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Abstract: Within the framework of the state-of-the-art, this paper presents a summary of some common
research works carried out by the authors concerning computational methods for the prediction of
the responses in the frequency domain of general linear dissipative vibroacoustics (structural-acoustic)
systems for liquid and gas in the low-frequency (LF) and medium-frequency (MF) domains, including
uncertainty quantification (UQ) that plays an important role in the MF domain. The system under
consideration consists of a deformable dissipative structure, coupled with an internal dissipative
acoustic fluid including a wall acoustic impedance, and surrounded by an infinite acoustic fluid.
The system is submitted to given internal and external acoustic sources and to prescribed mechanical
forces. An efficient reduced-order computational model (ROM) is constructed using a finite element
discretization (FEM) for the structure and the internal acoustic fluid. The external acoustic fluid is
treated using a symmetric boundary element method (BEM) in the frequency domain. All the required
modeling aspects required for the analysis in the MF domain have been introduced, in particular
the frequency-dependent damping phenomena and model uncertainties. An industrial application to
a complex computational vibroacoustic model of an automobile is presented.

Keywords: structural acoustics; vibroacoustic; uncertainty quantification; reduced-order model;
medium frequency; low frequency; dissipative system; wall acoustic impedance; finite element
discretization; boundary element method

1. Introduction

This paper presents a summary of some common research works carried out by the authors
concerning computational methods for the prediction of the responses in the frequency domain
of general linear dissipative vibroacoustics (structural-acoustic) systems for liquid and gas in the
low- frequency (LF) and medium-frequency (MF) domains, including uncertainty quantification (UQ)
that plays an important role in the MF domain. The contribution of this paper is the presentation of
an efficient computational methodology adapted to large-scale computational vibroacoustic models
which corresponds to a combination of established methods, and an application of this computational
methodology is presented for an industrial vibroacoustic system. Considering all the aspects that are
developed in this paper in order to present a complete strategy for the modeling and computational
approaches—external acoustic fluid modeling, internal acoustic fluid including a dissipation term
and frequency-dependent wall impedance, structure with frequency-dependent constitutive equation,
reduced-order model for weak and strong coupling between the structure and the internal acoustic
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fluid, complete methodology for uncertainty quantification—a synthetic presentation has been
adopted for readability, and we refer the reader to the given appropriate bibliography for the details.
Nevertheless, since the model uncertainties induced by the modeling errors—which cannot be taken
into account by using the usual probabilistic parametric approach of uncertain parameters or of other
deterministic approaches of uncertainties—is relatively novel for the readers who are not familiarized
with such a formulation, this part is more detailed in terms of equations.

More specifically, this paper is devoted to computational methods for the prediction of
the frequency responses of linear dissipative vibroacoustic (structural-acoustic) systems in the low- and
medium-frequency ranges. The vibroacoustic system consists of a deformable dissipative structure,
coupled with a bounded internal dissipative acoustic fluid including a wall acoustic impedance,
immersed in an unbounded acoustic fluid, and submitted to internal and external acoustic sources,
as well as mechanical forces.

Computational vibroacoustic predictions play an important and increasing role in analyzing
industrial complex systems, and many works have been published in this field.

The physics on which the computational vibroacoustics formulations are based can be found in
numerous books, such as in [1–11].

For the spatial discretization of structures and bounded internal acoustic fluids, the computational
vibroacoustics are generally based on the finite element method (FEM) (see for instance [12–15],
and [16] for the corresponding isogeometric formulation).

For the spatial discretization of the unbounded external acoustic fluid, either finite element
method or boundary element method (BEM) are used. Concerning the use of the local discretization of
the unbounded external acoustic fluid, we refer the reader to [17–26], and for the BEM that is based
on the finite element discretization of the boundary integral equation methods, let us cite [27–37].
Concerning the BEMs that are specifically devoted to the unbounded external acoustic fluid, we refer
the reader to [38–48].

Reduced-order models (ROMs) are very attractive and efficient for analyzing large computational
vibroacoustics models that have a significant number of design parameters—also called parametric
high-dimensional computational models (HDMs)—for design and optimization, for constructing
online models for active control, and for taking uncertainties into account. Particularly for parametric
nonlinear HDMs, many approaches which can also be applied to parametric linear HDMs have been
proposed, including hyper-reduced ROM, which guarantees feasibility [49–61]. With these methods,
the parameter admissible space must be sampled at a few points using a greedy sampling algorithm
(e.g., [62]), and a set of problems must be solved, yielding a set of parametric solution snapshots.
This generally results from a proper orthogonal decomposition (POD), which are compressed using,
for example, singular value decomposition (SVD) to construct a global reduced-order basis (ROB).
For linear vibroacoustic HDMs, the most common choice for the parametric ROB consists of taking
the modes of the different parts that constitute the vibroacoustic system (e.g., the elastic modes of the
structure and the acoustic modes of the internal acoustic fluid)[41,63–74].

The design of a vibroacoustic system is used to manufacture a real system and to construct
a nominal computational model with the methodologies listed above, and which will be presented
in the next sections. In practice, the real system can exhibit variabilities in its responses due to
fluctuations in the manufacturing process and due to small variations of the configuration around
a nominal configuration associated with the design. The vibroacoustic computational model has
parameters such as geometry, mechanical properties, and boundary conditions, which can be uncertain,
inducing uncertainties in the computational model parameters. On the other hand, the modeling
process induces some modeling errors defined as the model uncertainties. It is important to consider
both the model-parameters uncertainties and the modeling uncertainties in order to improve the
predictions. Two main types of approaches can be used to model uncertainties in the framework of the
probability theory [75]. The first is the parametric probabilistic approach, which consists of modeling
the uncertain parameters by random variables (e.g., [75–84]), but which does not have the capability
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to take modeling uncertainties into account. Two main methods can then be used to take them into
account. The first is the output-prediction-error method, which requires experimental data [85,86] and
uses the Bayesian method [87,88], but for which the computational model cannot be updated using
experimental data, which constitutes a lock for robust design and optimization. The second one is the
nonparametric probabilistic approach of modeling uncertainties induced by modeling errors proposed
in [75,89–91], based on the maximum entropy principle [92] in the context of Information Theory [93]
and on the random matrix theory [94], and extended for nonlinear dynamical systems in [95].

The outline of this paper is the following:

• Statement of the problem in the frequency domain.
• External inviscid acoustic fluid equations in the frequency domain and acoustic impedance

boundary operator.
• Internal dissipative acoustic fluid equations in the frequency domain.
• Structure equations with frequency-dependent constitutive equation.
• Boundary value problem in terms of the structural displacement and the internal pressure field.
• Vibroacoustic computational model.
• Reduced-order vibroacoustic computational model.
• Uncertainty quantification for the vibroacoustic computational model.
• Experimental validation with a complex computational vibroacoustic model of an automobile.

2. Statement of the Problem in the Frequency Domain

The physical space R3 refers to a cartesian reference system, and the generic point of R3 is denoted
by x = (x1, x2, x3). For any function f (x), the notation f ,j designates the partial derivative with respect
to xj. The classical convention for summations over repeated Latin indices is used, but not over Greek
indices. The vibration problem is formulated in the frequency domain. Therefore, the Fourier transform
is introduced for various quantities involved. For instance, for the displacement field (x, t) 7→ u(x, t),
the simplified notation (x, ω) 7→ u(x, ω) =

∫ +∞
−∞ e−iωt u(x, t) dt is introduced and consists of using the

same symbol for a quantity and its Fourier transform, in which the circular frequency ω (rad/s) is real.
The vibroacoustic system is assumed to be in linear vibrations around a static equilibrium state taken
as a natural state at rest.

Structure. In general, the structure of a complex vibroacoustic system is composed of a main
part called the master structure that is accessible to conventional modeling including uncertainties
modeling, and a secondary part called the fuzzy substructure related to the structural complexity
and including for example many equipment units attached to the master structure. In the present
paper, we will not consider fuzzy substructures, and concerning fuzzy structure theory, we refer the
reader to Chapter 15 of [41] for a synthesis, and to [96] for an extension of the theory to the modeling
of an uncertain complex vibroacoustic system with fuzzy interface. At equilibrium, the structure
occupies the three-dimensional bounded domain ΩS with a boundary ∂ΩS that is made up of a part
ΓE that is the coupling interface between the structure and the external acoustic fluid, a part Γ that
is a coupling interface between the structure and the internal acoustic fluid, and finally, a part ΓZ
that is another part of the coupling interface between the structure and the internal acoustic fluid
with acoustic properties. The structure is assumed to be free (free-free structure). The outward unit
normal to ∂ΩS is denoted as nS = (nS

1 , nS
2 , nS

3 ) (see Figure 1). In ΩS, the displacement field is denoted
by u(x, ω) = (u1(x, ω), u2(x, ω), u3(x, ω)). A surface force field G(x, ω) = (G1(x, ω), G2(x, ω),
G3(x, ω)) is given on ∂ΩS, and a body force field g(x, ω) = (g1(x, ω), g2(x, ω), g3(x, ω)) is given in
ΩS. The structure is a dissipative medium for which the frequency-dependent constitutive equation is
detailed in Appendix A.

Internal dissipative acoustic fluid. Let Ω be the internal bounded domain filled with a dissipative
acoustic fluid (gas or liquid) that is described in Section 4. The boundary ∂Ω of Ω is Γ ∪ ΓZ. The
outward unit normal to ∂Ω is denoted by n = (n1, n2, n3), and we have n = −nS on ∂Ω (see Figure 1).
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The acoustic properties of boundary ΓZ are modeled by a wall acoustic impedance Z(x, ω) satisfying
the hypotheses defined in Section 4.2. In Ω, the pressure field is denoted by p(x, ω) and the velocity
field by v(x, ω). It is assumed that there is no Dirichlet boundary condition on any part of ∂Ω.
An acoustic source density Q(x, ω) is given inside Ω.

External inviscid acoustic fluid. The structure is surrounded by an external inviscid acoustic fluid
(gas or liquid) that is detailed in Appendix B. The fluid occupies the infinite three-dimensional domain
ΩE whose boundary ∂ΩE is ΓE. The inward unit normal to ∂ΓE is nS, defined above (see Figure 1).
In ΩE, the pressure field is denoted by pE(x, ω). There is no Dirichlet boundary condition on ΓE.
An acoustic source density QE(x, ω) is given in ΩE. This acoustic source density induces a pressure
field pgiven(ω) on ΓE (defined in Appendix B). For the sake of brevity, the case of an incident plane
wave is not considered here, and the reader is referred to [41] for this case.

1
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Figure 1. Geometry of the vibroacoustic system.

3. External Inviscid Acoustic Fluid Equations in the Frequency Domain and Acoustic Impedance
Boundary Operator

Let ρE and cE be the constant mass density and the constant speed of sound of the external acoustic
fluid at equilibrium. Let k = ω/cE be the wave number at frequency ω. The pressure is the solution of
the classical exterior Neumann problem related to the Helmholtz equation with a source term [2–4,41],

∇2 pE + k2 pE = −iω QE in ΩE , (1)

∂pE

∂nS = ω2 ρE u · nS on ΓE , (2)

| pE | = O(
1
R
) ,

∣∣∣∣ ∂pE
∂R

+ i k pE

∣∣∣∣ = O(
1

R2 ) , (3)

with R = ‖x‖ → +∞, where ∂/∂R is the derivative in the radial direction and where u ·nS is the normal
displacement field on ΓE induced by the deformation of the structure. Equation (3) corresponds to
the outward Sommerfeld radiation condition at infinity. In Appendix B, it is shown that the value
pE|ΓE

of the pressure field pE on the external fluid–structure interface ΓE is related to the given
external pressure field pgiven|ΓE

on ΓE and to the normal displacement field u(ω) · nS on the external
fluid–structure interface ΓE by the equation

pE|ΓE
(ω) = pgiven|ΓE

(ω) + iω ZΓE(ω){u(ω) · nS} , (4)
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in which ZΓE(ω) is the acoustic impedance boundary operator. It can be proven that for all given
real ω and for all given u · nS sufficiently regular on ΓE, the boundary value problem defined by
Equations (1)–(3) (e.g., [97,98]) admits a unique solution.

