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On Preference-based Search in State Space Graphs

Patrice Perny∗ Olivier Spanjaard∗∗

Draft version

Abstract

The aim of this paper is to introduce a general framework for preference-based
search in state space graphs with a focus on the search of the preferred solutions.
After introducing a formal definition of preference-based search problems, we intro-
duce the PBA∗ algorithm, a generalization of the A∗ algorithm, designed to process
quasi-transitive preference relations defined over the set of solutions. Then, con-
sidering a particular subclass of preference structures characterized by two axioms
called Weak Preadditivity and Monotonicity, we establish termination, completeness
and admissibility results for PBA∗. We also show that previous generalizations of
A∗ are particular instances of PBA∗. The interest of our algorithm is illustrated on
a preference-based web access problem.

1 Introduction

In heuristic search, the quality of a potential solution is often represented by a scalar-valued cost
function to be minimized. This is the case in classical state space graphs problems, where the value
of a path between two nodes is defined as the sum of the costs of its arcs. This particular feature
makes it possible to resort to constructive search algorithms like A∗ and A∗ε [9, 15], performing the
implicit enumeration of feasible solutions, directed by a numerical evaluation function.

However, in practical situations, preferences over solutions are not always representable by such a
numerical cost function and the traditional search algorithms do not fit. As an illustrative example,
consider the following problem derived from [8, 14]:

The Web Access Problem. Suppose that you want to retrieve a list of documents from the
world-wide web, requesting an “information marketplace” supported by automatic billing protocols.
In order to gather the desired information, you have the possibility to query n information sources
(web sites) simultaneously, each being accessible with charges. The following data are available for
each site: the access cost ci to site i (expressed in USD), the reliability ri of the site (qualitative
evaluation on a finite ordered scale), the probability pi that a given information will be found on site
i (this probability represents the richness of the site) and the access time ti to site i. The problem is
to determine which subset S ⊆ {1, . . . , n} of sites should we choose for launching a multiple query?
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Assuming that your resources are bounded in time and money by t̄ and c̄ respectively, the search
is restricted to subsets S verifying the following constraints:

max
i∈S

{ti} ≤ t̄ and
∑

i∈S

ci ≤ c̄ (1)

Let us assume that, for any pair of feasible solutions S, S′, the preferences in terms of reliability
and richness are respectively represented by relations Â1, Â2. We introduce first the preferences in
terms of reliability:

S Â1 S′ ⇐⇒
{ ∃j ≤ k, ∀i < j, LS

i = LS′
i

and LS
j > LS′

j

(2)

where k = min{|S| , |S′|} and LS is the sublist of (ri)i∈S containing the k greatest values sorted
by decreasing order. The definition of Â1 aims at favoring subsets including at least one site of
high reliability. This principle could be represented by a maximum operation, but the lexicographic
comparison rule used here is a refinement, known as LexiMax (for more details, see [7]). We
introduce now the preferences in terms of richness:

S Â2 S′ ⇐⇒
∏

i∈S

(1− pi) <
∏

i∈S′
(1− pi) (3)

The quantity
∏

i∈S(1−pi) represents the probability of failure of the multiple query characterized
by S, under the assumption that the success of one source is independent of the success or failure
of the other sources.

It can easily be checked that relations Â1 and Â2 are transitive. From these relations, we derive
the following dominance relation:

S Â S′ ⇐⇒ S Â1 S′ and S Â2 S′ (4)

The question under consideration is now to determine the subset of non-dominated solutions
with respect to Â, in other words the set of feasible solutions which are not dominated by any other
feasible solution.

