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Abstract—Objective evaluation of community detection algo-
rithms is a strategic issue. Indeed, we need to verify that the
communities identified are actually the good ones. Moreover, it is
necessary to compare results between two distinct algorithms to
determine which is most effective. Classically, validations rely on
clustering comparison measures or on quality metrics. Although,
various traditional performance measures are used extensively.
It appears very clearly that they cannot distinguish community
structures with different topological properties. It is therefore
necessary to propose an alternative methodology more sensitive
to the community structure variations in order to conduct more
effective comparisons. In this paper, we present a framework to
tackle this challenge through a comprehensive analysis of the
community structure of overlapping community structured net-
works. We illustrate our approach with an experimental analysis
of a real-world network with a ground-truth community structure
that we compare with the output of eight different overlapping
community detection procedures, representative of categories of
popular algorithms available in the literature. The results allow
a better understanding of their behavior. Furthermore, they
demonstrate that more emphasis should be put on the topology
of the uncovered community structure in order to evaluate the
effectiveness of community detection algorithms.

Keywords—Community structure, detection algorithms, overlap-
ping community networks, network analysis.

I. INTRODUCTION

The community detection problem has led to an impressive
body of literature, and many community detection methods and
surveys have been introduced in recent years. Although, there
has been a tremendous effort on introducing new algorithms
in order to uncover this hidden structure of a network, little
attention has been devoted to various complementary aspects
of this issue. First of all, there is no formal consensus on a
definition that captures the gist of a community. It is intuitively
understood as a cohesive group where members interact with
each other more intensely than with those outside the group.
As there are many diverse understandings of how cohesiveness
translates in formal graph-theoretic terms, community detec-
tion has been approached from many different perspectives.

Second, the lack of labelled ground-truth data has limited
the understanding of the community structure in real-world
networks. Recently, the situation has greatly evolved through
the work of Yang and Leskovec [I]. The authors identified
a set of large-scale real-world networks where a functional
notion of ground-truth communities can be defined. In other
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words, nodes can be explicitly classified in diverse meaningful
groups. With these data, it is therefore possible to gain a better
knowledge about the topological properties of community
structure. However, there is no guarantee that communities
defined on a functional basis are encoded in the structural
information of the network.

And last but not the least, very few attention has been
devoted to the evaluation issue. Indeed, it is essential to
compare the effectiveness of the various community detection
algorithms. This complex and open problem is classically
considered either from the clustering perspective or from
the quality perspective. When there is a ground-truth of the
community structure, validation is simply accomplished by
comparing discovered communities against known ones. Var-
ious clustering-comparison measures have been proposed that
can be classified into three main categories: measures based on
pair counting, set-matching-based measures and information-
theoretic-based measures. With pair-counting-based measures,
clustering comparison is based on counting the pairs of points
on which two partitions agree or disagree. The Rand Index
(RD[2] and the Jaccard Index are well-known measure in this
class. It should be remembered that, there are many other
measures in this class [B]. However, after correction for chance,
many of these measures are equivalent [d]. Set-matching-based
measures are based on set cardinality. They intend to find the
largest overlaps between pairs of different partition clusters.
Purity is the proportion of correctly assigned nodes. Each
identified cluster is matched to the one with the maximum
overlap in the reference cluster, and then the accuracy of this
assignment is measured by counting the number of correctly
assigned nodes. Information-theoretic-based measures have
gained increasing attention in the clustering literature. They are
based on the mutual information shared by two partitions in or-
der to assess their agreement. Normalized mutual information
(NMI) is defined as the ratio of the mutual information to the
mean value of the entropy of both partitions. It takes the value
of 1 when the two partitions are identical and O when they
are independent. When the underlying community structure is
unknown, quality functions are used. They are based on various
properties that can be encountered in a “good” community
structure. Most of them formalize in different ways the idea
that communities are sets of nodes densely connected and
poorly connected to the rest of the network. Modularity is the
most widely used quality function to compare the effectiveness
of community-detection algorithms on real data with unknown
community structure. It expresses how a community structure



has a high-density ratio as compared to a random graph with
the same degree sequence. The main weakness of the quality
function approach is that very often the detection algorithms
also use it as an optimization criterion, therefore it introduces
a bias in the comparisons. Furthermore, one needs to be very
cautious in order to define what is a good structural property.

Some recent works points out the weakness of these
approaches [8], [R]. Indeed, there are a wide variety of
community detection algorithms whose output exhibits high
structural variability. Relying only on global clustering or
quality measures do not allow to reveal nuances of the struc-
ture of real and extracted communities because these metrics
ignore the topology of the community structure. Indeed, two
estimated community structure can reach a close level of NMI
performance while their link distributions are quite different.

As pointed out by these authors, it is necessary to analyze
the topological properties of the community structure. Our
work is in this line. In order to compare the efficiency of
overlapping community detection methods, we propose to
analyze the topological properties of their outputs. To do so,
starting from the uncovered community, we build and analyze
the topological properties of the community network. In this
network, the nodes are the extracted communities and there
is a link between two nodes if the two communities overlap.
The basic idea of the proposed approach is that an efficient
community detection algorithm must be able to output a com-
munity structure with comparable topological properties than
the one obtained with the ground truth community structure.
Even if some nodes are misclassified, or if its structure does
not agree with what is generally expected trough some quality
measures, it is important that it can encode the topology of the
community network.