4. Internal Dissipative Acoustic Fluid Equations in the Frequency Domain

4.1. Internal Dissipative Acoustic Fluid Equations

The internal fluid is called a dissipative acoustic fluid, and is assumed to be homogeneous,
compressible, dissipative, and at rest in the reference configuration. This dissipative acoustic fluid—for
which the dissipation due to thermal conduction is neglected and for which the motions are assumed
to be irrotational—is driven by the Helmholtz equation with an additional internal dissipative term.
For additional details concerning dissipation in acoustic fluids, we refer the reader to [2,4,6,9]. Let ρ0

be the mass density and let c0 be the constant speed of sound in the acoustic fluid at equilibrium in
the reference configuration Ω. The Helmholtz equation with a dissipative term and a source term Q is
written as [41]

1
ρ0

∇2 p + iω
τ

ρ0
∇2 p +

ω2

ρ0c2
0

p = − 1
ρ0
(iωQ− τc2

0∇2Q) in Ω , (5)

in which τ is given by

τ =
1

ρ0c2
0

(4
3

η + ζ
)
> 0 . (6)

The constant η is the dynamic viscosity, ν = η/ρ0 is the kinematic viscosity, and ζ is the second
viscosity which can depend on ω. Therefore, τ can depend on frequency ω. To simplify the notation,
we write τ instead of τ(ω). Taking τ = 0 in Equation (5) yields the usual Helmholtz equation
with an acoustic source for wave propagation in an inviscid acoustic fluid. It should be noted that
the dissipation term is proportional to ∇2 p and not to p (what modifies the boundary condition
defined after), and that the acoustic source term exhibits a ∇2Q term.

4.2. Boundary Conditions

(i) Let v(x, ω) be the velocity in the acoustic fluid. The interface condition on Γ for the inviscid
dissipative acoustic fluid is written as v · n = iω u · n on Γ. In terms of p, the Neumann boundary
condition is written as

(1 + iω τ)
∂p
∂n

= ω2 ρ0 u · n + τ c2
0

∂Q
∂n

on Γ . (7)

(ii) The wall acoustic impedance on ΓZ is defined by the following constitutive equation:

p(x, ω) = Z(x, ω) {v(x, ω) · n− iω u(x, ω) · n} , (8)

in which Z(x, ω) is the wall acoustic impedance defined for x ∈ ΓZ, with complex values. Wall acoustic
impedance Z(x, ω) must satisfy appropriate conditions in order to ensure that the problem is correctly
stated (see [41] for a general formulation). In terms of p, the Neumann boundary condition on ΓZ is
written as

(1 + iω τ)
∂p
∂n

= ω2 ρ0 u · n− iωρ0
p
Z
+ τ c2

0

∂Q
∂n

on ΓZ . (9)

4.3. Case of a Free Surface for a Liquid

In a case of an acoustic liquid with a free surface Γ0, neglecting gravity effects, the following
Dirichlet condition is written as

p = 0 on Γ0 . (10)
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5. Structure Equations with Frequency-Dependent Constitutive Equation

Structure Equations in the Frequency Domain

The equation of the structure occupying domain ΩS is written as

−ω2 ρS ui − σij,j(u) = gi in ΩS , (11)

in which ρS(x) is the mass density of the structure. For a linear viscoelastic model, the symmetric stress
tensor is written as

σij(u) = (aijkh(ω) + iω bijkh(ω)) εkh(u) , (12)

in which the symmetric strain tensor εkh(u) is such that

εkh(u) =
1
2
(uk,h(x, ω) + uh,k(x, ω)) , (13)

and where the tensors aijkh(ω) and bijkh(ω) depend on ω and are detailed in Appendix A for the LF
and MF ranges.

On the fluid–structure external interface ΓE, the boundary condition is such that

σij(u)nS
j = Gi − pE|ΓE

nS
i on ΓE . (14)

Using Equation (4) yields

σij(u) nS
j = Gi − pgiven|ΓE

nS
i − iω ZΓE(ω){u · nS} nS

i on ΓE . (15)

Since nS = −n, the boundary condition on Γ ∪ ΓZ is written as

σij(u)nS
j = Gi + p ni on Γ ∪ ΓZ , (16)

in which p is the internal acoustic pressure field defined in Section 4.

6. Boundary Value Problem in Terms of {u, p}

The boundary value problem in terms of {u, p} is written as follows. For all real ω and for given
G(ω), g(ω), pgiven|ΓE

(ω), and Q(ω), find u(ω) and p(ω), such that

−ω2 ρS u− div σ(u) = g in ΩS , (17)

σ(u)nS = G− pgiven|ΓE
nS − iω ZΓE(ω){u · nS}nS on ΓE , (18)

σ(u)nS = G + p n on Γ ∪ ΓZ . (19)

− ω2

ρ0c2
0

p− iω
τ

ρ0
∇2 p− 1

ρ0
∇2 p =

1
ρ0
(iωQ− τc2

0∇2Q) in Ω . (20)

(1 + iω τ)
∂p
∂n

= ω2 ρ0 u · n + τ c2
0

∂Q
∂n

on Γ . (21)

(1 + iω τ)
∂p
∂n

= ω2 ρ0 u · n− iωρ0
p
Z
+ τ c2

0

∂Q
∂n

on ΓZ . (22)

In the case of a free surface Γ0 in the internal acoustic cavity (see Section 4.3), the boundary
condition defined by Equation (10) must be added.



Appl. Sci. 2017, 7, 586 7 of 39

Remarks

• Equation (17) corresponds to the structure equation (see Equations (11)–(13)), in which
{div σ(u)}i = σij,j(u).

• Equations (18) and (19) are the boundary conditions for the structure (see Equations (15) and (16)).
• Equation (20) corresponds to the internal dissipative acoustic fluid equation (see Equation (5)).
• Equations (21) and (22) are the boundary conditions for the acoustic cavity (see Equations (7) and (9)).
• It is important to note that the external acoustic pressure field pE has been eliminated as a function

of u using the acoustic impedance boundary operator ZΓE(ω) (see Equation (4) of Section 3
and Appendix B), while the internal acoustic pressure field p is kept.

7. Vibroacoustic Computational Model

The finite element method is used to construct the spatial discretization of the variational
formulation of the boundary value problem defined by Equations (17)–(22), with the additional
boundary condition defined by Equation (10) in the case of a free surface for an internal liquid.
We consider a finite element mesh of structure ΩS and a finite element mesh of internal acoustic fluid
Ω. It is assumed that the two finite element meshes are compatible on interface Γ ∪ ΓZ. The finite
element mesh of surface ΓE is the trace of the mesh of ΩS.

7.1. Matrix Equation of the Computational Model

Let U(ω) be the complex vector of the nS degrees-of-freedom (DOFs), which are the values of
u(ω) at the nodes of the finite element mesh of domain ΩS. For the internal acoustic fluid, let P(ω)

be the complex vectors of the n DOFs, which are the values of p(ω) at the nodes of the finite element
mesh of domain Ω. The complex matrix equation of the computational model is written as

[AFSI(ω)]

[
U(ω)

P(ω)

]
=

[
FS(ω)

F(ω)

]
, (23)

in which the complex matrix [AFSI(ω)] is defined by[
[AS(ω)]−ω2[ABEM(ω/cE)] [C]

ω2 [C]T [A(ω)]+[AZ(ω)]

]
, (24)

in which [C]T is the transposed matrix of [C]. In Equation (24), the symmetric (nS × nS) complex
matrix [AS(ω)] is defined by

[AS(ω)] = −ω2[MS] + iω [DS(ω)] + [KS(ω)] , (25)

in which [MS], [DS(ω)], and [KS(ω)] are symmetric (nS × nS) real matrices, which represent the
mass matrix, the damping matrix, and the stiffness matrix of the structure. Matrix [MS] is positive
and invertible (positive definite), and matrices [DS(ω)] and [KS(ω)] are positive and not invertible
(positive semidefinite) due to the presence of six rigid body motions (free-free structure). The symmetric
(n× n) complex matrix [A(ω)] is defined by
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[A(ω)] = −ω2[M] + iω [D(ω)] + [K] , (26)

in which [M], [D(ω)], and [K] are symmetric (n× n) real matrices. Matrix [M] is positive and invertible,
and matrices [D(ω)] and [K] are positive and not invertible with rank (n − 1). In the case of a
free surface Γ0 in the internal acoustic cavity (see Section 4.3), the boundary condition defined
by Equation (10) is added, and consequently the corresponding matrix [K] is positive definite,
and is thus invertible. The internal fluid–structure coupling matrix [C] is related to the coupling
between the structure and the internal fluid on the internal fluid–structure interface, and is a (nS × n)
real matrix that is only related to the values of U and P on the internal fluid–structure interface.
The wall acoustic impedance matrix [AZ(ω)] is a symmetric (n× n) complex matrix depending on
the wall acoustic impedance Z(x, ω) on ΓZ, and which is only related to the values of P on boundary
ΓZ. The boundary element matrix [ABEM(ω/cE)]—which depends on ω/cE—is a symmetric (nS × nS)

complex matrix that is only related to the values of U on the external fluid–structure interface ΓE.
This matrix is written as

[ABEM(ω/cE)] = −ρE [N]T [BΓE(ω/cE)] [N] , (27)

in which [BΓE(ω/cE)] is the full symmetric (nE× nE) complex matrix defined in Appendix B, and where
[N] is a sparse (nE × nS) real matrix related to the finite element discretization.

7.2. Construction of the Matrices of the Computational Model

The expressions of the real or complex bilinear forms whose discretization allows the
corresponding real or complex matrices to be constructed are given hereinafter. For such a construction,
we consider the fields (p, η, u) and the corresponding fields (δp, δη, δu) as test functions that are real
(and not complex).

7.2.1. Matrices Related to the Equations of the Structure

• Symmetric real mass matrix [MS] is positive definite, and corresponds to
∫

ΩS
ρS u · δu dx.

• Symmetric real damping matrix [DS(ω)] is positive semidefinite with a kernel of dimension 6,
and corresponds to

∫
ΩS

bijkh(ω) εkh(u) εij(δu) dx.

• Symmetric real stiffness matrix [KS(ω)] is positive semidefinite with a kernel of dimension 6,
and corresponds to

∫
ΩS

aijkh(ω) εkh(u) εij(δu) dx.

7.2.2. Matrices Related to the Equations of the Internal Acoustic Fluid

• Symmetric real matrix [K] is positive semidefinite with a kernel of dimension 1, and corresponds
to 1

ρ0

∫
Ω ∇p ·∇δp dx. In the case of a free surface Γ0 in the internal acoustic cavity (see Section 4.3),

the boundary condition defined by Equation (10) is added, and consequently, the corresponding
matrix [K] is positive definite.

• From Equation (20), it can be deduced that the symmetric real matrix [D(ω)] = τ(ω) [K] is
positive semidefinite with a kernel of dimension 1, in which τ(ω) is defined by Equation (6).

• Symmetric real matrix [M] is positive definite, and corresponds to 1
ρ0c2

0

∫
Ω p δp dx.

• Symmetric complex matrix [AZ(ω)] comes from
∫

ΓZ
1

Z(ω)
p δp ds, in which Z(x, ω) is

a complex-valued function and where ds is the elementary surface area.

