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Experimental and numerical investigation of energy

dissipation in elastomeric rotational joint

under harmonic loading
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· Jean Luc Dion1
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Imad Tawfiq1
· Mohamed Haddar2

Abstract This paper focuses on energy losses caused by inner damping and friction in

an elastomeric rotational joint. A description of the design of a new experimental device

intended to characterize dynamic stiffness in rotational elastomeric joint is presented. An

original method based on Lagrange’s equations, which allows accurately measuring forces

and torques only with accelerometers, is proposed in order to identify dissipated energy

in the rotational elastomeric joint. A rheological model developed taking into account de-

pendence of the torque and the angular displacement (rotation). Experimental results and

simulations used to quantify the dissipated energy in order to evaluate the damping ratio are

presented and discussed.
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1 Introduction

Elastomeric materials are often integrated into mechanical structures in order to minimize

vibrations and for sealing functions. Elastomeric components are indispensable elements in

designing intended dynamic behavior of mechanical systems. However, elastomeric materi-

als exhibit significant nonlinear behavior (Coveney et al. 1995) which is generally neglected

or, at most, largely simplified. Consequently, to ameliorate characterization and prediction,

a complete mechanism model ought to include connections and joints between solids, not

to merely model the free relative degrees of freedom to consider the related kinematics but

also stiffness and damping.

Over the years, much research has been dedicated to describe the nonlinear behavior of

an elastomer and to determine its dynamic characteristics. A nonlinear viscoelastic solid

model was developed by Gandhi and Chopra (1996) in which a nonlinear lead spring was

used in series with a single linear Kelvin chain. Using this model, the variation of complex

modulus with oscillation amplitude closely matched experimental data. However, param-

eters in this model are identified using amplitude-dependent complex modulus data. As a

result, the nonlinear hysteresis behavior could not be captured using this model. Maxwell

model represented by Park (2001) as a spring and dash-pot connected in series and Kelvin

Voigt model which consists of a spring and dash-pot in parallel are efficient only on a small

frequency range. The Zener model (see Huynh et al. 2002) underestimates the dynamic stiff-

ness at low frequencies and overestimates it at high ones. Just like Kelvin Voigt model, the

Zener model is unable to capture the frequency dependence of the phase angle.

Elastomeric joints typically demonstrate tribo-visco-elastic behavior (Hu and Wereley

2007). Indeed, elastomeric components play an essential part in vibration damping and en-

ergy dissipation in mechanical systems. Energy dissipation in elastomeric joint results not

only from inner damping caused by material molecular structure but also friction forces at

clamping areas as joints play an important role in the energy losses.

A number of researchers have combined springs, dash-pots and frictional slides to repre-

sent tribo-visco-elastic behavior of elastomeric joints. In the model developed by Tarzanin

and Panda (1995), the elastomeric behavior was represented by a nonlinear spring and a

nonlinear Coulomb friction damper. This model was based on single frequency elastomer

data and matched the value of energy dissipation per cycle. Panda et al. (1996) replaced the

Coulomb friction damping element with a variable friction damping element whose force

was calculated based on the peak displacement of excitation when the velocity was zero.

This model correlated well with the experimental hysteresis data, but the effectiveness of

this model over a range of amplitudes and frequencies has not been demonstrated in the

literature.

To improve the description of dynamic behavior, other models have been developed with

internal state variables that determine the level of friction and velocity. The evolution in time

of the state variables is governed by a set of differential equations. The Dahl Model (see Dahl

1968) incorporates a state variable to model presliding displacement. Dahl’s starting point

was the linear stress–strain curve and steady-state version of the Dahl model is Coulomb

friction. A stress shift function used by Strganac (1997) to formulate a nonlinear time do-

main model for elastomers, but the nonlinear integral formulation in the model was difficult

to implement in traditional aeromechanical analysis. Lesieutre and Bianchini (1993) devel-

oped an anelastic displacement field (ADF) method to describe the frequency-dependent

behavior of viscoelastic materials. It was based on the notion of scalar internal variables or

augmenting thermodynamic fields (ATF) (Lesieutre and Mingori 1990) that described the in-

teraction of the displacement field with irreversible processes occurring at the material level.
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An ADF based model containing nonlinear fractional derivatives and frictional elements is

developed by Ramrakhyani et al. (2004). This model used eight parameters to capture the

amplitude-dependent and mild frequency-dependent modulus. However, the prediction of

hysteresis loops was not noticeably improved, and the determination of model parameters

remains complicated.

