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continuous time∗

Thibaut Mastrolia† Zhenjie Ren‡
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Abstract

In this paper, we consider a problem of contract theory in which several Principals hire a
common Agent and we study the model in the continuous time setting. We show that optimal
contracts should satisfy some equilibrium conditions and we reduce the optimisation problem
of the Principals to a system of coupled Hamilton-Jacobi-Bellman (HJB) equations. Further,
in a more specific linear-quadratic model where two interacting Principals hire one common
Agent, we are able to calculate the optimal effort by the Agent for both Principals. In this
continuous time model, we extend the result of [BW86] in which the authors compare the
optimal effort of the Agent in a non-cooperative Principals model and that in the aggregate
model, and give the condition under which these two optimisations coincide.
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1 Introduction

In 2016, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services
(IPBES for short) published an assessment report1 deeply investigating pollinators and pollini-
sation processes in food production issues. One of the key messages pointed in this report is
the following "given that pollinator-dependent crops rely on animal pollination to varying degrees, it is

estimated that 5-8 per cent of current global crop production, with an annual market value of 235 billion-

577 billion (in 2015, United States dollars) worldwide, is directly attributable to animal pollination" and
emphasized that pollination processes lead to a lot of benefit for the world economy. To illustrate
the motivation of our study in the light of the report of the IPBES, consider for instance one field
divided for planting various crops (biofuels, cotton, linen, orchard, vineyard...). Each crop is
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managed by an owner (she). It interests the owners to collaborate with a beekeeper (he) to ensure
a better yield. In this case, the beekeeper distributes his beehives in the fields for the differ-
ent crops, and manage to improve, through the pollination, the production of the crop-owners.
Therefore, each crop-owner has to provide the beekeeper sufficiently good incentives to take
care of her crop. The situation in this example typically illustrates a common agency dilemma
with information asymmetry, that is, the crop-owners need to design contracts to motivate the
beekeeper, each hoping of improving her own production, without observing directly how the
beekeeper and his bees impact the crops. The crop-owners play thus the role of the Principals
and the beekeeper can be seen as an Agent, in the so-called multi-Principals/Agent problem and
more generally in the theory of incentives.

The theory of incentives or contract theory appeared in the 70’s with the work of Mirrlees [Mir76]
among others, by studying optimal payments schedule between two economical entities un-
der imperfect observations on the performances of the employee who manages the employer’s
wealth. This has been investigated later in the textbook of Laffont and Tirole [LT93] with illus-
trations in regulation systems and the underlying game played between the two parties, and we
refer to the survey book of Laffont and Martimort [LM09] for a lot of relevant examples related
to this theory. More precisely, the situation with moral hazard considered in contract theory can
be described as follows. The Principal (she) want to hire another entity, namely the Agent (he),
to manage a project. In most of the situations, the Principal has no access to observe the effort
of her agent, but only observe the outcome of his work. Also, the Agent has a reservation utility
which allows him to accept or reject the contract proposed by the Principal. The problem of the
Principal is thus to design an optimal contract maximizing her utility among all the contracts
satisfying the Agent’s reservation utility, without observing, not to say controlling, his effort. In
practice, we identify this game between the Agent and the Principal with a Stackelberg equilib-
rium, i.e. given any fixed contract, the Agent has the corresponding best reaction, and based on
these predictable reactions the Principal choose the best contract in order to maximize her utility.

The researches made in the 70’s related to contract theory mainly treat the problem in a discrete
time framework with one or more periods, i.e. the effort of the Agent, the outcome, and all other
relevant quantity take values in a finite space. Hölmstrom and Milgrom studied a continuous
time model in the seminal paper [HM87] in which they consider a Brownian model for the wealth
process, and assume the Principal does the optimization with the exponential utility. This work
has then been extended by many other authors. Schättler and Sung in [SS93] provided first-
order sufficient conditions to solve the problem. Sung in [Sun95] investigated this issue when
the Agent can control the diffusion of the output. Then, Hellwig and Schmidt in [HS01] made a
link between the discrete time and continuous time models. All these papers used sophisticated
tools of stochastic control theory such as dynamic programming and martingale approach. For
more details, we refer to the survey paper of Sung [Sun01] or the book of Cvitanic and Zhang
[CZ13].

Recently, new ingredients have been introduced to the contract theory, which allows us to study
more general models and obtain tractable solutions. Sannikov studied in [San08] a model in
which the Principal provides continuous payments to the Agent and chooses a random retiring
time. As a remarkable contribution of the paper, Sannikov observed that the value of the Agent’s
problem (the continuation utility) should be considered as a state variable for the problem of
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the Principal. Later, Cvitanić, Possamaï and Touzi proposed in [CPT14, CPT15] a very general
procedure to solve Principal/Agent problems with lump-sum payments in which the Agent can
control both the drift and the volatility of the output. They observe that as an utility maximiza-
tion problem, the Agent’s problem can be reduced2 to solving a backward stochastic differential
equation (BSDE) introduced in Pardoux and Peng [PP90] (see also El Karoui, Peng and Quenez
[EKPQ97]), or its fully-nonlinear generalization, namely second-order BSDE (2BSDE) introduced
in Soner, Touzi and Zhang [STZ12]. The problem of the Principal, given the best reaction of the
Agent, is thus a standard stochastic controlled problem with the two state variables: the output
process and the continuation utility of the Agent, as Sannikov suggested.

Extensions of the Hölmstrom and Milgrom problem are nevertheless not restricted to the single
Principal/single Agent model. It was extended to the single Principal/multi-Agents model by
Koo, Shim and Sung in [KKSS08] then by Elie and Possamaï in [EP16]. In these works, the Agents
aim at finding a Nash equilibrium given contracts proposed by the Principal. Elie and Possamaï
proved that the Nash equilibrium among the Agents can be characterized the solution to a multi-
dimensional BSDE, and that the problem of the Principal can be reduced to solving a stochastic
control problem which takes the continuation utilities of all the Agents as state variables. Elie
and Possamaï, in particular, studied a single Principal/2-Agents example in which the agents
compete with each other. It is curious to see in the example that the less ambicious agent may
make less effort and leave the job to the other agent. Recently, it was studied in [Mas17] that
a Planner aims at acting for the welfare of the agents by finding Pareto optima, and the result
is compared with that in [EP16] in which the agents reach Nash equilibria. In particular, the
sufficient and necessary conditions are provided in [Mas17] so that the Pareto optima coincide
with the Nash equilibria or that the Planner can have a higher return than in the classical multi-
agents second best case.

In this paper, we focus on a multi-Principals/single Agent problem in the continuous setting.
More precisely, we assume in this paper that several Principals aim at hiring one common agent
who works simultaneously for all the Principals. This common agency problem echoes the ex-
ample of the beekeeper and crop-owners presented above, and as far as we know, it has not been
studied in the continuous setting. Nevertheless, in the discrete case, there are several works hav-
ing investigated this problem. In the 80’s, Baron in [Bar85] studied a common agency problem
involving regulators facing non-localized externalities. He illustrated his study with the exam-
ple of the Environemental Protection Agency (EPA) and the public utility commission for the
control of a non-localized pollution externality. Each entity has its own goal in preventing risks,
so the conflicting interests can appear and a cooperation between the regulators does not hold.
Baron thus implement cooperative and non-cooperative equilibrium in his particular regulation
model. Another interesting application of common agency problem was shown in Braverman
and Stiglitz [BS82], dealing with the sharecropping of the farmers and landlords. Later, Bern-
heim and Whinston (see [BW85, BW86]) proposed a general approach for analysing the problem
with common agency. They provided a sufficient and necessary condition which characterizes
the equilibrium, and proved that a non-cooperative equilibrium between the Principals is effi-
cient (that is, it attains the classical second best3 level of effort and outcome) only for the first

2We refer to the works of El Karoui and Rouge [REK00] and Hu, Imkeller and Müller [HIM+05].
3i.e. in the single-Principal/Agent model, the Principal does not control directly the effort of the Agent
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best4 level of effort. Dixit, Grossman and Helpman have then extended in [DGH97] the works
of Bernheim and Whinston to more general cases, by considering non-quasilinear utility func-
tions and by characterizing equilibria for the general common agency problem in terms of Nash
equilibria. They also discussed the efficiency in the Pareto sense.

