996 Complex adaptations and evolution of evolvability.
 582 *Evolution*. 50, 967–976.
- 583 45 Nijhout, H.F. & D.E. Wheeler 1996. Growth Models of Complex Allometries in
 584 Holometabolous Insects. *Am. Nat.* 148:40-56.
 - 585 46 Nijhout H. F. 2011 Dependence of morphometric allometries on the growth kinetics of
 586 body parts. *J. Theor. Biol.* 288: 35 43.
 - 587 47 Pélabon, C., Bolstad, G.H., Egset, C.K., Cheverud, J.M., Pavlicev, M. & G. Rosenqvist.

•		-
1		Pélabon et al. The evolvability of allometry
2 3	588	2013. On the relationship between ontogenetic and static allometry. Am. Nat. 181:213-
4 5 6	589	222.
7 8	590	48 - Deacon, T.W. 1990. Problems of ontogeny and phylogeny in brain size evolution. Int. J.
9 10	591	<i>Primatol.</i> 11:237–281.
11 12	592	49 - Anderson, M. 1994. Sexual selection. Princeton University Press, Princeton.
13 14 15	593	50 - Lincoln, G.A. 1994. Teeth, horns and antlers: the weapons of sex. In The differences
15 16 17	594	between sexes. Sort R.V. and Balaban E. Eds. Pp 131-158, Cambridge University
18 19	595	Press, Cambridge.Pp 131-158.
20 21	596	51 - Simmon L.W. & J.L. Tomkins. 1996 Sexual selection and the allometry of earwig
22 23	597	forceps. Evol. Ecol. 10: 97-104.
24 25 26	598	52 - Scharloo, W., Hoogmoed, M. S. & A. Ter Kuile. 1967. Stabilizing and disruptive
20 27 28	599	selection on a mutant character in Drosophila. I. The phenotypic variance and its
29 30	600	components. Genetics 56:709–726.
31 32	601	53 - Hermisson J., Hansen, T.F. & G.P. Wagner. 2003 Epistasis in polygenic traits and the
33 34 35	602	evolution of genetic architecture under stabilizing selection. Am. Nat. 161: 708-734.
36 37	603	54 - Hansen, T.F. 2006. The evolution of genetic architecture. Ann. Rev. Ecol. Evol. Syst. 37:
38 39	604	123-157.
40 41	605	55 - Pélabon, C., Hansen, T.F., Carter, A.J.R. & D. Houle. 2010. Evolution of variation and
42 43	606	variability under fluctuating, stabilizing and disruptive selection. Evolution. 64: 1912-
44 45 46	607	1925.
47 48	608	56 - Le Rouzic, A., Alvarez-Castro, J.M.& T.F. Hansen. 2013 The Evolution of Canalization
49 50	609	and Evolvability in Stable and Fluctuating Environments. Evol. Biol. 40: 317-340.
51 52	610	57 - Steppan, S.J., Phillips, P.C. & D. Houle. 2002. Comparative quantitative genetics:
53 54 55	611	evolution of the G matrix. Trends Ecol. Evol. 17: 320-327.
56 57 58 59	612	58 - Jones, A.G., Arnold, S.J. & R.J. Bürger. 2003. Stability of the G-matrix in a population

