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Design and analysis of two stream

ciphers based on chaotic coupling

and multiplexing techniques

  Ons Jallouli1, Safwan El Assad1, Maryline     Chetto2, René Lozi3

Abstract In this paper, we design and implement two new stream ciphers based on Pseudo

Chaotic Number Generators (PCNGs) which integrate discrete chaotic maps, namely, Piece-

wise Linear Chaotic Map (PWLCM), Skewtent and Logistic map. They are weakly coupled

by a predefined matrix A for the first PCNG and they are coupled by a binary diffusion

matrix D for the second one. Each PCNG includes a chaotic multiplexing technique that

allows the enhancement of the robustness of the system. The structure is implemented with

finite precision N = 32 bits in C language. Security performance of the proposed stream

ciphers is analysed and several cryptanalytic and statistical tests are applied. Experimental

results highlight robustness as well as efficiency in terms of computation time of these two

stream ciphers.

Keywords Chaos-based cryptography · Stream cipher · Pseudo-chaotic number

generator · Discrete chaotic maps · Coupling and multiplexing techniques

1 Introduction

Nowadays, the increasing pervasiveness of technologies concerning the Internet of Things

(IoT) and the fast development of digital technologies and communication networks, have

given rise to dense traffic of information (documents, images, audio, videos...). Therefore,
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it is particularly important and essential to protect data transmission against attackers. Con-

sequently, security of data transmission has been gaining more and more importance in the

last decade and has been a subject of intense research.

In this context, a growing number of cryptographic techniques to secure transmitted

information have been developed. Chaos in cryptography was introduced by Matthews in

1990s [22]. Since then, investigation on chaotic image encryption has become an active field

of research due to the interesting properties of chaos such as ergodicity, sensitivity to ini-

tial conditions and parameters of the system, similarity to random behavior, and broad-band

power spectrum [16]. During the last 20 years, many chaotic image encryption methods

have been proposed in the literature.

Chaotic image encryption which is symmetric encryption, is classified into two types:

chaotic block ciphers and chaotic stream ciphers. Chaotic block ciphers are the main sym-

metric key cryptosystems, as their design is related to Shannon’s theory of information

security based on confusion and diffusion operations. Their security properties are well

studied and these ciphers encrypt the plaintext block by block.

Some block ciphers have proven to be vulnerable to certain types of attack [23, 29, 33],

and others have proven to be very efficient in terms of security and computing time [7, 9,

11, 12, 35, 36].

Stream ciphers encrypt bits or samples continuously. This is achieved by masking the

plaintext (XOR operation) using the keystream output of the key stream random gener-

ator, as a one-time-pad. Therefore, stream ciphers, unlike block ciphers, are suitable for

applications where the plaintext length is either continuous or unknown, such as network

communications. Also, apart from the security aspect, the main characteristic of a stream

cipher is its speed performance on different platforms and power consumption.

In recent years, several research efforts have investigated secure stream cipher designs.

Many of these have been proposed in software form, e.g., A5/1 [5], LEVIATHAN

(Cisco), MUGI (Hitachi-K.U. Leuven), RC4 [14], SNOW [8], SOBER (Qualcomm) and

[26]. These stream ciphers have proven to be very weak and insecure. This has incited

researchers to search for new methodologies that are immune to many attacks that can be

applied.

In 2004, a project under the Information Societies Technology (IST) Program of the

European Network of Excellence for Cryptology (ECRYPT), called “eStream” was tasked

with seeking a strong stream cipher [25]. Its goal was to give rise to a standardization of fast

and secure stream ciphers. Thirty-four candidate ciphers were submitted. Only a few pro-

posals were chosen to belong to the current official “eStream” project and the others were

rejected because of security vulnerabilities or lower overall performance. Two profiles of

ciphers for software and hardware implementations were defined. The first profile is ori-

ented to software-ciphers with high throughput and is faster than the 128-bits AES-CTR.

The finalist include Salsa20/12, Rabbit, HC-128, and SOSEMANUK. The second profile is

oriented to hardware ciphers that are suitable for highly constrained environments and are

more compact than the 80-bits AES. Finalist ciphers include Grain, Trivium and MICKEY

2.0. These ciphers were found to be secure against known attacks. However, some tangi-

ble results have been reported by newer cryptanalysis attempts for some of these ciphers

(Rabbit, Salsa12, SOSEMANUK, Grain, Trivium and MICKEY2.0) [21].

A new class of chaos-based stream ciphers has emerged and seems to be robust against

known attacks.

Ahmed et al., [1] published a chaos-based feedback stream cipher (ECBFSC) for image

cryptosystems. The proposed stream cipher is based on the use of a logistic map and an

external secret key of 256-bit. The initial conditions for the logistic map are derived using
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the external secret key by providing weight to its bits corresponding to their position in the

key.

Liu et al., [17] designed a stream-cipher algorithm based on one-time keys and robust

chaotic maps, in order to obtain high security and improve the dynamic degradation. They

used the piecewise linear chaotic map as the generator of a pseudo-random key stream

sequence. The initial conditions were generated by the true random number generators, the

Message-Digest algorithm 5 (MD5) of the mouse positions.

In [31] Vidal et al., proposed a new fast and light stream cipher based on a hyper-chaotic

dynamic system, a codifying method with a whitening technique and a non linear trans-

formation. This stream cipher has been implemented in video-conference applications for

smart phones.

In this paper, we propose and realize in an effective way two stream ciphers, based on

two robust Pseudo-Chaotic Numbers Generators (PCNGs). The proposed systems are very

secure, due to the use of chaotic coupling and multiplexing techniques, while having a high

speed performance.