As mentioned above, all the previous works studied the common agency problem in the discrete
time model. As far as we know, this topic has not been explored yet with a diffusion model
in the continuous time setting, while such setting-up apparently simplifies the technical argu-
ment and produces tractable solutions (as demonstrated in [San08, CPT14, CPT15]). Our work
can be treated as an extension of the works of Bernheim and Whinston and that of Dixit, Gross-
man and Helpman in this directoin, and we also try to characterize the Nash equilibria among
the contracts. Our study remains part of the analysis of Nash equilibrium with asymmetry of
information (see for instance [ÇD16]), by showing that the problems of each Principal to find
such equilibrium is reduced to find a solution to a fully coupled HJB equation. This relation was
well investigated in the books [Car16, DJrLS00] and was also applied by Carmona and Yang to
a predator trading with looser time constraints in [CY11]. Here, we register our model in the
continuation of all the mentioned works by assuming that each Principal is rational and aims at
finding his best reaction remuneration facing to the actions of other Principals which naturally
leads to the investigation of Nash equilibria.

The general structure of our paper is the following, in Section 2 we state the common agency
model that we study. In particular, we introduce the definition of equilibrium. We then solve the
problem of the common agent in Section 3 by reducing it as usual to the solution of a BSDE. At
the heart of this work, we propose in Section 4 a general procedure to solve the common agency
dilemma of the Principals, by providing a characterization of the Nash equilibria in a particular
set of contracts and deriving the corresponding fully coupled system of HJB equations. As an
application of our work, we study in Section 5 a model with two Principals hiring a common
Agent by comparing a competitive model in which the principals are not cooperative to a situa-
tion in which the offers of the principals are aggregated and the aggregated offer fits the classical
bilateral Principal/Agent model. All along this study, we try to give economical interpretations
of our mathematical model and results.

Finally, by going beyond the example of beekeepers remunerated by crop-owners introduced at
the beginning, this paper could be a good starting point to treat the applications such as govern-
ment management in which different level of a same Minister compensated a firm, to recall the
example in [BW85] or foreign borrowing issues as those exposed in the work of Tirole [Tir03].

To simplify the reading of the paper, the technical notations are postponed to Appendix A.1.

2 The multi-Principal/Agent model

In this paper we consider the Principals-Agent problem in which N Principals hire an Agent
in order to manage N risky projects. In this model, we assume that the projects are possibly

4i.e. when in the single-Principal/Agent model, the Principal controls the effort of the Agent, called risk-sharing
problem
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correlated among each others and the action of the hired Agent impacts on every project. This
section introduces the mathematical model of the problem. We first define the dynamics of the
N projects, and then set the utility maximization problems of both the Agent and the Principals
as a Stackelberg equilibrium.

2.1 Agent problem

As mentioned before, the hired agent can make effort to influence the dynamic of the N projects.
In this section, we describe the stochastic control problem with the weak formulation.

2.1.1 The dynamic and the coefficients

Let (Ω,F ,P) be a probability space. We denote W an N -dimensional Brownian motion on this
space and F := (Ft)t∈[0,T ] its natural (completed) filtration. We define the general project X :=

(Xi)1≤i≤N which is an F-adapted process RN -valued satisfying the following dynamic

Xt := x+

∫ t

0
ΣsdWs, (2.1)

where x ∈ R and Σ is F-progressively measurable process taking values in R
N×N .

Assumption (Σ). Σ is bounded and for any t ∈ [0, T ], the matrix Σt is invertible with bounded inverse.

The model that we will consider involves the following coefficients:

• the drift function b : [0, T ] × R
N × R

N −→ R
N , with components denoted by bi such that

b(t, x, e) = (bi(t, x, ei))⊤1≤i≤N ;

• the discount factor k : [0, T ]× R
N −→ R;

• the cost function c : [0, T ]× R
N × R

N 7−→ R+.

In this paper, the following assumption holds for some fixed (m,m) ∈ [1,+∞) × (0,m].

Assumption (Hm,m). There exists 0 < κ < κ such that for any (t, x, e, η) ∈ [0, T ]× Ω×A×N

(i) For any F-progressive process ν, b(t,Xt, νt), c(t,Xt, νt) and k(t,Xt) are F-progressive.

(ii) For any i ∈ {1, . . . , N} and for every (t, x) ∈ [0, T ] × R
N , the map e ∈ R

N 7→ bi(t, x, ei)

is continuously differentiable and there exists a positive constant C such that for any (t, x, e) ∈

[0, T ]× R
N × R

N

|bi(t, x, ei)| ≤ C(1 + ‖x‖+ |ei|), ‖∇eb(t, x, e)‖ ≤ C.

(iii) The discount factor k is bounded.

(iv) For any (t, x) ∈ [0, T ] × R
N , the map a 7−→ c(t, x, a) is continuously differentiable, increasing,

convexe satisfying

0 ≤ c(t, x, e) ≤ C(1 + |x|+ ‖e‖1+m),

κ‖e‖m ≤ ‖∇ec(t, x, e)‖ ≤ κ

(
1 + ‖e‖m

)
and lim‖e‖→∞

c(t, x, e)

‖e‖
= +∞.
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Before going further, let us explain the meaning of the characteristics b, c, k and the previous
assumption. The drift function b depends on both the effort e of the Agent and the value of
the outcome X itself. The dependancy with respect to the action of the Agent is very classical
since it directly drives the outcome through its drift. Concerning the dependancy with respect to
X, notice that the dynamic of the ith project can depend on the value of the other projects. An
interpretation of it should be that the different projects are possibly strongly correlated and each
of them is driven by its own value and possibly the value of the others, leading to some synergy
effects. The discount factor is a classical term used to model a discounting mechanism. Finally,
the cost function c depends obviously on the effort of the Agent and the fact that c is increasing
with it emphasizes that making a bigger effort leads to a bigger cost for the Agent. The convexity
assumption can be seen as an exhaustion effect, i.e. higher is the work of the Agent, higher is his
sensitivity to increase or decrease his effort. The cost c can also depends on the outcome itself.
For instance, if the value of the outcome is low, the Agent could be somehow depressed and his
action could be directly impacted by it.

We now define the set of admissible effort:
Definition 2.1 (Admissible effort). We denote by A the set of admissible effort ν such that the following

stochastic exponential

(Mt)t∈[0,T ] :=

(
E

(∫ t

0
b(s,Xs, νs) · Σ

−1
s dWs

))

t∈[0,T ]

,

is an F-martingale.

In view of the previous definition, for any ν ∈ A, one can define a new probability P
ν which is

equivalent to P given by
dPν

dP
:= MT .

According to Girsanov’s theorem, the process

W ν
· := W· −

∫ ·

0
Σ−1
s b(s,Xs, νs)ds,

is a P
ν-Brownian motion under Pν and the dynamic (2.1) of X thus becomes for any ν ∈ A

Xt = x+

∫ T

0
b(s,Xs, νs)ds+

∫ T

0
ΣsdW

ν
s . (2.2)

Remark 2.1. Notice that we work under the weak formulation of the problem in this paper by considering

any weak solution of SDE (2.2).

Before stating the model, we introduce also the notion of admissibility for contracts proposed to
the Agent through the following definition

Definition 2.2 (Admissible contracts). We define

CN :=
{
ξ, FT -measurable and R

N -valued with E [exp (p‖ξ‖)] < +∞, ∀p ≥ 0
}
.

CN is called the set of admissible contracts. Similarly, we denote by C the set of admissible contracts propose

by one Principal, such that

C := {ξ, FT -measurable and R-valued with E [exp (p|ξ|)] < +∞, ∀p ≥ 0} .
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2.1.2 The optimisation of the Agent

The Agent derives a utility given the salaries from the N Principals at time T , and his effort di-
minishes his general payoff through the cost function c. More exactly, each ith Principal proposes
to the Agent a contract with the salary denoted by ξi, which is an R valued FT -measurable ran-
dom variable. The total salary of the Agent is thus ξ · 1N , where ξ = (ξ1, . . . , ξN )⊤. We consider
exponential utility for the Agent with risk aversion parameter RA > 0 such that, the utility of the
Agent at time t = 0 given a set of salary ξ and an admissible effort ν ∈ A is

uA0 (ξ, ν) := E
Pν

[
− exp

(
−RA

(
ξ · 1N −

∫ T

0
c(t,Xt, νt)dt

))]
.

