
HAL Id: hal-01534282
https://hal.science/hal-01534282

Submitted on 7 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building Document Treatment Chains Using
Reinforcement Learning and Intuitive Feedback

Esther Nicart, Bruno Zanuttini, Hugo Gilbert, Bruno Grilhères, Fredéric
Praca

To cite this version:
Esther Nicart, Bruno Zanuttini, Hugo Gilbert, Bruno Grilhères, Fredéric Praca. Building Document
Treatment Chains Using Reinforcement Learning and Intuitive Feedback. 28th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI 2016), Nov 2016, San Jose, United States.
pp.635 - 639, �10.1109/ICTAI.2016.0102�. �hal-01534282�

https://hal.science/hal-01534282
https://hal.archives-ouvertes.fr


Building document treatment chains using
reinforcement learning and intuitive feedback

Esther Nicart∗†, Bruno Zanuttini†, Hugo Gilbert‡, Bruno Grilhères§, Fredéric Praca†
∗Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France; first.last-name@unicaen.fr

†Cordon Electronics DS2i, France; first.last-name@cordonweb.com
‡LIP6, Paris, France; first.last-name@lip6.fr
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Abstract—We model a document treatment chain as a Markov
Decision Process, and use reinforcement learning to allow the
agent to learn to construct and continuously improve custom-
made chains “on the fly”. We build a platform which enables
us to measure the impact on the learning of various models,
web services, algorithms, parameters, etc. We apply this in
an industrial setting, specifically to an open source document
treatment chain which extracts events from massive volumes of
web pages and other open-source documents. Our emphasis is on
minimising the burden of the human analysts, from whom the
agent learns to improve guided by their feedback on the events
extracted. For this, we investigate different types of feedback,
from numerical feedback, which requires a lot of tuning, to
partially and even fully qualitative feedback, which is much more
intuitive, and demands little to no user calibration. We carry out
experiments, first with numerical feedback, then demonstrate
that intuitive feedback still allows the agent to learn effectively.

I. INTRODUCTION

In the past, the Open Source INTelligence (OSINT) analyst’s
task was finding hidden information. Now, faced with ever-
increasing volumes of multi-lingual open source documents,
their challenge is to find pertinent information. Many spe-
cialised treatment chains have been developed to ease this
task [1]. We tackle the generic problem of the improvement
of such a chain. Documents are passed continuously through
a sequence of web services to extract events (e.g., terrorist
attacks) and their characteristics (date, place, agents, etc.).

Because of the huge diversity of documents, it is clear that
these extractions cannot be perfect, and there cannot be a
single optimal chain. Dictionaries are of variable quality. The
system is error-prone; e.g., from a school blog recounting “the
bombardment of a gold target by ions during an atomic physics
demonstration”, an atomic bomb attack could erroneously be
extracted. The analysts are thus typically forced to correct a
posteriori the events extracted, an onerous and repetitive task.

The specific application which we examine uses a chain,
defined by experts, which consists of a fixed (but potentially
conditional) series of individual treatments, such as the detec-
tion of the document format, language recognition, translation,
extraction of events using nouns and verbs as triggers, etc.
There is currently no way to improve the chain without the
intervention of an expert in consultation with the analysts.

Our objective is to remedy this by providing a mechanism
which learns to modify its behaviour in real time, continuously
improving the chain, and reducing human effort by decreasing

the error rate. This mechanism receives feedback (see below)
automatically obtained as the analysts consult the system out-
put. We thus allow the chain to “learn” from its mistakes, e.g.,
a well-written French article should be translated to English,
as there is a wealth of English extraction rules available, but
for a tweet, a direct extraction is preferable as the dictionaries
are insufficient, and translating only introduces noise.

Feedback must be collected non-intrusively, invisible to the
analyst. The treatments must remain “black boxes”, allowing
the analyst to be distanced completely from the extraction
process. User expertise can be modelled by tracing their
actions [2]. These action traces can be captured in production
through the graphical interface giving a summary of the events
extracted. We can then base the feedback on the analyst-system
interactions that currently occur, e.g., an explicit feedback
can be deduced from the distance between an event as cor-
rected and the extraction. Our first set of tests (Section VI)
demonstrate this; the agent receives a numerical feedback
as an automatically generated judgement on the quality of
extractions. However, an event may also be not extracted,
extracted too slowly, etc. To interpret these “non-actions” as
feedback, we must ask “Is it preferable to extract erroneously,
or to miss an extraction?”, “Should I sacrifice speed for
quality?”. These questions cannot be answered naturally with
a numerical response. We therefore progress to giving intuitive
feedback (Section VII), based on easily gathered and naturally
expressed user preferences, such as “I prefer an extraction to
no extraction” and “I prefer it to be fast”.