The paper is organized as follows: we describe the general scheme of a stream cipher in

Section 2. The proposed structure of the two PCNGs is detailed in Section 2.1. In Section

2.1.1, we describe the architecture of the first proposed PCNG and in Section 2.1.2 the archi-

tecture of the second proposed PCNG. In Section 2.1.3, we analyze the obtained results of

mapping and approximated invariant values of the two PCNGs. Section 2.1.4 presents the

performance measures of the two PCNGs in terms of average generation time, average Bit

Rate (BR), and average Number of Cycles needed to generate one Byte (NCpB) accord-

ing to the data size. Section 3 introduces the security analysis of the two proposed stream

ciphers and their speed performance. Finally, Section 4 concludes the paper and gives some

perspectives for our future work.

2 Proposed chaos-based stream ciphers

Stream ciphers, as shown in Fig. 1, are a class of symmetric cryptography, along with block

ciphers [15]. In order to obtain a cipher text Ci , the plain-text Pi is combined, using a

XOR operation, with a random keystream used only once and having the same length as

the plaintext. The keystream is produced by a PCNG having as input a secret shared key K

and an initial vector IV, which must be different for each encryption round. As the PCNG is

deterministic, the same keystream can be generated in the decryption. Then, one can recover

the original plaintext Pi , by XORing the same keystream with the cipher text Ci .

The keystream must be random enough to ensure that if an attacker knows the keystream,

he cannot recover the secret key or derive the internal state. Thus, the security of any stream

cipher depends on the randomness of the keystream, therefore on the robustness of the

used PCNG which is the main element of a stream cipher. Note that the same secret key

and IV must be shared by the emitter and the receiver in order to encrypt/ decrypt the

message sent through the communication channel and must be protected from access by

others.

Several techniques have been proposed for the distribution of keys and IV. Concerning

our algorithms, a symmetric key distribution is used in the generation and management of

the secret keys and IV, in order to provide confidentiality and integrity of the keys. This

technique is based on the use of a master key, which is infrequently used and is long last-

ing, and session keys which are generated and distributed for each communication between

emitter and receiver [28].
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Fig. 1 General scheme of a stream cipher

In the following, we will describe in detail the general structure of the proposed PCNGs

and their architectures.

2.1 Description of the general proposed structure for both PCNGs

The general structure of the proposed PCNGs is presented in Fig. 2. It takes the parameters

of the system (N and the number of samples Ns), a secret key “K” and a 32-bit initial vector

“IV” as input, and as output, it generates pseudo-chaotic samples X(n), n=1, 2, ..., each

quantified on N = 32 bits.

The structure consists of four function blocks: IV-setup, Key-setup, Internal State and

Output function. Both proposed PCNGs have the same general structure but completely dif-

fer in their internal state and slightly change in their Key-setup and IV-setup. Each function

block will be detailed in the architectural description of the proposed PCNGs.

Fig. 2 General structure of the proposed PCNGs
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2.1.1 Architecture of the first proposed PCNG

In this section, we describe in detail the architecture of the first proposed chaotic generator.

It is given in Fig. 3. The architecture uses three weakly coupled chaotic maps: PWLCM,

Skew Tent and Logistic and includes a multiplexing chaotic technique [3, 18, 19, 24, 30].

The Key-setup function consists of two main parts. It takes the secret key K and the

initial vector IV as input and calculates the initial values Xp(0), Xs(0) and Xl(0) of the

three chaotic maps: PWLCM, Skewtent and Logistic respectively.

The secret key of the system is formed by:

– the initial conditions Xp, Xs and Xl of the three chaotic maps: PWLCM, Skewtent and

Logistic respectively, ranging from 1 to 2N -1,

– the control parameter Pp and Ps of PWLCM and Skewtent maps, in the range

[1, 2N−1 − 1] and [1, 2N − 1] respectively,

– the parameters of the coupling matrix A, εij , ranging from 1 to 2k with k≤ 5.

All the initial conditions, parameters and initial vector are chosen randomly from Linux

generator: "/dev/urandom".

The initial values Xp(0), Xs(0) and Xl(0) are calculated as follows:

⎧

⎨

⎩

Xp(0) = Xp ⊕ IVp

Xs(0) = Xs ⊕ IV s

Xl(0) = Xl ⊕ IV l

(1)

Where

⎧

⎨

⎩

IVp = lsb(IV )

IV s = Lcir [lsb(IV ), 3]
IV l = Lcir [lsb(IV ), 2]

(2)

with ⊕ denotes the XOR operator, lsb(IV ) is the 32 least significant bits of IV and

Lcir [S, q] performs the q-bits left circular shift on the binary sequence S.

The internal state function achieves the weak coupling of the chaotic maps and produces

the future samples Xp(n), Xs(n) and Xl(n) from which the output function, by using a

chaotic switching technique, produces the output sequence X(n) (see Fig. 3).

Fig. 3 Architecture of the first proposed PCNG
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The system is governed by the following equation :
⎡

⎣

Xp(n)

Xs(n)

Xl(n)

⎤

⎦ = A ×

⎡

⎣

Fp[Xp(n − 1)]
Fs[Xs(n − 1)]
F l[Xl(n − 1)]

⎤

⎦ . (3)

where A represents the weak coupling matrix:

A =

⎡

⎣

(2N − ε12 − ε13) ε12 ε13

ε21 (2N − ε21 − ε23) ε23

ε31 ε32 (2N − ε31 − ε32)

⎤

⎦ . (4)

with εij are the weakly coupling parameters, ranging from 1 to 2k and k≤5.