In order to capture the characteristic nonlinear hysteretic behavior of elastomeric ma-

terials, (Cantournet et al. 2009) worked on the identification of the nonlinear behavior in

large deformations and presented a thermodynamical model of internal friction and hystere-

sis of elastomers based on the study of physical structure of filled elastomers which allows

the identification of the state variables needed to model the behavior of elastomeric ma-

terials. Almajid (2004) offered a generalization of Dahl model, which was then applied to

mechanical components with nonlinear behavior especially in mechanical assemblies whose

purpose is to rigidly bind two metallic parts which dissipate energy by macro-slip in inter-

faces. The Iwan model which is an internal variable model introduced by Segalman (2005,

2006) provides formulation of idealized “Jenkins elements” and appears capable of repro-

ducing the important joint qualitative properties using only a small number of parameters,

but this model reflects poorly viscoelasticity. Skouvaklis et al. (2012) presented a study of

rubber sliding on ice, investigating speed, load, temperature, and rubber properties. Dahl

model was used in this study to characterize friction of elastomeric joints.

Several experimental investigations have been carried out to characterize dynamic be-

havior of elastomeric components depending on frequency. Barbosa and Farage (2008) and

Castello et al. (2008) used Frequency Response Function (FRF) which can only character-

ize the frequencies of modes and not a wide frequency band. Luo et al. (2010) and Liu and

Hoo Fatt (2011) used Dynamic Mechanical Analysis (DMA) to identify mechanical propri-

eties of elastomeric rubber and to describe strain–amplitude-dependent hysteresis losses.

The aim of this work is to characterize the nonlinear behavior caused by vibration damp-

ing and friction and to identify energy losses of elastomeric joint under rotational harmonic

loading. A new experimental setup is designed to identify the dynamic behavior of viscoelas-

tic component; torsion dynamic tests are performed on elastomeric joint (rubber sample) for

different excitation frequencies.

In this paper, after having presented a description of the experimental procedure to

characterize dynamics of the elastomeric joint, dynamic properties are identified using La-

grange’s equations to determine the equation of motion of the system, and a new approach

of post-processing experimental signals and verification of the post processing equations in

order to acquire angular accelerations from measured tangential accelerations are presented.

In Sect. 3, a rheo-tribological model is extended to take the dependence of the torque

on the angular displacement into account. The capital concern of this extension subsists

in the technology of rotational elastomeric joint that often exhibits such dynamic behavior

induced essentially from vibration damping and interfaces friction. Parameters of the rheo-

tribological extended model are identified from torsion dynamic tests for different excitation

frequencies. Comparison between measurements and simulations of hysteretic behavior of

the elastomeric joint are carried out in Sect. 4 and used to quantify the dissipated energy in

order to compute the damping ratio.

2 Characterization of dynamic stiffness under cyclic rotational loading

One of the unique characteristics of viscoelastic elastomeric materials is that their properties

are influenced by many parameters. They can include frequency, dynamic displacement rate,
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Fig. 1 Hysteresis loop for

rotational harmonic excitation

static pre-load, time effects such as creep and relaxation, and other irreversible effects. In

working with this class of materials, we strive to define the materials complex modulus

(stiffness and damping properties) as a function of these parameters.

Considering an elastomeric rubber sample subjected to cyclic sinusoidal angular dis-

placement (rotation) of angular frequency ω, the corresponding torque response is assumed

to be sinusoidal at the same frequency but with a dephasing angle ϕ. However, this as-

sumption, called the first harmonic, is not sufficient. Typically, the system response contains

higher order harmonics, and the real response is expressed as follows:

M(t) =
∑

k

Mk sin(kωt + ϕk). (1)

The elliptical shape in Fig. 1 corresponds to a typical hysteresis loop for a viscoelastic

material; however, the dashed–dotted curve corresponds to a realistic nonlinear response.

Under the assumption of the first harmonic, the energy dissipated as heat during a cycle

corresponds to the area enclosed by the loading and unloading curves shown in Fig. 1 and

expressed as follows:

Ed =

∮

M(t)dx = M0θ0ω

∫ T

0

cos(ωt) sin(ωt + ϕ)dt = πM0θ0 sin(ϕ). (2)

The dissipated energy during a hysteresis cycle reflects the damping properties of the mate-

rial.

The complex modulus K∗(ω) relates the Fourier transform of the angular displacement

θ̂ (ω) and the corresponding torque M̂(ω)which is defined using Hooke’s Law as follows:

M̂(ω) = K∗(ω)θ̂(ω). (3)

The complex modulus is usually used to characterize viscoelastic materials under harmonic

excitation. The dynamic stiffness is determined point by point and only at the excitation

frequency. The torque response is a multi-harmonic-Fourier series, only the response of the

torque to the fundamental frequency of the excitation is kept.
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Fig. 2 Experimental device of torsion dynamic tests

The dynamic stiffness for an angular frequency ω0 is represented as:

K∗(ω) =
M̂(ω)

θ̂(ω)

∣

∣

∣

∣

ω=ω0

=
M0

θ0

· exp(jϕ) = K ′(ω) + jK ′′(ω), (4)

|K∗| =
M0

θ0
is the dynamic stiffness magnitude.