To illustrate our framework with an experimental analysis,
we use the AMAZON network of product co-purchases and
the most frequently used overlapping community algorithms.
We construct the ground truth network of community as well
as the estimated networks of community (using the community
structure given by the overlapping community algorithms). To
investigate the community structure properties, we consider
topological measures from different scales. At the macroscopic
level, we compute the average clustering coefficient, average
shortest path, diameter, density and degree correlation. At the
microscopic level, we accurately analyze the distribution of the
node degree, the average clustering coefficient as a function of
degree as well as hop distance. Finally, we study a mesoscopic
property of the community structure, namely the community
size distribution.

Note that our main focus is not to provide another empirical
comparative evaluation of overlapping community detection
algorithms, but rather at pressing the point on the importance
of the topological aspect of these comparisons in order to
ascertain a clear picture of the effectiveness of the algorithms.

The rest of this paper is divided into four sections. Section
2 discusses some related works. Section 3 presents the dataset
and the community detection methods. In section 4, we report
analysis results with some discussions. Finally, section 5
summarizes our concluding remarks.

II. RELATED WORK

The paper by Xie et al. [[] is one of the most influential
contributions to the overlapping community detection problem.
The authors present a thorough comparison of fourteen algo-
rithms on numerous artificial and real-world networks using
various performance measures. They use synthetic networks
generated using the LFR (Lancichinetti, Fortunato & Radicchi)
model proposed in [R] in order to study the behavior of the
various community detection algorithms. This model provides
a rich set of parameters to control the network topology. Fur-
thermore, it allows generating synthetic networks with features
close to the ones observed in real-world networks. Its main
drawback is that this model requires that all the overlapping
nodes interact with the same number of communities, which is
quite unrealistic in practice. Extensive comparisons have been
conducted over different overlapping densities and community
size ranges. The quality of the detected communities is mea-
sured through the NMI and the Omega-Index [U], which is
the overlapping version of the Adjusted Rand Index (ARI).
Four limiting cases are considered (small or large community
size ranges together with low or high overlapping density). To
summarize the results, average ranking scores are computed
for both measures. Results suggest that NMI and Omega
provide similar overall evaluation to some extent. Averaging
the scores across the four different cases, it appears that the
top seven algorithms are exclusively agent-based algorithms.
In order to provide insight into the behaviors of different
algorithms, the community sizes distribution is compared with
the known ground truth. The authors conclude that obser-
vations on the community size distribution can be used to
explain the ranking of the algorithms. In other words, when
the discovered distributions are in agreement with the ground
truth distribution, the algorithms perform well with respect
to ranking and conversely. They also analyze the algorithm’s
ability to detect the overlapping nodes using the F-score as
a measure of detection accuracy. Results of the experiments
allow to clearly identify the algorithms that tend to over or
under-estimate the overlapping nodes. Furthermore, the rank-
ings with respect to F-scores provide quite different pictures
of the performance as compared to NMI or Omega score.
Indeed, these two types of rankings provide complementary
information. NMI and the Omega index measure detection
performance at the community level, while F-measure focuses
at the node level. One of the main lessons of this work
is to highlight the complexity of the performance measures
issue. Indeed, measures like NMI and Omega focus only
on providing an overall measure of algorithmic accuracy,
and complementary measures are needed to perform a more
precise analysis. Orman et al. [S] present a comparative study
of a representative set of community detection algorithms
using the LFR model with appropriate parameters to generate
realistic undirected non-overlapping networks. They evaluate
the outputs of the community detection algorithms trough
classical partition based performance measures together with
community structure topological measures. It turns out that
the partition based measures (Purity, RI, ARI and NMI) agree
with each other with small differences when considering the
way they rank the algorithms. Arguing that the main draw-
back with these measures is that communities are compared
only in terms of individual node membership, without taking
the underlying topology into account, they propose to use



community-oriented topological measures ( embeddedness,
internal degree, community size, internal transitivity, scaled
density, average distance, and hub dominance). Results of their
experiments show that extreme ranking (worst and best) of the
algorithms are similar for both types of measure. However, this
is not the case for the other algorithms. Indeed, partition-based
measures performance can be relatively high, although the
uncovered communities substantially differ from the reference,
according to the topological measures. They conclude that both
approaches are complementary and must be used in order
to perform a relevant and complete analysis of community
detection results.