7.2.3. Matrices Related to the Coupling Terms

• Rectangular real matrix [C] corresponds to −
∫

Γ∪ΓZ
p n · δu ds.
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7.2.4. Vector of Mechanical and Acoustical Excitations

• Complex vector FS(ω) of external forces corresponds to
∫

ΓE
(G− pgiven|ΓE

nS) · δu ds+
∫

ΩS
g · δu dx.

• Complex vector F(ω) of internal acoustic sources corresponds to 1
ρ0

∫
Ω(iω Q δp + τc2

0∇Q ·∇δp) dx.

Remark concerning the construction of the solution. The vibroacoustic computational model without
model uncertainties (deterministic equations) can be numerically solved ω by ω, but for large-scale
computational models, the numerical cost can be relatively high. This is why reduced-order models
are generally introduced. In addition, if the nonparametric probabilistic approach is used to take the
uncertainties induced by modeling errors into account, then a reduced-order model must be introduced.
The methodology proposed for constructing a reduced-order model is presented in the next section.

8. Reduced-Order Vibroacoustic Computational Model

One possible method for constructing a reduced-order model would consist of choosing as
a reduced-order basis the elastoacoustic modes (coupled vibroacoustic modes) of an associated
conservative system that must be defined and which will be directly computed. The direct computation
of these elastoacoustic modes can be very expensive for solving the eigenvalue problem of large-scale
computational models, even if advanced algorithms based on Krylov methods are used. However,
with such an approach, the nature of the couplings between the subsystems through the knowledge of
the eigenfrequencies and the mode shapes of each subsystem can be difficult to analyze. In addition,
the use of the elastoacoustic modes does not allow anymore for adapting the level of uncertainties
as a function of the matrices of the coupled system (inertial forces, damping forces, stiffness forces in
the structure, and equivalent forces in the internal dissipative acoustic fluid, internal fluid–structure
coupling forces). This aspect is particularly important for the analyses in the medium-frequency
range. Certainly, knowledge of the elastoacoustic modes can also be very useful for analyzing
the consequences of the couplings. Their computation can be considerably decreased by using
a reduced-order model such as the one proposed hereinafter, which avoids the expensive direct
computation. Finally, if the direct computation of the elastoacoustic modes can be very useful for
the cases for which there is a strong effect of the internal acoustic fluid on the structural modes
(e.g., the case of a strong coupling such as a structure coupled with an internal liquid or of a lightweight
structure coupled with and internal gas), the use of the reduced-order model presented in Section 8 is
also very efficient (as explained in Section 8.1.2), because the structural modes are computed taking
into account the quasistatic effect of the internal fluid (the added mass effect). Finally, in order to
simplify the presentation of Section 8—which is devoted to the construction of the reduced-order
model—we have considered the case for which the internal acoustic fluid is a gas and the case for
which the internal acoustic fluid is a liquid in order to illustrate the two important cases of a weak
coupling and of a strong coupling. Clearly, these two cases cover many coupling situations, such as a
lightweight structure coupled with an internal gas for which a strong coupling can appear; in such a
case, the formulation presented in Section 8.1.2 must be used. The construction of the reduced-order
computational model requires appropriate projection bases to be introduced, as explained below.

• Projection basis for the structure.

– If the internal acoustic fluid is a gas, the projection basis can be chosen as the undamped elastic
structural modes of the structure in vacuo for which the constitutive equation corresponds
to elastic materials (see Equation (A5)), and consequently, the stiffness matrix has to be
constructed for ω = 0.

– If the internal acoustic fluid is a liquid (with or without free surface), for the structure,
the projection basis can constructed as for a gas but by taking into account the effects of
liquid’s added mass.



Appl. Sci. 2017, 7, 586 10 of 39

• Projection basis for the internal acoustic fluid.

– We consider the undamped acoustic modes of an internal acoustic cavity with fixed boundary
(and rigid wall) and without wall acoustic impedance. Two cases must be considered: one
for which the internal pressure varies with a variation of the volume of the cavity (a cavity
with a sealed wall called a closed cavity), and the other one for which the internal pressure
does not vary with the variation of the volume of the cavity (a cavity with a non-sealed wall,
called an almost-closed cavity).

8.1. Computation of the Projection Basis for the Structure

8.1.1. Case of a Weak Coupling of the Structure with the Internal Acoustic Fluid

The undamped elastic structural modes of structure ΩS in vacuo are computed with
the constitutive equation corresponding to elastic materials. Setting λS = ω2, we have to solve
the (nS × nS) generalized symmetric real eigenvalue problem,

[KS(0)]U = λS [MS]U . (28)

This generalized eigenvalue problem admits a zero eigenvalue with multiplicity 6 (corresponding
to the six rigid body motions), and admits an increasing sequence of (nS − 6) strictly positive
eigenvalues (corresponding to the elastic structural modes),

0 < λS
1 ≤ . . . ≤ λS

α ≤ . . . . (29)

Let U1, . . . ,Uα, . . . be the eigenvectors (the elastic structural modes) associated with λS
1 , . . . , λS

α , . . ..
Let 0 < NS ≤ nS − 6. We introduce the (nS × NS) real matrix of the NS elastic structural modes Uα

associated with the first NS strictly positive eigenvalues,

[U ] = [U1 . . .Uα . . .UNS ] . (30)

We have the orthogonality properties,

[U ]T [MS] [U ] = [MS] , (31)

[U ]T [KS(0)] [U ] = [KS(0)] , (32)

in which [MS] is a diagonal matrix of positive real numbers and where [KS(0)] is the diagonal matrix
of the eigenvalues such that [KS(0)]αβ = λS

α δαβ (the eigenfrequencies are ωS
α =

√
λS

α).

8.1.2. Case of a Strong Coupling of the Structure with the Internal Acoustic Fluid

For the computation of the appropriate basis of the structure, the practical numerical procedure is
given hereinafter. Equation (28) is replaced by

[KS(0)]U = λS ([MS] + [MA])U , (33)

in which [MA] is the positive symmetric (nS × nS) real matrix (called the added mass matrix),
which corresponds to the quasi-static effect of the internal acoustic fluid on the structure. It should
be noted that the non-zero elements of matrix [MA] are only related to the DOFs of the internal
fluid–structure interface. This generalized eigenvalue problem admits a zero eigenvalue with
multiplicity 6 (corresponding to the six rigid body motions) and admits an increasing sequence
of (nS − 6) strictly positive eigenvalues,

0 < λS
1 ≤ . . . ≤ λS

α ≤ . . . . (34)
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The eigenvectors U1, . . . ,Uα, . . . associated with λS
1 , . . . , λS

α , . . . constitute a basis for the elastic
structure. For 0 < NS ≤ nS − 6, we introduce the (nS × NS) real matrix of the NS basis vectors Uα

associated with the first NS strictly positive eigenvalues,

[U ] = [U1 . . .Uα . . .UNS ] . (35)

We have the orthogonality properties,

[U ]T ([MS] + [MA]) [U ] = [MSA] , (36)

[U ]T [KS(0)] [U ] = [KS(0)] , (37)

in which [MSA] is a diagonal matrix of positive real numbers such that [MSA]αβ = µS
α δαβ, and where

[KS(0)] is the diagonal matrix of the eigenvalues such that [KS(0)]αβ = µS
α λS

α δαβ. It should be noted

that ωS
α =

√
λS

α is not an eigenfrequency of the structure in vacuo, but is an eigenfrequency of
the structure with an added mass effect. For a closed acoustic cavity and for an internal acoustic liquid
with a free surface, the construction of matrix [MA] is given hereinafter.

Construction of added mass matrix [MA] for a closed acoustic cavity. For a closed acoustic cavity,
the deformations of the interface can induce a volume variation of the cavity. The positive symmetric
(nS × nS) real matrix [MA] is written as

[MA] = [C] [S] [C]T , (38)

in which [S] is the positive symmetric (n× n) real matrix which is constructed in solving the following
linear matrix equation

[K] [S] = [In] . (39)

Under the constraint matrix equation

[B]T [S] = [ 0 ] , (40)

in which [In] is the (n× n) identity matrix, [ 0 ] is the (1× n) zero matrix, and where [B] is the (n× 1)
real matrix constructed by

[B] = ρ0 c2
0 [M] [1] , (41)

where [1] is the (n × 1) matrix such that [1]j1 = 1 for all j = 1, . . . , n. It should be noted that
the numerical construction of matrix [MA] can be viewed as the result of a Schur complement
calculation with the constraint defined by Equation (40).

Construction of added mass matrix [MA] for an internal liquid with a free surface. For an internal
liquid with a free surface on which p = 0 (see Equation (10)), the introduced added mass corresponds
to an incompressible fluid. The positive symmetric (nS × nS) real matrix [MA] is written as

[MA] = [C] [S] [C]T , (42)

in which [S] is the positive symmetric (n× n) real matrix which is constructed in solving the following
linear matrix equation

[K] [S] = [In] , (43)

in which [K] is invertible due to the free surface Γ0 in the internal acoustic cavity. It should
be noted that the numerical construction of matrix [MA] can be viewed as the result of a Schur
complement calculation.
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8.2. Computation of the Projection Basis for the Internal Acoustic Fluid

8.2.1. Case of a Gas or a Liquid without Free Surface

The undamped acoustic modes of a closed (sealed wall) or an almost closed (non-sealed wall)
acoustic cavity Ω are computed. Setting λ = ω2, we have the (n× n) generalized symmetric real
eigenvalue problem

[K]P = λ [M]P . (44)

This generalized eigenvalue problem admits a zero eigenvalue with multiplicity 1, denoted as λ0

(corresponding to constant eigenvector denoted as P0) and admits an increasing sequence of (n− 1)
strictly positive eigenvalues (corresponding to the acoustic modes),

0 < λ1 ≤ . . . ≤ λn−1 . (45)

Let P1, . . . ,Pn−1 be the eigenvectors (the acoustic modes) associated with λ1, . . . , λn−1.

• Closed (sealed wall) acoustic cavity. Let be 0 < N ≤ n. We introduce the (n× N) real matrix of
the constant eigenvector P0 and of the (N − 1) acoustic modes associated with the first (N − 1)
strictly positive eigenvalues,

[P ] = [P0 P1 . . . PN−1 ] . (46)

• Almost-closed (non-sealed wall) acoustic cavity. Let be 0 < N ≤ n− 1. We introduce the (n× N) real
matrix of the N acoustic modes associated with the first N strictly positive eigenvalues,

[P ] = [P1 . . . PN ] . (47)

We have the orthogonality properties,

[P ]T [M] [P ] = [M] , (48)

[P ]T [K] [P ] = [K] , (49)

in which [M] is a diagonal matrix of positive real numbers and where [K] is the diagonal matrix of
the eigenvalues such that [K]αβ = λα δαβ (for non-zero eigenvalue, the eigenfrequencies are ωα =

√
λα).