One can imagine various reformulations of this problem as a preferred-path problem in a state
space graph. For example, consider a graph where the nodes represent all possible decisions con-
cerning subsets of type Si = {1, . . . , i} for i = 1, . . . , n. Formally, each node is characterized by a
vector (s, b1, . . . , bi) representing a state in which the decision concerning the i first sites has been
made. The component bk is a boolean which is true if and only if site k is selected, for every k ∈ Si,
and the starting node is (s) and corresponds to the initial state where no decision has been made. In
this graph, each node of type (s, b1, . . . , bi) has two successors, (s, b1, . . . , bi, 0) and (s, b1, . . . , bi, 1)
or less if some of them fail to satisfy the constraints (1). The goals are all feasible nodes of type
(s, b1, . . . , bn). Clearly, we have to find the preferred paths from (s) to these nodes.

In this problem, we have to deal with a partial preference relation Â that cannot be represented
by an additive scalar cost function to be minimized, and thus A∗ algorithm does not apply. Remark
that none of the common preference-based extensions of A∗ applies to such a problem. The U∗

algorithm [19] which is a variation of A∗ designed to deal with utility-based preferences cannot
be used because Â is not necessarily complete and thus, cannot be represented by a single utility
function. The MOA∗ which is specially designed to process multiple objective does not apply either.
Indeed, a preference relation like Â1 is not representable by a criterion function (note that, on that
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dimension, the value of a subset S may vary depending on the other subset it is compared to).
Moreover, Â1 as many other partial preference orders cannot easily be represented using several
criteria. Indeed, even if any partial order can be represented by an arbitrary large number of
criteria (using a dominance relation), the computation of this representation is prohibitive due to
the combinatorial number of elements to be compared. The same arguments apply to the ABC
algorithm proposed in [10] for the search under flexible constraints.

For these reasons, we need a general framework to cope with partial preference relations in
state space graphs. A similar statement has been discussed and clearly illustrated in [5, 13], in
the context of game tree search. More generally, a systematic approach admitting any preference
relation to direct the search is worth studying. In particular, this would make it possible to resort
to useful qualitative preference models as those recently developed in the AI community, see e.g.
[2, 7, 3, 4].

This idea is already present in the framework of constraint satisfaction problems. For example,
the algebraic generalization of CSP algorithms proposed in [17, 1] significantly increases the range of
potential application of the algorithms by considering all ordered semiring structures on valuations.
Our aim in this paper is to follow a similar line for search algorithms in state space graphs.

We are going to generalize and factorize various extensions of the A∗ algorithm at once, keeping
only the key properties of preferences structures used to direct the search. The basic idea is to define
a general framework where evaluation functions (like f , g and h in A∗) are replaced by multi-sets of
valuations, partially ordered by the preference Â. In this framework, we will introduce the PBA∗

algorithm, a general preference-based extension of A∗. Then, we will characterize a wide class of
preferences structures for which our algorithm is admissible and show how this algorithm should
be modified to cope with preference structures out of this class.

2 Preliminary Definitions

Let us first recall the following definitions about binary relations.

Definition 1 For any binary relation % on a set X, the asymmetric and symmetric part of % are
defined by:
∀x, x′ ∈ X, (x Â x′) ⇐⇒ ((x % x′) and not(x′ % x))
∀x, x′ ∈ X, (x ∼ x′) ⇐⇒ ((x % x′) and (x′ % x))

Definition 2 For any binary relation % defined on a set X, the set of maximal elements is defined
by:

M(X, %) = {x ∈ X | ∀x′ ∈ X not(x′ Â x)}

In this paper, % represents a weak-preference relation and therefore Â is the associated strict
preference relation. The proposition x % x′ means x is at least as good as x′ whereas x Â x′ means
x is strictly preferred to x′.

Definition 3 A binary relation % defined on a set X is said to be:

- complete iff ∀x, x′ ∈ X, x % x′ or x′ % x

- quasi-transitive iff Â is transitive
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We have to introduce the notion of multi-set, which is an unordered collection of values which
may have duplicates. More formally:

Definition 4 For any set E, the set M(E) of multi-sets of E is the set of functions x : E → N,
representing the number of occurrences of each element. We call support of a multi-set x the set
Ex = {e ∈ E | x(e) 6= 0}. The empty multi-set is denoted 11∅.