And Fp[Xp(n − 1)], Fs[Xs(n − 1)] and F l[Xl(n − 1)] are the discrete functions of the

chaotic maps PWLCM, Skew Tent and Logistic respectively defined as follows:

Fp[Xp(n − 1)] =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⌈

2N × Xp[n−1]
Pp

⌉

if 0 < Xp[n − 1] ≤ Pp

⌈

2N × Xp[n−1]−Pp

2N−1−Pp

⌉

if Pp < Xp[n − 1] ≤ 2N−1

⌈

2N × 2N−Pp−Xp[n−1]
2N−1−Pp

⌉

if 2N−1 < Xp[n − 1] ≤ 2N − Pp

⌈

2N × 2N−Xp[n−1]
Pp

⌉

if 2N − Pp < Xp[n − 1] ≤ 2N − 1

2N − 1 − Pp otherwise

(5)

Fs[Xs(n − 1)] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⌊

2N×Xs[n−1]
Ps

⌋

if 0 < Xs[n − 1] < Ps

2N − 1 if Xs[n − 1] = Ps
⌊

2N×(2N−Xs[n−1])
2N−Ps

⌋

if Ps < Xs[n − 1] < 2N

(6)

F l[Xl[n − 1]] =

⎧

⎪

⎨

⎪

⎩

⌊

Xl[n−1]×[2N−Xl[n−1]]
2N−1

⌋

if Xl[n − 1] �= [3 × 2N−2, 2N ]

2N − 1 if Xl[n − 1] = [3 × 2N−2, 2N ]
(7)

The obtained multiplexed samples of the sequence X(n) are controlled by the chaotic

sample Xth(n) and a threshold T , as shown in Fig. 3, and are defined as follows:

X(n) =
{

Xp(n), if 0 < Xth(n) < T

Xs(n), otherwise
(8)

Where Xth(n) = Xl(n) ⊕ Xs(n).

After the generation of all needed samples X(n), the IV-setup function computes a new

IV that will be used for the next running of the PCNG. The new IV is generated from the

Linux generator: "/dev/urandom".

2.1.2 Architecture of the second proposed PCNG

The architecture of the second proposed PCNG is presented in Fig. 4. In comparison with

the previous architecture, the main difference lies in the internal-state function, which is

based on a binary diffusion matrix D.
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Fig. 4 Architecture of the second proposed PCNG

The initial values Xp(0), Xs(0) and Xl(0) are initialized throughout the key-setup

function, as in Eqs. (1) and (2).

The equation of the system is given by:

⎡

⎣

Xp(n)

Xs(n)

Xl(n)

⎤

⎦ = D ⊙

⎡

⎣

Fp[Xp(n − 1)]
Fs[Xs(n − 1)]
F l[Xl(n − 1)]

⎤

⎦ . (9)

where D is the binary diffusion matrix:

D =

⎡

⎣

1 1 0

0 1 1

1 0 1

⎤

⎦ . (10)

And ⊙ is the operator defined as follows :

⎡

⎣

Xp(n)

Xs(n)

Xl(n)

⎤

⎦ =

⎡

⎣

Fp[Xp(n − 1)] ⊕ Fs[Xs(n − 1)]
Fs[Xs(n − 1)] ⊕ F l[Xl(n − 1)]
Fp[Xp(n − 1)] ⊕ F l[Xl(n − 1)]

⎤

⎦ . (11)

The choice of the output samples X(n) is governed, as in Eq. (8) by a threshold T and

the chaotic sample Xth, with Xth(n) = Xp(n) ⊕ Xs(n).

For each new running of the system, the initial vector IV is updated using the Linux

generator.

In the following paragraphs, we study two statistical performances, namely mapping and

approximated invariant values, and the speed performance of the two PCNGs.

2.1.3 Mapping and approximated invariant values

The mapping or the phase space trajectory is one of the characteristics of the generated

sequence that reflects the dynamic behaviour of the system. We draw in Fig. 5a and c the

mapping of sequences X1 and X2, each containing Ns = 31250 samples, generated by the

first and second architectures and a zoom of these mappings in Fig. 5b and d.

The resulting mapping of X1 and X2 seems to be random. This is due to the used tech-

niques of coupling and chaotic multiplexing. In this case, it is impossible from the generated
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Fig. 5 Mapping of sequences X1 (a) and X2 (c) of length 31250 samples, generated by the first and the

second PCNGs and a zoom of these mapping in (b) and (d) respectively

sequences to know which type of map is used. However, in the mapping of X2, we observe

small empty areas. Then, we can say that the generated sequences of the first PCNG are

more uniform than those generated by the second PCNG. This observation will be con-

firmed by the Chi-square test of the ciphered text. Also, we notice that the mapping of the

coupled sequences seems to be random.

To prove the value uniformity of the generated sequences, Lozi [19] uses the ”approxi-

mated invariant measures”. This function was computed with floating numbers and based

on the partition of the mapping space to M2 small squares (boxes). In finite precision N,
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we defined the approximated invariant measures PdN (si, tj) in the same manner as in [19].

First, the space mapping is divided into M2 boxes ri,j as follows:

si = Xmin + i × l, i = 0, ..., M. (12)

tj = Xmin + j × l, j = 0, ..., M. (13)

where

l =
Xmax − Xmin

M
. (14)

with Xmin = min(Xi(Ns)) , Xmax = max(Xi(Ns)) and Ns is the number of samples

under test.

The box ri,j is given by :

ri,j = [si, si+1[×[tj , tj+1[, i, j = 0, ..., M − 1. (15)

In Fig. 6a and b, we show the r6,6 box, after zooming the mapping of sequences X1 and

X2.

The approximated probability distribution function PdN (si, tj) is defined as follows:

PdN (si, tj) =
#ri,j

Ns/M2
. (16)

with #ri,j is the number of samples inside the box ri,j .

Obtained values of #ri,j and PdN (si, tj) for sequences X1 and X2 are given in Tables 1

and 2 respectively, for all boxes with M = 10 and Ns = 31250. In Tables 3 and 4 we give

the values of #ri,j and PdN (si, tj) for Ns = 31250 × 100.

Theoretically, the number of samples inside each box ri,j is Ns/M2 ≃ 312. Furthermore,

the closer the PdN (si, tj) value is to 1, the better the uniformity.