The storage (or in-phase) modulus is a measure of the energy stored over a cycle or period

of oscillation

K ′ =
∣

∣K∗
∣

∣ cosϕ =
M0

θ0

· cosϕ. (5)

The loss (or quadrature) modulus is a measure of the energy dissipated over a cycle

K
′′
=

∣

∣K∗
∣

∣ sinϕ =
M0

θ0

· sinϕ. (6)

3 Description of the experimental setup

A description of the experimental device particularly designed to characterize vibrational

damping causing energy dissipation by both inherent damping and interfaces friction in a

rotational elastomeric joint is presented.

The experimental bench is made up of two distinct parts, see Fig. 2. An operative part,

called test bench, allows applying cyclic mechanical loads to the sample. The bench is in-

strumented. The second part is intended to generate signals and process the data coming

from the operative part to control it. This part includes all vibration analysis systems.

The test bench is composed of two rectangular sections beams mechanically coupled by

a connection formed by a screw and the cylindrical rubber sample which dimensions 3 mm

thickness and 14 mm diameter. The rubber sample is placed between the two rigid, flat

and parallel plates at the juncture of clamping area. Fixtures and grips were designed and

machined to hold the specimen in place as exposed in Fig. 3.

Mechanical cyclic loads are made up using an electrodynamic shaker as shown in the

schema of Fig. 4. The electrodynamic shaker induces a vibratory motion of the first beam,

the structure being free (not suspended), and under excitation a torque is created at the junc-

tion, which leads to the motion of the second beam. Harmonic sine forces are performed

using the shaker. The force is measured directly with a force sensor incorporated in the
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Fig. 3 Schema of vibrating mechanism

Fig. 4 Schema of the experimental setup

loading axis (between the shaker and the first beam). The force sensor is connected to an

operational amplifier. This connection allows controlling the shaker force. Vibration mea-

surements are carried out using three accelerometers placed as follows: two on the first beam

and one on the second beam. A schema of the experimental setup is shown in Fig. 4.

Elastomeric sample undergoes a normal preload and twisting moment (torque). An annu-

lar force sensor is used to determine the preload during dynamic torsion tests. To determine

the value of the preload at the junction, the annular force sensor is connected to an oscillo-

scope.

Tests are performed with sweeping sine signal created by a signal generator to power the

shaker. Excitations are carried out at stabilized frequency using the signal generator. The
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Fig. 5 Vibratory analysis chain

shaker is controlled by the amplifier and the system is managed by a spectral analyzer com-

puter code. Figure 5 shows the vibratory analysis chain. Devices of the vibratory analysis

chain are well shown in the experimental bench presented in Fig. 2.

The force signal at the junction of the two beams (preload) is filtered and captured in the

oscilloscope. Preload is seen as a constant signal on the oscilloscope.

Before the acquisition of measurements, to account for stress softening effect, called

the ‘Mullins Effect’, (Cantournet et al. 2009), the elastomeric rubber sample “is cycled”

until its dynamic characteristics are identical between two consecutive readings. In general,

these repeatability tests were used to check the convergence of the behavior towards stable

characteristics.

For the various tests, we neglected any thermal gradient within the rubber. Testing was

carried out with varying excitation amplitudes and frequencies, and all tests were conducted

at room temperature: 20°C. Excitation frequencies chosen are [5, 30, 60, 75] Hz. Elastomeric

material presents different behavior according to amplitude of angular displacement (rota-

tion) and conforming to the imposed static preload as illustrated in works of Saad et al.

(2006) and Rendek and Lion (2010).

Tests are performed for different levels of static preload imposed at the juncture of clamp-

ing area P = [45, 100, 150, 500] N. Tangential accelerations and forces signals are trans-

ferred to a computer via the data acquisition card with a sampling frequency fs = 2 kHz. The

dynamic stiffness is obtained, for each frequency of excitation by the Frequency Response

Function: Twisting moment (torque)/Angular displacement (rotation) identified using La-

grange’s formalism.

4 Experimental characterization

4.1 Experimental approach

The aim of the experimental investigation is to evaluate the energy dissipated by both inher-

ent damping and interfaces friction in a rotational elastomeric joint in order to evaluate the
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Fig. 6 Experimental methodology

damping ratio. To reach this goal, two phases are indispensable to precisely measure forces

and torques only with accelerometers.

– The first phase is to find the equation of motion of the system to express the torque ac-

cording to the angles of rotation (degrees of freedom of the structure).

– The second step involves post processing signals delivered by accelerometers in order to

transform the measured tangential accelerations in angular accelerations and then inte-

grated them into system motion’s equations in order to obtain the hysteresis curves, i.e.,

the torque according to angular displacement.