The aim of the Agent is thus to maximizes his utility given a panel of salaries ξ with admissible
effort. Therefore, given a panel of contracts ξ proposed by the N Principals, the weak formulation
of the Agent’s problem is

UA
0 (ξ) := sup

ν∈A
uA0 (ξ, ν). (2.3)

We denote by A⋆(ξ) the set of best response efforts of the Agent, given a vector of salaries ξ. As
usual in this kind of problem, the set A⋆(ξ) is not necessarily reduced to a singleton. We can
admit that the Agent has a criterion denoted by � inside the set A⋆(ξ) to select the best effort.
For instance, one can think that for two efforts ν1, ν2 ∈ A⋆(ξ), we have ν1 � ν2 if the variance of
his utility is higher with the effort ν1 than with the effort ν2. We denote by A⋆

�(ξ) the subspace of
A⋆(ξ) endowed with this selection criterion �. However, it is not necessary that this subspace of
best response effort is reduced to a singleton. In this case, we assume that the Principals choose
the effort of the Agent among the effort of the Agent in A⋆

�(ξ).

For the sake of simplicity here, we assume in the general model that A⋆
�(ξ) will be reduced to a

unique element ν⋆(ξ).

This problem is a classical utility maximization problem with control ν which can be reduced to
solve a standard BSDE with the following form:

Yt = ξ · 1N +

∫ T

t

(
−
RA

2

∥∥∥Σ⊤
s Zs

∥∥∥
2
+ f⋆(s,Xs, Zs)

)
ds−

∫ T

t
Zs · ΣsdWs, (2.4)

where f∗ will be defined in Section 3 in which we solve the Agent’s problem. In particular, by
solving the Agent problem, we will find out that the sum of the salaries ξ · 1N admits a semi-
martingale decomposition.

2.2 The N Principals problem

Our Principals-Agent problem consists of a Stackelberg equilibrium between the Agent and the
N Principals, and a Nash equilibrium among the N -Principals. We will solve the problem in two
main steps. First, as we have seen, the Agent provides a best response effort given the sum of
the salaries offered by the N -Principals. Then, the N -Principals compute a Nash equilibrium to
optimize their own utility taking into account the best response of the Agent.
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2.2.1 The Principals problem and the Nash equilibrium

Consider an Agent with a reservation utility R0 ∈ R, that is to say, the N -Principals have to solve
their utility maximization problem by ensuring that any contract ξ ∈ CN proposed to the Agent
satisfies

UA
0 (ξ) ≥ R0. (2.5)

Focus now on the problem of the ith Principal knowing that other N−1 Principals propose to the
Agent a contract ξ−i ∈ CN−1. We assume that her payoff is given through a map UP i : R −→ R

increasing and concave. The problem of Principal i is thus

UPi
0 := sup

ξi∈C

UA
0 (ξi⊗iξ(−i))≥R0

E
ν⋆
[
KT

0 UPi
(ℓi(XT )− ξi)

]
, (2.6)

with KT
0 := e−

∫ T
0 krdr, and where ℓi : R

N −→ R is a liquidation function of the ith Agent with a
linear growth.

In the case of N = 1, one may use the semimartingale decomposition provided by the BSDE
(2.4), which solves the Agent problem, to replace the r.v. ξ by the forward semimartingale Y .
This transfers the Principal problem to a standard stochastic control problem with two states
variables: the output X and the process Y , and with two control variables: Y0 and Z . The
stochastic control problem leads to the corresponding HJB equation, and we may solve it with a
verification argument under mild conditions. We refer to [San08, CPT14, CPT15] for more details
on the relation between the Principal-Agent problem and the HJB equation. Obviously, we can
no longer follow the same approach when N > 1, because by solving the Agent problem, we
only obtain a semimartingale decomposition for the sum of the salaries ξ · 1N .

We can provide two interesting examples which have been investigated in the discrete case by
[BW85].

Competitive Principals. If one considers now that the ith Principal receives Xi
T at time T and possibly

gets a higher utility if her project is higher than the empirical mean of the others, we have

ℓi(x) = xi + γi


xi −

1

N − 1

∑

i 6=j

xj


 , x ∈ R

N ,

where γi ≥ 0 is typically her appetence parameter toward project i. This situation fits exactly with

noncooperative Principals’ behaviors investigated in [BW85]. We refer to Sections 5.3 for an example of

the impact of the different parameters in this situation.

Aggregated offer. If one considers now that one can aggregate the N -Principals, then we reduce this

problem to a single Principal-Agent model in the classical second-best case in which each ith component of

the output has an efficiency parameter γi compared to the other components. In this case, the payoff of the

aggregated Principal, called the parent firm is

N∑

i=1

Xi
T


1 + γi −

1

N − 1

∑

j 6=i

γj


− ξ

8



where ξ is the aggregation of the N salaries. This case coincides with the cooperative model of Section 2 in

[BW85], and it will be studied more deeply in Section 5.2.

Every Principal aims at solving her problem (2.6) simultaneously, this leads to find a Nash equi-
librium for our model, defined as follow.
Definition 2.3 (Nash equilibrium). A contract ξ⋆ ∈ CN is a Nash equilibrium for the N Principals if it

satisfies

sup
ξi∈C

E
ν⋆(ξi⊗ξ(−i),⋆)

[
KT

0 UPi

(
ℓi(XT )− ξi

)]
= E

ν⋆(ξ⋆)
[
KT

0 UPi

(
ℓi(XT )− ξi,⋆

)]
, 1 ≤ i ≤ N

with

UA
0 (ξ⋆) ≥ R0.

We will show how to solve the Principals’ problem in Section 4.

3 Solving the Agent problem

We fix a contract ξ ∈ CN proposed by the N Principals to the Agent. We introduce the dynamic
version of the Agent problem (2.3) at time t ∈ [0, T ] :

UA
t (ξ) = sup

ν∈A
uAt (ξ, ν),

with

uAt (ξ, ν) := E
Pν

[
− exp

(
−RA

(
ξ · 1N −

∫ T

t
c(s,Xs, νs)ds

)) ∣∣∣Ft

]
.

Note that (
Mte

RA

∫ t

0
c(s,Xs,νs)dsuAt (ξ, ν)

)
t∈[0,T ]

is an (F,P)-martingale. Therefore, by the martingale representation theorem, there exists an F-
predictable process Z̃ such that

Mte
RA

∫ t

0
c(s,Xs,νs)dsuAt (ξ, ν) = −MT e

−RA(ξ·1N−
∫ T

0
c(s,Xs,νs)ds) −

∫ T

t
Z̃s · ΣsdWs.

By setting

Y ν
t := −

log
(
−uAt (ξ, ν)

)

RA
,

we can deduce from Ito’s Formula that there exists an F-predictable process Zν such that

Y ν
t = ξ · 1N +

∫ T

t

(
−
RA

2

∥∥∥Σ⊤
s Z

ν
s

∥∥∥
2
+ f(s,Xs, Z

ν
s , νs)

)
ds−

∫ T

t
Zν
s · ΣsdWs, (3.1)

with f(t, x, z, ν) := b(t, x, ν) · z− c(t, x, ν) for (t, x, z, ν) ∈ [0, T ]×R
N ×R

N ×R
N . We now define

A⋆
x,z :=

{
(νs(x, z))s∈[0,T ] : νs(x, z) ∈ argmax

ν∈RN

f(s, x, z, ν), for a.e. s ∈ [0, T ]

}
. (3.2)

We also define for any (t, x, z) ∈ [0, T ]× R
N × R

N and ν⋆(x, z) ∈ A⋆
x,z

f⋆(t, x, z) := f(t, x, z, ν⋆t (x, z)).
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Lemma 3.1. Let Assumptions (Σ) and (Hm,m) be true for some (m,m) ∈ [1,+∞) × (0,m]. Then, the

set A⋆
x,z is non empty and any ν⋆(x, z) ∈ A⋆

x,z has the following growth

‖ν⋆t (x, z)‖ ≤ C
(
1 + ‖z‖

1
m

)
,

and

|f⋆(t, x, z)| ≤ C
(
1 + ‖z‖

1+m
m + ‖z‖‖x‖

)
.

Proof. The proof follows the same line that the proofs of [EP16] or [EMP16].

We thus have the following theorem which reduces the problem of the Agent to the solution of
the following BSDE

Yt = ξ · 1N +

∫ T

t

(
−
RA

2

∥∥∥Σ⊤
s Zs

∥∥∥
2
+ f⋆(s,Xs, Zs)

)
ds−

∫ T

t
Zs · ΣsdWs. (3.3)

and we refer to Appendix A.2 for its proof.

Theorem 3.1. Let Assumptions (Σ) and (Hm,m) be true for some (m,m) ∈ [1,+∞)× (0,m] such that
1+m
m ≤ 2. There exists a unique solution (Y ξ, Zξ) in the spaces5

S(R) × H
2
BMO(R

N ) to BSDE (3.3).