As we can see, compared to results in Table 2, results of Table 1 are closer to uniform

distribution. Indeed, for sequence X1, the smallest value of PdN (si, tj) is 0.832 and we

only have 4 values smaller than 0.88. Likewise, the biggest PdN (si, tj) value is 1.142 and

Fig. 6 Zoom on the phase space of sequences X1 and X2 generated by the first and second PCNGs
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Table 1 Values of #ri,j and PdN (si, tj) for sequence X1 with Ns = 31250 samples

#ri,j

PdN (si, tj)

312 338 291 322 330 289 348 296 323 301

0.998 1.082 0.931 1.03 1.056 0.925 1.114 0.947 1.034 0.963

343 343 311 284 306 314 305 337 316 338

1.098 1.098 0.995 0.909 0.979 1.005 0.976 1.078 1.011 1.082

295 313 293 297 295 312 312 316 321 286

0.944 1.002 0.938 0.95 0.944 0.998 0.998 1.011 1.027 0.915

313 314 318 315 317 307 301 314 287 324

1.002 1.005 1.018 1.008 1.014 0.982 0.963 1.005 0.918 1.037

319 292 314 306 337 285 315 357 319 333

1.021 0.934 1.005 0.979 1.078 0.912 1.008 1.142 1.021 1.066

299 304 301 343 326 313 314 278 320 298

0.957 0.973 0.963 1.098 1.043 1.002 1.005 0.89 1.024 0.954

339 303 313 289 304 310 349 294 318 321

1.085 0.97 1.002 0.925 0.973 0.992 1.117 0.941 1.018 1.027

290 319 313 307 312 328 320 290 324 310

0.928 1.021 1.002 0.982 0.998 1.05 1.024 0.928 1.037 0.992

319 337 273 298 319 346 298 320 260 315

1.021 1.078 0.874 0.954 1.021 1.107 0.954 1.024 0.832 1.008

321 333 313 348 331 292 278 312 297 314

1.027 1.066 1.002 1.114 1.059 0.934 0.89 0.998 0.95 1.005

only we have 5 values bigger than 1.10. For sequence X2, we observe that: the smallest

value of PdN (si, tj) is 0.246 and there are 34 values smaller than 0.88. Additionally, the

highest PdN (si, tj) value is 1.658 and there are 40 values higher than 1.10.

Besides, compared to results in Table 1, the obtained values of PdN (si, tj) in Table 3,

are closer to 1. Indeed, the uniformity is better when the number of samples Ns is larger.

However, these results are not valid for the PCNG2 when comparing Tables 2 and 4. This is

due to the fact that the samples are distributed on a periodic orbit with a small period length.

We give also the cumulative relative error calculated by:

CRE =
M

∑

i,j=1

|
Ns/M2 − #ri,j

Ns/M2
|. (17)

In Table 5, we report the obtained values of CRE for sequences X1 and X2. For this

experiment, we took three different values for Ns : Ns = 31250, Ns = 31250 × 10, and

Ns = 31250 × 100. And for each Ns, we consider two values of M: M = 5 and M = 10.

We observe that, whatever the values of Ns and M , the Cumulative Relative Error CRE

of sequences generated by PCNG1 is smaller than the CRE of sequences generated by

PCNG2. Also, we notice that, for each M, the CRE of PCNG1 decreases with a fac-

tor approximately equal to
√

Ns, when Ns increases. However, sequences generated by

PCNG2 do not follow the previous rule.
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Table 2 Values of #ri,j and PdN (si, tj) for sequence X2 with Ns = 31250 samples

#ri,j

PdN (si, tj)

291 307 284 293 287 313 332 349 328 353

0.931 0.982 0.909 0.938 0.918 1.002 1.062 1.117 1.05 1.13

474 399 415 352 422 205 211 214 184 196

1.517 1.277 1.328 1.126 1.35 0.656 0.675 0.685 0.589 0.627

381 344 359 331 361 292 233 224 250 328

1.219 1.101 1.149 1.059 1.155 0.934 0.746 0.717 0.8 1.05

328 332 339 452 377 277 292 288 236 210

1.050 1.062 1.085 1.446 1.206 0.886 0.934 0.922 0.755 0.672

518 420 421 425 394 169 199 190 214 247

1.658 1.344 1.347 1.36 0 1.261 0.541 0.637 0.608 0.685 0.790

77 141 184 211 208 442 428 477 456 438

0.246 0.451 0.589 0.675 0.666 1.414 1.37 1.526 1.459 1.402

315 226 210 214 257 350 344 351 368 405

1.008 0.723 0.672 0.685 0.822 1.12 1.101 1.123 1.178 1.296

197 298 283 285 276 342 371 387 378 328

0.63 0.954 0.906 0.912 0.883 1.094 1.187 1.238 1.21 1.05

216 253 230 200 232 389 365 402 437 411

0.691 0.81 0.736 0.64 0.742 1.245 1.168 1.286 1.398 1.315

340 352 378 368 383 283 265 263 284 311

1.088 1.126 1.21 1.178 1.226 0.906 0.848 0.842 0.909 0.995

2.1.4 Speed performance of the proposed PCNGs

Speed performance is an important factor for practical applications of the encryption algo-

rithms. We study the computing performance of the proposed PCNGs. The experiment

is performed on the flowing materials composed of Intel(R) Core(TM) i5-4300M CPU

@2.60GHZz 2.60 GHz with 16.0 GB Running on Ubuntu 14.04 Trusty Linux distribu-

tion, using GNU GCC Compiler. The two PCNGs are implemented in C language using

sequential and parallel programming.