Consequently, dissipated energy at elastomeric joint level is given by the closed area of

hysteresis loops. Figure 6 provides better explanation of experimental methodology.

4.2 Equation of motion assessment

Lagrange’s equations are used to find the equations of motion of the structure shown in

Fig. 7.

Three independent parameters θ1, θ2 and x1 are required to describe the motion of the

structure.

4.2.1 Kinetic energy of the system

The kinetic energy of the system is due to tangential and angular displacement; it is ex-

pressed as a function of parameters of the structure as follows:

Ec =
1

2
(m1 + m2)ẋ

2
1 +

[

I1

2
+

m2

2

(

l1

2
− e

)2]

θ̇2
1 +

[

I2

2
+

m2

2

(

l2

2
− e

)2]

θ̇2
2

+ m2ẋ1θ̇1

(

l1

2
− e

)

cos θ1 + m2ẋ1θ̇2

(

l2

2
− e

)

cos θ2
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Fig. 7 Schema of motion of the

two beams

+ m2

(

l2

2
− e

)(

l1

2
− e

)

θ̇1θ̇2 cos(θ1 − θ2), (7)

where

mi , mass of beam i (i = 1,2);

Ii , inertia moment of beam i (i = 1,2);

li , length of beam i (i = 1,2);

θi , angular displacement of beam i (i = 1,2);

xi , tangential displacement of center of gravity Gi of beam i (i = 1,2);

e, length of common surface at junction between the two beams as shown in Fig. 8.

4.2.2 Potential energy of the system

The potential energy of the system results from gravity, it is expressed as

Ep = m2g

[(

l2

2
− e

)

(1 − cos θ2) +

(

l1

2
− e

)

(1 − cos θ1)

]

(8)

where g is the gravitational acceleration.

4.2.3 Lagrange’s equations

The Lagrange equations are given by the following system:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

d

dt

∂Ec

∂θ̇1

−
∂Ec

∂θ1

+
∂Ep

∂θ1

= MF

d

dt

∂Ec

∂θ̇2

−
∂Ec

∂θ2

+
∂Ep

∂θ2

= M

d

dt

∂Ec

∂ẋ1

−
∂Ec

∂x1

+
∂Ep

∂x1

= F

(9)

where
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Fig. 8 Diagram of

accelerometers positions on the

two beams

F , the driving force of the shaker;

M , the twisting moment (torque) at the junction between the two beams;

MF , the moment of the force F .

Considering d1 =
l1
2

− e and d2 =
l2
2

− e, after derivation, we find the expressions of MF , F

and M :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

MF = (I1 + m2d
2
1 )θ̈1 + m2d1ẍ1 cos θ1 + m2d1d2θ̈2 cos(θ1 − θ2) + m2d1d2θ̇

2
2 sin(θ1 − θ2)

+ m2gd1 sin θ1

M =
(

I2 + m2d
2
2

)

θ̈2 + m2d2ẍ1 cos θ2 + m2d1d2θ̈1 cos(θ1 − θ2) − m2d1d2θ̇
2
1 sin(θ1 − θ2)

+ m2gd2 sin θ2

F = (m1 + m2)ẍ1 + m2d2θ̈2 cos θ2 − m2d2θ̇
2
2 sin θ2 + m2d1θ̈1 cos θ1 − m2d1θ̇

2
1 sin θ1

(10)

In what follows, we are interested in using the expression of twisting moment as a function

of rotation angles.

M =
(

I2 + m2d
2
2

)

θ̈2 + m2d2ẍ1 cos θ2 + m2d1d2θ̈1 cos(θ1 − θ2) − m2d1d2θ̇
2
1 sin(θ1 − θ2)

+ m2gd2 sin θ2. (11)

4.3 Post processing of experimental data

In this part, we try to find expressions of tangential accelerations ẍ1, ẍ2 and angular acceler-

ations θ̈1, θ̈2 of beam 1 and beam 2, respectively, from signals delivered by accelerometers.

Figure 8 shows a diagram of the positions of accelerometers on the structure.

Measured accelerations at the points A, B and D (γA, γB and γD) are expressed according

to the structure parameters. Accelerations γA and γB are given by:

γA = ẍ1 + dAθ̈1, (12)

γB = ẍ1 + dB θ̈1, (13)

γD = ẍ2 + dD θ̈2. (14)

Then, we obtain tangential acceleration and angular acceleration at the center of gravity G1

of the beam 1:

θ̈1 =
γA − γB

dA − dB

, (15)
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ẍ1 =
1

2

(

γA + γB − (dA + dB)θ̈1

)

. (16)

The point C is at the junction between the two beams; therefore, the acceleration γc can be

expressed in two ways:

γc∈1 = ẍ1 + dC θ̈1, (17)

γc∈2 = ẍ2 − d2θ̈2. (18)

Thus, the tangential acceleration and angular acceleration at the center of gravity G2 of the

beam 2 are expressed as:

θ̈2 =
γD − γc∈1

(dD + d2)
, (19)

ẍ2 =
1

2

(

γc∈2 + γD − (dD − d2)θ̈2

)

. (20)

In order to obtain displacements, the first and second integration of acceleration signals

are necessary. The Fourier transform (FFT) and the inverse Fourier transform (IFFT) are

used in the integration algorithm in order to reduce the noise of acceleration signals and to

reconstruct the input accelerations.