Moreover, we have UA
0 (ξ) = −e−RAY ξ

0 . Besides, if A⋆
X,Zξ ∩A is non empty, any ν⋆(X,Zξ) ∈ A⋆

X,Zξ ∩A

is a best effort for the Agent.

Remark 3.1. At this stage, one has to justify the assumption A⋆
X,Zξ ∩ A 6= ∅. This section as to be seen

as a general setting to solve an N -Principals-Agent problem and we aim at providing a general framework

to solve it. Even if this assumption seems to be restrictive, a simple case in which this assumption is easily

satisfied is b(t, x, ν) = ν and c(t, x, ν) = ‖ν‖2

2 . Thus, ν⋆(X,Zξ) = Zξ ∈ H
2
BMO ∩ A⋆(X,Zξ) since Σ−1

is bounded under the standing assumption (Σ). From Proposition A.1, we directly deduce that ν⋆ ∈ A.

4 Solving the Principals problem

Similarly to [BW85, (i′)], the Problem of the ith Principal can be rewritten given the contracts ξj

provides by the other Principals j 6= i

sup
ξi∈C

UA
0 (ξi⊗iξ(−i))≥R0

E
ν⋆(ξ)


KT

0 UPi


ℓi(XT )− ξ · 1N +

∑

j 6=i

ξj




 . (4.1)

The main difficulty here is that we do not have a semimartingale decomposition for the compo-
nent ξi, from solving the Agent problem. Instead, we only have a such decomposition for the
sum of the salaries, ξ · 1N . In order to overcome the difficulty, we will address the problem in
steps:

5We refer to Appendix A.1 for the definitions of these spaces.
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• We study the problem of the ith Principal by assuming that the other Principals all propose
ξj (j 6= i) with semimartingale decompositions. More precisely, we restrict the study to the
following subclass of admissible contracts

C̃(−i) :=

{
ξi ∈ C : ξi ⊗i (ξ

j)j 6=i ∈ CN , ∃(yj, α
j , βj) ∈ R× P(R)×H

2
BMO(R

N ),

ξj = yj +

∫ T

0
αj
sds+

∫ T

0
βj
s · dXs, ∀j 6= i

}
.

By solving the Agent problem, we know that the sum of the salaries
∑N

j=1 ξ
j admits a

semimartingale decomposition. Therefore, the optimal contract ξi ∈ C̃(−i) provided by the
ith Principal also has a semimartingale decomposition. This decomposition will help us to
transfer the problem to a standard stochastic control problem.

• For each principal, the standard stochastic control problem leads to a HJB equation. There-
fore, we naturally obtain a system of N coupled HJB equations associated with the prob-
lems of Principals.

• We show that this system of HJB equations provides a Nash equilibrium for the Principals’s
problems in the class of contracts

C̃N :=

{
ξ ∈ CN , ∃(y, α, β) ∈ D

0 ×P(RN )×H
2
BMO(R

N,N ),

ξi = yi +

∫ T

0
αi
sds+

∫ T

0
β:,i
s · dXs, ∀1 ≤ i ≤ N

}
,

where

D
0 :=

{
y ∈ R

N , y · 1N ≥ R := −
log (−R0)

RA

}
.

Remark 4.1. We would like to comment and explain why this class of contract seems to be reasonable

in our model. First of all, this class of contract is non-Markovian and it is well known that in the single

Principal-Agent model, as soon as one assume that the dynamic of the output is boosted by some parameter

α, i.e. b(t, x, a) := αx + at, one gets non-Markovian contracts. Thus, there is no reason to consider a

subset of C̃N only containing functions of XT .

The second remark is that one could think that since any contract ξi is an FT−measurable random variable

with nice integrability property, by considering Yt := E[ξi|Ft], we get from the martingale representation

theorem that there exists some process Z such that ξi = E[ξi] +
∫ T
0 Zt · dWs. Thus, ξi can be seen as

the terminal value of a stochastic integral. However, we will show below that due to the Stackelberg game

between the Agent and the Principals, this class of contracts is not robust and does not contain a Nash

equilibrium (see Lemma 4.1 and Corollary 4.1 below).

Before going further let us explain more the meaning if the class of contracts C̃N . Any salary ξi

given by the ith Principal depends on the projects of other Principal Xj , j 6= i. We provide some
interpretations of this phenomenon.

11



Interpretation of the model First, we can assume that the ith Principal promises to the Agent a part

of the value of her firm but also a part of the outcome of an other Principal. Second, some externalities can

appear as a network effect (see for instance [Laf89, BS62, LM94] for more explanations with definition of

this phenomenon). This fits typically with the introductive example with the beekeeper and crop-owners,

since each crop-owner can benefit from the beehives in the other crops through the pollinisation process. An

other interpretation is to consider a parent firm and some subsidiaries (the N Principals) who employed

the same Agent. For instance and in concrete terms, this model is quite suitable in the example of the

German firm Sonnen GmbH in which Agents are connected to produce, use and share energy.

Remark 4.2. There is absolutely no reason to get the uniqueness of a Nash equilibrium and some Nash

equilibria of our model could be somehow pathologic. This kind of problems was emphasized in [BW86]

and remedies had been proposed to avoid some pathologic equilibrium. One can imagine that some great

authority (government, NGO, regulation institute) does not allow some Nash equilibria, for instance a

government who does not allow a firm to employ an Agent without paying him. This seems to be directly

link to the tragedy of commons since a balance effects appears in the different characteristic of optimal

contract containing a situation in which a Principal takes all the benefit of the work of the Agent in

accordance only with her own self-interest behave.

4.1 Best response for the ith Principal.

We first focus on the problem of the ith Principal for any i ∈ {1, . . . , N}, given that all the others
have proposed contracts to the Agent. The main difficulty here is that the results of Section 3
does not provide a suitable decomposition for the contract proposed by only one Principal, but
for the sum of every contracts. This differs deeply from the classical case and we would like to
emphasize that we will unfortunately not be able to solve the general problem, since in that case
the control variable for the problem of only one Principal does not appear clearly. This lead us to
restrict our study to the following class of contracts

C̃N :=

{
ξ ∈ CN , ∃(y, α, β) ∈ D

0 × P(RN )×H
2
BMO(R

N,N ), ξi = yi +

∫ T

0
αi
sds+

∫ T

0
β:,i
s · dXs

}
.

Although this class of contract is strictly include in CN , we will show that there exists in fact a
Nash equilibrium in it explicitly.

4.1.1 Equilibrium conditions

We begin with the following lemma ensuring that the considered class of contracts is well-posed.
the proof of the lemma is postponed to Appendix A.2

Lemma 4.1 (Robustness of C̃N ). Let ξi ∈ C̃(−i), with fixed (yj , αj , βj) ∈ R×P(R)×H
2
BMO(R

N ), j 6=

i. Then, ξi has the semimartingale decomposition:

ξi = yi +

∫ T

0
αi
sds+

∫ T

0
βi
s · dXs, (4.2)
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such that 



yi := Y0 −
∑

j 6=i

yj,

αi
s := G(s,Xs, Zs)−

∑

j 6=i

αj
s,

βi
s := Zs −

∑

j 6=i

βj
s .

(4.3)

where G(s, x, z) := RA

2 ‖Σ⊤
s z‖

2 − f⋆(s, x, z), and (Y,Z) is the solution to the BSDE (3.3).

Remark 4.3. In view of Lemma 4.1 and in other words, if ξi ∈ C̃(−i) is associated with a sequence of

contracts (ξj)j 6=i with semimartingale decompositions, then ξi ⊗i (ξ
j)j 6=i ∈ C̃N such that the components

of the corresponding α parameter are the parameters αi of each ξi, and the columns of the corresponding

parameter β are the parameters βi of each ξi.

The previous lemma suggests that if we restrict our study to the contracts in C̃N , we obtain the
following equilibrium conditions from (4.3):





N∑

i=1

yi = Y0,

N∑

i=1

αi
s = G(s,Xs,

N∑

i=1

βi
s)

N∑

i=1

βi
s = Zs.

(4.4)

We immediately have the following corollary which provides a necessary condition of a Nash
equilibrium in the class C̃N .

Corollary 4.1 (Necessary condition of Nash equilibrium). Let ξ⋆ = (ξi,⋆)1≤i≤N be a Nash equilib-

rium in C̃N such that ξi,⋆ is characterized by the triplet (yi0, α
i,⋆, βi,⋆). Then, the equilibrium condition

(4.4) holds for (yi0, α
i,⋆, βi,⋆)1≤i≤N

We denote by D the set of (y, α, β) ∈ D
0 × P(RN ) × H

2
BMO(R

N,N ) satisfying the equilibrium
condition (4.4). Thus, by setting

C :=

{
ξ ∈ C̃N , ∃(y, α, β) ∈ D, ξi = yi +

∫ T

0
αi
sds+

∫ T

0
β:,i
s · dXs, 1 ≤ i ≤ N

}
,

we have the following proposition as a direct consequence of Lemma 4.1.