In a recent survey, Arenberg et al. [I0] evaluate four
overlapping community detection algorithms together with
nine non-overlapping ones on large-scale real-world networks.
The networks, with overlapping ground-truth communities,
are available in the Stanford Large Network Dataset Col-
lection (Amazon, DBLP, Livejournal, Orkut, Youtube). For
each network, the top 5000 ground-truth communities (with
the bigger size) are ranked based on internal density and the
bottom quartile is removed. In addition, five more graphs with
disjoint ground-truth communities are derived from the real-
world networks in order to test the algorithms for disjoint
communities. In this study, the algorithms are compared using
quality measures as well as clustering-based measures. Four
quality metrics has been chosen among the various quality
functions available in the literature [[1] (internal density, clus-
tering coefficient, conductance, and triangle participation ra-
tio). Several statistical measures (precision, recall, F-measure,
specificity, accuracy, NMI) based on the confusion matrix are
used to measure the similarity between the set of ground-
truth communities and the set of communities output by
an algorithm. Results of their investigations show that these
two types of measures are not equivalent. An algorithm that
identifies communities with good structural properties does not
necessarily yield good clustering-based performance metrics.
It may be pointed out that according to Yang and Leskovec
study, many quality metrics are highly correlated [[1]. Indeed,
it appears that the eleven quality metrics they investigate in
their paper can be grouped into four clusters. Note that internal
density and triangle participation ratio belong to the same
cluster, and therefore return highly correlated values.

In [2] Fortunato et al. compare the community structure
uncovered by ten popular community detection algorithms on
a collection of real-world and synthetic networks. Three of
the algorithms produce non-overlapping communities where
the others allow overlaps. The fifteen real networks come with
known ground truth communities and the synthetic networks
are generated using the LFR model. Real-world networks can
be classified in two groups. The first group is made of small-
size networks classically used as testbed in the community
detection literature (Zachary, football, etc.), while the second
group contains more recent and challenging large-scale net-
works such as Amazon and Livejournal. Nine of these net-
works come with overlapping ground truth communities while
the remaining ones possess a non-overlapping community
structure. Comparisons are carried out using clustering based
measures. Overall, results can be separated into three groups
by descending order of NMI scores. The first group (with
the highest performances) corresponds to the LFR benchmark.
The second group consists of the small-sized classical datasets

(karate, football, polblogs, polbooks), and the third group is
made of the remaining networks. Globally, in these large-
scale networks, uncovered communities do not align well with
the ground-truth communities. Restricting the comparison to
communities of comparable topological properties (size, link
density or embeddedness) does not reveal major improvements.
Globally, communities estimated by the algorithms do not
match well the ground truth communities and the results are
more influenced by the network than by the specific method
adopted.

There are a few messages coming from this study. First of
all, it raises the question of the community definition. Until
now, there is an ambiguity between structural communities as
revealed by the topology and functional communities where
nodes are grouped in different classes corresponding to their
intrinsic features. As the authors report “the field has been
silently assuming that structural communities reveal the non-
topological classes”. Second, relying on the classification of
the nodes in order to characterize the community detection
algorithms is not sufficient. A detailed investigation of the
topological properties of the community structures must be
carried out in order to assess the structural dissimilarity among
the outputs of community detection algorithms.

III. DATASET AND COMMUNITY DETECTION METHODS
A. Dataset

The network we consider is the AMAZON product co-
purchasing network available at http://snap.stanford.edu/data.
Nodes represent products and links connect commonly co-
purchased products. Each product belongs to one or more
hierarchically organized product categories that we view as a
ground-truth communities. The basic properties of this network
are reported in Table 0. Note that, it exhibits the typical
characteristics of real-world complex networks. Indeed, with
an average shortest path equals to 2.78, it satisfies the small-
world property i.e. most nodes are just a few edges away
on average. Moreover, it is characterized by a high clustering
coefficient. Its transitivity value above 0.2 reflects the tendency
of link formation between neighbouring nodes. With a degree
correlation value of —0.06, it is dissortative. In other words,
highly connected vertices tend to connect to those with few
connections.

TABLE 1. GLOBAL PROPERTIES OF AMAZON NETWORK. THE
CALCULATED PROPERTIES ARE NUMBER OF NODES (NODES), NUMBER OF
EDGES (EDGES), DENSITY, AVERAGE SHORTEST PATH (ASP),
ASSORTATIVITY COEFFICIENT (AC), AND CLUSTERING COEFFICIENT
(CC)

[ Nodes [ Edges | [ asp [ ac | cc |
[ AMAZON [ 334863 | 925872 [ 8,25+ 10 °° | 278 [ 006 | 021 |

Density

B. Overlapping community detection methods

In this section, we review the overlapping community
detection methods used in this work. Community detection
is a prolific subject in the literature, and a great variety
of algorithms have been developed so far to deal with this
issue. Some recent surveys have proposed taxonomies of the
community-detection methods [I3]. In this paper, we adopt
the classification into five categories proposed by Xie et al.
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[(7]. These categories are Clique Percolation, Fuzzy Detection,
Line Graph/Link Partitioning, Local Expansion/Optimization
as well as Agent-Based/Dynamical Algorithms. Note that
some algorithms do not belong to any of these categories.
Table M reports some basic information about the algorithms
considered. Note that, we selected these overlapping detection
algorithms for one or more of the following reasons. They have
been recently introduced, they are easily available on the web,
they are popular in the literature.

TABLE II. ALGORITHMS USED FOR DETECTING THE OVERLAPPING
COMMUNITY STRUCTURE. THE CLASSES ARE CLIQUE PERCOLATION
(CP), LocAL EXPANSION/OPTIMIZATION (LE/O), Fuzzy DETECTION
(FD), LINE GRAPH/LINK PARTITIONING (LG/LP), AND LABEL
PROPAGATION (LP)

l Algorithm H Classes Reference [ Complexity ‘
CFINDER CP Palla et al. 2005 [I4] polynomial

LFM LE/O Lancichinetti et al. 2009 [K] O(n?)
MOSES FD McDaid et al. 2010 [I5] O(en?)