Assuming that θ = θ2 − θ1, which is the angular displacement (rotation), the equation of

motion M = f (θ) can be subsequently determined. Figure 9 provides a better explanation

of post-processing methodology.

4.4 Experimental results

Twisting moment (torque) and angular displacement (rotation) relationships are plotted us-

ing signals delivered by accelerometers. Hysteresis loops obtained from the experimental

results of torque versus angular displacement at an excitation frequency of 60 Hz and a

preload imposed at the juncture of clamping area P = 100 N are presented in Fig. 10.

It can be seen that at low amplitudes, the experimental hysteresis plots are nearly elliptical

in shape, while for higher amplitudes there are deviations from this elliptical behavior. These

deviations are due to the viscoelastic and frictional damping.

Depending on the preload imposed to the sample, nonlinear dynamical effects due to fric-

tion can be expected at the juncture of the clamping area of contact of the beams. For small

displacements, friction is driven by micro-slip and partial slip while for high displacement

the shape of the curve clearly shows macro slipping behavior.

The area inside the curve is the dissipated energy as heat during micro-slip per cycle.

The more is the hysteresis in torque–angular displacement areas: the greater the energy

dissipation, the higher the damping ability.

5 Nonlinear rheo-tribological model

5.1 Modeling approach

Vibration damping is a phenomenon by which mechanical energy is dissipated and mostly

converted to heat energy in dynamic systems. Two major ways of vibration damping can be
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Fig. 9 Post-processing of

experimental data methodology

Fig. 10 Experimental hysteresis

plots. Torque as a function of

angular displacement

distinguished within elastomeric joint: internal damping wherein energy dissipation is due to

material molecular structure and interfaces damping—at joints which for energy dissipation

is at connection of clamping area of built up structures that undergo relative motion during

vibration due to friction. Considering these two mechanisms of energy dissipation, a com-

pact model was developed and studied in previous works; see Jrad et al. (2013a, 2013b).

We use this model as the basis, in this paper, in order to model the dynamic behavior of

12



Fig. 11 Generalized Maxwell

model

elastomeric joint subjected to harmonic rotational loading. A rheo-tribological model is de-

veloped by combining a rheological model and dry friction model, and extended taking into

account dependence of the torque and the angular displacement (rotation).

The mechanical properties of a viscoelastic material can be represented by a Generalized

Maxwell Model (GMM) which consists of a spring and several Maxwell cells (a spring

and dashpot in series) assembled in parallel, see Fig. 11. GMM is equivalent to a complex

modulus approach (Hu and Wereley 2007). It can describe relaxation which does not occur at

a single time, but in a set of times. Due to Maxwell cells of different lengths with shorter ones

contributing less than longer ones, there is a varying time distribution. Although the GMM

cannot identify the creep process after a constant stress is applied to a material specimen, it

can successfully characterize stiffness and damping during steady-state harmonic excitation

(Popov and Geike 2007). Therefore, it is the simplest approach to describe the nonlinear

behavior of elastomeric materials based on a Generalized Maxwell Model.

For the elastomeric joint subjected to harmonic angular displacement θ(t), its response

is the sum of the spring feedback M0(t) added to each cell reaction, denoted M(t):

M(t) = M0(t) +

N
∑

i=1

Mi(t). (21)

The rheological formulation of the dynamic stiffness of GMM is

Z(ω) = K0 +

N
∑

i=1

jωKiCi

Ki + jωCi

(22)

where K0 is the stiffness taken at ω = 0, i.e. t = +∞, Ki is the stiffness of the ith spring

and Ci is the damping of the ith dashpot, i ∈ [1..N ].

Reducing Eq. (22) to the same denominator and grouping monomials gives the dynamic

stiffness of linear GMM expressed as the ratio of two polynomials of the same degree N

(number of Maxwell cells) (Renaud et al. 2011). This formulation of transfer function is

also used in automation, namely, Oustaloup (1991) provided a model using poles and zeros
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Fig. 12 Spring of Dahl model

formulation (PZF).

Z(ω) = K0

N
∏

i=1

(

1 + (jω/ωz,i)

1 + (jω/ωp,i)

)

(23)

ωz,i and ωp,i are respectively the zero and the pole of the ith pole–zero couple, i ∈ [1..N ].