Proposition 4.1 (Equilibrium characterization). The optimal contract in the set C coincides with that

in C̃N .

4.1.2 Problem of the ith Principal and HJB equation

We now would like to fully characterize a Nash equilibrium. In this heuristic section, we study
the problem of the ith Principal in the set of contracts C̃(−i). The problem for the ith Principal is
thus given by
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UPi
0 (x) := sup

ξi∈C̃(−i)

UA
0 (ξi⊗i(ξj)j 6=i)≥R0

E
ν⋆
[
KT

0 UPi
(ℓi(XT )− ξi)

]
. (4.5)

It follows from Theorem 3.1 that the problem (4.5) can be rewritten by

UPi
0 (x) = sup

ξi∈C̃(−i)

Y
ξi⊗i(ξ

j )j 6=i
0 ≥R0

E
ν⋆
[
KT

0 UPi
(ℓ(XT )− ξi)

]
.

Further, it follows from Proposition 4.1 that

UPi

0 (x) = sup
yi0≥R−

∑
j 6=i y

j
0

sup
(αi,βi)∈P(R)×Pr(RN )

∑N
i=1 α

i
s=G(s,Xs,

∑N
i=1 β

i
s)

E
ν⋆
[
KT

0 UPi
(ℓi(XT )− Y

yi0,α
i,βi

T )
]

= sup
yi0≥R−

∑
j 6=i y

j
0

UPi

0 (x, yi0), (4.6)

where
UPi
0 (x, yi0) := sup

βi∈Pr(RN )

E
ν⋆
[
KT

0 UPi

(
ℓ(XT )− Y

yi0,α
i,βi

T

)]
, (4.7)

and

Y
yi0,α

i,βi

T = yi0 +

∫ T

0

(
G
(
s,Xs, Sβ

(−i)
s

+ βi
s

)
− S

α
(−i)
s

)
ds+

∫ T

0
βi
s · dXs, (4.8)

where Sα(−i) :=
∑

j 6=i α
j and Sβ(−i) :=

∑
j 6=i β

j and with fixed (αj , βj)j 6=i.

The problem of the Principal (4.7) coincides with a stochastic control problem with the following
characteristics:

• two state variables: the output X and the value process Y yi0,α
i,βi

;

• one control variable: the coefficient βi.

This suggests to introduce the following HJB equation for the ith Principal with αj , βj fixed for
all j 6= i,





−(∂tu
i − kui)(t, x, y)− sup

βi∈RN

H(t, x, y,∇xu
i, ∂yu

i,∆ui, ∂2
yyu

i, ∂2
x,yu

i, S(−i)
αs

, S
(−i)
βs

, βi) = 0,

ui(T, x, y) = UP i(ℓi(x)− y), (t, x, y) ∈ [0, T )× R
N × R.

(4.9)
with Hamiltonian H defined for any (t, x, p, p̃, q, q̃, r, sa, sb, b) ∈ [0, T ] × R

N × R
N × R × R

N,N ×

R× R× R× R
N × R

N by

H(t, x, p, p̃, q, q̃, r, sa, sb, b) := p · b(t, x, ν⋆(x, b + sb)) + p̃
(
G(s, x, b + sb)− sa + b · b(t, x, ν⋆(x, b+ sb))

)

+
1

2
Tr(ΣtΣ

⊤
t q) +

1

2
Tr(b⊤ΣtΣ

⊤
t bq̃) + Tr(ΣtΣ

⊤
t br)

We now consider the following assumption.
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Assumption 4.1. There exists a maximizer βi,⋆ for β 7−→ H(t, x, p, p̃, q, q̃, r, sa, sb, β) satisfying some

first order condition given by the relation

λi(t, x, y, p, p̃, q̃, r, sa, sb, β
i,⋆
t ) = 0. (4.10)

The problem of the Principal is then reduced to solve HJB equation (4.9) as showed in the follow-
ing proposition, which can be proved as usual with a verification theorem.

Proposition 4.2 (Verification). Let ξ ∈ C̃(−i) and denote by (yj , αj , βj) the triplet associated with

ξj, j 6= i. Assume that there exists a solution ui to HJB equation (4.9) in C1,2,2([0, T ] × R
N × R). Then,

by denoting β
i,⋆
s the corresponding maximizer, we deduce that UPi

0 (x) = ui(0, x,R −
∑

j 6=i y
j
0) and the

optimal contract ξi,⋆ proposed by the ith Principal is

ξi,⋆ = R−
∑

j 6=i

y
j
0 +

∫ T

0
αi,⋆
s ds+

∫ T

0
βi,⋆
s · dXs,

with

αi,⋆
s = G


s,Xs,

∑

j 6=i

βj
s + βi,⋆

s


−

∑

j 6=i

αj
s.

4.2 System of coupled HJB equations and Nash equilibrium

Similarly to [DJrLS00, Theorems 8.4 and 8.5], one can derive from a fully coupled system of HJB
equations a Nash equilibrium in the sense of Definition 2.3.

Assumption 4.2. For any i ∈ {1, . . . , N} and (t, x, y, pi, p̃i, q̃i, ri) ∈ [0, T ]×R
N ×R×R

N×R×R×R

there exists (αi,⋆
(
t, x, y, (pi, p̃i, q̃i, ri)1≤i≤N )

)
1≤i≤N

, βi,⋆
(
t, x, y, (pi, p̃i, q̃i, ri)1≤i≤N )

)
1≤i≤N

such that

for any 1 ≤ i ≤ N





λi


t, x, y, pi, p̃i, q̃i, ri,

∑

j 6=i

αj,⋆,
∑

j 6=i

βj,⋆, βi,⋆


 = 0,

N∑

i=1

α
i,⋆
t = G

(
t, x,

N∑

i=1

β
i,⋆
t

)
.

(4.11)

Moreover, we assume that the following system of fully coupled PDEs admits a solution u = (ui)1≤i≤N

such that ui ∈ C1,2,2 for all 1 ≤ i ≤ N :




L
(
t, x, y, ui,∇xu

i, ∂yu
i,∆ui, ∂2

yyu
i, ∂2

x,yu
i, S(−i)

α , S
(−i)
β , βi,⋆

)
= ktu

i,

ui(T, x, y) = UP i(ℓi(x)− y), (t, x, y) ∈ [0, T ) × R
N × R.

(4.12)

with L := ∂t +H ,

βi,⋆ := βi,⋆
(
t, x, y, (∇xu

i, ∂yu
i, ∂2

yyu
i, ∂2

x,yu
i)1≤i≤N

)

S(−i)
α :=

∑

j 6=i

αj,⋆
(
t, x, y, (∇xu

i, ∂yu
i, ∂2

yyu
i, ∂2

x,yu
i)1≤i≤N

)

and

S
(−i)
β :=

∑

j 6=i

βj,⋆
(
t, x, y, (∇xu

i, ∂yu
i, ∂2

yyu
i, ∂2

x,yu
i)1≤i≤N

)
.
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Theorem 4.1. Let Assumption 4.2 be true. Further, define for any 1 ≤ i ≤ N

ξi,⋆ = yi +

∫ T

0
αi,⋆
s ds +

∫ T

0
βi,⋆
s · dXs,

with

α
i,⋆
t := αi,⋆

(
t, x, y, (∇xu

i, ∂yu
i, ∂2

yyu
i, ∂2

x,yu
i)1≤i≤N

)

and

β
i,⋆
t := βi,⋆

(
t, x, y, (∇xu

i, ∂yu
i, ∂2

yyu
i, ∂2

x,yu
i)1≤i≤N

)
.

Then, the set of contract (ξi,⋆)1≤i≤N is an admissible Nash equilibrium.

Proof of Theorem 4.1. The proof follows the proof of [DJrLS00, Theorems 8.4 and 8.5] as a direct
consequence of both Lemma 4.1 and Proposition 4.1 together with Theorem 4.1 (optimal response
in C derives from HJB equation (4.9)).