8.2.2. Case of a Liquid with a Free Surface

In such a case, there is a free surface Γ0 in the internal acoustic cavity (see Section 4.3) for
which the boundary condition defined by Equation (10) is added, and consequently the corresponding
matrix [K] is positive definite. The undamped acoustic modes of the acoustic cavity Ω are computed
by solving the (n× n) generalized symmetric real eigenvalue problem

[K]P = λ [M]P , (50)

that admits an increasing sequence of n strictly positive eigenvalues (corresponding to the acoustic
modes), 0 < λ1 ≤ . . . ≤ λn, associated with the eigenvectors P1, . . . ,Pn (the acoustic modes).
Let 0 < N ≤ n. We introduce the (n× N) real matrix of the N acoustic modes associated with the first
N positive eigenvalues,

[P ] = [P1 . . . PN ] . (51)

Matrix [P ] satisfies the orthogonality properties defined by Equations (48) and (49).
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8.3. Construction of the Reduced-Order Computational Model

Using the projection basis [U ] defined by Equation (35) for the structure, and the projection basis
[P ] defined by Equations (46), (47), or (51) for the acoustic fluid, the projection of Equation (23) yields
the reduced-order computational model of order NS � nS and N � n, which is written as

U(ω) = [U ]qS(ω) , (52)

P(ω) = [P ]q(ω) . (53)

The complex vectors qS(ω) and q(ω) of dimension NS and N are the solution of
the following equation

[AFSI(ω)]

[
qS(ω)

q(ω)

]
=

[
f S(ω)

f(ω)

]
, (54)

in which the complex matrix [AFSI(ω)] is defined by[
[AS(ω)]−ω2[ABEM(ω/cE)] [C ]

ω2 [C ]T [A(ω)]+[AZ(ω)]

]
. (55)

In Equation (55), the symmetric (NS × NS) complex matrix [AS(ω)] is defined by

[AS(ω)] = −ω2[MS] + iω [DS(ω)] + [KS(ω)] , (56)

in which [MS], [DS(ω)], and [KS(ω)] are positive-definite symmetric (NS × NS) real matrices such
that

[DS(ω)] = [U ]T [DS(ω)] [U ] , [KS(ω)] = [U ]T [KS(ω)] [U ] . (57)

The symmetric (N × N) complex matrix [A(ω)] is defined by

[A(ω)] = −ω2[M] + iω [D(ω)] + [K] , (58)

in which [M], [D(ω)], and [K] are symmetric (N × N) real matrices. For a closed (sealed wall)
acoustic cavity, matrix [K] is positive and not invertible with rank N − 1, while for an almost-closed
(non-sealed wall) acoustic cavity or for a liquid with a free surface (see Section 4.3), matrix [K] is
positive and invertible. Matrix [M] is positive and invertible. The diagonal (N×N) real matrix [D(ω)]

is written as
[D(ω)] = τ(ω) [K] , (59)

in which τ(ω) is defined by Equation (6). The (NS × N) real matrix [C] is written as

[C] = [U ]T [C] [P ] . (60)

The symmetric (N × N) complex matrix [AZ(ω)] is such that

[AZ(ω)] = [P ]T [AZ(ω)] [P ] , (61)

and finally, the symmetric (NS × NS) complex matrix [ABEM(ω/cE)] is given by

[ABEM(ω/cE)] = [U ]T [ABEM(ω/cE)] [U ] . (62)

The given forces are written as

f S(ω) = [U ]T FS(ω) , f(ω) = [P ]T F(ω) . (63)
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9. Uncertainty Quantification for the Vibroacoustic Computational Model

For the reasons given in Section 1, the nonparametric probabilistic approach of uncertainties
is proposed for performing uncertainty quantification for the vibroacoustic computational model.
It is recalled that such an approach is a way of modeling the uncertainties induced by the modeling
errors that cannot be taken into account with the usual approaches that only consider the uncertainties
on the physical parameters of the computational model. This nonparametric approach allows for
separately but globally describing the model uncertainties that exist for each matrix appearing
in the vibroacoustic computational model. There are only a small number of hyperparameters
in the nonparametric probabilistic approach, these hyperparameters being the parameters of
the probability distributions of the random matrices. This small number of hyperparameters allows for
carrying out the experimental identification of the probabilistic model, which can easily be performed
by solving a statistical inverse problem as explained in the application presented in Section 10. This kind
of approach yields robust predictions with respect to model uncertainties that can effectively be
quantified, for instance, by constructing the confidence region of the quantities of interest.

In this section, we summarize the fundamental concepts and the construction related to
the nonparametric probabilistic approach of both computational model-parameters uncertainties
and modeling uncertainties in computational vibroacoustics, detailed in [75,84]. The method presented
has recently been implemented in MSC-NastranTM [99].

The methodology is applied to the reduced-order vibroacoustic computational model defined by
Equations (52)–(58). In order to simplify the presentation, it is assumed that there are no uncertainties
in the boundary element matrix [ABEM(ω/cE)] or in the wall acoustic impedance matrix [AZ(ω)].
For fixed values of NS and N, the stochastic reduced-order computational vibroacoustic model of order
NS and N is written as

U(ω) = [U ]QS(ω) , P(ω) = [P ]Q(ω) , (64)

in which, for all real ω, the complex random vectors QS(ω) and Q(ω) of dimension NS and N are
the solution of the following random equation

[AFSI(ω)]

[
QS(ω)

Q(ω)

]
=

[
f S(ω)

f(ω)

]
, (65)

and where the complex random matrix [AFSI(ω)] is written as[
[AS(ω)]−ω2[ABEM(ω/cE)] [C ]

ω2 [C ]T [A(ω)]+[AZ(ω)]

]
. (66)

The symmetric (NS × NS) complex random matrix [AS(ω)] is defined by

[AS(ω)] = −ω2[MS] + iω [DS(ω)] + [KS(ω)] , (67)

in which the probability distributions of the positive-definite symmetric (NS × NS) real random
matrices [MS], [DS(ω)], and [KS(ω)] are constructed in Sections 9.2 and 9.3. The symmetric (N × N)

complex random matrix [A(ω)] is written as

[A(ω)] = −ω2 [M] + iω [D(ω)] + [K] , (68)

in which [M], [D(ω)] and [K] are symmetric (N × N) real random matrices. Random matrix [M] is
positive definite. The diagonal (N × N) real random matrix [D(ω)] is written as
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[D(ω)] = τ(ω) [K] , (69)

in which τ(ω) is deterministic and is defined by Equation (6). For a closed (sealed wall) acoustic
cavity, random matrix [K] is positive and not invertible with rank N − 1, while for an almost-closed
(non-sealed wall) acoustic cavity or for a liquid with a free surface (see Section 4.3), random matrix [K]

is positive definite. The probability distributions of random matrices [M], [K], and of the (NS × N)

real random matrix [C] are constructed in Sections 9.4–9.6.

9.1. Preliminary Results for the Stochastic Modeling of the Random Matrices for the Stochastic Reduced-Order
Computational Vibroacoustic Model

In the framework of the nonparametric probabilistic approach of uncertainties, the probability
distributions and the generators of independent realizations of such random matrices are constructed
using random matrix theory [89,94] and the maximum entropy principle [92,100] from Information
Theory [93], in which Shannon introduced the notion of entropy as a measure of the level of
uncertainties for a probability distribution. For instance, if pX(x) is a probability density function on
a real random variable X, the entropy E(pX) of pX is defined by E(pX) = −

∫ +∞
−∞ pX(x) log(pX(x)) dx.

The maximum entropy principle consists of maximizing the entropy (i.e., maximizing the uncertainties),
under the constraints defined by the available information. Consequently, it is important to define
the algebraic properties of the random matrices for which the probability distributions have to be
constructed. Let E be the mathematical expectation. For instance, for real-valued random variable X,
we have E{X} =

∫ +∞
−∞ x pX(x) dx and E(pX) = −E{log(pX(X))}. In order to construct the probability

distributions of the random matrices introduced before, we need to define a basic ensemble of random
matrices.

It is known that a real Gaussian random variable can take negative values. Consequently,
the Gaussian orthogonal ensemble (GOE) of random matrices [94]—which is the generalization
for the matrix case of the Gaussian random variable—cannot be used when a positiveness property
of the random matrix is required [75]. Therefore, new ensembles of random matrices are required to
implement the nonparametric probabilistic approach of uncertainties.

9.1.1. Ensemble SG+
0 of Random Matrices

Let M+
0 be the set of all the positive-definite symmetric (m × m) real matrices. Below,

we summarize the construction [75,89,90] of an ensemble—denoted by SG+
0 —of random matrices with

values in M+
0 . An element of SG+

0 is a positive-definite random matrix denoted by [G0].
Definition of the available information for constructing ensemble SG+

0 . For a random matrix
[G0] belonging to SG+

0 , the available information consists of the mean value which is given and equal
to the identity matrix, and an integrability condition that has to be imposed in order to ensure
the decreasing of the probability density function around the origin,

E{[G0]} = [Im], E{log(det [G0])} = χ , (70)

in which |χ| is finite and where [Im] is the (m×m) identity matrix.
Probability density function of a matrix [G0] ∈ SG+

0 . The probability density function,
[G ] 7→ p[G0]

([G ]), defined on M+
0 , of a random matrix [G0] satisfies the usual normalization condition,
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∫
M+

0

p[G0]
([G ]) d̃G = 1 , (71)

where the volume element d̃G is written as d̃G = 2m(m−1)/4 Π1≤j≤k≤m dGjk. Let δ be the positive real
number defined by

δ =

{
1
m

E{‖ [G0]− [Im] ‖2
F}
}1/2

, (72)

which will allow the dispersion of the probability model of random matrix [G0] to be controlled,
and where ‖M‖F is the Frobenius matrix norm of the matrix [M] such that ‖M‖2

F = tr{[M]T [M]}.
For δ such that 0 < δ < (m + 1)1/2(m + 5)−1/2, the use of the maximum entropy principle under
the constraints defined by Equations (70) and (71) yields for all [G ] in M+

0 ,

p[G0]
([G ]) = c0

(
det [G ]

)c1 exp{−c2 tr[G ]} , (73)

in which c0 is the positive constant of normalization and where c1 = (m + 1)(1− δ2)/(2δ2)

and c2 = (m + 1)/(2δ2).
Generator of independent realizations of a random matrix [G0] in SG+

0 . The generator of
independent realizations (which is required to solve the random equations with the Monte Carlo
method) is constructed using the following algebraic representation of any random matrix [G0] that
belongs to SG+

0 ,
[G0] = [L]T [L] , (74)

in which [L] is an upper triangular (m×m) random matrix such that:

• the family of the random entries {[L]jj′ , j ≤ j′} are independent random variables;

• for j < j′, the real-valued random variable [L]jj′ is written as [L]jj′ = σmUjj′ in which
σm = δ(m + 1)−1/2 and where Ujj′ is a real-valued Gaussian random variable with zero mean
and variance equal to 1;

• for j = j′, the positive-valued random variable [L]jj is written as [L]jj = σm
√

2Vj in which Vj is
a positive-valued Gamma random variable with probability density function Γ(aj, 1) in which

aj =
m+1
2δ2 + 1−j

2 .

9.1.2. Ensemble SG+
ε of Random Matrices

Let 0 ≤ ε � 1 be a positive number (for instance, ε can be chosen as 10−6). We then define
the ensemble SG+

ε of all the random matrices such that

[G] =
1

1 + ε
{[G0] + ε [Im]} , (75)

in which [G0] belongs to SG+
0 .

9.1.3. Cases of Several Random Matrices

It can be proven [75,91] that if there are several random matrices for which there is no available
information concerning their statistical dependencies, then the use of the maximum entropy principle
yields that the best model which maximizes the entropy (the uncertainties) is a stochastic model for
which all these random matrices are independent.

9.2. Stochastic Modeling of Random Matrix [MS]

Since there is no available information concerning the statistical dependency of [MS] with the other
random matrices of the problem, then random matrix [MS] is independent of all the other random
matrices. The deterministic matrix [MS] is positive definite, and can consequently be written as
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[MS] = [LMS ]T [LMS ], in which [LMS ] is an upper triangular real matrix. Using the nonparametric
probabilistic approach of uncertainties, the stochastic model of the positive-definite symmetric random
matrix [MS] is then defined by

[MS] = [LMS ]T [GMS ] [LMS ] , (76)

where [GMS ] is a (NS × NS) random matrix belonging to ensemble SG+
ε defined in Section 9.1.2

and whose probability distribution and generator of independent realizations depend only on
dimension NS and on the dispersion parameter δMS .