60

-25-

	Pélabon et al. The evolvability of allometry
613	experiencing pleiotropic mutation, stabilizing selection, and genetic drift. Evolution.
614	57: 1747-1760.
615	59 - Arnold, S.J., Pfrender, M. E. & A.G. Jones. 2001. The adaptive landscape as a conceptual
616	bridge between micro- and macroevolution. Genetica. 112/113:9-32.
617	60 - Arnold, S.J., Bürger, R., Hohenlohe, P.A., Ajie, B.C. & A.G. Jones. 2008.
618	Understanding the evolution and stability of the G-matrix. Evolution. 62: 2451-
619	2461.
620	61 - Strauss R.E. & R. Altig 1992. Ontogenetic body form changes in three ecological
621	morphotypes of anuran tadpoles. Growth Development and aging. 56: 3-16.
622	62 - Weston, E.M. 2003. Evolution of the ontogeny in the hippopotamus skull: using
623	allometry to dissect developmental change. Biol. J. Linn. Soc. 80: 625-638.
624	63 - Frédérich, B. & H.D. Sheets. 2010. Evolution of ontogenetic allometry shaping giant
625	species: a case study from the damselfish genus Dascyllus (Pomacentridae). Biol. J.
626	Linn. Soc. 99: 99-117
627	64 - Urosevic, A., Ljubisavljevic, K. & A. Ivanovic. 2013. Patterns of cranial ontogeny in
628	lacerid lizards: morphological and allometric disparity. J. Evol. Biol. 26: 399-415.
629	65 - Leamy, L., and D. Bradley. 1982. Static and growth allometry of morphometric traits in
630	randombred house mice. <i>Evolution</i> 36: 1200 – 1212.
631	66 - Klingenberg, C. P. & M. Zimmermann. 1992. Static, ontogenetic, and evolutionary
632	allometry: a multivariate comparison in nine species of waterstriders. Am. Nat.
633	140:601–620.
634	67 - Klingenberg, C.P.1996. Multivariate allometry. In: L. F. Marcus, M. Corti, A. Loy, G. J.
635	P. Naylor, D. E. Slice, Eds.), Advances in Morphometrics. Plenum Press, New York,
636	Pp. 23–49.
637	68 - Klingenberg, C.P.1998. Heterochrony and allometry: the analysis of evolutionary change
	-26-

Annals of the New York Academy of Sciences

	Pélabon et al.	The evolvability of allometry
638	in ontogeny. Biol. Rev. 73:79-12	3.
639	69 - Magurran A.E. 1998. Population dif	ferentiation without speciation. Phil. Trans. R. Soc.
640	Lond. B. 353: 275 – 286.	
641	70 - Atchley, W.R. & J.J. Rutledge. 1980	. Genetic components of size and shape. I. Dynamics
642	of components of phenotypic var	ability and covariability during ontogeny in the
643	laboratory rat. Evolution. 34:116	-1173.
644	71 - Doroszuk, A., Wojewodzic, M.V., O	ort, G. & J.E. Kammenga. 2008. Rapid divergence
645	of genetic variance-covariance m	atrix within a natural population. Am. Nat. 171: 291-
646	304.	
647	72 - Eroukhmanoff F. & E.I. Svensson. 2	011. Evolution and stability of the G-matrix during
648	the colonization of a novel enviro	nment. J. Evol. Biol. 24: 1363 – 1373.
649	73 - Björklund, M., Husby, A., & L. Gus	tafsson. 2013. Rapid and unpredictable changes of
650	the G-matrix in a natural bird pop	pulation over 25 years. J. Evol. Biol. 26: 1-13.
651	74 - Pavlicev, M., Norgard, E.A., Fawce	t, G.L. & J.M. Cheverud. 2011. Evolution of
652	pleiotropy : Epistatic pattern supp	ports a mechanistic model underlying variation in
653	genotype-phenotype map. J. Exp.	Zool. (Mol. Dev. Evol.). 316 : 371-385.
654	75 - Conner, J.K. 2003. Artificial selection	on: A powerful tool for ecologists. <i>Ecology</i> . 84:
655	1650-1660.	
656	76 - Wilkinson, G. S. 1993. Artificial sex	ual selection alters allometry in the stalk-eyed fly
657	Cyrtodiopsis dalmanni (Diptera:	Diopsidae). <i>Genet. Res.</i> 62:213-222.
658	77 - Frankino, W.A., Zwaan, B.J., Stern,	D.L. & P.M. Brakefield. 2005. Natural selection and
659	developmental constraints in the	evolution of allometries. Science 307:718-720.
660	78 - Frankino, W.A., Zwaan, B.J., Stern,	D.L., & P.M. Brakefield. 2007. Internal and external
661	constraints in the evolution of mo	rphological allometries in a butterfly. Evolution.
662	61:2958-2970.	

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
∠ I วว	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
42 13	
<u>4</u> 4	
44 15	
-10 /16	
40 17	
+1 10	
40 40	
49 50	
00 E1	
51	
52 52	
53	
54	
55	
56	
57	
58	
59	
60	

1 2 Pélabon et al.