This operator called by Oustaloup (1991) “CRONE regulator” facilitates considerably the

treatment and the parametric identification of the polynomial ratio by expressing it in prod-

uct form.

Several models have been studied in order to describe the dynamic friction observed for

elastomeric samples. Most dynamic models of frictional behavior are built with internal state

variables of kinematic type; however, these variables cannot be identified as real physical

displacements (De Wit et al. 1995; Lampaert et al. 2002; Segalman 2005, 2006). The first

model of this kind was proposed by (Dahl 1968) within frictional behavior was explained

with an analogy for the stress–strain property for materials. Dahl compared this with the

spring like elastic material behavior, occurring in the bonding forces between the two sur-

faces, Fig. 12. Therefore, Dahl model is used to model dynamic friction appearing at the

elastomeric joint interfaces.

Dahl’s model is mathematically very well formulated to be integrated in ODEs such as

those which govern vibrations. These equations can be solved numerically in time domain

(Dahl 1968; De Wit et al. 1995) or analytically (Dahl 1968).

Dahl proposed to model pre-displacement and hysteresis using the following expressions:

⎧

⎪

⎨

⎪

⎩

dz

dt
= θ̇ |1 −

M

Mmax

sign(θ̇)|α sign

(

1 −
M

Mmax

sign(θ̇)

)

M(t) = σz(t)

(24)

where M is the frictional torque, z is the internal displacement state variable, σ is homo-

geneous with stiffness, Mmax is the maximum torque reached, and α ∈ R∗
+ is a constant

parameter which represents hysteresis torque–angular displacement curve, θ is the relative

angular displacement, and θ̇ is the relative angular velocity.

From the viewpoint of modeling friction, Dahl’s model can be considered as a nonlinear

rheological model (Jrad et al. 2013a, 2013b; Dion et al. 2013). Moreover, Dahl model simu-

lates nonlinear frictional behavior without frequency information; whereas, GMM captures

the linear behavior of the elastomer under frequency excitation.

Thus, in this work, for combining the Dahl model and GMM it will be assumed that the

torque generated by the frictional spring of Dahl model, M(t) = σz(t) is viscoelastic, so that

σ will be modeled by GMM. Hence, during the imposed displacement θ(t), the frictional

spring will stretch to z(t)which will excite the GMM.
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Fig. 13 Identification using

hysteresis curves

Basing in this approach, a rheo-tribological model is developed by coupling GMM and

Dahl model taking into account dependence of the torque and the angular displacement

(rotation):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ż(t) = θ̇ (t)

∣

∣

∣

∣

1 −
M(t)

Mmax

sign
(

θ̇ (t)
)

∣

∣

∣

∣

α

sign

(

1 −
M(t)

Mmax

sign

(

θ̇ (t)

))

M(t) = K0z(t) +

N
∑

i=1

Ki

(

z(t) − δi(t)
)

Ki

(

z(t) − δi(t)
)

= Ci δ̇i(t)

Mmax = μMN

(25)

where μ is the coefficient of sliding friction and MN is the torque due to normal preload.

5.2 Parametric identification techniques of the rheo-tribological model

The parametric identification is based on the subsequent model (Eq. (25)). This model needs

to be previously identified with an experimental test. In that way, this phenomenological

model could not be considered as a predictive model. Experimental tests are performed

with periodic signals and allow identifying model parameters. In this section, the parametric

identification method has been built to provide accuracy and can be automatically executed

for a broad-based measurement campaign.

Hysteresis loops of Torque–Angular displacement involve details which enable identifi-

cation of parameters of the proposed model. Techniques are proposed to identify viscoelastic

parameters K0, Ki and Ci and friction parameters μ and α.

The quasi vertical part of the curve represents the system stiffness. The horizontal part of

the curve is the significant behavior of the slip as shown in Fig. 13. Most parametric models

(Dahl 1968; De Wit et al. 1995; Almajid 2004; Segalman 2005, 2006; and Thaijaroen and

Harrison 2010) can be identified with this kind of curves.

Figure 14 shows torque (twisting moment) versus angular displacement (rotation) as a

function of stiffness; the dashed lines with a mostly vertical direction define stiffness. In-

deed, the dynamic stiffness is given by the slope of the hysteresis loop.
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Fig. 14 K0 parameter identification

The first cycles of the diagram show pure ellipsoid curves which correspond to linear

viscoelastic behavior. Thus, K0 identified at the beginning within displacement is small and

its value is estimated to be the slope of the major axis of an ellipse (in the Fourier sense)

which coincides with one selected cycle of the first cycles as illustrated in Fig. 14.