GCE LE/O Lee et al. 2010 [I#] O(mh)
OSLOM LE/O Lancichinetti et al. 2011 [I7] O(n?)
DEMON LP Coscia et al. 2012 [IX] O(n +m)

SLPA LP Xie et al.2012 [I9] O(tm)
SVINET LG/LP Prem et al.2013 [£0] not explicitly stated

In the following, we briefly review the operating principle
of each class as well as the mechanism of the associated
algorithms.

1) Clique Percolation: The main assumption of this ap-
proach is that a community is made of a combination of small
network motifs called clique. In a network, a k-clique is a
group of nodes of size k, such that every node is connected
to each other node. In k-clique percolation, we say that two
cliques of size k percolate into each other if they share &k — 1
nodes. A k-clique-community is the union of all k-cliques that
can be reached from each other through a series of percolating
k-cliques.

CFINDER?", the Clique Finder, is one of the most popu-
lar overlapping community detection algorithms. It uses the
Clique Percolation Method introduced by Palla et al. 2005
[I4]. The algorithm first extracts all complete subgraphs of
the network that are not part of a larger complete subgraph.
The aim of the first phase is to populate a clique overlap matrix
where its elements are equal to the number of common nodes
between the corresponding two cliques. The diagonal entries
are equal to the size of the clique. The k-clique-communities
can be found by erasing every off-diagonal entry smaller than
k. In the implementation of Adamcsek et al. 2005 [21] the
parameter, k£ range from 3 to 8.

2) Fuzzy Detection: Fuzzy community detection algo-
rithms build on the relation between links and communities.
This association is made using a fitness function which differs
from one method to another. The first step consists of randomly
selecting links. Then, initial communities are formed which
are composed of the extremity nodes of these links. After
that, nodes are added to these communities by maximizing the
function of fitness. Finally, the last step consists of successively
removing the nodes of the communities to which they belong,

1 http://www.ctinder.org/

and then see if the integration into another community would
increase the fitness function.

MOSES", Model-Based Overlapping Seed ExpanSion, was
proposed by McDaid et al. 2010 [I5]. This method applies the
Fuzzy Detection steps with a fitness function based on OSBM
(Overlapping Stochastic Block Models) proposed by Latouche
et al. 2011 [27]. The computational time complexity is equal
to O(en?) where n is the number of nodes and e is the number
of edges to be expanded.

3) Line Graph/Link Partitioning: If communities are de-
fined as communities of nodes, we can also create communities
of links. The basic idea of this approach is to define a
projection graph in which the nodes represent the links of
the original graph and the definition of a similarity value in
order to understand how close two edges of the network are.
A classical clustering algorithm can then be applied.

SVINET, the algorithm introduced by Gopalan and Blei
[20], uses a Bayesian approach to detect overlapping communi-
ties. It assumes a probabilistic membership model of networks
where each node can belong to multiple communities. Given
an observed network, the model defines a posterior distribution
that gives a decomposition of the nodes into overlapping
communities. In particular, the posterior will place higher prob-
ability on configurations of the community memberships that
describe densely connected communities. With this posterior,
we can investigate which specific communities are responsible
for each of the observed links. In this sense, the algorithm
discovers link communities. As for many interesting Bayesian
models, however, this posterior is intractable to compute.
In order to approximate the posterior the algorithm iterates
between subsampling the network, analyzing the subsample,
and updating the estimated community structure. It is efficient
because it only analyzes a subgraph of the network at each
iteration.

4) Local  Expansion/Optimization: Local  Expan-
sion/Optimization algorithms are based on growing a
natural community. They generally perform in two steps.
The first step is to find the initial communities called grains.
These cores serve as seed communities for the second step
of the process, that expands the cores by adding or removing
nodes until a local density function cannot be improved.
Non-overlapping algorithms can be used to find the initial
grains. The second step is to contract these small grains in
order to construct the final communities. The authors propose
to add or remove some nodes to increase the community
strength, defined as the ratio between internal and total node’s
degree of a community.

LFM®, Lancichinetti Fortunato Method, expands a commu-
nity from a random seed node by adding nodes until a fitness
function is locally maximal. After finding one community,
LFM randomly selects another node not yet assigned to any
community to grow a new community. The fitness function
control the strength of the community and the size of the
communities:

2 https://sites.google.com/site/aaronmcdaid/moses
3 https://github.com/sumnous/LEFM_1mprove
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where kf, and k¢, are successively the internal and
external nodes degree of the community ¢, and « is the
resolution parameter controlling the size of the communities.

OSLOM?®, Order Statistics Local Optimization Method, is
not based on a single idea. The authors propose to use Infomap
or Louvain for detecting seed communities. This method does
not detect all communities in very important recovery cases.
In these situations, the authors have advocated the use of small
grains communities created by taking a random node and
by adding to it an arbitrary number of neighbors. Secondly,
for each grain, OSLOM will apply rules to successively add
and remove nodes until reaching a stable state in which it
is no longer interesting to modify the community. The time
complexity is O(n?), where n is the number of nodes.