663 79 - Egset, C.K., Hansen, T.F., Le Rouzic, A., Bolstad G.H., Rosenqvist, G., & C. Pélabon. 664 2012. Artificial selection on allometry: change in elevation but not slope. J. Evol. Biol. 665 25:938–948. 666 80 - Tobler, A. & H.F. Nijhout. 2010. Developmental constraints on the evolution of wing-667 body allometry in Manduca sexta. Evol. Dev. 12:592-600. 668 81 - Wilkinson, G.S., Fowler, K. & L. Partridge. 1990. Resistance of genetic correlation 669 structure to directional selection in Drosophila melanogaster. Evolution. 44: 1990-670 2003. 671 82 - Cayetano, L., Maklakov, A.A., Brooks, R.C., & R. Bonduriansky. 2011. Evolution of 672 male and female genitalia following release from sexual selection. Evolution. 65: 673 2171-2183. 83 - Shingleton, A.W., Estep, C.M., Driscoll, M.V. & I. Dworkin, 2009. Many ways to be 674 675 small: different environmental regulators of size generate distinct scaling relationships 676 in Drosophila melanogaster. Proc. R. Soc. London B. 276, 2625-2633. 677 84 - Pélabon, C., Hansen, T.F., Carter, A.J.R. & D. Houle. 2006. Response of fluctuating and 678 directional asymmetry to selection on wing shape in Drosophila melanogaster. J. 679 Evol. Biol. 19: 764-776. 680 85 - Le Rouzic, A., Houle, D.& T.F. Hansen. 2011. A modelling framework for the analysis 681 of artificial-selection time series. Genetics Research. 93: 155-173. 682 86 - Emlen, D.J., Warren, I.A., Johns, A., Dworkin, I. & L. Corley Lavine. 2012. A 683 mechanism of extreme growth and reliable signaling in sexually selected ornaments 684 and weapons. Science. 337: 860-864. 685 87 - Shingleton, A.W. & W.A. Frankino. 2012. New perspectives on the evolution of 686 exaggerated traits. Bioessays. 35: 100-107. 687 88 - Shingleton, A.W. & H.Y. Tang. 2012. Plastic flies: the regulation and evolution of trait

- J		, , , , , , , , , , , , , , , , , , ,
		Pélabon et al. The evolvability of allometry
	688	variability in Drosophila. Fly 6: 147-152.
	689	89 - Bonduriansky, R. 2007. Sexual selection and allometry: a critical reappraisal of the
	690	evidence and ideas. Evolution. 61: 838-849.
C	691	90 - Cuervo, J.J. & A.P. Møller. 2009. The allometric pattern of sexually size dimorphic
1 2	692	feather ornaments and factors affecting allometry. J. Evol. Biol. 22: 1503–1515.
3 4 5	693	91 - Gould, S.J. 1975. Allometry in primates, with emphasis on scaling and the evolution of
5 6 7	694	the brain. Pp. 244–292 in F. Szalay, ed. Approaches to primate paleobiology. Karger,
3 9	695	Basel.
D 1	696	92 - Voje, K. L. & T.F. Hansen. 2013. Evolution of static allometries: adaptive change in
2 3 4	697	allometric slopes of eye span in stalk-eyed flies. Evolution. 67:453–467.
+ 5 6	698	93 - Sharma, M.D., Tregenza, T. & D.J. Hosken. 2011. Sex combs, allometry, and asymmetry
7 3	699	in Drosophila. Biol. J. Linn. Soc. 103: 923-934.
9 9	700	94 - Armbruster, W.S., Pélabon, C., Hansen, T.F. & G.H. Bolstad. 2009 Macroevolutionary
1 2	701	patterns of pollination accuracy: a comparison of three genera. New Phytol. 183: 600 –
5 4 5	702	617.
5 6 7	703	95 - Hansen, T.F., Pélabon, C. & W.S. Armbruster. 2007. Comparing variational properties of
3 9	704	homologous floral and vegetative characters in Dalechampia scandens: Testing the
) 1	705	Berg Hypothesis. Evol. Biol. 34: 86-98.
2 3 1	706	96 - Pélabon, C. Hansen, T.F. & W.S. Armbruster. 2011. Experimental evidence for the Berg
5	707	hypothesis: vegetative traits are more sensitive than pollination traits to environmental
7 3	708	variation. <i>Funct. Ecol.</i> 25, 247–257.
9 0	709	97 - Armbruster, W.S., Di Stilio, V.S., Tuxill, J.D. Flores, T.C. & J.L. Velasquez Runk. 1999.
1 2 2	710	Covariance and decoupling of floral and vegetative traits in nine Neotropical Plants: A
4	711	re-evaluation of Berg's correlation-pleiades concept. Am. J. Bot. 86: 39-55.
5 7	712	98 - Ushimaru, A. & K. Nakata. 2001. Evolution of flower allometry and its significance for
3 9		