For the parallel version, we implement the proposed PCNGs with multi-threaded pro-

gramming using the POSIX threads ("pthread library"). Only the internal state and

the output functions are implemented in parallel programming. The key-setup function is

implemented sequentially. We use a number of cores equal to four. For this, we create four

threads T hi, i = 0..3 using the function "pthread create" of the C Language. New

sub-initial conditions and parameters (Xpi, Xsi, Xsi, IVpi, IV si and IV li) are needed for

each thread T hi . These parameters are calculated as follows:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Xpi = Lcir [Xpi−1, 3]
Xsi = Lcir [Xsi−1, 3]
Xli = Lcir [Xli−1, 3]
IVpi = Lcir [IVpi−1, 3]
IV si = Lcir [IV si−1, 3]
IV li = Lcir [IV li−1, 3]

(18)
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Table 3 Values of #ri,j and PdN (si, tj) for sequence X1 with Ns = 31250 × 100 samples

#ri,j

PdN (si, tj)

31300 31602 31335 31421 31404 31468 31206 31201 31286 31462

1.002 1.011 1.003 1.005 1.005 1.007 0.999 0.998 1.001 1.007

31568 31215 30925 31044 31711 31264 31150 31098 31072 31293

1.01 0.999 0.99 0.993 1.015 1 0.997 0.995 0.994 1.001

31425 31076 31270 31229 31304 31279 31287 31068 31073 31020

1.006 0.994 1.001 0.999 1.002 1.001 1.001 0.994 0.994 0.993

31375 30950 31126 30988 31286 31380 31203 30913 31221 31396

1.004 0.99 0.996 0.992 1.001 1.004 0.998 0.989 0.999 1.005

31475 30911 31154 31304 31411 31362 31286 31506 31358 31427

1.007 0.989 0.997 1.002 1.005 1.004 1.001 1.008 1.003 1.006

31395 31360 31380 31601 31251 31458 31173 31380 31096 31440

1.005 1.004 1.004 1.011 1 1.007 0.998 1.004 0.995 1.006

31269 31478 31470 31108 31358 31499 31384 31250 31060 30705

1.001 1.007 1.007 0.995 1.003 1.008 1.004 1 0.994 0.983

31233 31368 31183 31053 31198 31122 31271 31180 30889 31361

0.999 1.004 0.998 0.994 0.998 0.996 1.001 0.998 0.988 1.004

31218 31022 31083 31013 31154 31265 31233 30911 31027 31351

0.999 0.993 0.995 0.992 0.997 1 0.999 0.989 0.993 1.003

31427 31357 31105 31077 31117 31438 31388 31351 31195 31206

1.006 1.003 0.995 0.994 0.996 1.006 1.004 1.003 0.998 0.999

where i = 1..3 and and Lcir [S, q] performs the q-bits left circular shift on the binary

sequence S.

Figure 7 shows the structure and locations of samples in Sequence X of length equal to

10 samples, generated using parallel programming.

In Tables 6 and 7 we give, the average generation time in microsecond (µs), the average

bit rate in Megabits/second (Mbits/s) and the average required number of cycles to gener-

ate one byte for different lengths of sequences, using sequential and parallel programming

respectively. The average is calculated over 100 different sequences using a different secret

key for each one.

The bit rate and the number of cycles needed to generate one byte NCpB is defined as

follows:

Bit rate(Mbits/s) =
Generated data size(Mbits)

Average generation time(s)
(19)

NCpB =
CPUspeed(Hz)

Bit rate(Byte/s)
(20)

From results of Tables 6 and 7, we remark first that, due to its less complex internal

state, the speed performance of the second PCNG is better than the first one. Second, we

observe that, for small size data (up to 32768 bytes) the PCNG implemented with sequential

programming is faster than that programmed in parallel (see also Figs. 8 and 9). This is due

to the time synchronization between the four threads.
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Table 4 Values of #ri,j and PdN (si, tj) for sequence X2 with Ns = 31250 × 100 samples

#ri,j

PdN (si, tj)

2939 2823 2797 2802 2608 3402 3367 3319 3327 3407

0.94 0.903 0.895 0.897 0.835 1.089 1.077 1.062 1.065 1.09

4531 4195 3813 3800 3876 2230 2323 2216 2031 2059

1.45 1.342 1.22 1.216 1.24 0.714 0.743 0.709 0.65 0.659

3887 3292 3650 3783 3591 2778 2663 2389 2566 2922

1.244 1.053 1.168 1.211 1.149 0.889 0.852 0.764 0.821 0.935

3233 3345 3829 4320 4044 2906 2855 2947 2329 2008

1.035 1.07 1.225 1.382 1.294 0.93 0.914 0.943 0.745 0.643

4950 4343 4116 4080 3985 1571 1806 2010 2286 2323

1.584 1.39 1.317 1.306 1.275 0.503 0.578 0.643 0.732 0.743

900 1425 1851 2093 2094 4643 4681 4707 4572 4391

0.288 0.456 0.592 0.67 0.67 1.486 1.498 1.506 1.463 1.405

2771 2687 2516 2297 2433 3552 3347 3543 3772 4042

0.887 0.86 0.805 0.735 0.779 1.137 1.071 1.134 1.207 1.293

2261 2867 2942 2709 2770 3532 3530 3751 3549 3418

0.724 0.917 0.941 0.867 0.886 1.13 1.13 1.2 1.136 1.094

2041 2535 2427 2167 2329 4037 3713 3823 3920 3974

0.653 0.811 0.777 0.693 0.745 1.292 1.188 1.223 1.254 1.272

3278 3563 3580 3764 3740 2706 2675 2624 2614 2669

1.049 1.14 1.146 1.204 1.197 0.866 0.856 0.84 0.836 0.854

Notice that, apart from the stream cipher, the proposed PCNGs can be used in several

applications that require the generation of a large amount of secure random numbers.

In Table 8, we give the performance in terms of NCpB of some known pseudo random

number generators: Wang et al., [32], Akhshani et al., [2] and our proposed PCNGs. The

comparison is performed for a data size equal to 786432 bytes. It can be observed that the

NCpB performance of the proposed PCNGs is better than the others cited.

In the following section, we will study the security analysis and the speed performance

of the two proposed stream ciphers.