To our knowledge, an agent capable of dynamically con-
structing a chain of services, which constantly learns and self-
improves from natural human feedback has not yet received
academic attention. Nevertheless, the base elements are there:

Chaining together services is not a new concept, e.g. for
assistance with form-filling [3], or the construction of adaptive,
modular chains for photocopiers in real time [4]. The inputs
and outputs of each service are known in advance, and it is a
planning task to string them together. User preference is not
taken into account, there is no measure of the result’s quality,
and no automatic improvement.

The user can reconfigure the chain using a dedicated
language [5], or by choosing a service from a directory
[6], but they must have system expertise to appreciate the
consequences of their choices, and the chain will not adapt
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Fig. 1: A simple but typical Weblab chain: a document, d, is
converted into an XML resource r0, annotations uj are added
by each service, finally the results are stored in a database.

without intervention.
Model-based learning from both explicit and implicit human

feedback has also been explored. The trainer’s positivity can
influence the agent [7] or implicit, non-numeric feedback can
be provided by inference on the observation of the trainers’
actions [8]. Models of the user’s behaviour [9] and preferences
[10] can be built up through human-system interactions to
provide personalised systems. The agent can also learn by
demonstrating two policies, which are ordered by the expert
[11]. Although these systems react well to changing users
and preferences, they require continuous user interaction to
confirm or contradict their choice. Our users are not dedicated
trainers, and our aim is to reduce human effort.

In summary, we formalise the improvement of a treatment
chain as a reinforcement learning problem (Section III), and
the chain itself as a Markov Decision Process (Section IV).
We demonstrate the viability of automatically learning to
chain and parametrise services in three different settings. In
the first, the agent is rewarded with numerical feedback on
the quality of the treatment, which is very informative but
difficult to calibrate (Section VI). The second and third use
intuitive user feedback (a partially qualitative formalisation,
and then a fully qualitative one). These are less informative but
require much less, or no calibration (Section VII). We build a
platform, BIMBO (Benefiting from Intelligent and Measurable
Behaviour Optimisation) into which we can “plug” different
RL algorithms, models, web services, reward mechanisms etc.,
which enables us to measure their impact on the learning.
We apply this in an industrial setting, specifically to an open-
source document treatment chain (Section II).

II. THE WEBLAB PLATFORM

Our industrial application uses the open-source platform
WebLab [12] for economic, strategic and military surveillance.
We also use it for our experiments. WebLab integrates web
services which can be interchanged or permuted to create a
treatment chain for the analysis and extraction of information
from web pages and other open-source multimedia documents.

A typical WebLab treatment chain (Figure 1) first converts
the source into an XML resource. This resource is then passed
from service to service. Each service analyses the contents
of the resource it receives and enriches it with annotations.
Finally, the results are stored for the analyst to consult.

Example II.1. Consider the following text:
4/29/1971: In a series of two incidents that might

have been part of a multiple attack, suspected

members of the Chicano Liberation Front bombed a

1 <r e s o u r c e t y p e =” Document ” u r i =” w e b l a b : a a a ”>
2 <a n n o t a t i o n u r i =” w e b l a b : a a a # a0 ”>
3 <w p : o r i g i n a l C o n t e n t r e s o u r c e =” f i l e : w e b l a b . c o n t e n t ” />
4 <w p : o r i g i n a l F i l e S i z e>255</ w p : o r i g i n a l F i l e S i z e>
5 <d c : s o u r c e>documents / e v e n t . t x t</ d c : s o u r c e>
6 <w p : o r i g i n a l F i l e N a m e>e v e n t . t x t</ w p : o r i g i n a l F i l e N a m e>
7 <d c : m o d i f i e d>2015−02−14T19 :52 :21 +0100</ d c : m o d i f i e d>
8 <w p : c o l l e c t e d>2015−02−10T00 :11 :00 +0200</ w p : c o l l e c t e d>
9 </ a n n o t a t i o n>