	Pélabon et al. The evolvability of allometry
713	pollination success in the deceptive orchid Pogonia japonica. Int. J. Plant Sci. 162:
714	1307 – 1311.
715	99 - Huxley, J. S. 1924. Constant differential growth-ratios and their significance. Nature
716	114:895-896.
717	100 - Savageau, M.A. 1979. Allometric morphogenesis of complex systems: Derivation of the
718	basic equations from first principles. Proc. Natl. Acad. Sci. USA. 76:6023-6025.
719	101 - White, J.F. & S.J. Gould. 1965. Interpretation of the coefficient in the allometric
720	equation. Am. Nat. 99:5–18.
721	102 - Gould, S.J. 1971. Geometric similarity in allometric growth: a contribution to the
722	problem of scaling in the evolution of size. Am. Nat. 105:113–136.
723	103 - Egset, C.K., Bolstad G.H., Rosenqvist, G. Endler, J.A. & C. Pélabon. 2011.
724	Geographical variation in allometry in the guppy (Poecilia reticulata). J. Evol. Biol.
725	24:2631–2638.
726	104 - Packard, G.C. 2009. On the use of logarithmic transformations in allometric analyses. J.
727	Theor. Biol. 257:515-518.
728	105 - Packard, G.C. 2013. Is logarithmic transformation necessary in allometry? Biol. J. Linn.
729	Soc. 109: 476-486.
730	106 - Kerkhoff, A.J. & B.J. Enquist. 2009. Multiplicative by nature: Why logarithmic
731	transformation is necessary in allometry. J. Theor. Biol. 257:519-521.
732	107 - Kelly, C. & T.D. Price. 2004. Comparative methods based on species mean values.
733	Math. Biosci. 187: 135–154.
734	108 - Hansen, T.F. & K. Bartoszek, K. 2012. Interpreting the evolutionary regression: the
735	interplay between observational and biological errors in phylogenetic comparative
736	studies. Sys. Biol. 61:413-425.
737	109 - Retief, T.A., Bennett, N.C., Kinahan, A.A. & P.W. Bateman. 2013. Sexual selection and
	20

1		Pélabon et al. The evolvability of allometry
2 3	738	genital allometry in the Hottentot golden mole (Amblysomus hottentotus). Mammal.
4 5 6	739	<i>Biol.</i> 78:356-360.
0 7 8	740	110 - Jolicoeur, P. 1963. The multivariate generalization of the allometry equation. Biometrics
9 10	741	19:497-499.
11 12	742	111 - Gerber, S., Eble, G.J. & P. Neige. 2008. Allometric space and allometric disparity: a
13 14 15	743	developmental perspective in the macroevolutionary analysis of morphological
15 16 17	744	disparity. Evolution. 62: 1450-1457.
18 19	745	112 - Wilson, L.A.B. & M.R. Sánchez-Villagra. 2010. Diversity trends and their ontogenetic
20 21	746	basis: an exploration of allometric disparity in rodents. Proc. R. Soc. London B. 277:
22 23	747	1227-1234.
24 25 26	748	113 - Bookstein, F. L. 1989. "Size and Shape" - a comment on semantics. Syst. Zool 38, 173-
27 28	749	180.
29 30	750	114 - Mosimann, J., 1970. Size allometry: Size and shape variables with characterizations of
31 32	751	the lognormal and generalized gamma distributions. J. Am. Stat. assoc. 65: 930-948.
33 34 35	752	115 - Drake, A.G. & C.P. Klingenberg. 2008. The pace of morphological change: historical
36 37	753	transformation of skull shape in St Bernard dogs. Proc. R. Soc. London B. 275: 71-76.
38 39	754	116 - Adams, D., Nistri, A., 2010. Ontogenetic convergence and evolution of foot
40 41	755	morphology in European cave salamanders (Family: Plethodontidae). Bmc Evol. Biol.
42 43	756	10, 216.
44 45 46	757	117 - Gonzalez, P.N., Kristensen, E., Morck, D.W., Boyd, S. & B. Hallgrímsson. 2013.
47 48	758	Effects of growth hormone on the ontogenetic allometry of craniofacial bones. Evol.
49 50	759	<i>Dev.</i> 15: 133-145.
51 52	760	
53 54 55	761	
55 56 57		
58 59		
60		-31-