We also have to define the sum of two multi-sets:

Definition 5 Let x and y be two multi-sets in M(E). The addition and the difference of x and y
are defined as follows:

∀e ∈ E, (x + y)(e) = x(e) + y(e)
∀e ∈ E, (x− y)(e) = max(0, x(e)− y(e))

The inclusion of a multi-set x in a multi-set y is defined as follows:

x ⊆ y ⇐⇒ ∀e ∈ Ex, x(e) ≤ y(e)

The cardinality of a multi-set x is defined as follows:

|x| =
∑

e∈Ex

x(e)

3 Problem Formulation

A∗-like search algorithms look for best paths in a state space graph. Let N be a finite set of nodes,
A ⊆ N ×N be a set of directed valued arcs, N(P ) be the set of all nodes on a path P and S(n) be
the set of all successors of a node n. We denote P(n, X) the set of all paths linking n to a node in
X. Let s ∈ N be the source of the graph and Γ ⊆ N be the subset of goal nodes. Then, P(s, Γ)
denotes the set of all paths from s to a goal node γ ∈ Γ, and P(n, n′) the set of all paths linking
n to n′. We call solution-path a path from s to a goal node γ ∈ Γ. Moreover, we assume we get a
valuation function v : A → E. Let P ∩P(n, n′) be the segment of P linking n to n′. Let xP be the
multi-set of valuations of arcs on P . We assume a reflexive and quasi-transitive preference relation
% is defined on M(E) (set of multi-sets of valuations). Notice that we will always consider finite
multi-sets (i.e. with finite supports).

Concerning the definition of the preference relation, we can distinguish two main cases:

1. Most of the time, the preference relation % on M(E) is constructed from a commutative
and associative internal composition operator ⊗ on the valuation space E, and a preference
relation %E on E. We denote ek = e ⊗ . . . ⊗ e (k times). Then, v(x) denotes the image of
a multi-set x of elements in E, i.e.: v(x) =

⊗
e∈Ex

ex(e). It leads to the following preference
relation on M(E):

∀x ∈M(E), x % y ⇐⇒ v(x) %E v(y)

For instance, for the usual A∗ algorithm, E is R, ⊗ is the sum operator + and %E=≤. In
such a case, we can work directly in the valuation space E.
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2. Sometimes, it is not possible to represent the preference relation % by resorting to an internal
composition operator on E. For example, in the web acces problem, no composition operator
on the reliability scale E could induce a convenient representation of the LexiMax preference
relation (see Equation (2)), which writes:

x Â1 y ⇐⇒ Lx 6= Ly and max
e∈ELx−Ly

e > max
e∈ELy−Lx

e

in terms of multi-sets. In such a case, we have to work in M(E) and therefore to design an
algorithm able to operate in such a framework.

We denote M(P,%) the set of maximal paths in a set P:

M(P, %) = {P ∈ P | ∀P ′ ∈ P not(xP ′ Â xP )}

We call multi-valuation a multi-set of valuations. We introduce now the main issue of this paper:

The Preference-Based Search Problem. Consider a finite state space graph G, i.e. a graph
containing a finite number of arcs and therefore a finite number of non-isolated vertices, and assume
there exists at least one path P0 with a finite length (number of arcs, denoted |P0|) between s and
a goal node γ ∈ Γ. The goal is to determine the entire set M({xP | P ∈ P(s, Γ)},%).

From now on, unless otherwise stated, we work in M(E) for the sake of generality. For example,
coming back to the web access problem mentioned in the introduction, the multi-valuation of any
path from (s) to a node (s, b1, . . . , bk) is the multi-set of pairs (ri, pi), i ≤ k such that bi = true.