GCES, Greedy Clique Expansion Lee et al. 2010 [06], is
also on the same principle. The authors propose to use the
maximal cliques as grains. Given the very large number of
these initial grains, an optimization by a local fitness function
is used to reduce this huge number. The time complexity for
greedy expansion is O(mh), where m is the number of edges,
and h is the number of clique.

5) Label Propagation: Each node is initialized with a
unique label. Then, each node replaces his label by the most
figured label on its neighbors. In the case of equality, the
label is randomly selected. After a number of iterations, nodes
with the same label tends to be associated in communities.
Therefore, all nodes having the same label form a community.

SLPA", Speaker-listener Label Propagation Algorithm, has
been introduced by Xie et al. [T9]. Each node has a labels
memory. It updates its last label from the most frequent
neighbor’s memory label. SLPA has a time complexity equals
to O(tm) when m is the total number of edges and t is the
memory size.

DEMON?, introduced by Coscia et al. 2012 [I[&], tends to
affect a node to the most frequent community given by the
application of a label propagation algorithm on its neighbors
sub-graph. The time complexity is equal to O(n + m) where
n is the number of nodes and m is the number of edges.

IV. DATA ANALYSIS AND DISCUSSION

In order to perform the analysis of the overlapping commu-
nity structure, we build eight community networks. Recall that
the nodes are the communities and the links between two nodes
represent the fact that the communities overlap. For simplicity,
we note the AMAZON community network based on the
ground truth community structure as AMAZON*. As for the
networks of communities built from the community structures
extracted by each of the ten algorithms, we refer to them
by the name of the algorithms from which they arise. Note

“http://osiom.org]

5 https://sites.google.com/site/greedycliqueexpansion/

6 https://sites.google.com/site/communitydetectionslpa/
7 http://www.michelecoscia.com/’page _1d=42

that, in general, the overlapping community networks can have
multiple components. We therefore applied a preprocessing
step where all the small components are eliminated. The
networks analysis is in any cases restricted to the largest
weakly connected component.

We first present and compare classical basic global prop-
erties of these networks. We then turn the analysis of various
distribution that summarize some important topological charac-
teristics of these networks. Finally, we analyze the distribution
more specific to the overlapping community structure.

A. Basic topological properties

Table M reports the global properties of the ground-truth
based community network AMAZON* as well as the ones
estimated through the various community detection algorithms.
Looking at these results, the first comment that comes to
mind is that there is a great variability of the behavior of
the algorithms. All the algorithms under-estimate the number
of overlapping communities. The algorithms can be classified
in two groups according to the number of communities they
detect. The first group is made of CFINDER, MOSES, SLPA,
SVINET, DEMON. They find around 20000 communities as
compared to around 75000 for AMAZON*. In the second
group that includes LFM, GCE and OSLOM around 10000
communities are identified. The number of edges which rep-
resent the number of overlapping communities is much more
smaller than in the reference. All the algorithms tend to under-
estimate the overlap between the communities. The network
density values confirm this observation. Apart from SVINET,
whose density is comparable to that of AMAZON¥*, it is
one order of magnitude smaller for the other algorithms. The
diameter values range from 16 to 37 while the reference is
27. Even if three out of height are smaller than the reference,
we can say that at this level the networks are fairly consistent.
According to the degree correlation estimated, there is a vast
majority of assortative community networks while AMAZON*
is disassortative. CFINDER is the only algorithm that lead to
a disassortative network. Finally, all the networks are much
more clustered than AMAZON*. To summarize this first
set of results, the community networks originating from the
community detection algorithms seems to be quite different
than AMAZON*. These results are overall quite disappointing
except for SVINET that seems to emerge from the crowd.

TABLE III. GLOBAL PROPERTIES OF AMAZON®* AND STRUCTURAL
COMMUNITY NETWORKS. THE CALCULATED PROPERTIES ARE NUMBER OF
NODES (NODES), NUMBER OF EDGES (EDGES), DENSITY, DIAMETER (D),

ASSORTATIVITY COEFFICIENT (AC), AND CLUSTERING COEFFICIENT
(CC)

Nodes | FEdges | Densiy | D | AC [ cC ]

AMAZON* 74698 1062092 | 3.8E-04 | 27 | -0.16 | 0.02
CFINDER 21888 31522 6.5E-05 | 24 | -0.02 | 0.15
LFM 8914 7585 9.5E-05 | 37 0.11 0.09
MOSES 25415 72499 1.1E-05 31 0.51 0.41
GCE 10256 13526 1.2E-05 31 0.25 0.13
OSLOM 9876 12613 1.2E-05 29 0.23 0.16
DEMON 17809 99293 3.1E-05 16 0.23 0.29
SLPA 25455 53442 8.2E-05 | 22 0.03 0.13
SVINET 25162 123947 39E-04 | 28 0.03 0.09
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B. Degree distribution