Péla	bon	et	al.
I UIU	0011	00	

The evolvability of allometry

Table 1: Changes in arithmetic slope and allometric slope (log scale) in two artificial selection experiments. In the experiment on the stalk-eyed fly (*Cyrtodiopsis dalmanni*) [76] selection was exerted for 13 generations to change the ratio between eye-span and body length. We estimated the slope on the arithmetic scale from Fig. 3 in the original paper by estimating the values of the extreme points of the regression lines. These data were subsequently log-transformed to obtain the allometric slopes. In the experiment on *Drosophila* [81], selection to increase or decrease thorax length was conducted for 23 generations. Estimates of the allometric slopes were obtained from the variance and covariance parameters scaled by the trait mean (male and female combined). Standard errors of the estimates are not available.

Species	Trait	Body size	Sex	Line	Arithmetic slope	Allometric slope
Cyrtodiopsis dalmanni	Eye-span	Body length	♀ rep1	Down	0.71	0.87
				Up	1.00	1.10
			∂ rep 1	Down	1.37	1.19
				Up	1.73	1.38
			\bigcirc rep2	Down	0.56	0.68
				Up	0.66	0.74
			♂ rep 2	Down	1.10	0.98
				Up	1.43	1.10
Drosophila melanogaster	Wing length	Thorax length	Q+3	large	0.49	0.30
			Q+3	Small	0.68	0.38
			Q+3	Control	0.42	0.24
	Tibia length	Thorax length	Q+3	large	0.39	0.58
			Q+3	Small	0.65	0.93
			₽+ð	Control	0.40	0.60

Annals of the New York Academy of Sciences

Pélabon et al.

The evolvability of allometry

770	Figure 1. Evolution of static allometry. The scenarios considered here correspond to the
771	expected evolution of static allometry from an ancestral state depending on the constraining
772	parameter (i.e. the parameter that is not evolvable). Vertical and horizontal dash lines
773	represent the mean trait value and body size. Body size is mean centered, so the allometric
774	intercept represent the trait value at the population mean (i.e. elevation of the allometric
775	regression). In the scenario A, both the slope and the intercept are constraining parameters.
776	Any change in body size will generate a change in trait size and vice versa. In the scenario B,
777	only the allometric slope changes while the intercept (elevation) does not change. In the
778	scenario C, the slope is the constraining parameter while the intercept can change. In the
779	scenario D, slope and intercept can evolve. This pattern may be also generated by the effect of
780	a negative covariance between body size and the ontogenetic slope when selection on body
781	size occurs (see Eq. 1).
782	

Figure 2. Selection to change allometric slope via correlated selection on the trait and
body size. A) Selection is generated by the difference in the direction of the phenotypic
regression and the adaptive ridge. Black dots represent individuals and the blue dots represent
the selected individuals (with the highest fitness). B) Saddle fitness landscape that generates
disruptive selection on one of the two traits. This selection regime is more efficient to change
the slope because individuals in the middle of the distribution are not selected.

Figure 3. Phenotypic plasticity in static allometry. The figure presents the variation in the
slope of the static allometry between wing size (estimated by the centroid size) and the interlandmark distance 2 - 12 (see diagram for landmarks number) in two populations of *D*. *melanogaster* selected to increase (grey arrows) or decrease (back arrows) a selection index.
Selection was performed for 26 generations. Idiosyncratic variation of the slope (estimated on

-33-

Pélabon et al.