9.3. Stochastic Modeling of the Family {[DS(ω)], [KS(ω)]}ω of Random Matrices Indexed by ω

Since there is no available information concerning the statistical dependency of the family
{[DS(ω)], [KS(ω)]}ω of random matrices with the other random matrices of the problem,
then the family {[DS(ω)], [KS(ω)]}ω are independent of all the other random matrices. However, we
will see below that the families of random matrices {[DS(ω)]}ω and {[KS(ω)]}ω will be statistically
dependent. For stochastic modeling of {[DS(ω)]}ω and {[KS(ω)]}ω related to the linear viscoelastic
structure, we propose to use the extension presented in [101], which is based on the Hilbert
transform [102] in the frequency domain to express the causality properties (similarly to the transforms
used in Section A.2 of Appendix A). The nonparametric probabilistic approach of uncertainties then
consists of modeling the positive-definite symmetric (NS × NS) real matrices [DS(ω)] and [KS(ω)] by
random matrices [DS(ω)] and [KS(ω)] such that

E{[DS(ω)]} = [DS(ω)] , E{[KS(ω)]} = [KS(ω)] , (77)

[DS(−ω)] = [D(Sω)] , [KS(−ω)] = [KS(ω)] . (78)

(i) For ω ≥ 0, the construction of the stochastic model of the family {[DS(ω)], [KS(ω)]}ω≥0 of
random matrices is carried out as follows:

• Constructing the family {[DS(ω)]}ω≥0 of random matrices such that

[DS(ω)] = [LDS(ω)]T [GDS ] [LDS(ω)] , (79)

where [LDS(ω)] is such that

[DS(ω)] = [LDS(ω)]T [LDS(ω)] , (80)

and where [GDS ] is a (NS × NS) random matrix belonging to ensemble SG+
ε , defined in

Section 9.1.2. Its probability distribution and its generator of independent realizations
depend only on dimension NS and on the dispersion parameter δDS that allows the level of
uncertainties to be controlled.

• Constructing the family {[N̂R
(ω)]}ω≥0 of random matrices using the equation

[N̂
R
(ω)] =

2
π

p.v
∫ +∞

0

ω′ 2

ω2 −ω′ 2 [DS(ω′)] dω′ , (81)

(in which p.v means the Cauchy principal value that is defined in Equation (83)) or
equivalently, using the two following equations that are useful for computation:
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for ω = 0 , [N̂
R
(0)] = − 2

π

∫ +∞

0
[DS(ω)] dω , (82)

for ω > 0 , [N̂
R
(ω)] =

2
π

p.v
∫ +∞

0

u2

1− u2 ω [DS(ωu)] du ,

=
2
π

lim
η→0
{
∫ 1−η

0
+
∫ +∞

1+η
} . (83)

• Constructing the random matrix [KS(0)] such that

[KS(0)] = [LKS(0)]
T [GKS(0)] [LKS(0)] , (84)

in which the deterministic matrix [LKS(0)] is such that

[KS(0)] = [LKS(0)]
T [LKS(0)] . (85)

The random matrix [GKS(0)] is a (NS × NS) random matrix belonging to ensemble SG+
ε

defined in Section 9.1.2 whose probability distribution and generator of independent
realizations depend only on dimension NS and on the dispersion parameter δKS(0) that
allows the level of uncertainties to be controlled. Note that random matrix [GKS(0)] is
independent of random matrix [GDS ].

• Computing the random matrix [D+] such that

[D+] = −[N̂R
(0)] =

2
π

∫ +∞

0
[DS(ω)] dω . (86)

• Defining the random matrix [KS
0 ] such that

[KS
0 ] = [KS(0)] + [D+] . (87)

• Constructing the random matrix [KS(ω)] such that

[KS(ω)] = [KS
0 ] + [N̂

R
(ω)] . (88)

It must be verified that ω 7→ [KS(ω)] is effectively positive definite. In [101], the following
sufficient condition is proven in order for [KS(ω)] to be a positive-definite random matrix
for all ω ≥ 0: if for all real vector y = (y1, . . . , yNS), the random function ω 7→ yT [DS(ω)] y
is decreasing on [0 ,+∞] , then for all ω ≥ 0, [KS(ω)] is a positive-definite random matrix.

(ii) For ω < 0, the family {[DS(ω)], [KS(ω)]}ω<0 is deduced from the family {[DS(ω)], [KS(ω)]}ω≥0

by using Equation (78).

(iii) A numerical procedure for computing the integrals in Cauchy principal value can be found
in [103].

9.4. Stochastic Modeling of Random Matrix [M]

Since there is no available information concerning the statistical dependency of [M] with the other
random matrices of the problem, then random matrix [M] is independent of all the other random
matrices. The deterministic matrix [M] is positive definite, and can consequently be written as

[M] = [LM]T [LM] , (89)
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in which [LM] is an upper triangular real matrix. Using the nonparametric probabilistic approach
of uncertainties, the stochastic model of the positive-definite symmetric random matrix [M] is then
defined by

[M] = [LM]T [GM] [LM] , (90)

where [GM] is a (N × N) random matrix belonging to ensemble SG+
ε defined in Section 9.1.2,

and whose probability distribution and generator of independent realizations depend only on
dimension N and on the dispersion parameter δM.

9.5. Stochastic Modeling of Random Matrix [K]

Since there is no available information concerning the statistical dependency of [K] with the other
random matrices of the problem, then random matrix [K] is independent of all the other random
matrices. For the stochastic modeling of [K], two cases must be considered.

• Closed (sealed wall) acoustic cavity. In such a case, the symmetric positive matrix [K] is of rank N− 1
and can then be written as

[K] = [LK]
T [LK] , (91)

in which [LK] is a rectangular (N × N − 1) real matrix. Using the nonparametric probabilistic
approach of uncertainties, the stochastic model of the positive symmetric random matrix [K] of
rank N − 1 is then defined [75,91] by

[K] = [LK]
T [GK] [LK] , (92)

where [GK] is a ((N − 1) × (N − 1)) random matrix belonging to ensemble SG+
ε defined in

Section 9.1.2 whose probability distribution and generator of independent realizations depend
only on dimension N − 1 and on the dispersion parameter δK.

• Almost-closed (non-sealed wall) acoustic cavity or internal liquid with a free surface. Matrix [K] is positive
definite and thus invertible. Consequently, it can be written as

[K] = [LK]
T [LK] , (93)

in which [LK] is an upper triangular (N × N) real matrix. Using the nonparametric probabilistic
approach of uncertainties, the stochastic model of this positive symmetric random matrix yields

[K] = [LK]
T [GK] [LK] , (94)

where [GK] is a (N×N) random matrix belonging to ensemble SG+
ε defined in Section 9.1.2 whose

probability distribution and generator of independent realizations depend only on dimension N
and on the dispersion parameter δK.

9.6. Stochastic Modeling of Random Matrix [C]

Since there is no available information concerning the statistical dependency of [C] with the other
random matrices of the problem, then random matrix [C] is independent of all the other random
matrices. We use the construction proposed in [75,91] in the context of the nonparametric probabilistic
approach. Let us assume that NS ≥ N and that the (NS × N) real matrix [C] is such that [C]q = 0
implies q = 0. If N ≥ NS, the following construction must be applied to [C]T instead of [C]. Using
the polar decomposition of rectangular matrix [C], one can write

[C] = [R] [T] , (95)
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in which the (NS × N) real matrix [R] is such that [R]T [R] = [ IN ] and where the symmetric square
matrix [T] is a positive-definite symmetric (N × N) real matrix. Using the Cholesky decomposition,
we then have

[T] = [LT ]
T [LT ] , (96)

in which [LT ] is an upper triangular matrix. The (NS × N) real random matrix [C] is then written as

[C] = [R] [T] , [T] = [LT ]
T [GC] [LT ] , (97)

where [GC] is a (N × N) random matrix belonging to ensemble SG+
ε defined in Section 9.1.2

and whose probability distribution and generator of independent realizations depend only on NS, N,
and the dispersion parameter δC.

9.7. Hyperparameter of the Stochastic Reduced-Order Model (SROM) and Stochastic Solver

The dispersion parameter δ—also called hyperparameter—of each random matrix [G] allows
its level of dispersion (statistical fluctuations) to be controlled. The hyperparameters (dispersion
parameters) of random matrices [GMS ], [GDS ], [GKS(0)], [GM], [GK], and [GC] are represented by a
vector-valued hyperparameter δ such that

δ = (δMS , δDS , δKS(0) , δM , δK , δC) , (98)

which belongs to an admissible set Cδ and which allows the level of uncertainties to be controlled
for each matrix introduced in the stochastic reduced-order model. Consequently, if no experimental
data are available, then δ has to be used to analyze the robustness of the solution of the vibroacoustic
problem with respect to uncertainties by varying δ in Cδ.

For a given value of hyperparameter δ in Cδ, there are two major classes of methods for solving
the stochastic reduced-order model (SROM) defined by Equations (64)–(69). The first one belongs to
the category of the spectral stochastic methods (see [76,77,83]). The second one belongs to the class of
stochastic sampling techniques for which the Monte Carlo method is the most popular. Such a method
is often called non-intrusive because it offers the advantage of only requiring the availability of
classical deterministic codes. It should be noted that the Monte Carlo numerical simulation method
(e.g., [104,105]) is a very effective and efficient one because it has the four following advantages:

• it is a non-intrusive method,
• it is adapted to massively parallel computation without any software developments,
• it is such that its convergence can be controlled during the computation,
• the speed of convergence is independent of the dimension.

If experimental data are available, there are several possible methodologies (one is the maximum
likelihood method [87]) to identify the optimal values of hyperparameter δ (these aspects are not given
here, and we refer the reader to [75,84]). Several works have been published concerning experimental
validation of the nonparametric probabilistic approach of both the computational model-parameter
uncertainties and the model uncertainties induced by modeling errors (e.g., [96,106–111]).

10. Experimental Validation with a Complex Computational Vibroacoustic Model
of an Automobile

We present an experimental validation of the nonparametric probabilistic approach of
uncertainties for a complex computational vibroacoustic model of an automobile [75,110].

Description of the vibroacoustic system. The vibroacoustic system is an automobile of a given
type with several optional extra, for which a single mean computational model is developed.
The experimental variabilities are due to the manufacturing process and to the optional extra.
The objective is to predict the booming noise for which the engine rotation is [1500, 4800] rpm (rotations
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per minute), corresponding to the frequency band [50, 160] Hz, for which the input forces are applied
to the engine supports, and for which the output observation is the acoustic pressure at a given point
localized in the acoustic cavity.

Nominal computational model and stochastic reduced-order model. The nominal computational
model is a finite element model of the structure and of the acoustic cavity shown in Figure 2.
The structure is modeled with 978,733 structural DOFs of displacement, and the acoustic cavity
is modeled with 8139 acoustical DOFs of pressure. The structural reduced-order basis is such that
N = 1722 and the acoustical reduced-order basis is such that N f = 57. The hyperparameters of
the stochastic reduced-order model are δ = (δM, δD, δK) for the structure, δ f = δM f = δD f = δK f for
the acoustic cavity, and δC for the vibroacoustic coupling.

Figure 2. Finite element model of the structure (left figure). Finite element mesh of the vibroacoustic
computational model (right figure). Figure from [110].