Degree distribution measures the statistical repartition of
the network nodes degrees. For a large number of networks,
such distribution can be adequately described as a power-law
that can be written as (P(k) ~ k~%), where « is a positive
exponent. Related experimental studies show that the exponent
value of the power law usually ranges from 2 to 3. Fig. reports
the empirical degree distribution of the overlapping community
networks together with their estimated distribution under the
power-law hypothesis. The exponent value is computed using
the maximum likelihood estimators described in [23]. From
this viewpoint, results are much more satisfying. Indeed,
the power-law seems to be a good fit for all the networks.
Results of the Kolmogorov-Smirnov (KS) test reported in
Table M consolidate this intuition. Among the nine alternative
distributions under test (Beta, Cauchy, Exponential, Gamma,
Logistic, Log-Normal, Normal, Uniform and Weibull) the Log-
Normal distribution is the only one which exhibits small KS
values. The explanation may be that for low degree values, the
empirical distribution is well approximated by the Log-Normal
and that the Power-Law is a better fit for the tail. Note that this
is not surprising as very similar basic generative models can
lead to either Power-Law or Log-Normal distributions. Based
on these results we can classify the algorithms in two groups.
The first one include DEMON and SVINET that behave in
the same way as AMAZON*. In this group, the Log-Normal
hypothesis might be an alternative, while in the second group
the Power-Law is the only serious hypothesis. When we look
at the Power-Law exponent values reported in Table M, in any
case it is always higher than the one estimated for AMAZON*.
Nevertheless, it is worth noticing that they are in the range
generally observed for most real-world complex networks.
Other parameters such as Average node degree and Max node
degree are quite disparate. It reflects the great variability of
the networks basic properties.

TABLE IV. KS TEST VALUES FOR THE DEGREE DISTRIBUTION. THE
DISTRIBUTION UNDER TEST ARE THE POWER-LAW (PL), BETA (BE),
CAUCHY (CA), EXPONENTIAL (E), GAMMA (GM), LogisTIc (LO),

LOG-NORMAL (LN), NORMAL (N), UNIFORM (U), AND WEIBULL (WB)

[PLTBE[CA] E [GM]LO[ILN[ N [ U [wB]|
AMAZON* [[0.03]0.87]0.23]0.230.87]0.44 | 0.06 | 0.44 | 0.98 [ 0.19
CFINDER [[0.02] 0.4 [0.22]0.39] 0.4 [0.36[0.25[0.38 [ 0.94 | 0.25

LFM 0.02]0.61]0.41]0.61]0.61]0.33]0.37]0.31]0.86]0.33
MOSES [[0.03]0.23]0.23]0.23]0.23[0.25[0.13[0.27]0.83]0.22
GCE 0.02]0.45]0.25]0.45]0.45[0.27]0.24]0.28]0.84]0.27
OSLOM |[0.03]0.41]0.29]0.41[0.41]0.25]0.24]0.24]0.82]0.29
DEMON |[[0.040.17]0.22]0.15]0.14]0.22]0.08 [ 0.24] 0.8 [0.22
SLPA [[0.01] 0.3 [0.24] 03] 0.3 [0.29]0.17[0.31] 0.9 [0.26
SVINET [[0.03]0.36]0.22]0.17]0.34]0.28[0.08|0.31]0.89]0.26

C. Average clustering coefficient as a function of degree

In order to estimate this distribution, we first compute the
local clustering coefficient for every node in the network. Then,
for each set of nodes that has the same degree, we compute the
average clustering coefficient. For a large number of networks,
this distribution can be adequately represented by a Power-
Law [24]. Therefore, we draw the distribution in a logarithmic
scale, as shown in Fig.ll. Results of KS test values are reported
in Table M. In the light of these results, it is not easy to
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Fig. 1. Log-log empirical degree distribution (blue) and Power-Law estimat-
ing (red) of AMAZON* (a), CFINDER (b), LEM (c), MOSES(d), GCE (e),
OSLOM (f), DEMON(g), SLPA (h) and SVINET (i)

TABLE V. GLOBAL PROPERTIES AND ESTIMATED DEGREE
DISTRIBUTION PARAMETERS FOR AMAZON* AND DETECTED
COMMUNITY NETWORKS. THE PARAMETER IS THE POWER-LAW
EXPONENT(cx)

Average degree[Max degree[ a ]

AMAZON* 28.43 19991 2.13
CFINDER 2.88 257 2.67
LFM 1.7 27 3.89
MOSES 5.71 134 3.14
GCE 2.64 57 3.51
OSLOM 2.55 39 3.79
DEMON 11.15 240 3.04
SLPA 4.2 228 3.02
SVINET 9.8 540 3.08

make a definitive conclusion. Indeed, according to the KS
test values, there is three hypothesis that can be satisfactory
for the distribution of AMAZON* (Power-Law, Log-Normal,
Weibull). Nevertheless, it appears clearly on the plot that the
Power-Law is a good fit for the tail. There is no dominant
hypothesis for CFINDER, while the power-law is the most
likely for LEM. For the remaining community networks, results
are more mixed and multiple hypotheses can be satisfying.
Indeed, there is between three and four hypothesis that can be
a good fit if one consider that with a KS test value strictly
smaller than 0.1, the hypothesis cannot be rejected. Note that
the power-law is always one of them.