Once we have determined K0, the identification of Ki and Ci is built on hypothesis

proposed by Renaud et al. (2011) who proposed expressions that allow quantifying Ki and

Ci parameters of GMM using PZF (Poles–Zeros Formulation).

Considering N Maxwell cells, Ki and Ci coefficients are given by the following equa-

tions after computing poles and zeros adequate to the studied frequency range:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Ki = K0

N
∏

h=1

(

ωp,h

ωz,h

)(

ωp,i − ωz,h

ωp,i + ωp,h(δih − 1)

)

Ci =
Ki

ωp,i

(26)

The method used to determine the poles and zeros is analogous to the approach proposed

by Oustaloup (1991) which main idea leads to consider the angle phase equal to π/2 be-

tween zero and pole of the same order and null elsewhere (Fig. 15). The resulting phase

angle in the considered frequency range is then estimated by averaging the phase angle

computed between the first zero and the last pole (Renaud et al. 2011).

It will be assumed that the ratio between two consecutive zeros is constant and equal to

the ratio between two consecutive poles in order to obtain a constant phase between two

consecutive zeros, two constants χ and γ are then obtained by the following equations:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ln(χ) = φ
ln(f2) − ln(f1)

φ + π
2
(N − 1)

ln(γ ) =

(

π

2
− φ

)

ln(f2) − ln(f1)

φ + π
2
(N − 1)

(27)
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Fig. 15 Constant phase angle approach

where f1 and f2 are respectively the upper and lower bounds of the frequency domain. φ is

the estimated mean phase angle for all tests.

It will be considered that the first zero coincides with f1 and the last pole with f2, as

shown in Fig. 15, using this assumption χ and γ can be determined. The identification of

Ki and Ci can be performed using a ratio of two polynomial functions defined by zeros and

poles. Initially, the zeros are determined from the first zero, then, the poles are computed

from the last pole:
⎧

⎪

⎨

⎪

⎩

ωz,i+1 = ωz,iχγ

ωp,i =
ωp,i+1

χγ

(28)

The relationship gathering zeros and poles is given by Eq. (29), so that all poles and zeros

are estimated and Ki and Ci can be predicted:

ωp,i = χωz,i . (29)

The prediction of vibration levels is directly linked to the parameters of friction models

(Jrad et al. 2013a, 2013b). The friction coefficient μ is defined by the horizontal tangent

when the torque M reaches its maximum as shown in Fig. 16. Hence, the friction coefficient

is identified for the dynamic torsion test with static preload P using the given expression:

μ =
Mmax _ tan

Pℓ
(30)

with ℓ being the thickness of the beam.

Table 1 shows estimated friction coefficient and maximum torque reached corresponding

to the different tested preloads.

We consider then that the identified friction coefficient is constant and its value is μ =

0.3.

The identification of αis based on the work of Peyret et al. (2010) who showed that there

is an accurate identification between loading phase of contact between two surfaces defined
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Table 1 Estimated friction coefficient

Preload P [N] 45 100 150 500

Maximum tangent torque Mmax_tan [N m] 0.026 0.063 0.09 0.31

Friction coefficient μ 0.29 0.315 0.3 0.31

Fig. 16 Friction coefficient

identification

by Mindlin (1949) and parameters of Dahl model, in particular the constant parameter α

which represents the shape of the hysteresis loop. Parametric analyses performed in this

study with several excitation amplitudes and preloads have shown that α can be set at 1/3

which is in concordance with Peyret et al. (2010) results.

Considering N = 4 Maxwell cells, the previous identification method aims to reduce the

number of 11 parameters (9 viscoelastic parameters and 2 friction parameters) to 3 indepen-

dent and recognizable parameters that can be identified with only one test.

The proposed identification method is robust and has been applied for a very large num-

ber of tests with several frequencies and normal loads.

6 Results and validation

After the model parameters were determined, the output torque was predicted using known

angular displacement input data, and then the torque–angular displacement hysteresis curves

were reconstructed. In this section, in order to assess the model’s capability in describing

elastomer behavior under the complex loading conditions the reconstructed hysteresis curves

and test data were compared for different displacement amplitudes.

Figure 17 shows comparison of the reconstructed hysteresis cycles of torque–angular

displacement using the hysteresis model and the experimental data in the amplitude range

of [−6,5 · 10−5; 6,5 · 10−5] rad at 60 Hz and under 100 N of normal preloading.

It can be noticed that simulated hysteresis matches the experimental data very well.

Moreover, using the identified friction parameters, a torque–angular displacement hysteresis

due to friction damping is reconstructed. It is known that energy dissipation due to the damp-
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Fig. 17 Measured and simulated

torque–angular displacement

curves overlayed one above the

other

ing corresponds to the enclosed area inside the torque–angular displacement hysteresis loop.