4 The PBA∗ Algorithm

We propose here a variation of the A∗ search algorithm specifically designed to work with a pref-
erence relation on M(E). It is more general than an algebraic approach of the problem [16, 1],
that would consist in assuming there is a partially ordered semigroup on an evaluation space E.
Indeed, we do not assume the transitivity of the symmetric part of the preference relation, neither
the existence of an internal composition operator on E (which permits to consider the LexiMax
preference relation). We call our algorithm PBA∗ for Preference-Based A∗. At any node n, we con-
sider: G∗(n) the set of maximal multi-valuations of paths P in P(s, n), H∗(n) the set of maximal
multi-valuations of paths P in P(n,Γ) and F ∗(n) the set of maximal multi-valuations of paths P
in P(s, Γ) such that n ∈ N(P ). As soon as the Bellman principle is verified, this last set derives
from the two other ones as follows:

F ∗(n) = M(G∗(n)¯H∗(n), %)

where ¯ is an internal composition operator defined, for any sets X, Y of multi-valuations, by:

X ¯ Y =
⋃

x∈X,y∈Y

(x + y)
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As in the A∗ algorithm, G∗(n), H∗(n) and F ∗(n) are unknown during the search. Consequently,
the evaluation of a node n is based on the following approximations: G(n) the set of maximal multi-
valuations of generated paths, H(n) the set of multi-valuations resulting from a heuristic estimation
of H∗(n) and F (n) = M(G(n)¯H(n), %). H(n) is assumed to be coincident, in other words, the
following property holds: ∀γ ∈ Γ,H(γ) = 11∅.

As in A∗, the PBA∗ algorithm divides the set of generated nodes into a set O of open nodes
(labeled but not yet developed) and a set C of closed nodes (labeled and already developed). At any
iteration, we develop a node n ∈ O such that F (n) contains at least one maximal multi-valuation
among labels. Formally, one chooses n in the set MAX of most promising nodes, defined as a
subset of nodes n ∈ O such that:

∃f ∈ F (n),
{ ∀n′ ∈ O, ∀f ′ ∈ F (n′), not(f ′ Â f)
∀c ∈ CHOICE, c 6= f and not(c Â f) (5)

where CHOICE denotes the current set of maximal labels at the goal nodes. The goal nodes which
have already been selected for development are stored in a set denoted GOALS. More precisely,
we propose Algorithm 1 given below:

Remark 1 If a commutative and associative internal operator has been used to define the preference
relation, then the entire search can be done in the valuation space (i.e. the labels are in E instead
of M(E)).

Remark 2 For the sake of simplicity, we have omitted the management of pointers allowing the
preferred paths to be recovered. This can be easily implemented, as shown in [18]. This additional
functionality is assumed to exist in the sequel.

5 Axioms

As the preference relation used is not specified in our algorithm, we introduce here some axioms on
preference which will be necessary to establish the termination, completeness and admissibility of
the algorithm.

Weak Preadditivity (WP)

∀x, y, z ∈M(E), x Â y =⇒ x + z Â y + z

This axiom is a weak version of De Finetti’s qualitative additivity [6] and can also be seen as a
qualitative counterpart of the monotonicity property considered in dynamic programming [11, 12].
Moreover, if an internal composition operator ⊗ on E has been used to define the preference relation
%, this axiom translates into distributivity of ⊗ over the selection operation represented by M(., %)
[20, 16]. Note that WP holds within the framework of A∗ and its direct extensions mentioned
above. Moreover, concerning the web access problem, this axiom is also satisfied by the preference
relations defined in Equations (2), (3), and therefore (4).

Proposition 1 When % satisfies WP, the Bellman principle is verified: any subpath of a maximal
path is maximal.
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Algorithm 1 PBA∗

Initialization: O ← {s} ; C ← ∅ ; G(s) ← ∅; MAX ← {s}; GOALS ← ∅; CHOICE ← ∅; n ← s;
While [MAX 6= ∅]

Move n from O to C
If [n 6∈ Γ] then for n′ ∈ S(n) do

If [n′ 6∈ O ∪ C] then:
G(n′) ← M(G(n)¯ x(n,n′),%)
F (n′) ← M(G(n′)¯H(n′),%)
Put n′ in O

end
else n′ is already labelled, then:

G(n′) ← M(G(n′) ∪ (G(n)¯ x(n,n′)),%)
F (n′) ← M(G(n′)¯H(n′),%)
If G(n′) is modified, put n′ in O

end
end
If [O 6= ∅] then

compute MAX according to Equation (5)
end
Else MAX = ∅
If [MAX 6= ∅] choose n ∈ MAX with respect to an heuristic specific to the application, with priority
to n ∈ Γ.
If [MAX 6= ∅] and [n ∈ Γ] then:

GOALS ← GOALS ∪ {n}
CHOICE ← M(CHOICE ∪G(n),%)

end

end

If [GOALS = ∅] then exit with failure;

Exit with all the efficient paths obtained by backtracking from the labels in CHOICE;

end

Proof. Let P be a path from a node n1 to a node n4. Let n2, n3 be two nodes along this
path, P ′ = P ∩ P(n1, n2), P ′′ = P ∩ P(n2, n3) and P ′′′ = P ∩ P(n3, n4). Assume that P ′′ is
not maximal, then there exists Q ∈ P(n2, n3) such that xQ Â xP ′′ and by WP we get xP ′∪Q∪P ′′′

= xQ + xP ′∪P ′′′ Â xP ′′ +xP ′∪P ′′′ = xP . ¤

Remark 3 Whenever % is transitive, ∼ is an equivalence relation defining indifference classes.
Hence, one might be interested in determining only one maximal path by indifference class. For
that purpose, the key property would be:

∀x, y, z ∈M(E), x Â y =⇒ x + z % y + z (WP ′)

instead of Weak Preaditivity, thus opening new possibilities. For example, the preference relation
defined by x % y iff maxe∈Ex e ≥ maxe∈Ey satisfies WP ′ but not WP.
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In the classical A∗ algorithm, the hypothesis of a strictly positive inferior bound on the valu-
ations of the arcs insures that a cyclic path cannot be maximal. Therefore, as the graph is finite
and each reopening of a node corresponds to the detection of a new acyclic path, the algorithm is
guaranteed to terminate in finite time. However, in our algorithm, we have to reopen a node as
soon as we detect a new path that is not worse than any other label at this node. Therefore, we
need the following axiom to insure the termination of the algorithm:

Monotonicity (M)
∀x, y ∈M(E), x ⊂ y =⇒ x Â y

This monotonicity axiom guarantees that a subpath is always preferred to the path it is extracted
from. In other words, a path including a cycle cannot be maximal. Remark that in acyclic graphs
(as in the web access problem), that axiom can be omitted.

6 Termination and Completeness

Termination and completeness are both algorithmic properties of main interest. As usual, an
algorithm is said to terminate if it necessarily stops after a finite number of iterations. It is said to
be complete if it outputs at least one solution-path as soon as a solution-path exists. The following
lemma, valid for A∗, still holds for PBA∗, since its proof does not depend on the preference relation
used.

Lemma 1 Let n ∈ N and P ∈ P(s, n). At any step of the algorithm, either at least one node on
P is in O, or every node on P is in C.

The following termination result holds thanks to the monotonicity axiom entailing the cancel-
lation of any cyclic path during the search.

Theorem 1 If % satisfies M, PBA∗ terminates for any problem such that at least one solution-path
exists.

Proof. Consider a yet developed node n. For this node to be redeveloped, it is necessary to
find another path which is maximal with respect to G(n). Such a path is necessarily acyclic due to
axiom M. Since there exists only a finite number of acyclic paths in a finite graph, n can only be
developed a finite number of times. Therefore PBA∗ terminates after a finite number of iterations. ¤

The following result holds also for any best-first strategy (see [15] for the definition of a best-first
strategy):

Theorem 2 If % is quasi-transitive and satisfies M, PBA∗ is complete.