(a) AMAZON*

(b) CFINDER (c) LFM

Fig. 2. Log-log empirical Average clustering coefficient distributions as a
function of the degree (blue) and Power-Law estimating (red) of AMAZON*
(a), CFINDER (b), LFM (c), MOSES(d), GCE (e), OSLOM (f), DEMON(g),
SLPA (h), and SVINET (i)

TABLE VI. KS TEST VALUES FOR THE AVERAGE CLUSTERING
COEFFICIENT AS A FUNCTION OF DEGREE. THE DISTRIBUTION UNDER
TEST ARE THE POWER-LAW (PL), BETA (BE), CAUCHY (CA),
EXPONENTIAL (E), GAMMA (GM), LOGISTIC (LO), LOG-NORMAL (LN),
NORMAL (N), UNIFORM (U), AND WEIBULL (WB)

[PL [BE [cA [E [6M [LO [LN [N [u [wB |
AMAZON*[]0,03 [0,39 [0.21 [o,1 [0,37 [0.31 [0,04 [0,33 [0.93 [0,05
CFINDER [0,16 [0,19 {024 |02 [02 [0.13 [0.21 [0,14 0,73 [0,31

LFM 0,07 |0,15 0,19 |0,15 |0,15 |0,15 0,1 |0,14 [0,47 0,2
MOSES 0,08 {0,09 (0,11 |0,18 0,14 0,1 0,17 [0,08 [0,31 [0,11
GCE 0,09 {0,06 {0,18 (0,09 |0,08 |{0,12 [0,1 |0,11 [0,47 |02

OSLOM 0,09 {0,08 {0,18 {0,09 (0,1 |0,13 |0,1 [0,13 [0,44 |0,24
DEMON 0,06 [0,04 |0,16 {0,1 0,08 |0,1 |0,12 {0,09 [0,43 |0,16
SLPA 0,05 {0,06 {0,19 0,11 [0,06 |0,17 |0,07 {0,19 0,61 |0,22
SVINET 0,05 {0,07 {0,23 {0,08 0,04 |0,17 |0,09 [0,19 0,65 |0,04

D. Hop distance distribution

The hop plot represents the distribution of pairwise dis-
tances in a network. It is usually represented as a cumulative
distribution. Fig.[d represents the cumulative distribution of the
eight community networks. As shown in Table VTI of KS test
values, there is a clear evidence that the gaussian hypothesis
is the best fit for all the networks except OSLOM. All the
mean hop distance values are higher than the one measured
for AMAZON*. This is also the case for the dispersion as
measured by the standard deviation.

As shown in Table IMII of KS test values, except OSLOM,
the Gaussian distribution hypothesis outperforms all the other

alternative hypotheses under test. SLPA and SVINET pa-
rameters of the Gaussian distribution are the nearest to the
AMAZON#* parameters.

(a) AMAZON*

(b) CFINDER (c) LFM

(e) GCE

Fig. 3. Hop distance cumulative distributions for AMAZON* (a), CFINDER
(b), LFM (c), MOSES(d), GCE (e), OSLOM (f), DEMON(g), SLPA (h), and
SVINET (i)

TABLE VIIL KS TEST VALUES FOR THE HOP DISTANCE. THE
DISTRIBUTION UNDER TEST ARE THE POWER-LAW (PL), BETA (BE),
CAUCHY (CA), EXPONENTIAL (E), GAMMA (GM), LogcisTic (LO),

LOG-NORMAL (LN), NORMAL (N), UNIFORM (U), AND WEIBULL (WB)

[PL [BE [cA [E [GM [LO [LN [N [u [ws |
AMAZON*[[04 [0,27 0,59 [0.66 [0,22 [0.41 [0.43 [0,05 [0.86 [0.91
CFINDER [[026 [0.27 [0.1 [031 [0,34 [0.29 [0,51 [0,03 [0,18 [0.48

LFM 0,13 10,31 |0,22 {0,66 0,25 |0,8 |0,26 {0,05 [0,29 |0,61
MOSES 0,22 10,21 {0,14 {0,8 |0,55 0,6 |0,13 |0,04 [0,49 (0,78
GCE 0,88 10,53 |0,51 {0,76 0,76 |0,1 |0,15 |0,01 [0,88 |0,39

OSLOM 0,7 1021 {0,444 0,15 |0,66 | 0,11 |0,23 |0,11 [0,43 (0,43
DEMON 0,43 (0,41 (0,74 |0,8 0,19 0,46 |0,63 [0,01 [0,09 [0,82
SLPA 0,1 (0,35 (045 (0,13 0,28 0,71 |0,89 [0,05 [0,35 0,59
SVINET 0,75 10,8 10,73 {0,87 [0,61 | 0,45 | 0,67 |0,06 [0,72 |0,29