The area enclosed by the total torque–angular displacement hysteresis loop is equal to the

area enclosed by the damping hysteresis. This proves that the nonlinear damping equation’s

system (Eq. (25)) precisely describes the energy dissipation while the elastomer specimen

is under harmonic loading.

It can also be seen that at low amplitudes [−8,5 · 10−6; 8,5 · 10−6] rad, the experimental

hysteresis plots are nearly elliptical in shape, while for higher amplitudes (starting from

[−4 · 10−5; 4 · 10−5] rad) there is a deviation from this elliptical behavior. It is shown that

the rheo-tribological model performs well in the moderate amplitude range, except it over-

predicts the inner loop in some cases. However, the response under harmonic loading with

varying amplitude is generally well correlated with model predictions.

Comparisons between measures and simulations of the torque–angular displacement

curve are conducted for the different frequencies, preloads and angular displacement am-

plitudes and the quality of fitting between simulations and measurements in Fig. 17 is sim-

ilar for most of the carried out tests. As a result, modeling results can accurately capture

the hysteresis behavior exhibited by the elastomer. Indeed, compared to the elastomer hys-

teresis models developed by Snyder et al. (2001) and Hu and Wereley (2007), the current

nonlinear model more accurately captures nonlinear torque–displacement time histories un-

der harmonic loading.

Furthermore, the scope of this work is to predict damping caused not only by inherent

elastomeric material but also frictional damping with the aim of providing a model capable

of describing the energy losses and the damping ratio.

In this part, we expect to evaluate dissipated energy in order to estimate the damping

ratio.

It is well known that the area enclosed by the loading and unloading curves of hystere-

sis loops corresponds to the energy dissipated Ed as heat during cycles by both inner and

frictional damping. Figure 18 represents the evolution of the dissipated energy versus the

amplitude of the angular rotation θ under a normal load 100 N. The shape of the curve

highlights the nonlinear dissipative behavior of the elastomeric joint under torsion harmonic

loading; indeed, the dissipated energy depends strongly on the angular amplitude of rota-

tion.
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Fig. 18 Progression of

dissipated energy as a function of

the amplitude of angular

displacement

Fig. 19 Progression of damping

ratio as a function of the

amplitude of angular

displacement

The damping ratio ξ can be defined by the ratio between the dissipated energy Ed and

the reference energy Er , (Jrad et al. 2013a, 2013b):

ξ =
4

π

Ed

Er

(31)

where the reference energy Er for periodic signals is given by the following equation:

Er = 4θmaxMmax. (32)

Here θmax is the amplitude of angular displacement.

The evolution of damping ratio ξ as a function of angular displacement θ is presented in

Fig. 19. It can be clearly observed that the damping ratio increases as the angular displace-

ment increases. Therefore, we can say that the damping ratio is strongly dependent on the

amplitude of the angular displacement which induces the nonlinear effects well shown in

Fig. 18, since the form of the curve is parabolic.
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The dissipated energy and damping ratio determined by the proposed model is also com-

pared to the experimental result. As shown in Figs. 18 and 19, the predicted dissipated

energy and damping ratio using the model have the same amplitude dependent trend as the

experimental result.

It can be concluded that the rheo-tribological can precisely describe the characteristics of

the hysteresis loops and predict dissipated energy and damping ratio under slowly-varying

amplitude of angular displacement.

The fidelity of the model was verified by the good correlation between simulations and

the experimental results.

7 Conclusion

In a complex mechanism, the level of vibration strongly depends on its dissipation in the

connected parts. This paper presents theoretical and experimental study on an assembled

structure with a rotational elastomeric joint. A test bench was designed for improving the

accuracy of measurements of nonlinear dissipative behaviors of the frictional interfaces of

the elastomeric rotational joint and for quantifying the energy dissipated in order to compute

the damping ratio at the interfaces under harmonic rotational loading. A new approach to

post-processing experimental signals based on Lagrangian formalism, which allows accu-

rately measuring forces and torques only with accelerometers, is proposed in order to iden-

tify dissipated energy in the rotational elastomeric joint. Measurement techniques and signal

processing methods highlight excellent concordance between both direct measurements and

parametric identification. A rheo-tribological model is a time-domain modeling approach to

capture nonlinear behavior of the rotational elastomeric joint. The proposed model is able

to accurately reconstruct the nonlinear hysteresis behavior exhibited by the elastomer and

to precisely predict dissipated energy and damping ratio under slowly-varying amplitude of

angular displacement which correlated very well with the corresponding experimental data.

This model formulated as a state space model by coupling Generalized Maxwell and Dahl

models has the advantage that it could easily be implemented into dynamic system models.

Although only a one-dimensional elastomeric model is described in this paper, the rheo-

tribological model can also be extended into a three-dimensional form such that it can be

implemented easily into a finite element analysis for a complex elastomeric damper config-

uration.
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