Proof. While no solution-path is detected, there is necessarily a node n ∈ N(P0) which is in O
(by Lemma 1). As O 6= ∅ and CHOICE = ∅, MAX = M(

⋃
n∈O F (n),%). Hence, MAX cannot

be empty due to the quasi-transitivity of %. However, thanks to M and Theorem 1, we know that
the algorithm terminates after a finite number of iterations. Therefore, as the termination rule is
MAX = ∅, a solution-path is necessarily found. This establishes the completeness of the algorithm.
¤
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It can be shown that PBA∗ is complete even for infinite (but locally finite) graphs as soon as % is
quasi-transitive and the following archimedean axiom is verified: If x is a finite multi-set of M(E),
then there exists k ∈ N∗, ∀y ∈ M(E), |y| ≥ k =⇒ x Â y. Unfortunately, such a result is rather
theoretical since the archimedean axiom is not satisfied by several natural preference relations. For
instance, Equation (2) in our example fails to satisfy this axiom.

7 Admissibility

We now define the notion of optimistic heuristic in our framework, in order to establish the ad-
missibility of PBA∗. In this framework, an algorithm is said to be admissible if it guarantees to
terminate with the whole set M({xP |P ∈ P(s, Γ)}, %) for any problem such that at least one
solution path exists.

Definition 6 An optimistic heuristic is a set H of multi-valuations fulfilling the following condi-
tions: ∀n ∈ N, ∀h∗ ∈ M(H∗(n), %), ∃h ∈ H(n) s.t. h Â h∗ or h = h∗.

For example, in the web access problem, we can choose as heuristic, at node (s, b1, . . . , bk), the
multi-set of pairs (ri, pi) for i > k. Let us now introduce two intermediary results:

Lemma 2 Let P be a maximal path from s to a node n (possibly outside Γ) in the graph, and n′

be the first open node on this path. If % satisfies WP, then there exists g ∈ G(n′) such that g =
xP∩P(s,n′).

Proof. The path P ′ = P ∩ P(s, n′) has been detected since all the predecessors of n′ on P are
closed. Moreover, by the Bellman principle which holds thanks to WP, P ∈ M(P(s, n),%) implies
P ′ ∈ M(P(s, n′), %). Consequently: ∃g ∈ G(n′) such that g = xP∩P(s,n′) ¤

Lemma 3 Let % be a preference relation which satisfies WP. At every step of the algorithm, if
P ∈ M(P(s, Γ),%) and P is not yet detected, there exists in O a node n′ of P and f ∈ F (n′) such
that f Â xP or f = xP .

Proof. Let n′ be the first open node on P . Let P ′ = P ∩P(s, n′) and P ′′ = P \P ′. By Lemma 2,
∃g ∈ G(n′) such that g = xP ′ . On the other hand, ∃h ∈ H(n′) such that h Â xP ′′ or h = xP ′′ since
h is optimistic. Therefore ∃f ∈ F (n′) such that f = g + h = xP ′ + h Â xP ′ + xP ′′ = xP by WP or
f = g + h = xP ′ + h = xP ′ + xP ′′ = xP . ¤

We now present the main result of this section:

Theorem 3 If % is quasi-transitive and satisfies WP and M, then PBA∗ is admissible.

Proof. Thanks to M and Theorem 1, the algorithm terminates after a finite number of iterations.
Assume that there exists xP in M({xP |P ∈ P(s, Γ)},%) that is not in CHOICE when PBA∗ stops.
As P is not detected, O 6= ∅ (by Lemma 1). When PBA∗ stops, MAX = ∅ and therefore all the
nodes in O satisfy: ∀f ∈ F (n), ∃c ∈ CHOICE, c = f or c Â f . However, by Lemma 3, there exists
a node n′ of P in O and f ∈ F (n′) such that f Â xP or f = xP . Therefore c Â xP or c = xP ,
but c Â xP contradicts the maximality of P and c = xP contradicts xP 6∈ CHOICE. Hence,
M({xP |P ∈ P(s, Γ)},%) ⊆ CHOICE. Moreover, by construction, Â is empty on CHOICE,
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which completes the proof. ¤

Considering the web access problem mentioned in the introduction, since the state space graph
is acyclic and the preference relation Â defined by (4) is transitive and satisfies WP, Theorem 3
shows that PBA∗ can be used to determine the preferred solutions.