Remark 4.4. For the readers familiar with the BSDE literature, we need to point out that the Principals’

problem, as a classical stochastic control problem, can be characterized by the BSDEs. In the general

framework proposed in this section, we have the state variable Y of the dynamic (4.8) in which the control

variable β appears in the volatility. Therefore, it is necessary to apply the second order BSDEs. However, in

some particular cases, it can be less technically involved. For example, if the Principals are all risk-neutral,

then we do not need to consider the Y component of the state variable. Thus, the Principals’ problem can

be characterized by a system of BSDEs. Further, one can apply the verification argument related to the

BSDEs to obtain the equilibrium result in Theorem 4.1 under (indeed) more general conditions. However,

in this paper, we are more interested in explaining our approach through typical examples (see in the next

section) than proposing the most general conditions in the abstract context.

5 Application to a model with two correlated Principals with appe-

tence parameters

5.1 The bi-Principals model

Let ν := (ν0, ν1)⊤ an admissible effort. Let W be a 2-dimensional Brownian motion and Σ ∈ R
2×2

be an invertible matrix. We assume that

• The drift b is a linear function of the effort such that b(t, x, ν) := Kν, where K is a diagonal
matrix with coefficients k1, k2 on the diagonal which represents the efficiency of the Agent
with project 1 and 2.

• There is no discount factor, i.e. k = 0.

• The map c is the classical quadratic cost function defined by c(t, x, ν) = ‖νt‖2

2

Under the probability P
ν we thus have

dXt = Kνtdt+ΣdW ν
t .
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In this model, by (3.2) and the third line of (4.3), we have the following relation between the
optimal effort of the Agent and the volatility coefficients of the contracts:

ν⋆ = K(β1 + β2). (5.1)

We consider in this section that each Principal has a utility depending on her wealth controlled
by the Agent and on her performance compared to the wealth of the other. More explicitly, let
x = (x1, x2)

⊤ ∈ R
2 and y ∈ R, and take ℓi(x) := (1 + γi)xi − γixj, 1 ≤ i 6= j ≤ 2 with appetence

parameters γ1, γ2 ∈ [0, 1]. Let Γ := (1+ γ1− γ2, 1+ γ2− γ1)
⊤. Further, we assume in this example

that both Principals are risk-neutral, that is, UP 1 = UP 2 = I , the identity function. Therefore, it
follows from (4.7) and (4.8) that the value functions read:

UPi
0 (x) = sup

βi

E
ν⋆
[
ℓ(XT )− Y

0,αi,βi

T

]

= sup
βi

E
ν⋆
[
ℓ(XT )−

∫ T

0

(
G
(
s,Xs, β

1
s + β2

s

)
− S

α
(−i)
s

+Kν⋆s · β
i
s

)
ds

]
,

so that by using (5.1)

UPi
0 (x)

= sup
βi

E
ν⋆
[
ℓ(XT )−

∫ T

0

(
RA

2
‖Σ⊤(β1

s + β2
s )‖

2 −
‖K(β1

s + β2
s )‖

2

2
− S

α
(−i)
s

+K2(β1
s + β2

s ) · β
i
s

)
ds

]

A crucial step to obtain the equilibrium result in Theorem 4.1 is to check whether Assumption
4.2 holds true. In this model, we verify the conditions through the following lemma.
Lemma 5.1. There exist (α1,⋆, β1,⋆) and (α2,⋆, β2,⋆) such that the following system of PDEs admits a

unique solution (v1, v2) in C1,2([0, T ] × R
2)





−∂tv
1(t, x)−

{
∇xv

1 ·K2(β1,⋆
t + β

2,⋆
t ) +

1

2
Tr
(
∆xv

1ΣΣ⊤
)
−

RA

2
‖Σ⊤(β1,⋆

t + β
2,⋆
t )‖2

+
‖K(β1,⋆

t + β
2,⋆
t )‖2

2
+ α

2,⋆
t −K2(β1,⋆

t + β
2,⋆
t ) · β1,⋆

t

}
= 0

v1(T, x) = (1 + γ1)x1 − γ1x2,

(5.2)

and





−∂tv
2(t, x)−

{
∇xv

2 ·K2(β1,⋆
t + β

2,⋆
t ) +

1

2
Tr
(
∆xv

2ΣΣ⊤
)
−

RA

2
‖Σ⊤(β1,⋆

t + β
2,⋆
t )‖2

+
‖K(β1,⋆

t + β
2,⋆
t )‖2

2
+ α

1,⋆
t −K2(β1,⋆

t + β
2,⋆
t ) · β2,⋆

t

}
= 0

v2(T, x) = (1 + γ2)x2 − γ2x1,

(5.3)

and that the first order conditions (4.11) hold true, that is,





β1,⋆ = (K2 +RAΣΣ
⊤)−1

(
K2∇xv

1 −RAΣΣ
⊤β2,⋆

)

β2,⋆ = (K2 +RAΣΣ
⊤)−1

(
K2∇xv

2 −RAΣΣ
⊤β1,⋆

)

α1,⋆ + α2,⋆ = RA

2 ‖Σ⊤(β1,⋆
t + β

2,⋆
t )‖2 −

K2‖β1,⋆
t +β2,⋆

t ‖2

2 .

(5.4)
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Obviously, the equations (5.2) and (5.3) are the HJB equations corresponding to the control prob-
lem of Principal 1 and 2, respectively. Before giving the proof of the lemma, we first admit the
result and show the main equilibrium result.
Proposition 5.1. Optimal contracts in the class C̃2 are given by

ξ1,⋆ = y10 +

∫ T

0
α1,⋆
s ds+

∫ T

0
β1,⋆
s · dXs

ξ2,⋆ = y20 +

∫ T

0
α2,⋆
s ds+

∫ T

0
β2,⋆
s · dXs,

where the parameters satisfy the following Nash-equilibrium conditions

(Eq-Na)





y10 + y20 = R0

β
1,⋆
t + β

2,⋆
t = MΓ,

α
1,⋆
t + α

2,⋆
t =

RA

2
‖Σ⊤

s MΓ‖2 −
‖KMΓ‖2

2
,

with M := (2RAΣΣ
⊤ +K2)−1K2. In particular, the optimal effort ν⋆ of the Agent is given by

ν⋆ = KMΓ.

Proof. We have verified the conditions in Assumption 4.2 through Lemma 5.1. Therefore, accord-
ing to Theorem 4.1, we know that the optimal contracts have the forms of the corresponding
semimartingales. Now, define a function V = v1 + v2. It follows from (5.2), (5.3) and the third
line of (5.4) that the function V satisfies the following PDE:





−∂tV (t, x)−
1

2
Tr
(
ΣΣ⊤∆xV

)
−∇xV ·K2(β1,⋆

t + β
2,⋆
t )

+RA

2 ‖Σ⊤(β1,⋆ + β2,⋆)‖2 + ‖K(β1,⋆+β2,⋆)‖2

2 = 0

V (T, x) = x · Γ,

(5.5)

Further, by (5.4) we may calculate that




β1,⋆ + β2,⋆ = M∇xV,

α1,⋆ + α2,⋆ =
RA

2
‖Σ⊤

s M∇xV ‖2 −
‖KM∇xV ‖2

2

(5.6)

Replacing β1,⋆ + β2,⋆ by M∇xV in (5.5), we obtain




−∂tV (t, x)−

1

2
Tr
(
ΣΣ⊤∆xV

)
−∇xV ·K2M∇xV +

RA

2
‖Σ⊤M∇xV ‖2 +

‖KM∇xV ‖2

2
= 0

V (T, x) = x · Γ,

(5.7)
It is easy to observe that PDE (5.7) has the unique smooth solution

V (t, x) = x · Γ + λ(T − t), with λ = Γ ·K2MΓ−
RA

2
‖Σ⊤MΓ‖2 −

‖KMΓ‖2

2
(5.8)

where λ is a constant depending on RA and M . In particular, ∇xV = Γ. Finally, the equilibrium
result (Eq-Na) follows from (5.6), and by (5.1) we have ν⋆ = KMΓ.
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We observe in the previous proof that the optimal pair (β1,⋆, β2,⋆) should satisfy

β1,⋆ + β2,⋆ = MΓ.

Together with the desired first order condition (5.4), we should have
{
β1,⋆ = ∇xv

1 −RA(K
2)−1ΣΣ⊤MΓ,

β2,⋆ = ∇xv
2 −RA(K

2)−1ΣΣ⊤MΓ.
(5.9)

In order to prove Lemma 5.1, it remains to show that the system of PDEs (5.2), (5.3) with such
coefficients (β1,⋆, β2,⋆) admits unique smooth solutions.