Table 5 Values of the

cumulative relative error Ns

M PCNG 31250 31250 × 10 31250 × 100

5 1 0.5432 0.1982 0.0651

2 2.5512 2.3857 2.3657

10 1 4.4869 1.5268 0.4722

2 23.0597 22.8217 22.6401
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Fig. 7 Location of samples in Sequence X using parallel programming

3 Security analysis and speed performance of the proposed stream ciphers

A good stream cipher algorithm should be robust against all kinds of cryptanalytic, statisti-

cal and brute-force attacks. Also, it should provide a high encryption speed. In this section,

we discuss the security analysis of the proposed stream cipher algorithms, based on the

first and second proposed PCNGs described in Section 2.1 and their speed performance.

Key space, Key sensitivity and Statistical analysis is carried out in order to prove that the

proposed stream ciphers are secure against the most common attacks.

As most encryption algorithms (AES-CTR, Rabbit, HC-128...) encrypt 128 bits by 128

bits, our stream cipher algorithms are adjusted also to encrypt 128 by 128 bits of the plain

Table 6 Speed Performance of PCNG1 and PCNG2 using sequential implementation

Data size (Byte) Generation time (µs) Bit rate (Mbits/s) NCpB

PCNG1 PCNG2 PCNG1 PCNG2 PCNG1 PCNG2

64 4.02 1.92 127.36 266.66 163.31 74.39

128 5.69 2.58 179.96 369.89 115.58 49.98

256 8.9 3.59 230.11 570.47 90.39 34.77

512 14.89 6.16 275.08 664.93 75.61 29.83

1024 27.36 12.03 299.41 680.96 69.47 29.13

2048 49.63 21.55 330.12 760.27 63.01 26.09

4096 89.33 42.52 366.81 770.51 56.7 25.74

8192 144.19 84.72 454.51 773.52 45.76 25.64

16384 262.31 169.33 499.68 774.03 41.63 25.63

32768 521.49 337.30 502.68 777.17 41.38 25.52

65536 782.22 671.59 670.25 780.65 31.03 25.41

125000 1269.86 1194.58 787.48 837.11 25.19 24.85

196608 1970.40 1867.03 798.24 842.44 24.85 24.69

393216 3930.71 3465.25 800.29 907.79 24.79 22.91

786432 7826.19 6413.96 803.89 980.90 24.68 21.2

3145728 31229.65 25664.74 805.83 980.56 24.63 21.08
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Table 7 Speed performance of PCNG1 and PCNG2 using parallel implementation

Data size (Byte) Generation time (µs) Bit rate (Mbits/s) NCpB

PCNG1 PCNG2 PCNG1 PCNG2 PCNG1 PCNG2

64 79.56 52.79 6.43 9.69 3082.39 2144.59

128 98.13 65.16 10.43 15.71 1900.93 1323.56

256 95.29 98.96 21.49 35.59 922.96 584.39

512 96.90 79.45 42.27 51.55 492.07 384.77

1024 93.51 76.29 87.60 107.37 237.43 184.73

2048 89.95 84.26 182.14 194.44 108.9 106.97

4096 99.75 77.00 328.50 425.55 60.38 48.88

8192 141,03 127.67 464.67 513.32 44.76 38.64

16384 271,64 222.98 482.52 587.81 43.11 33.75

32768 359.05 293.37 724.48 893.56 27.38 23.28

65536 616.22 491.9 850.81 1065.84 23.31 19.52

125000 1140.89 718.93 876.50 1458.52 22.63 14.26

196608 1548.23 1293.01 1015.91 1621.91 19.53 12.82

393216 2838.58 2235.05 1108.2 1789.66 17.9 11.62

786432 4279.44 3417.52 1470.15 1840.94 13.49 11.3

3145728 16936.79 14827.4 1485.86 1697.25 13.35 12.26

text. For this, the keystream generator produces 128 bits of keystream to be combined with

128 bits of plain text by an XOR operation. Recall that for each new encryption, a new IV

is produced.

From the speed performance of the PCNGs given in Tables 6 and 7, the PCNGs are

faster when generating 128 bits of keystream in sequential programming. For this, we use

sequential programming in the implementation of the two proposed stream ciphers.
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Fig. 8 NCpB of the first proposed PCNG
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Fig. 9 NCpB of the second proposed PCNG

To evaluate the performance of the proposed stream ciphers, a number of experiments

were performed based on several color images, which were used as plain images having the

sizes (128 × 128), (256 × 256), (512 × 512) and (1024 × 1024).

3.1 Cryptanalytic analysis

In the following part, some habitual cryptanalytic analysis is performed.

3.1.1 Key space analysis

For any secure crypto-system, the key space should be large enough to resist a brute-force

attack. The sizes of the secret keys for the first and second architectures are respectively

given by:

|K1| = (|Xp| + |Xs| + |Xl|) + (|Pp| + |Ps|) + 6 × |εij | = 189 bits (21)

|K2| = (|Xp| + |Xs| + |Xl|) + (|Pp| + |Ps|) = 159 bits. (22)

where |Xp| = |Xs| = |Xl| = |Ps| = 32 bits ; |Pp| = 31 bits and |εij | is equal to 5 bits.

Table 8 Computing

performance of some known

pseudo random number

generators

Pseudo random generator NCpB

Wang et al., [32] 160

Akhshani et al., [2] 45

Abu Taha et al., [13] 17.3

PCNG1 24.68

PCNG2 21.2
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Table 9 NPCR and UACI

performance Baboon Peppers Lena

Alg.1 DH 0.500022 0.500009 0.500015

NPCR 99.60918 99.60866 99.61024

UACI 33.46386 33.46330 33.465842

Alg.2 DH 0.500017 0.500018 0.500018

NPCR 99.60954 99.60987 99.60899

UACI 33.469 33.46388 33.47010

The proposed algorithms have 2189 and 2159 different combinations of the secret key.

Therefore the secret key sizes of the two architectures are large enough to make brute-force

attack infeasible.