8 Approximation of the Preference Relation

It should be noticed that the previous results, despite their generality, do not cover the entire class
of “rational” preference relations. For example, for bi-criteria optimization problems characterized
by two valuations v1 and v2, the egalitarian preference: xP % xQ ⇔ max{v1(xP ), v2(xP )} ≤
max{v1(xQ), v2(xQ)} (where vj(xP ) =

∑
a∈P vj(a)) fails to satisfy the WP axiom. Nevertheless,

PBA∗ might be properly used with an approximation %′ of % which satisfies the WP axiom (e.g.
xP %′ xQ ⇔ vj(xP ) ≤ vj(xQ) for j = 1, 2). For this reason, we introduce the following definition,
which makes sense only in acyclic graphs (to escape the monotonicity problem):

Definition 7 A preference relation %′ is an approximation of % if and only if: ∀X ⊆M(E), M(X, %
) ⊆ M(X, %′)

Then, we have:

Proposition 2 Let % be a preference relation and %′ an approximation of % which is quasi-
transitive and satisfies WP, applying PBA∗ with %′ yields a superset of M({xP | P ∈ P(s, Γ)}, %).

Moreover, during the search with respect to %′, we can remove labels f for which there exists a
detected solution-path P such that xP Â f . By this way, we reduce computational efforts and we
get exactly the set M({xP |P ∈ P(s, Γ)},%).

9 Comparison with Other A∗ Algorithms

In this section, we show that various well-known variations of the A∗ algorithm can be seen as
particular instances of PBA∗. Each variation is characterized by the choice of the valuation set E,
the valuation space (E or M(E)) and the preference relation (which mostly satisfies WP and M).
This is also the case for the A∗ algorithm itself. Indeed, we can instantiate our model as follows:
E = R, the valuation space is E, ⊗ = + and xP % xQ ⇔ ∑

a∈P v(a) ≤ ∑
a∈Q v(a), and the goal is

to find one maximal path.
The multi-criteria variation of A∗ algorithm, namely MOA∗ [18], gives the following instance:

E = Rn, the valuation space is E, xP % xQ ⇔ ∀i = 1, . . . , n,
∑

a∈P vi(a) ≤ ∑
a∈Q vi(a), and the

goal is to determine M(P(s,Γ), %).
The multiattribute utility variation of A∗ algorithm, namely U∗ [19], gives the following instance

(here, v(x) denotes a multiattribute reward vector): E = Rn, the valuation space is E, xP % xQ ⇔
u(v(xP )) ≥ u(v(xQ)), approximated by: xP %′ xQ ⇔ ∀i = 1, . . . , n,

∑
a∈P vi(a) ≤ ∑

a∈Q vi(a), and
we are looking for one maximal path.

The ABC algorithm [10] is a variation of U∗ designed for multicriteria problems where the overall
objective is expressed by n soft constraints on criteria. E is the criteria space and the preference
relation is x % y ⇔ (x1, . . . , xn) v (y1, . . . , yn) where xj (resp. yj) is a boolean representing the

10



satisfaction index of constraint Cj and v is any reflexive and transitive extension of the dominance
order on boolean vectors (induced by 1 v 0).

10 Conclusion

We have proposed a new algorithm for preference-based search which extends previous A∗-like algo-
rithms in a very natural way. The termination, completeness and admissibility results established
in the paper prove its practical interest for a wide class of preference relations characterized by
axioms WP and M. When preferences escape this class, we still have the possibility to determine
the preferred paths, provided a convenient approximation of the preference relation is found. A
more elaborate study on the construction of efficient approximations seems to be of main interest.
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