Proof of Lemma 5.1 Let (β1,⋆, β2,⋆) be as in (5.9) and α1,⋆ = α2,⋆ := RA

4 ‖Σ⊤
s MΓ‖2 − ‖KMΓ‖2

4 ,
and plug them into the equations (5.2) and (5.3). Denote

λ̃ := Γ ·K2MΓ−
5RA

4
‖Σ⊤MΓ‖2 −

3

4
‖KMΓ‖2,

one may check that we have in fact λ̃ = 1
2λ. Define

v1(t, x) := λ̃(T − t) + (1 + γ1,−γ1)x, v2(t, x) := λ̃(T − t) + (−γ2, 1 + γ2)x.

Then, it is easy to verify that v1 and v2 defined as above are the unique smooth solutions to (5.2)
and (5.3), respectively.

Remark 5.1. Notice that the choice of α1,⋆ and α2,⋆ in the previous proof is somehow arbitrary. Indeed,

any constant process αi,⋆ and αj,⋆ := RA

2 ‖Σ⊤
s MΓ‖2 − ‖KMΓ‖2

2 − αi,⋆ with 1 ≤ i 6= j ≤ 2 is acceptable

for the proof of Lemma 5.1. This can be easily explained by the fact that we have a degree of freedom on

the choice of on parameter α which provided infinitely many combinations of optimal contracts proposes

by the two Principals.

5.2 Comparison with the model with the aggregated offer

In this section, we compare the competitive common agency example studied in the previous
section with the model in which the Principals can be aggregated, that is, the problem can be
reduced to one single Principal-Agent model as mentioned at the end of Section 2.2.1. In this
case, the Agent problem can still be solved through the same BSDE, that is, there exists (Y0, Z) ∈

[R0,+∞)×H
2
BMO(R

2) such that

ξ = Y0 +

∫ T

0
Zs · ΣdWs +

∫ T

0

(
RA

2
‖Σ⊤Zs‖

2 +
‖KZs‖

2

2
−KZs · Zs

)
ds

= Y0 +

∫ T

0
Zs · ΣdW

⋆
s +

∫ T

0

(
RA

2
‖Σ⊤Zs‖

2 +
‖KZs‖

2

2

)
ds,

where W ⋆ is a P
ν⋆-Brownian motion. The Principal manages to do the following optimization:

U0 = sup
Z

E
⋆
[
(1 + γ1 − γ2)X

1
T + (1 + γ2 − γ1)X

2
T − ξ

]

As before, we can calculate the optimal control:

Z⋆ = MaΓ, with Ma :=
(
RAΣΣ

⊤ +K2
)−1

K2.

19



Further, the optimal effort of the Agent should be

ν⋆Pf = KMaΓ.

By comparing the value of ν⋆Pf and that of ν⋆ in Proposition 5.1, we immediately have the fol-
lowing conclusion.

Proposition 5.2. The effort of the common Agent in the competitive model coincides with the effort of the

common Agent in the aggregated model if and only if the Agent is risk-neutral, that is, RA = 0.

Link with the results of [BW86] for the discrete-case model. Recall that if the Agent is risk-
neutral, it is well-known that in the single Principal-Agent problem, the effort in the first best case
coincides with that in the second best case (see for instance [LM09, Proposition 4.1]). Indeed, as
an extension of it in our particular model, if one computes the first best effort, one has to solve

UFB
0 = sup

ν, ξ
E
ν

[
XT · Γ− ξ · 12 − ρe−RA(ξ·12−

∫ T

0
‖νs‖

2

2
ds)

]
,

with a Lagrange multiplier ρ > 0 ensuring that the Agent receives his utility reservation R0 <

0. In this case, by using Gâteaux derivative to characterize the optimal ξ (see for instance the
method used in [EP16]) one gets after an easy computation the following optimizers

ν
⋆,FB
t := KΓ,

ξ⋆ · 12 = KΓ−
1

RA
log (−R0) .

Therefore, we have proved that the ’second best’ effort of a risk-neutral Agent in the competitive
model coincides with the ’first best’ effort. This is exactly an extension of the result in [BW86] in
the discrete-case.

Comparison of optimal remunerations. In the common agency model we have seen that the
remuneration given to the Agent is

ξ⋆1 + ξ⋆2 = R0 + T

(
RA

2
‖Σ⊤MΓ‖2 +

‖KMΓ‖2

2

)

︸ ︷︷ ︸
=:δ

+

∫ T

0
MΓ · ΣdW ⋆

s .

In the aggregated model, we recall that

ξ⋆ := R0 + T

(
RA

2
‖Σ⊤MaΓ‖

2 +
‖KMaΓ‖

2

2

)

︸ ︷︷ ︸
=:δa

+

∫ T

0
MaΓ · ΣdW ⋆

s

Let Σ := I2, then, we get

M =




k21
2RA+k21

0

0
k22

2RA+k22




and

Ma =




k21
RA+k21

0

0
k22

RA+k22



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In this particular model, we have δa ≥ δ, i.e. the non-risk part of the remuneration is higher for
the Agent if he is employed by the aggregated firm (the parent firm), comparing to the case he is
hired by two different firms. This is curious, because intuitively the Agent should receive higher
return if the firms compete with each other. However, one must note that the Agent works more
(‖ν⋆Pf‖1 ≥ ‖ν⋆‖1) in the aggregated model which could explained this effect.

5.3 Impact of the appetence, efficiency and correlation parameters

Let ρ ∈ [−1, 1] be a correlation parameter such that

Σ :=

(
1 0

ρ
√

1− ρ2

)
, K :=

(
k1 0

0 k2

)

In this case, we get after a (tedious but easy) computation

ν1,⋆ =
2RAk1

(
(1 + γ2 − γ1)k

2
2ρ− (1 + γ1 − γ2)k

2
1

)
− k31k

2
2(1 + γ1 − γ2)

2R2
A(ρ

2 − 1)− 2RA(k21 + k22)− k21k
2
2

ν2,⋆ =
2RAk2

(
(1 + γ1 − γ2)k

2
1ρ− (1 + γ2 − γ1)k

2
2

)
− k21k

3
2(1 + γ2 − γ1)

2R2
A(ρ

2 − 1)− 2RA(k
2
1 + k22)− k21k

2
2

Impact of the correlation and the appetence parameters. Assume that k := k1 = k2. In this
case

ν1,⋆(ρ) :=
2RAk

3 ((1 + γ2 − γ1)ρ− (1 + γ1 − γ2))− k5(1 + γ1 − γ2)

2R2
A(ρ

2 − 1)− 4RAk2 − k4

ν2,⋆(ρ) :=
2RAk

3 ((1 + γ1 − γ2)ρ− (1 + γ2 − γ1))− k5(1 + γ2 − γ1)

2R2
A(ρ

2 − 1)− 4RAk2 − k4

Note that

ν1,⋆(ρ)− ν2,⋆(ρ) =
4RAk

3 ((γ2 − γ1)(ρ+ 1)) − 2k5(γ1 − γ2)

2R2
A(ρ

2 − 1)− 4RAk2 − k4

= (γ1 − γ2)
−4RAk

3(ρ+ 1)− 2k5

2R2
A(ρ

2 − 1)− 4RAk2 − k4
.

Thus as soon as γ1 > γ2, we get ν1,⋆(ρ) > ν2,⋆(ρ) so that the Agent works more for the more
ambitious principal. Moreover, we have

d(ρ) :=
ν1,⋆

ν⋆
(ρ)−

ν2,⋆

ν⋆
(ρ) = (γ1 − γ2)

2RAk
3(1 + ρ) + k5

2RAk3(1− ρ) + k5
,

with ν⋆ := ν1,⋆ + ν2,⋆.

By noticing that the function ρ ∈ [−1, 1) 7−→ d(ρ) is convex and increasing, we deduce that the
difference between the proportion of effort given by the Agent with the more ambitious principal
and the proportion of effort given by the Agent with the less ambitious principal increases with
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the parameter ρ. In other words, the more the projects are correlated, the more the proportion
of effort given by the Agent is impacted by the difference of the ambition parameters of each
Principal. Besides, the convexity shows that the sensibility of the proportion of work given by
the Agent for each principal increases with the correlation parameter. The more the projects
are correlated, the more a little variation of the correlation has a big effect on the difference of
proportion of effort given by the Agent.

Risk-Neutral Agent. Assume that Σ = Id2, RA = 0. In this case, M = Id2 and ν⋆ = KΓ. In
other work we have

ν1,⋆ = k1(1 + γ1 − γ2)

ν2,⋆ = k2(1 + γ2 − γ1).

The Agent works more for the Principal 1 if and only if

k1(1 + γ1 − γ2) > k2(1 + γ2 − γ1). (5.10)

Let now x := γ2 − γ1.