3.1.2 Key sensitivity analysis

An efficient stream cipher should be very sensitive to the secret key. The change of a single

bit in the secret key should produce a completely different encrypted image. Indeed, to

verify this feature, we calculate the average Hamming Distance DH (X, Y ) (using 100 secret

keys), between two ciphered images C1 and C2, of the same plain image P , with only one

change in the least significant bit of the parameter Pp.

DH (C1, C2) is given by the following equation :

DH (C1, C2) =
1

Nb
×

Nb
∑

K=1

(C1[K] ⊕ C2[K]) (23)

With Nb is the number of bits in an encrypted image.

The obtained results of the Hamming distance for three different ciphered images by the

two algorithms are close to the optimal value of 50% (see Table 9). Such results are obtained

regardless of the position of the changed bit in the secret key. This demonstrates that the

proposed algorithms are highly sensitive to the secret key.

Other common measures used to test sensitivity to the secret key on the encrypted image

when changing one bit are the Number of Pixel Change Rate (NPCR) and Unified Aver-

age Changing Intensity (UACI). The former is used to measure the number of different

pixels between the two images, whereas the latter is used to measure the average intensity

difference.

Let C1[i, j, p] and C2[i, j, p] be the (i,j,p)th pixel of two ciphered images C1 and C2,

respectively. The NPCR and UACI are defined by (24) and (26), respectively.

NPCR =
1

L × C × P
×

P
∑

p=1

L
∑

i=1

C
∑

j=1

D[i, j, p] × 100% (24)

D[i, j, p] =
{

0, if C1[i, j, p] = C2[i, j, p]
1, if C1[i, j, p] �= C2[i, j, p] (25)

UACI =
1

L × C × P × 255
×

P
∑

p=1

L
∑

i=1

C
∑

j=1

|C1 − C2| × 100% (26)
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Fig. 10 a Lena image, b Lena cipher image, c the histogram of Lena image and d the histogram of the

ciphered Lena image

Table 9 also shows the obtained results of NPCR and UACI for the previous three

ciphered images. The resulting values are near to the expected values of NPCR and UACI

which are 99.60% and 33.46%, respectively [20, 34].

So, as we can see, the proposed algorithms are very sensitive with respect to small

changes in the secret Key.

3.2 Statistical analysis

To prove the robustness of the proposed stream ciphers against statistical attacks, we

perform the following experiments: histogram, chi-square test, correlation and NIST.

3.2.1 Histogram and Chi-square test analysis

Another key property of a secure stream cipher algorithm is that the encrypted image should

have a uniform distribution. We applied the first proposed stream cipher on three different

plain images (Lena, Baboon and Peppers) of size (512 × 512 × 3). The obtained results are
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Fig. 11 a Baboon image, b Baboon cipher image, c the histogram of Baboon image and d the histogram of

the ciphered Baboon image

given in Figs. 10, 11 and 12. On each one, we show (a) the plain image, (b) the correspond-

ing cipher image, (c) the histogram of the plain image and (d) the histogram of the ciphered

image.

We can visually observe that the histograms of the encrypted images are uniform and

significantly different from those of the plain-images. The same visual results are obtained

for the second proposed algorithms.

In order to assert the uniformity of the encrypted images, we apply the Chi-Square test.

The experimental Chi-Square test χ2 is calculated by the following formula:

χ2
exp =

K−1
∑

i=0

(Oi − Ei)
2

Ei

. (27)

Where K is the number of levels (here 256), Oi are the observed occurrence frequencies

of each color level (0−255) in the histogram of the ciphered image, and Ei is the expected

occurrence frequency of the uniform distribution, given here by Ei = (L×C ×P)/256 [9].

We compare the experimental value with the theoretical value obtained for a threshold

α = 0.05 and a degree of freedom K−1 = 255. To prove the uniformity of a sequence,
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Fig. 12 a Peppers image, b Peppers cipher image, c the histogram of Peppers image and d the histogram of

the ciphered Peppers image

the experimental value of Chi-Square must be lower than the theoretical one χ2
exp < χ2

th

(255, 0.05). The smaller the experimental value of Chi-Square is than the theoretical one,

the better the uniformity of the histogram.

In Table 10, we reported the experimental and theoretical values of the Chi-Square test

for the three ciphered images (Baboon, Peppers, and Lena) obtained by both proposed algo-

rithms. We note that for the three images, χ2
exp < χ2

th(255, 0.05). Also, images encrypted

by the first algorithm have a better uniform distribution those encrypted by the second

algorithm.

Table 10 Theoretical and

experimental values for the

Chi-Square test

Baboon Peppers Lena

χ2
th 293.247 293.247 293.247

χ2
exp of Alg.1 211.966 239.10 252.703

χ2
exp of Alg.2 267.293 240.68 262.31
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Table 11 Correlation coefficients between pairs of plain and encrypted images

Image Direction Plain image Ciphered image by Alg. 1 Ciphered image by Alg.2

Lena Horizontal 0.993176 0.008713 0.00131

Vertical 0.997055 0.008154 0.00121

Diagonal 0.988176 0.008324 0.00117

Baboon Horizontal 0.99233 0.00157 0.00317

Vertical 0.99649 −0.00151 −0.00326

Diagonal 0.98712 −0.00158 −0.00309

Peppers Horizontal 0.96775 0.00320 0.01183

Vertical 0.95753 −0.00309 0.00016

Diagonal 0.93002 −0.00306 0.01480

3.2.2 Correlation analysis

The adjacent pixels in a plain image may have strong correlation. Also, the pixels in an

encrypted image with a high security level is expected to be randomly distributed. Therefore,

a good encryption scheme should have the ability to efficiently reduce the correlation among

adjacent pixels. We measured the correlation coefficient between adjacent pixels, selected

randomly from three directions: horizontally, vertically and diagonally. The correlation

coefficient ρxy of adjacent pixels is calculated by the following (28):

ρxy =
∑M

i=1(xi − 1
M

∑M
j=1 xj )(yi − 1

M

∑M
j=1 yj )

[
∑M

i=1(xi − 1
M

∑M
j=1 xj )2]1/2 × [

∑M
i=1(yi − 1

M

∑M
j=1 yj )2]1/2

. (28)

where xi and yi form ith pair of horizontally/vertically/diagonally adjacent pixels, M is the

total number of pairs of horizontally/ vertically/diagonally adjacent pixels.