10 <a n n o t a t i o n u r i =” w e b l a b : a a a # a1 ”>
11 <wp: i sProducedBy r e s o u r c e =” w e b l a b : t i k a ” />
12 <d c : f o r m a t>t e x t / p l a i n</ d c : f o r m a t>
13 </ a n n o t a t i o n>
14 <a n n o t a t i o n u r i =” w e b l a b : a a a # a2 ”>
15 <wp: i sProducedBy r e s o u r c e =” w e b l a b : n g r a m j ” />
16 <d c : l a n g u a g e>en</ d c : l a n g u a g e>
17 </ a n n o t a t i o n>
18 <mediaUni t t y p e =” w l : T e x t ” u r i =” w e b l a b : a a a #0 ”>
19 <c o n t e n t>4 / 2 9 / 1 9 7 1 : In a s e r i e s o f two i n c i d e n t s t h a t might have been p a r t o f

a m u l t i p l e a t t a c k , s u s p e c t e d members o f t h e Chicano L i b e r a t i o n F r o n t bombed a
Bank of America b ra nc h i n Los Angeles , C a l i f o r n i a , US . There were no

c a s u a l t i e s b u t t h e b u i l d i n g s u s t a i n e d $1 600 i n damages .</ c o n t e n t>
20 </ med iaUni t>
21 </ r e s o u r c e>

Fig. 2: Simplified XML of a WebLab resource mid-chain.

Bank of America branch in Los Angeles, California,

US. There were no casualties but the building

sustained $1600 in damages.

The resource in Figure 2 would be produced by passing
the document through a normaliser, adding the annotations
“text/plain” (line 12) and original content (line 19); and a
language detector adding the language “en” (line 16).

As our chain is dedicated to extracting events, we define
these formally (here using the WebLab definition [16], but any
other definition of an event such as [17] could be used).

Definition 1 (Event). An event is a quadruplet (C, T, S,A):

• C ⊆ C is the conceptual (semantic) dimension. A set of
elements taken from the domain C common to all events;

• T is the temporal dimension (when the event occurred).
Potentially ambiguous, e.g. “last Tuesday”, we take T ⊆
T, where T is the set of all dates;

• S ⊆ S is the spatial dimension (where the event oc-
curred), also potentially ambiguous;

• A ⊆ A is the agentive dimension (the participants).

More precisely, in this article: C is a fixed and finite set
of elements in the ontology WOOKIE [16]; T is the set
of all relative and absolute “dates”, such as “tomorrow”,
“2001/9/11”; S is the set of entities defined in Geonames [18];
A is the infinite set of all extractable participants, as strings.

Example II.2. An event E could be extracted from the text
in Example II.1 with C = {AttackEvent, BombingEvent},
T = {4/29/1971}, S = {Los Angeles, California, US}, and
A = {Chicano Liberation Front, Bank of America}.

Building an efficient treatment chain depends not only
on choosing the services but also on setting their param-
eters correctly. For instance, the extractor GATE relies on
gazetteers, lists of nouns and verbs triggering the detection of a
specific type of event (e.g. the bombing verb gazetteer contains
“explode”, “detonate”, etc.). GATE is therefore a parametrised
service; without suitable gazetteers it is ineffective.



III. REINFORCEMENT LEARNING

In production, the treatment chain is complex. It is written
and calibrated by experts who choose the services making
up the chain, their order, and their parameters. The service
order is fixed, but can be conditional (e.g., if the document
is in English, send to extractor, and to translator otherwise).
Despite their expertise, it is impossible to create the perfect
universal chain. The treatment of open source documents
and web pages means that: their format and contents are
not standard, the source pages themselves are not controlled,
URLs change or are pirated, and there is “noise” (e.g., adverts).
The right web services have to be called in the correct order
and supplied with the best parameters, and even then may or
may not extract useful information from a document. Unde-
tected events and partially or falsely extracted events (e.g.,
unconnected information in the same sentence erroneously
associated) provoke extraction errors. For example, we saw in
Section I it is impossible to be certain that “bombardment”
refers to aerial bombings. Only once the event has been
extracted do we see that the page was a school blog. Even from
a specialist web page, the word could refer to the incessant
questions of the journalists. Maybe a synonym “shelling” was
used, and the event was not recognised.