Experimental identification of hyperparameter δ f . The acoustical input is an acoustic source
placed inside the acoustic cavity. The acoustical measurements have been performed for ν = 30 cars of
the same type with different configurations corresponding to different seat positions, different internal
temperatures, and different numbers of passengers. The acoustical pressures have been measured
with νm = 32 microphones distributed inside the acoustic cavity. For the statistical inverse problem
that is required for performing the experimental identification of hyperparameter δ f , the observation
is the real-valued random variable U defined by

U=
∫
B

dB(ω) dω , dB(ω) = 10 log10

{
1

p2
ref

1
νm

νm

∑
j=1
|Pkj

(ω)|2
}

, (99)

in which Pk1(ω), . . . , Pkνm
(ω) are the components of P(ω), which correspond to the observed DOFs,

and which are computed with the SROM defined by Equations (64)–(69). Let uexp,1, . . . , uexp,ν be
the corresponding measurements for the ν = 30 cars. The identification of hyperparameter δ f is
performed by using the maximum likelihood method [87],

δopt
f = arg max

δ f
L(δ f ) , L(δ f ) =

ν

∑
`=1

log10(pU(uexp,` ; δ f )) . (100)

For ` = 1, . . . , ν, the value pU(uexp,` ; δ f ) of the probability density function (pdf) of the random
variable U is estimated with the kernel density estimation method by using the SROM for which the
stochastic solver has been chosen as the Monte Carlo method with νs = 2,000 realizations.

Experimental identification of hyperparameter δ = (δMs , δDs , δKs). The structural inputs are
forces applied to the engine supports. The measurements of the accelerations in the structure
have been performed for ν = 20 cars of the same type. The random vector-valued observation
is U(ω) = (U1(ω), . . . , U6(ω)) such that

Uj(ω) = log10(ω
2 |Ykj

(ω)|) , j = 1, . . . , 6 , (101)
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in which Yk1(ω), . . . , Yk6(ω) are the six components of Y(ω) which correspond to the observed
structural DOFs, and which are computed with the SROM defined by Equations (64)–(69).
Let uexp,1, . . . , uexp,ν be the corresponding measurements for the ν cars. The identification of
the hyperparameter δ = (δMs , δDs , δKs) has been performed by using the least-square method.
The Monte Carlo method has been used as the stochastic solver with νs = 1000 realizations.

Experimental validation. The hyperparameters are fixed to their identified values, δ f = δopt
f

and δ = δopt, while δC is fixed to a given value. The SROM defined by Equations (64)–(69) is solved
by using the Monte Carlo method with νs = 600 realizations. The prediction—with the identified
SROM—of the confidence region of the internal noise at a given point of observation due to the engine
excitation is displayed in Figure 3. It can be seen that this prediction is good for representing the great
variabilities of the measurements, while the response given by the ROM (the nominal computational
model) gives only a rough idea of the real system.
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Figure 3. The horizontal axis is the engine rotation expressed in rotations per minute corresponding
to the frequency band [50, 160] Hz. The vertical axis is the level of the acoustic pressure in dB(A).
Experimental measurements (20 blue thin lines). Prediction with the ROM (black thick line). Prediction
with the identified SROM of the confidence region corresponding to the probability level 0.95 (region in
yellow color of in gray). Figure from [110].

11. Conclusions

We have presented a computational methodology that is adapted to the vibroacoustics predictions
of complex industrial systems in the low- and medium-frequency bands. The vibroacoustic system is
made up of a dissipative structure (possibly with a viscoelastic behavior), coupled with a bounded
acoustic cavity filled with a dissipative acoustic fluid, and coupled with an acoustic fluid occupying
an unbounded external domain. We have presented a reduced-order computational model that is
efficient for an acoustic cavity which is filled with a liquid or a gas. For the medium-frequency
band, the uncertainty quantification is particularly important. For complex industrial vibroacoustic
systems, the main source of uncertainties is due to modeling errors. We have summarized
the nonparametric probabilistic approach of model uncertainties, and we have detailed the construction
of the random matrices for the case of a viscoelastic structure in order to respect the causality of
the physical system. Finally, the application to a real automobile with experimental comparisons was
presented.
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BEM Boundary Element Method
DOF Degree of Freedom
FEM Finite Element Method
FRF Frequency Response Function
FSI Fluid–Structure Interaction
LF Low Frequency
MF Medium Frequency
ROM Reduced-Order Model
SROM Stochastic Reduced-Order Model
UQ Uncertainty Quantification
aijkh elastic coefficients of the structure
bijkh damping coefficients of the structure
c0 speed of sound in the internal acoustic fluid
cE speed of sound in the external acoustic fluid
f vector of the generalized forces for the internal acoustic fluid
f S vector of the generalized forces for the structure
g mechanical body force field in the structure
i imaginary complex number i
k wave number in the external acoustic fluid
n number of internal acoustic DOF
nS number of structural DOF
nj component of vector n
n outward unit normal to ∂Ω
nS

j component of vector nS

nS outward unit normal to ∂ΩS
p internal acoustic pressure field
pE external acoustic pressure field
pE|ΓE

value of the external acoustic pressure field on ΓE

pgiven given external acoustic pressure field
pgiven|ΓE

value of the given external acoustic pressure field on ΓE

q vector of the generalized coordinates for the internal acoustic fluid
qS vector of the generalized coordinates for the structure

sdamp
ij component of the damping stress tensor in the structure

t time
u structural displacement field
v internal acoustic velocity field
xj coordinate of point x
x generic point of R3

[A] reduced dynamical matrix for the internal acoustic fluid
[A] random reduced dynamical matrix for the internal acoustic fluid
[A] dynamical matrix for the internal acoustic fluid
[ABEM] reduced matrix of the impedance boundary operator for the external acoustic fluid
[ABEM] matrix of the impedance boundary operator for the external acoustic fluid
[AFSI] reduced dynamical matrix for the fluid-structure coupled system
[AFSI] random reduced dynamical matrix for the fluid-structure coupled system
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[AFSI] dynamical matrix for the fluid-structure coupled system
[AS] reduced dynamical matrix for the structure
[AS] random reduced dynamical matrix for the structure
[AS] dynamical matrix for the structure
[AZ] reduced dynamical matrix associated with the wall acoustic impedance
[AZ] dynamical matrix associated with the wall acoustic impedance
[C] reduced coupling matrix between the internal acoustic fluid and the structure
[C] random reduced coupling matrix between the internal acoustic fluid and the structure
[C] coupling matrix between the internal acoustic fluid and the structure
[D] reduced damping matrix for the internal acoustic fluid
[D] random reduced damping matrix for the internal acoustic fluid
[D] damping matrix for the internal acoustic fluid
[DS] reduced damping matrix for the structure
[DS] random reduced damping matrix for the structure
[DS] damping matrix for the structure
DOF degrees of freedom
F vector of discretized acoustic forces
FS vector of discretized structural forces
Gijkh(0) initial elasticity tensor for viscoelastic material
Gijkh(t) relaxation functions for viscoelastic material
G mechanical surface force field on ∂ΩS
[G] random matrix
[G0] random matrix
[K] reduced “stiffness” matrix for the internal acoustic fluid
[K] random reduced “stiffness” matrix for the internal acoustic fluid
[K] “stiffness” matrix for the internal acoustic fluid
[KS] reduced stiffness matrix for the structure
[KS] random reduced stiffness matrix for the structure
[KS] stiffness matrix for the structure
[M] reduced “mass” matrix for the internal acoustic fluid
[M] random reduced “mass” matrix for the internal acoustic fluid
[M] “mass” matrix for the internal acoustic fluid
[MS] reduced mass matrix for the structure
[MS] random reduced mass matrix for the structure
[MS] mass matrix for the structure
Pα internal acoustic mode
[P ] matrix of internal acoustic modes
Q internal acoustic source density
QE external acoustic source density
Q random vector of the generalized coordinates for the internal acoustic fluid
QS random vector of the generalized coordinates for the structure
P random vector of internal acoustic pressure DOF
P vector of internal acoustic pressure DOF
U random vector of structural displacement DOF
U vector of structural displacement DOF
Uα elastic structural mode α

[U ] matrix of elastic structural modes
Z wall acoustic impedance
ZΓE impedance boundary operator for external acoustic fluid
δ dispersion parameter
εkh component of the strain tensor in the structure
ω circular frequency in rad/s
ρ0 mass density of the internal acoustic fluid
ρE mass density of the external acoustic fluid
ρS mass density of the structure
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σ stress tensor in the structure
σij component of the stress tensor in the structure
σelas

ij component of the elastic stress tensor in the structure
τ damping coefficient for the internal acoustic fluid
∂Ω boundary of Ω
∂ΩE boundary of ΩE equal to ΓE
∂ΩS boundary of ΩS
Γ coupling interface between the structure and the internal acoustic fluid
ΓE coupling interface between the structure and the external acoustic fluid
ΓZ coupling interface between the structure and the internal acoustic fluid with acoustic properties
Ω internal acoustic fluid domain
ΩE external acoustic domain
ΩS structural domain

Appendix A. Frequency-Dependent Constitutive Equation for the Dissipative Structure

In this Appendix, we present an appropriate modeling of the frequency-dependent constitutive
equation for a dissipative structure in distinguishing the LF range and the MF range [70]. Two cases of
frequency-dependent linear constitutive equations are considered in order to describe all the various
types of mechanical behaviors encountered in a complex structure. The first one is relevant to
the framework of the general linear viscoelasticity theory for describing the constitutive equation
of viscoelastic materials, and therefore the frequency-dependent coefficients are constructed in this
framework that ensures the causality physical property. This constitutive equation will be referred to
as the linear viscoelastic constitutive equation. The second one allows different types of mechanical
damping to be modeled using the same type of constitutive equation. The frequency-dependent
coefficients will not be constructed in the framework of the linear viscoelasticity theory, but will be
constructed in such a way that causality physical property will still be satisfied. This constitutive
equation will be referred to as the linear dissipative constitutive equation for modeling damping effects.

Appendix A.1. Linear Viscoelastic Constitutive Equation in the Frequency Domain

The general theory of linear viscoelasticity is used (see [112–114]). With respect to the presentation
detailed in [41], we present here a summary of those results with additional developments. In this
section, x is fixed in ΩS and will be omitted in all the quantities. The Latin indices, such as i, j,
k, and h, take the values 1, 2, and 3. The convention for summations over repeated Latin indices
is used. The general constitutive equation in the frequency range is written as

σij(ω) = (aijkh(ω) + iω bijkh(ω)) εkh(ω) . (A1)

It can be proven that
lim

|ω|→+∞
aijkh(ω) = aijkh(+∞) , (A2)

lim
|ω|→+∞

ω bijkh(ω) = 0 , (A3)

in which aijkh(+∞) is called the initial elasticity tensor. It can be deduced that

σij(∞) = aijkh(+∞) εkh(∞) . (A4)

Equation (A4) shows that viscoelastic materials behave elastically at high frequencies with
elasticity coefficients defined by the initial elasticity tensor aijkh(+∞) that differs from the equilibrium
modulus tensor aijkh(0) that is such that
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σijkh(0) = aijkh(0) εijkh(0) , (A5)

in which σijkh(0) = {σijkh(ω)}ω=0 and εijkh(0) = {εijkh(ω)}ω=0. The reader should be aware of
the fact that the constitutive equation of an elastic material in a static deformation process is defined
by equilibrium modulus tensor aijkh(0), and not by the initial elasticity tensor aijkh(+∞). Referring
to [112,115], it has been proven that aijkh(0) − aijkh(+∞) is a negative-definite tensor. The tensors
aijkh(ω) and bijkh(ω) are even functions:

aijkh(−ω) = aijkh(ω) , bijkh(−ω) = bijkh(ω) . (A6)

Due to the symmetry properties of tensors Gijkh(t), it can directly be deduced that tensors aijkh(ω)

and bijkh(ω) must satisfy the symmetry properties

aijkh(ω) = ajikh(ω) = aijhk(ω) = akhij(ω) , (A7)

bijkh(ω) = bjikh(ω) = bijhk(ω) = bkhij(ω) . (A8)

In addition, the following positive-definiteness properties can be shown. For all second-order real
symmetric tensors Xij,

aijkh(ω) Xkh Xij ≥ ca(ω) Xij Xij , (A9)

bijkh(ω) Xkh Xij ≥ cb(ω) Xij Xij , (A10)

in which the positive constants ca(ω) and cb(ω) are such that ca(ω) ≥ c0 > 0 and cb(ω) ≥ c0 > 0,
where c0 is a positive real constant independent of ω.