In Table 11, we give the obtained correlation coefficients in horizontal, vertical and diag-

onal directions of 1000 pairs of adjacent pixels of the plain images mentioned above and

their corresponding ciphered images.

These results show that the correlation coefficients of the plain images are close to 1

while those of encrypted images are near to 0. Then, the proposed encryption schemes gen-

erate an image with uncorrelated adjacent pixels. This indicates that the proposed algorithms

are secure against statistical attacks.

In addition, such results are confirmed in Fig. 13, which shows the correlation of two

horizontally, vertically and diagonally adjacent pixels in the plain and ciphered Baboon

image (512 × 512 × 3) using the first algorithm. Similar results are obtained when using

the second algorithm.

3.2.3 NIST

To evaluate the performance of the proposed algorithms, we also use one of the most popular

standards for investigating the randomness of binary data, namely the NIST statistical test.

This test is a statistical package that consists of 15 tests that are proposed to assess the

randomness of arbitrarily long binary sequences [10, 27].
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Fig. 13 The distribution of two adjacent pixels in the plain and encrypted images of ’Lena’ a and b distribu-

tions of two horizontally adjacent pixels in the plain and encrypted images of ’Lena’, respectively. c and d are

distributions of two vertically adjacent pixels in the plain and encrypted images of ’Lena’, respectively. e and

f are distributions of two diagonally adjacent pixels in the plain and encrypted images of ’Lena’, respectively

We encrypted 100 different binary sequences of plain text, P1 and P2; using the first and

second algorithms respectively, each one with a different secret key and containing 106 bits.

We present the results of NIST for the encrypted sequences C1 and C2 in Table 12, with

a level of significance of the test α = 0.01. Results show that sequences C1 and C2 have

successfully passed all NIST tests. In addition, we observe that globally, the data ciphered

by the first algorithm pass NIST tests more efficiently than data ciphered by the second one.

This is in accordance with results previously obtained by the others tests.

22



Acc
ep

te
d 

M
an

us
cr

ip
t

Table 12 P-values and Proportion results of NIST for the first and second proposed algorithms

Alg.1 Alg.2

Test P -value Proportion P -value Proportion

Frequency test 0.946 100 0.740 100

Block-frequency test 0.883 99 0.091 100

Cumulative-sums test 0.376 100 0.646 100

Runs test: 0.616 98 0.658 100

Longest-run test 0.898 100 0.596 99

Rank test 0.290 99 0.534 98

FFT test 0.534 100 0.554 100

Non-periodic-templates 0.483 99.061 0.494 99.088

Overlapping-templates 0.063 100 0.798 100

Universal 0.172 99 0.040 99

Approximty entropie 0.419 99 0.097 98

Random-excursions: 0.335 99.123 0.545 97.656

Random-excursions-variant 0.436 99.318 0.576 99.566

Serial test 0.478 100 0.627 99.5

Linear-complexity 0.249 98 0.262 98

3.3 Speed performance of the proposed stream ciphers

In Table 13 we give the speed performance in terms of average encryption time in (µs),

average encryption throughput in (Mbits/s), and the number of cycles needed to encrypt one

byte (NCpB) of the proposed algorithms for different sizes of data. We remark that globally,

the speed performance of the stream ciphers is approximately 17% less than that of the

corresponding PCNGs.

In Table 14, we give a comparison of NCpB for the proposed algorithms (for Lena

512 × 512 × 3) with other chaos-based algorithms and the most known stream ciphers [4, 6].

We observe that the proposed algorithms have a better speed performance than the cited

chaos-based algorithms except that of [31]. However, in [31], the authors do not explain

the measurement method used to obtain such excellent results, given that the complexity

Table 13 Speed Performance of the two proposed stream ciphers

Data Size (Byte) Encryption Time (µs) Encryption throughput (Mbits/s) NCpB

Alg.1 Alg.2 Alg.1 Alg.2 Alg.1 Alg.2

512 21.26 12.50 183.73 312.50 107.96 63.48

1024 37.05 23.35 210.86 334.58 94.07 59.29

2048 44.28 34.70 352.86 450.28 56.21 44.05

4096 73.58 49.05 424.70 637.10 46.71 31.14

256×256×3 2403.04 2168.31 624.20 691.783 31.78 28.71

512×512×3 8511.00 7267.27 704.97 825.6195 28.14 24.03

1024×1024×3 32710.50 28808.11 733.70 833.0987 27.04 23.81
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Table 14 Comparison of speed

performance between different

algorithms

Algorithms NCpB

Ref. [1] 321

Ref. [17] 226

Ref. [31] 1.77

Proposed Alg.1 28.14

Proposed Alg.2 24.03

AES-CTR 21.2

Rabbit 9.5

HC-128 14.4

Salsa20/12 9.9

SOSEMANUK 10.5

of their system is similar to ours. Compared to the AES-CTR, Rabbit, HC-128, Salsa20/12

and SOSEMANUK, the obtained performance is not as good. However, the non linearity of

the proposed systems is higher than the other systems, consequently, its robustness against

known attacks is higher.

4 Conclusion

In this paper, we developed two novel chaos-based stream ciphers. The high efficiency

obtained from these systems is due to the designed PCNG structure. Indeed, their archi-

tectures integrate three chaotic maps weakly coupled using a predefined matrix or coupled

by a binary diffusion matrix and using a chaotic multiplexing technique. Simulation tests

and security analyses were carried out to prove the efficiency in terms of robustness and

speed performance of the proposed stream ciphers. The obtained results show that the

proposed stream ciphers can be used in practical applications including secure network

communication.
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