Before starting the treatment chain, we only know the
available services, their parameters, and the potential charac-
teristics of the XML resource and system (see Section II).
The agent knows neither the form, nor the content of the
documents in advance, nor even if an extraction is possible.
Its actions are thus taken under uncertainty. Hence we model
the problem as one of reinforcement learning (RL) for Markov
Decision Processes (MDPs [19]). We give an overview here
but recommend reading [20].

In RL, the learner receives a reward, based on the results of
its chosen actions. The closer the results are to the objectives,
the higher the reward. The learner tries to maximise these
rewards, typically by exploiting current knowledge to continue
to receive good rewards, or by exploring new actions with
the hope of obtaining even better ones. RL is generally
formalised as an MDP, which models the environment in terms
of states, in which actions are possible, leading to other states
stochastically. The fact that the environment is in a given state
at a certain instant bestows an immediate reward on the learner
(or agent). The agent’s objective is to choose actions such that
it maximises its expectation of cumulated rewards.

Definition 2 (MDP). A Markov Decision Process (MDP) is a
quintuplet (S,A, P,R, γ) where:
• S a set of possible states in the environment (here finite);
• A a set of actions available to the agent (here finite);
• P a set of distributions {Pa(s, ·) | s ∈ S, a ∈ A} ;
Pa(s, s

′) is the probability that the environment is in state
s′ after the agent performs action a in s;

• R a reward function, defined on the states; R(s) is the
reward obtained by the agent when it reaches state s;

• γ ∈ [0, 1] an attenuation factor, weighting expected future
rewards against those currently expected.

In RL, the agent initially only has knowledge of the state /
action space S×A, as well as the factor γ. At each instant t, it
knows the current state st of the environment, and chooses an
action at. The environment passes into state st+1 according
to the probability distribution Pat(st, ·), and the agent is
informed of the state st+1 and the reward rt+1 = R(st+1).
The process continues in st+1. The agent, as it interacts with
the environment, learns a series of policies π0, π1, . . . , πt, . . . ,
where a policy πt : S → A gives, at instant t, the action πt(s)
to perform if the current state st is s. Its goal at each moment
is to maximise the expected accumulated reward, that is, the
expected quantity

∑∞
t′=t γ

t′R(st′). This generic framework
encompasses many variations (for a recent summary, see [21]).

Numerous algorithms exist to solve RL problems. Here, we
first use standard Q-learning [22] with numerical feedback,
then for the qualitative setting, which standard approaches
cannot handle, we use SSB Q-learning [23], but in practise,
any RL algorithm could be used. We give overviews of both
below to keep this paper self-contained, but encourage the
reader to consult the original articles. We also tried RMax [24]
and VMax [25], which are conceptually different (learning
the underlying MDP instead of a policy directly) but the
convergence and calculation time proved prohibitively long for
our problem. Note that we present here the general algorithms.
User feedback is formalised in Sections VI–VII.

Q-learning is a simple algorithm with easily observable re-
sults, and parameters which can be set intuitively. It maintains,
for each state / action couple (s, a), a value denoted Q̂(s, a)
which represents the agent’s current estimate of the expected
reward if from s it executes a, then follows an optimal policy.
It is controlled using an ε-greedy (EG) strategy: when the
agent is in state st, it chooses at which maximises Q̂(st, at),
except with probability ε, when it chooses a random action
(it explores). Observing the new state st+1 and immediate
reward rt+1, it updates Q̂(st, at) as shown in Algorithm 1.
The learning rate α ∈ [0, 1] fixes the importance of the latest

Algorithm 1: Q-learning
Data: MDP M

1 while True do
2 Choose at using the EG exploration strategy
3 Play at, observe st+1, and let rt+1 = R(st+1)

4 Q̂t+1(st, at)← Q̂t(st, at) + αt(st, at)(rt+1 +

γ maxb{Q̂t(st+1, b)} − Q̂t(st, at))

experience (rt+1+γ max(. . . )) with respect to the experience
already gained (the previous value of Q̂(st, at)). The discount
factor γ ∈ [0, 1] determines the importance of long-term gain.