E. Community size distribution

In [I4], Palla et al. introduce four distributions in order
to quantify the overlapping community structure in complex
networks (the community degree, the community size, the
membership number, the overlap size). The community degree
distribution is just the degree distribution of the overlapping
community network. The membership of a node is its number
of communities and the size of a community is the number
of nodes it contains. Previous analysis [I4],[Z5] on real-
world networks, have shown that these distributions (or at



least that the tail of these distributions) can be adequately
described by a power-law. We performed a comparative study
of the ground truth community structure of AMAZON and the
community structures uncovered by the algorithms. Due to the
lack of space, we report only results for the community size
distribution and comment briefly on the other properties. We
choose to report the community size distribution because it has
been a widely studied property in real-world networks. Fig.B
reports the empirical distributions and the estimated Power-
Law for the ground-truth community structure of AMAZON
and the outputs of the community detection algorithm. The
Power-Law seems to be a good fit in any case. This is
confirmed by the results of the KS test reported in Table
V1. Indeed, the Power-Law exhibits the smallest KS value.
Note that the Log-Normal is not far behind for most of the
algorithms (LFM, MOSES, GCE, OSLOM, DEMON, SLPA
and SVINET). Table IXI reports the number of communities,
the maximal community size, the average community size and
the Power-Law exponent for the community structure under
test. These results confirm our previous remarks about the
great variability of the algorithms. Although, the community
size distribution can be adequately described by a Power-Law,
this common property results in a wide range of situations.
From a qualitative point of view, the same comments can be
made based on the results on the membership and overlap size
distributions.

(a) AMAZON*

(b) CFINDER (c) LFM

Fig. 4. Log-log empirical Community size distribution (blue) and Power-Law
estimating (red) of AMAZON¥* (a), CFINDER (b), LFM (c), MOSES(d), GCE
(e), OSLOM (f), DEMON(g), SLPA (h), and SVINET (i)

V. CONCLUSION

The main objective of this study is to highlight the need to
focus on topological properties in order to evaluate community

TABLE VIIIL KS TEST VALUES FOR THE COMMUNITY SIZE. THE

DISTRIBUTION UNDER TEST ARE THE POWER-LAW (PL), BETA (BE),

CAUCHY (CA), EXPONENTIAL (E), GAMMA (GM), LogisTIc (LO),
LOG-NORMAL (LN), NORMAL (N), UNIFORM (U), AND WEIBULL (WB)

[PL [BE [ca [E [6M [LO [LN [N [u [ws |
AMAZON*[[0,01 [0.68 [0.27 [0.57 [0.68 [0.47 [0.14 [0.48 [0.98 0.2
CFINDER [[0.01 [0.5 [0.26 [0.32 [0.49 [0.39 [0.12 [0.41 [0.94 [0.23

LFM 0.01 |0.16 {0.24 {0.11 |0.16 |0.17 |0.09 {0.19 [0.91 |0.31
MOSES 0.03 {0.19 {0.24 [0.16 |0.16 |0.23 [0.07 [0.25 [0.78 | 0.2
GCE 0.02 [0.19 [0.21 [0.06 [0.18 |0.19 [0.05 [0.22 [0.86 [0.27

OSLOM 0.02 |0.07 {0.22 {0.1 |0.06 |0.13 |0.07 |0.13 |0.81 [0.27
DEMON 0.04 |0.13 {0.21 {0.11 0.1 |0.21 |0.05 |0.24 [0.82 |0.23
SLPA 0.02 {03 [0.23 {0.14 |0.29 |0.28 |0.07 |0.3 [0.91 [0.25
SVINET 0.02 |0.35 {0.21 {0.13 [0.33 |0.29 |0.04 |0.31 [0.9 |0.24

TABLE IX. THE NUMBER OF COMMUNITIES, COMMUNITIES
MAXIMUM SIZE, THE COMMUNITIES AVERAGE SIZE AND THE POWER-LAW
EXPONENT FOR AMAZON AND DETECTED COMMUNITY STRUCTURE

Communities | Maximum size | Average size[ « ]

AMAZON 75149 53551 30,23 2,08
CFINDER 28402 1023 10,16 2,55
LFM 21841 296 6,84 3,98
MOSES 30240 151 10,89 2,81
GCE 17043 402 16,32 4,09
OSLOM 17007 325 20,91 4,47
DEMON 19839 572 26,7 4,67
SLPA 33986 740 13,26 3,22
SVINET 25302 1073 19,51 2,86

detection algorithms. Indeed, evaluation of community detec-
tion algorithms usually relies either on nodes classification or
on quality metrics that encode a desirable community structure
property. A good score is considered as the evidence that the
uncovered community structures correspond to the underlying
community structure. In this work, we present a comprehensive
analysis of overlapping community structure of a large-scale
real-world network. The ground-truth community structure is
compared with the output of eight different overlapping com-
munity detection algorithms. To do so, we use the overlapping
community networks where the nodes are the communities
and the links describe the overlap between two communities.
This allows us to analyze several properties of their topological
structure. Results clearly show that no community detection
algorithm is able to recover the ground truth community struc-
ture. Furthermore, there are substantial differences between the
algorithms. But one must remain cautious because these results
may be specific to the dataset. It is therefore crucial to extend
this work by a systematic study of various typical real-world
networks. Anyway, these results confirm the remarks reported
in previous studies [I], [S§], [TZ] that there are significant
differences between ground truth communities and structural
communities uncovered by community detection algorithms.
Consequently, a more detailed analysis of the community
structure is needed in order to validate the algorithms.
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