The evolvability of allometry

79	95	100 males at each generation) generates statistically significant differences between selection
79	96	lines at generation 4, 9 and 11. The data presented here correspond to the LHM 1 replicate,
79	97	but similar results were observed for the other three replicates, LHM 2 and IV 1 and 2 (see
79	98	[55] for more detail).
79	99	
80	00	Figure 4. Static allometry as an evolutionary constraint. The various scenarios represent
80	01	the effect of constraining parameters of the static allometry on the evolutionary allometry,
80	02	assuming that selective optima are spread more or less randomly in the bivariate
80	03	morphospace. In scenario A, neither the slope nor the intercept vary. The divergence of
80)4	population means follow the genetic allometric regression (see text). If the slopes of the
80	05	genetic and phenotypic allometry are similar, evolutionary allometry will follow the patterns
80	06	of static allometry. In scenario B, the intercept is allowed to change but not the slope.
80)7	Although such a pattern may result from the evolution of the intercept itself, it may also result
80	08	from the difference between the phenotypic and genetic allometry (see text). Scenario C
80)9	presents a similar pattern but where selection does not favor any particular direction in the
82	10	morphospace. In scenario D, both intercept and slope can evolve (no constraint).
82	11	
82	12	Figure 5. Example of variation in static allometric and effect on evolutionary allometry
82	13	A) among population within species B) among species within genus C) among species
82	14	genitals (Figure from [23] Voje et al. 2014).
82	15	
82	16	

Annals of the New York Academy of Sciences

Pélabon et al.

The evolvability of allometry

Box 1 – Narrow sense and broad sense allometry: conceptual and methodological issues 818

819	In the recent years, the term allometry has been used for any type of monotonic relationships
820	between two morphological variables, independently of the scale on which these variables
821	were expressed. This broad definition of allometry is inconsistent with the biological
822	interpretation of morphological allometry originally suggested by Huxley [5, 99]. Huxley [5]
823	showed that if an arbitrary trait Z and body size X , grow at different rate but under the control
824	of a common growth parameter G, such that $dX/dt = \alpha XG$, and $dZ/dt = \beta ZG$, where α and β
825	are specific constants for X and Y , respectively, and t the time during growth, the relationship
826	between Z and X follows a power law $Z = AX^{\beta/\alpha}$, where A is a constant that depends on the
827	initial values of Z and X. On a log scale, this relationship is linear $z = a + bx$, where $z =$
828	log(Z), $x = log(X)$, $a = log(A)$. Savageau [100] generalized this model and showed that
829	whenever two or more variables are connected in a dynamic synergistic system controlled by
830	one variable, their relationship follows an allometric relationship. Therefore, allometry, in its
831	narrow sense is defined by two parameters of a power relation that can be expressed as the
832	intercept a and the slope b of a linear regression on log scale. When the explanatory variable
833	(x) is mean centered, the intercept, a , becomes the elevation of the static allometry, that is, the
834	trait size at the population mean body size [101, 102, 103].
835	Which statistical model should be used to estimate these parameters has been the
836	subject of long debates. First, it has been suggested that the best estimation of these
837	parameters should be done from a power relationship fitted on arithmetic scale [104, 105].
838	This approach would be justified if the processes producing the error would act in an additive
839	manner. Although this may be the case for measurement error, it is most likely that the

biological error will be generated by multiplicative processes similar to those responsible for

841 the growth of the trait [106]. Because most of the error on the response variable is likely to be

The evolvability of allometry

842	of biological origin, estimates produced by linear regression on log scale should be better than
843	those produced by a power model fitted on arithmetic scale. Both approaches are valid,
844	however, and should ideally be conducted with proper modeling of both biological and
845	measurement error.
846	It has been repeatedly suggested that major-axis or reduced major-axis regression
847	should be used in place of ordinary least-squares regression to estimate allometric parameters
848	in order to account for the effect of observational error in the predictor variables. However,
849	neither of these models provides sensible estimates of allometric regression slopes when there
850	is biological 'error' (i.e. biological deviations from the allometric line) in the model [107,
851	108]. These models provide estimates of slopes, but these slopes are not proper estimates of
852	the exponent b in the narrow-sense allometric relation. A dramatic consequence of the
853	reduced major-axis regression is that, even in absence of covariance between the two traits, an
854	"allometric" slope can be estimated and its statistical significance tested [e.g. 82].
855	Finally, we notice that ignoring the consequences of trait dimension on the allometric
856	slope has led to some erroneous statements in the recent study of allometry. For example, a
857	positive allometry between testes size and body length has been reported in Hottentot golden
858	mole (Amblysomus hottentotus) as an exception to the "one size fits all" hypothesis [109].
859	However, this positive allometry is most likely generated by the difference in dimension
860	between the traits (body length – length vs. testes mass - volume).
861	
862	

 Annals of the New York Academy of Sciences

Pélabon et al.