Appendix A.2. Compatibility Equation between aijkh and bijkh

We recall that aijkh(0) is the equilibrium modulus tensor that is the elastic tensor and which is
denoted by aelas

ijkh,

aelas
ijkh = aijkh(0) . (A11)

Due to the causality property in the time domain and using the Hilbert transform for causal
function [102,116–119]), it can be proven that there is a compatibility equation between aijkh and bijkh,
also called the Kramers and Kronig relation (see [120,121]), which is written

aijkh(ω) = aelas
ijkh +

ω

π
p.v

∫ +∞

−∞

bijkh(ω
′)

ω−ω′
dω′ , (A12)

in which p.v denotes the Cauchy principal value. If y 7→ h(y) is a locally integrable function on the real
line except in a singular point y = 0, then the p.v is defined as

p.v
∫ +∞

−∞
h(y) dy = lim

`→+∞,η→0+
{
∫ −η

−`
h(y) dy +

∫ `

η
h(y) dy} . (A13)

Appendix A.3. Construction of the Linear Viscoelastic Constitutive Equation in the Frequency Domain

Two cases are considered.

• (i) Particular case. A family of linear viscoelastic constitutive equations can be constructed
in the time domain using linear differential equations in σ(t) and ε(t). The associated
frequency-dependent coefficients aijkh(ω) and bijkh(ω) automatically verified Equation (A12).
In this framework, some examples for aijkh(ω) and bijkh(ω) can be found in the literature
(e.g., [41,98,112,113,122–127]).
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• (ii) General case. In the general case for which aijkh(ω) and bijkh(ω) are not derived from such
an algebraic representation but correspond to a general integral operator in the time domain
(e.g., constructed using experimental curves), a rigorous method of construction is proposed
below to satisfy the causality principle.

For the general case, it is assumed that a part Ωvisco of the structure ΩS is made of material
modeled in the framework of the linear viscoelasticity theory (see after), while the complementary part
Ωdamp will be modeled with a linear dissipative constitutive equation for modeling damping effects
(detailed in Section A.4). We then have ΩS = Ωvisco ∪Ωdamp.

For the practical construction of the constitutive equation related to Ωvisco, it is assumed that
functions ω 7→ bijkh(x, ω) for ω ≥ 0 and equilibrium modulus tensor aelas

ijkh(x) (which is the symmetric
and positive-definite elastic tensor) are given. For real ω and for x belonging to Ωvisco, functions
ω 7→ aijkh(x, ω) can then be constructed.

• The given functions ω 7→ bijkh(x, ω) cannot be arbitrarily chosen, but must satisfy some
hypotheses to ensure the coherence of the viscoelastic model:

(1) For all fixed x and ω, the tensor {bijkh(x, ω)}ijkh must be symmetric and positive definite.
(2) For ω → +∞, Equation (A3) must hold, which means that functions bijkh(x, ω) decrease at
infinity at least in ω−α with α > 1.
(3) Functions ω 7→ bijkh(x, ω) that satisfy (1) and (2) are then extended to ω < 0 using the even
property defined by Equation (A6).

• For all fixed x and ω, the tensor {aijkh(x, ω)}ijkh must be symmetric and positive definite.
For all ω ≥ 0, functions ω 7→ aijkh(x, ω) are then constructed using the following equation
(see Equation (A12)),

aijkh(x, ω) = aelas
ijkh(x) +

ω

π
p.v

∫ +∞

−∞

bijkh(x, ω′)

ω−ω′
dω′ , (A14)

and are extended to ω < 0 using the even property.
• As seen above, for all fixed x and ω, symmetric tensor {aijkh(x, ω)}ijkh must be positive definite.

This property must then be checked at the end of the construction, and if it is not satisfied,
functions ω 7→ bijkh(x, ω) must be modified. In [101], it has been shown that the following
sufficient condition allows this property to be satisfied: if functions ω 7→ bijkh(x, ω) are decreasing
functions for ω ≥ 0, then the property is verified.

Appendix A.4. Linear Dissipative Constitutive Equation for Modeling Damping Effects

This section deals with the linear dissipative constitutive equation for modeling damping
effects in the part Ωdamp of the structure ΩS. Several models of dissipative constitutive equation
(with frequency-dependent coefficients) corresponding to an elastic material are considered for which
the mechanical damping is arbitrarily introduced in order to represent damping effects. The first
model presented is the constitutive equation for an elastic material with a linear viscous damping
term. The second one is a constitutive equation for an elastic material with a parameterized family of
damping models depending on frequency. The construction proposed for these two models is such
that the causality principle will be verified, and consequently, the fourth-order tensor aijkh(ω) will
depend on ω although the elastic tensor aelas

ijkh of the elastic material is independent of ω.

(i) Constitutive equation for an elastic material with a linear viscous damping term. In this case,
the constitutive equation is given by Equation (A1), in which

aijkh(x, ω) = aelas
ijkh(x), bijkh(x, ω) = bijkh(x) , (A15)
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in which the tensors aelas
ijkh(x) and bijkh(x) are symmetric positive definite and independent of ω.

(ii) Constitutive equation for an elastic material with a parameterized family of damping models depending
on frequency. The constitutive equation is then defined as an elastic material with a parameterized
family of damping models depending on frequency and is written as

bijkh(x, ω) = χ(ω) aelas
ijkh(x) , (A16)

in which the tensor aelas
ijkh(x) is symmetric positive definite and where χ(ω) is a positive-valued real

function in ω which must satisfy the following properties:

(1) For ω → +∞, function χ(ω) must decrease at infinity at least in ω−α in which α > 1.
(2) Function χ is even, χ(−ω) = χ(ω).

From Equation (A14), it can be deduced that for all fixed x and for all ω ≥ 0, the symmetric
positive definite tensor must be constructed by the following equation:

aijkh(x, ω) =

{
1 +

ω

π
p.v

∫ +∞

−∞

χ(ω′)

ω−ω′
dω′

}
aelas

ijkh(x) , (A17)

in order to ensure the causality property for the constitutive equation. For ω < 0, the values
of aijkh(x, ω) are obtained using the even property in ω of functions aijkh(x, ω). Finally, function
χ(ω) must be such that for all fixed x and ω, symmetric tensor {aijkh(x, ω)}ijkh is positive definite.
As previously explained, this property will be satisfied if function χ(ω) is a decreasing function for
ω ≥ 0.

Appendix B. Boundary Element Method for the External Acoustic Fluid

The general references related to the boundary element methods and to their discretization can be
found in [27–48,98]. The inviscid acoustic fluid occupies the infinite three-dimensional domain ΩE
whose boundary ∂ΩE is ΓE (see Figure A1).
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Figure A1. Geometry of the external infinite domain.

This section is devoted to the construction of the frequency-dependent impedance boundary
operator ZΓE(ω) such that pE|ΓE(ω) = ZΓE(ω) v(ω), which relates the pressure field pE|ΓE(ω) exerted
by the external fluid on ΓE to the normal velocity field v(ω) induced by the deformation of the boundary
ΓE. Furthermore, most of those formulations yield non-symmetric fully populated complex matrices.
The computational cost can then be reduced using the fast multipole methods [35,40,44–46]. A major
drawback of the classical boundary integral formulations for the exterior Neumann problem related to
the Helmholtz equation is related to the uniqueness problem, although the boundary value problem
has a unique solution for all real frequencies [97,98]. Precisely, there is not a unique solution of
the physical problem for a sequence of real frequencies called spurious or irregular frequencies,
also called Jones eigenfrequencies [31,128–131], and various methods are proposed in the literature to
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overcome this mathematical difficulty arising in the boundary element method [128,132–136]. In this
appendix, we present a boundary element method that was initially developed in [137] and detailed
in [41]. The formulation of this method is symmetric, and is valid for all real values of the frequency
(i.e., without spurious frequencies).

Appendix B.1. Exterior Neumann Boundary Value Problem Related to the Helmholtz Equation

The geometry is defined in Figure A1. The equations of the exterior Neumann problem related to
the Helmholtz equation (see Equations (1)–(3)) are rewritten in terms of a velocity potential ψ(x, ω).
Let v(x, ω) = ∇ψ(x, ω) be the velocity field of the fluid. The acoustic pressure p(x, ω) is related to
ψ(x, ω) by the following equation:

p(x, ω) = −iω ρE ψ(x, ω) in ΩE , (A18)

where ρE is the constant mass density of the external fluid at equilibrium. Let cE be the constant speed
of sound in the external fluid at equilibrium, and let k = ω/cE be the wave number at frequency ω.
The exterior Neumann problem is written as

∇2ψ(x, ω) + k2 ψ(x, ω) = 0 in ΩE , (A19)

∂ψ(y, ω)

∂ny
= v(y) on ΓE , (A20)

|ψ | = O(
1
R
) ,

∣∣∣∣ ∂ψ

∂R
+ i k ψ

∣∣∣∣ = O(
1

R2 ) , (A21)

with R = ‖x‖ → +∞, where ∂/∂R is the derivative in the radial direction and where v(y) is the given
normal velocity field on ΓE. Equation (A19) is the Helmholtz equation in the external acoustic fluid,
Equation (A20) is the Neumann condition on external fluid–structure interface ΓE, and Equation (A21)
corresponds to the outward Sommerfeld radiation condition at infinity. For arbitrary real ω 6= 0, the
boundary value problem defined by Equations (A19)–(A21) admits a unique solution denoted ψsol that
depends linearly on the normal velocity v [97,98].

Appendix B.2. Introduction of the Acoustic Impedance Boundary Operator and Radiation Impedance Operator

Let ψsol
ΓE

be the value of ψsol on ΓE. For all x in ΩE, let R(x, ω/cE) be the complex linear operator
such that

ψsol(x, ω) = R(x, ω/cE) v , (A22)

and let BΓE(ω/cE) be the complex linear boundary operator such that

ψsol
ΓE

= BΓE(ω/cE) v . (A23)

Using Equation (A18), for all x in ΩE, the pressure field p(x, ω) is written as

p(x, ω) = Zrad(x, ω) v , (A24)

in which Zrad(x, ω) is called the radiation impedance operator that can then be written as

Zrad(x, ω) = −i ω ρE R(x, ω/cE) . (A25)

Similarly, the pressure field p|ΓE
(ω) on ΓE is written as

p|ΓE
(ω) = ZΓE(ω) v , (A26)
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in which ZΓE(ω) is called the acoustic impedance boundary operator, which can then be written as

ZΓE(ω) = −i ω ρE BΓE(ω/cE) . (A27)

Appendix B.3. Algebraic Properties of the Acoustic Impedance Boundary Operator

Let tBΓE(ω/cE) be the transpose of complex operator BΓE(ω/cE). We have the following
symmetry property:

tBΓE(ω/cE) = BΓE(ω/cE) , (A28)

and from Equation (A27), it can be deduced that

tZΓE(ω) = ZΓE(ω) . (A29)

It should be noted that these complex operators are symmetric but not Hermitian. Operator
iωZΓE(ω) can be written as

iωZΓE(ω) = −ω2 MΓE(ω/cE) + iωDΓE(ω/cE), (A30)

in which MΓE(ω/cE) and DΓE(ω/cE) are two real linear operators such that

ω MΓE(ω/cE) = =m ZΓE(ω) , (A31)

DΓE(ω/cE) = <e ZΓE(ω) . (A32)

The real part DΓE(ω/cE) of the acoustic impedance boundary operator is symmetric and positive,
due to the Sommerfeld radiation condition at infinity.