• First, we note some intuitive results. If the two Principals have the same ambition param-
eters, (i.e. γ1 = γ2), the Agent prefers working with the Principal with whom he is more
efficient. Similarly, if the two Principals have the efficiency parameters, (i.e. k1 = k2), the
Agent works more for the more ambitious Principal.

• Assume now for instance that γ1 = 0, γ2 = 1. Then condition (5.10) is never satisfies
and the Agent does not work for Principal 1 whatever is her performance. It means that
the Agent does not work for the Principal indifferent to the competition, while the other
Principal is every competitive.

• Assume now that γ1 ∈ [0, 1] and γ2 ∈ [0, 1). Denote x := γ2 − γ1 ∈ [−1, 1). The domain
x ≤ 0 coincides with the situation where the Principal 1 is more ambitious that the Principal
2 (and conversely, Principal 1 is less ambitious than Principal 2 when x ≥ 0). Condition
(5.10) can be rewritten

k1

k2
>

1 + x

1− x
, x ∈ [−1, 1).

Let f(x) := 1+x
1−x , x ∈ [−1, 1), then f is clearly increasing and convex.

Let us provide an interpretation of the growth of f . When x is bigger than 0, we notice that
f(x) is bigger than 1, which shows that a lack of ambition the Principal 1, i.e. γ1 < γ2, can
be balanced with the efficiency parameter of her since it exists a domain of x ≥ 0, i.e. for
which the Principal 1 is less ambitious than the Principal 2 but such that the Agent works
for the less ambitious Principal 1.

Turn now to the convexity of f . This phenomenon is quite interesting since it suggests that
when a Principal is clearly more ambitious than the other, for instance γ1 << γ2, a little
modification of the ambition parameters leads to a high variation of the quotient between
the effort of the Agent for the Principal 1 and for the Principal 2. In other words, if the Prin-
cipal 1 is clearly less ambitious than the Principal 2, derived lightly from this state leads to
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a big difference of the efforts provides by the Agent to manage the project of the Principal 1
and the Principal 2. If for instance the Principal 1 increases a little her ambition, the Agent
will manage quite more her project. There is a kind of leverage effect between a deviation
of an initial ambition parameter and the quantity of work provides to the Agent, when
the two Principal have very different behaviours concerning their relative performances.
Besides, a little modification of the ambition parameter of a Principal significantly more in-
different than the other with fixed ambition parameter, increases or decreases meaningfully
the range of possible efficiency parameters to have an Agent more devoted to her project.

Remark 5.2. As explained in the section above with Proposition 5.2, this case can be in fact reduced to

the classical second best case (with one Principal), by aggregating the Principals. Thus, we recover the

classical interpretations by adding efficiency parameter γi for project i with i = 1, 2.

6 Conclusion

In this paper, we show that in the common agency problem, the value functions of the Principals
should be the solutions of a system of HJB equations. Meanwhile, the coefficients of the system
should satisfy the Nash equilibrium conditions. In particular, We study a model in which two
Principals hire a common Agent, and we obtain one of the main results in [BW86], that is, the
outcome with two non-cooperative employers and that with an aggregated employer coincide
only when the Agent is risk-neutral.

At the opposite of common agency problem, other works have investigated a competition prob-
lem between two principals who want the exclusive service of an agent. In 1976, Rothschild and
Stiglitz [RS76] have studied insurance markets in which principals are identical and compete for
a single agent. It has then been extended by Biglaiser and Mezzetti in [BM93] in both moral
hazard and adverse selection cases. This problem is not considered here, because we allows the
agents to be remunerated by all the Principals, and it will be left for future researches.
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A Notations and Technical details

A.1 General notations

We fix throughout the paper a time horizon T > 0 and N a positive integer. We denote by ‖·‖ the
Euclidian norm in R

N and by · the inner product. For any positive integers n and m, we identify
R
n×m with the space of real matrices with n rows and m columns, endowed with the Euclidean

norm on R
n×m. Let M be in R

n×m, 1 ≤ j ≤ n and 1 ≤ ℓ ≤ m, we denote by M j,: ∈ R
1×m (resp.

M :,ℓ ∈ R
n,1) its j-th row (resp. its ℓ-th column). We set M⊤ ∈ R

m×n to be the transpose of M .
We also identify R

N with R
1,N and for any element x of RN , we denote by xi its ith component

and x(−i) an R
N−1 dimensional vector such that x(−i) := (x1, . . . , xi−1, xi+1, . . . , xN )⊤. For any

vector x⋆ ∈ R
N and to allege the notations in the indexation, we denote in all this paper xi,⋆ the

ith component of x⋆ and similarly x(−i),⋆ := (x⋆)(−i). We set ⊗i as the concatenate operator at
rank i such that

R× R
N−1 −→ R

N

(a, y) 7−→ a⊗i y := (y1, . . . , y
i−1, a, yi, . . . , yN−1)⊤.

Let 1N be the element of RN defined by 1N := (1, . . . , 1)⊤.

For any finite dimensional normed space (E, ‖·‖E), P(E) (resp. Pr(E)) will denote the set of
E−valued, F−adapted integrable processes (resp. F−predictable processes) and for any p ≥ 1

S
p(E) :=

{
Y ∈ P(E), càdlàg, such that ‖Y ‖p

Sp(E) := E

[
sup

t∈[0,T ]
‖Yt‖

p
E

]
< +∞

}
,

H
p(E) :=

{
Z ∈ Pr(E), ‖Z‖p

Hp := E

[(∫ T

0
‖Zt‖

2
Edt

)p/2
]
< +∞

}
.

Let Z ∈ Pr(E), we set E
(∫ ·

0 Zs · dWs

)
as the stochastic exponential of

∫ ·
0 Zs · dWs defined by

E

(∫ ·

0
Zs · dWs

)
:= exp

(∫ ·

0
Zs · dWs −

1

2

∫ ·

0
‖Zs‖

2
Eds

)
.

We also denote S(E) :=
⋃

p≥1 S
p(E) and H(E) :=

⋃
p≥1H

p(E).

We recall the notion of Bounded mean oscillation (BMO for short) martingale.
Definition A.1 ([Kaz94]). For any process Z ∈ H

2(E), we say that
∫ ·
0 Zs · dWs is a BMO martingale if

there exists a non negative contant C such that for any stopping time τ ≤ T we have

E

[∫ T

τ
‖Zs‖

2ds

]
≤ C2.

We denote this space by H
2
BMO(E).

In particular, we have the following result
Proposition A.1. [Kaz94, Theorem 2.3] If

∫ ·
0 Zs · dWs is a BMO-martingale, then E

(∫ ·
0 Zs · dWs

)
is a

uniformly integrable martingale.
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A.2 Technical proofs

Proof of Theorem 3.1. The fact that BSDE (3.3) admits a unique solution (Y ξ, Zξ) in S(R)×H
2
BMO(R

N )

using Definition 2.2 of admissible contract ξ is a direct consequence of the results in [BH06] under
Assumption (Σ). By noticing that for any ν⋆ ∈ A⋆

X,Zξ , the component Y ξ
t coincides with the first

component Y ν⋆(X,Zξ)
t of the solution to BSDE (3.1), we directly deduce from comparison theorem

(see for instance [BH06]) that Y ξ
0 = UA

0 (ξ) and any ν⋆(X,Zξ) ∈ A⋆
X,Zξ ∩A is a best reaction effort

for the Agent.

Proof of Lemma 4.1. Let ξ ∈ C̃(−i), with fixed (yj, αj , βj) ∈ R × P(R) × Pr(R
N ), j 6= i. We know

that there exists (Y0, Z) ∈ [R0,+∞)×H
2
BMO(R

N ) such that

XT = x+

∫ T

0
b(s,Xs, ν

⋆(Xs, Zs))ds +

∫ T

0
ΣsdW

⋆
s ,

and

ξi = Y0 −
∑

j 6=i

yj +

∫ T

0
(Zs −

∑

j 6=i

βj
s) · ΣsdWs +

∫ T

0
F (s,Xs, Zs,

∑

j 6=i

αj
s)ds,

with for any (s, x, z, sa) ∈ [0, T ]× R
N × R

N × R

F (s, x, z, sa) :=
RA

2
‖Σ⊤

s z‖
2 − f⋆(s, x, z) − sa

Thus,

ξi = yi +

∫ T

0
αi
sds+

∫ T

0
βi
s · dXs,

with 



yi := Y0 −
∑

j 6=i

yj,

αi
s := G(s,Xs, Zs)−

∑

j 6=i

αj
s,

βi
s := Zs −

∑

j 6=i

βj
s .

28