The evolvability of allometry

Box 2: From bivariate to multivariate allometry: drifting away from the Huxley's model

Jolicoeur [110] suggested analyzing multivariate relative growth using the first principal component (or eigenvector) of the variance-covariance matrix of log-scaled trait values (herein PC1). He showed the relation between this approach and the Huxley model [5] arguing that the trait's loadings on PC1 are equivalent to their allometric exponents. This approach formalized multivariate isometric variation as a PC1 vector with all elements or loadings equal to $1/\sqrt{k}$, where k is the number of traits measured. Variation along such a $\{1/\sqrt{k}, \dots, 1/\sqrt{k}\}$ vector is associated to variation in organism size while its proportions remain constant. Group difference in multivariate allometry is commonly estimated as the angle between two within-group PC1 in the multivariate space [67]. This approach has been used to describe the plasticity of static multivariate allometry of *Drosophila* exposed to different environmental conditions [83], or to investigate the evolutionary diversity among species [111, 112].

However, the biological meaning of the PC1 loadings in this approach is not equivalent to the one of the standard regression estimates (i.e. Huxley's allometric exponent). Instead, these estimates are the slopes of the standard regressions of trait variables on size, as defined by PC1. Importantly, the ratios of the loadings do not correspond to the "variables" bivariate allometric coefficient" [67], at least not if they are properly estimated with a standard regression (Box 1), but these correspond to the ratio of their respective covariances with PC1. This can be interpreted as the relative change in the two traits for a given change along PC1. However, the orientation of the PC1 vector in the morphospace can vary with an increase in trait(s) variance even if covariances are kept constant.

This raises the problem of the use of an adequate definition of size in the study of itsrelation with shape (see [113] for review). The two most commonly used approaches for

The evolvability of allometry

888	estimating size are the PC1-as-size approach described above and Mosimann's [114]
889	definition. Mosimann [114] defined size as any function G of the measurement vector \mathbf{x} that
890	satisfies the property: $G(a\mathbf{x})=aG(\mathbf{x})$, $G(\mathbf{x})$ having the same dimension than any element of \mathbf{x} .
891	Indeed, shape being on a ratio scale, multiplication of each element of the ratios by a constant
892	a does not change shape and G is uncorrelated with any ratios under fully isometric
893	multivariate variation. It is worth noticing that Huxley [5] already defined traits' growth rate
894	as affected by a common growth factor (" G ") that vanishes when the growth rates of the traits
895	are put in relation in the exponential relationship.
896	Contrary to the PC1 approach, this geometric definition of size is not directly
897	dependent of the variance-covariance properties of the studied samples. As a measure of size,
898	geometric morphometrics conventionally use centroid size (CS), the square root of the sum of
899	squared distances of a set of landmarks from the centroid of the entire landmarks
900	configuration. Although this choice does not generally rely on biological arguments, centroid
901	size corresponds to a size vector according to Mosimann's definition. The Procrustes
902	superimposition algorithm scales landmark coordinates with CS, providing Mosimann's shape
903	vectors. The effect of CS on remaining shape variation therefore corresponds to multivariate
904	allometry. The effect of size variation on shape can be graphically depicted in computing the
905	product $\mathbf{y}\beta'(\beta \beta')^{-0.5}$ [115] where \mathbf{y} is the shape variables and β the multivariate regression
906	coefficients, allowing to compare multivariate allometric patterns across different groups
907	[116, 117].
908	Under specific conditions, a multivariate regression of shape on size certainly
909	represents the multivariate approach the most closely related to the original bivariate model
910	from Huxley. On the other hand, the broadly used geometric morphometric approach
911	abandons the notion of trait for a notion of shape analyzed as a whole, and hampers
912	interpretations of allometry in a context of relative growth.