Appendix B.4. Construction of the Acoustic Impedance Boundary Operator for All Real Values of the Frequency

This construction is based on the use of two boundary integral equations on ΓE. The first one is
based on the use of a single- and double-layer potentials on ΓE. The second is obtained by the taking
the normal derivative on ΓE of the first one. We then obtained the following system relating ψsol

ΓE
to v,

which then allows BΓE(ω/cE) to be defined using Equation (A23),[
0

I ψsol
ΓE

]
=

[
−ST(ω/cE)

1
2

tI− tSD(ω/cE)
1
2 I− SD(ω/cE) SS(ω/cE)

][
ψΓE

v

]
. (A33)

The linear boundary integral operators SS(ω/cE), SD(ω/cE), and ST(ω/cE) are defined by

<SS(ω/cE) v , δv>=
∫

ΓE

∫
ΓE

G(x− y) v(y) δv(x) dsy dsx , (A34)

<SD(ω/cE)ψΓE
, δv>=

∫
ΓE

∫
ΓE

∂G(x−y)
∂ny

ψΓE
(y) δv(x) dsy dsx , (A35)

<ST(ω/cE)ψΓE
, δψΓE

>= −k2
∫

ΓE

∫
ΓE

G(x−y)nx · ny ψΓE
(y) δψΓE

(x) dsy dsx

+
∫

ΓE

∫
ΓE

G(x−y) {ny×∇yψΓE
(y)} · {nx×∇xδψΓE

(x)} dsy dsx ,
(A36)

where G(x−y) is the Green function, which is written as
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G(x− y) = g(‖x− y‖) = −(4π)−1 e−i k r/r , (A37)

in which r = ‖x− y‖. In Equations (A34)–(A36), the brackets correspond to bilinear forms which allow
the operators to be defined, and the functions δv and δψΓE

are associated with functions v and ψΓE
.

Considering Equation (A33), let H(ω/cE) be the operator defined by

H(ω/cE) =

[
−ST(ω/cE)

1
2

tI− tSD(ω/cE)
1
2 I− SD(ω/cE) SS(ω/cE)

]
. (A38)

Operator H(ω/cE) has the symmetric property, tH(ω/cE) = H(ω/cE). In Equation (A33), the first
equation can be rewritten as ST(ω/cE)ψΓE

= ( 1
2

tI− tSD(ω/cE)) v. This classical boundary equation
that allows the velocity potential to be calculated for a given normal velocity has a unique solution for
all real ω, which does not belong to the set of frequencies for which ST(ω/cE) has a null space that
is not reduced to {0}. This set of frequencies is called the set of spurious frequencies. Consequently,
for a frequency that is a spurious frequency, ψΓE

is the sum of solution ψsol
ΓE

with an arbitrary element

of the null space of ST(ω/cE). The method then consists of using the second equation that is written
as ψsol

ΓE
= ( 1

2 I− SD(ω/cE))ψΓE
+ SS(ω/cE) v, and which yields solution ψsol

ΓE
for all real ω. Concerning

the practical construction of ψsol
ΓE

, for all real values of ω, using Equation (A33), a particular elimination
procedure is described in Section B.6.

Appendix B.5. Construction of the Radiation Impedance Operator

The solution {ψsol(x, ω), x ∈ ΩE} of Equations (A19)–(A21) can be calculated using the following
integral equation:

ψsol(x, ω) =
∫

ΓE

{G(x− y) v(y)− ψsol
ΓE
(y, ω)

∂G(x− y)
∂ny

} dsy . (A39)

For all x fixed in ΩE, the linear integral operators RS(x, ω/cE) and RD(x, ω/cE) are defined by

RS(x, ω/cE) v =
∫

ΓE

G(x− y) v(y) dsy , (A40)

RD(x, ω/cE)ψΓE
=
∫

ΓE

ψΓE
(y)

∂G(x− y)
∂ny

dsy . (A41)

Using Equation (A23), Equation (A39) can be rewritten as

ψsol(x, ω) = {RS(x, ω/cE)−RD(x, ω/cE)BΓE(ω/cE)} v . (A42)

From Equation (A22), it can be deduced that, for all x in ΩE,

R(x, ω/cE) = RS(x, ω/cE)−RD(x, ω/cE)BΓE(ω/cE) , (A43)

and the radiation impedance operator Zrad(x, ω) is derived from Equations (A25) and (A43),

Zrad(x, ω) = −i ω ρE {RS(x, ω/cE)−RD(x, ω/cE)BΓE(ω/cE)} . (A44)

Appendix B.6. Symmetric Boundary Element Method without Spurious Frequencies

The finite element method is used for discretizing the boundary integral operators SS(ω/cE),
SD(ω/cE), and ST(ω/cE) (called a boundary element method). Let us consider a finite element mesh
of boundary ΓE. Let V = (V1, . . . , VnE) and ΨΓE

= (ΨΓE
,1, . . . , ΨΓE

,nE) be the complex vectors of the nE
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degrees-of-freedom consisting of the values of v and ψΓE
at the nodes of the mesh. Let [SS(ω/cE)],

[SD(ω/cE)], and [ST(ω/cE)] be the full complex matrices corresponding to the discretization of
the operators defined in Equations (A34)–(A36). The complex matrices [SS(ω/cE)] and [ST(ω/cE)] are
symmetric. The finite element discretization of Equation (A33) yields[

0
[ E ]Ψsol

ΓE

]
= [H(ω/cE)]

[
ΨΓE

V

]
, (A45)

in which the symmetric complex matrix [H(ω/cE)] is written as[
−[ST(ω/cE)]

1
2 [ E ]T − [SD(ω/cE)]T

1
2 [ E ]− [SD(ω/cE)] [SS(ω/cE)]

]
. (A46)

In Equation (A45), Ψsol
ΓE

is the complex vector of the nodal unknowns corresponding to the finite

element discretization of ψsol
ΓE

. The matrix [ E ] is the non-diagonal (nE × nE) real matrix corresponding
to the discretization of identity operator I. The elimination of ΨΓE

in Equation (A45) yields a linear

equation between [ E ]Ψsol
ΓE

and V, which defines the symmetric (nE × nE) complex matrix [BΓE(ω/cE)],

which corresponds to the finite element discretization of boundary integral operator BΓE(ω/cE),

[ E ]Ψsol
ΓE

= [BΓE(ω/cE)]V . (A47)

Vector ΨΓE
is eliminated using a Gauss elimination with a partial row pivoting algorithm [138]. If ω

does not belong to the set of the spurious frequencies, then [ST(ω/cE)] is invertible and the elimination
in Equation (A45) is performed up to row number nE. If ω coincides with a spurious frequency
ωα (i.e., ω = ωα), then [ST(ωα/cE)] is not invertible, and its null space is a real subspace of CnE of
dimension nα < nE. In this case, the elimination in Equation (A45) is performed up to row number
nE − nα. In practice, nα is unknown. During the Gauss elimination with a partial row pivoting
algorithm, the elimination process is stopped when a “zero” pivot is encountered. It should be noted
that when the elimination is stopped, the equations corresponding to row numbers nE − nα + 1, . . . , nE
are automatically satisfied. From Equation (A27), we deduce that the (nE × nE) complex symmetric
matrix [ZΓE(ω)] of operator ZΓE(ω) is such that

[ZΓE(ω)] = −i ω ρE [BΓE(ω/cE)] . (A48)

The finite element discretization of the acoustic radiation impedance operator Zrad(x, ω), defined
by Equation (A45), is written as

[Zrad(x, ω)] = −i ω ρE {[RS(x, ω/cE)]− [RD(x, ω/cE)] [BΓE(ω/cE)]} . (A49)

Appendix B.7. Acoustic Response to Prescribed Wall Displacement Field and Acoustic Source Density

We consider the acoustic response of the infinite external acoustic fluid submitted to an external
acoustic excitation induced by an acoustic source QE(x, ω) and to a normal velocity field on ΓE, which
is written as v = iω u(ω) · nS (see Section 2 and Figure 1).

(i) Pressure in ΩE. For all x in ΩE, the total pressure pE(x, ω) is written as

pE(x, ω) = prad(x, ω) + pgiven(x, ω) . (A50)
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The field prad(x, ω) that is radiated by the boundary ΓE submitted to the given velocity field v is
written (see Equation (A24)) as

prad(x, ω) = iω Zrad(x, ω){u(ω) · nS} . (A51)

The given pressure pgiven(x, ω) is such that

pgiven(x, ω) = pinc,Q(x, ω)− Zrad(x, ω){∂ψinc,Q

∂nS } , (A52)

in which pinc,Q(x, ω) is the pressure in the free space induced by the acoustic source QE, which is
written as

pinc,Q(x, ω) = −iω
∫

KQ

G(x− x′) Q(x′, ω) dx′ , (A53)

where G is defined by Equation (A37), and where ∂ψinc,Q/∂nS is deduced from Equations (A18)
and (A53). In the right-hand side of Equation (A52), the second term corresponds to the scattering of
the incident wave induced by the external acoustic source by the boundary ΓE that is considered as
rigid and fixed.

(ii) Pressure on ΓE. From Equation (A50), it can be deduced that the total pressure on ΓE is
written as

pE|ΓE
(ω) = prad|ΓE

(ω) + pgiven|ΓE
(ω) , (A54)

in which prad|ΓE
(ω) is such that

prad|ΓE
(ω) = iω ZΓE(ω){u(ω) · nS} , (A55)

and where the pressure field pgiven|ΓE
(ω) on ΓE is written

pgiven|ΓE
(ω) = pinc,Q|ΓE

(ω)− ZΓE(ω){∂ψinc,Q

∂nS } . (A56)

Equation (A54) can then be rewritten as

pE|ΓE
(ω)= pgiven|ΓE

(ω) + iω ZΓE(ω){u(ω) · nS}. (A57)

Appendix B.8. Asymptotic Formula for the Radiated Pressure Far Field

At point x in the external domain ΩE, the radiated pressure p(x, ω) is given (see Equation (A24))
by p(x, ω) = Zrad(x, ω) v. For an observation point x that is far from the structure, the Green
function is rapidly oscillating that induces numerical difficulties for performing the integration
over ΓE. To circumvent this difficulty, asymptotic formulas can be used. Introducing the following
parameterization of vector x ,

x = R e with R = ‖x‖ , (A58)

the asymptotic formulas are written as

lim
R→+∞

RS(Re ; ω/cE) = R∞
S (R, e ; ω/cE) , (A59)

lim
R→+∞

RD(Re ; ω/cE) = R∞
D (R, e ; ω/cE) , (A60)

in which the operators R∞
S (R, e ; ω/cE) and R∞

D (R, e ; ω/cE) are defined by

R∞
S (R, e ; ω/cE) v = 1

R e−iωR/cE

∫
ΓE

Ne(y) v(y) dsy , (A61)
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R∞
D (R, e ; ω/cE)ψΓE

=
iω
cE

1
R

e−iωR/cE

∫
ΓE

e·ny Ne(y)ψΓE
(y) dsy , (A62)

with
Ne(y) = −

1
4π

exp(i e·y ω/cE) . (A63)

From Equation (A43), the asymptotic formula for the radiation impedance operator is then
written as

lim
R→+∞

Zrad(Re, ω) = −iωρE{R∞
S (R, e ; ω/cE)−R∞

D(R, e ; ω/cE)BΓE(ω cE)} .
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