Our approach works very well with numerical feedback
(Section VI), but very few humans could say “A false ex-
traction is 10.5 times better than a missed extraction, which
is 7.9 times worse than a 90 second extraction”. More natural
is “I prefer a fast, false extraction to a missed extraction”.
Note that there are two preferences expressed here, which
although they impact each other (one might suppose that speed



could result in poor extraction quality), cannot naturally be
linked numerically. We therefore want to give feedback based
on the decoupled user preferences: “I prefer an extraction to
no extraction” and “I prefer it to be fast”. This preferential
information can be expressed as a partial order over possible
results achieved (f1, . . . , fk) (seen as final states) given by the
human agent. For instance fi can stand for “a good extraction
in 10 seconds” or “no extraction in 5 seconds”, etc.

Like Q-learning, SSB Q-learning (Algorithm 2) uses EG
exploration, and it updates the Q-values similarly. However
instead of having the numerical values of the rewards given by
the environment, they are defined by preference φ (see below)
and the past experiences of the agent i.e. the frequencies pt
with which it has achieved each possible final result so far;
the resulting numerical value is denoted by Rpt

(st+1).
Probabilistic dominance [26] allows us to maximize the

probability of yielding a preferred outcome. Let π1 and π2
be two policies and let F1, F2 be two random variables on
(f1, . . . , fk) where P(Fi = fj) is the probability of πi achiev-
ing result fj . Then π1 � π2 ⇔ P(F1 � F2) ≥ P(F2 � F1).
That is, policy π1 is preferred to π2 if the expectation of π1
doing better than π2 is greater than the converse. Probabilistic
dominance is a type of Skew Symmetric Bilinear (SSB) utility
function [27]. Given φ, an SSB utility function, φ(π, π′) > 0
(resp. φ(π, π′) < 0) means the user prefers π to π′ (resp.
π′ to π) whereas φ(π, π′) = 0 expresses indifference. In
probabilistic dominance, φ is always 1, 0, or −1, requiring
only purely ordinal user feedback.

Algorithm 2: SSB Q-learning
Data: MDP M, SSB function ϕ

1 while True do
2 Choose at using the EG exploration strategy
3 Play at, observe st+1, and let rt+1 = Rpt

(st+1)
4 Qt+1(st, at) = Qt(st, at) + αt(st, at)(rt+1 +

maxb{Qt(st+1, b)} −Qt(st, at))
5 if st+1 is a final state fi and exploration is off then
6 pt+1 = pt +

1
η+1 (1i − pt)

7 # η is the number of times p has been updated.

Finally, for both algorithms we used versions with eligibility
traces [20, Section 7]. In these, a decay parameter λ ∈ [0, 1]
controls how far new experiences are back-propagated along
the trace of decisions taken. λ = 0 corresponds to the
algorithms as described above, while at the other extreme,
λ = 1 corresponds to Monte-Carlo like RL algorithms.

IV. CHAIN IMPROVEMENT AS RL
Given that it is impossible to create a unique chain capable

of perfectly treating every type of document, the ideal is to
have a tailor-made chain for each one. We do this by modelling
the treatment of a document as an MDP, and its improvement
as an RL problem. This is not as trivial as it may seem, as
the treatment process and its input are heterogeneous, and yet
a way must be found to standardise them into the states and

actions of a decision problem. The rewards cannot be specified
easily, our users are not dedicated trainers, and we are trying
to collect feedback in a non-intrusive fashion.

We define the states using the characteristics of the resource
and system at a given moment (Section V). The system thus
perceives the task as the states of a process, and each passage
through a service modifies the current state.

The system also has a certain number of actions available
which it can apply in the current state. The repetition of the
same action on the same document is technically authorised,
but will penalise the system, as the treatment will be longer,
and due to the massive volumes being treated in production,
faster results are preferred. The actions take the system from
one state to another, e.g., if 70% of the source documents
are in English, the agent will perceive that taking the action
“detect language” in a state st leads with probability 0.7 to a
state st+1 similar to st except that it contains the information
“language detected” and the annotation “en”.

More precisely, the states that the system perceives are
combinatorial states, formed from the values of a certain
number of descriptors of the documents. These states allow
a generalisation of the learning; we have already seen that
the type of source web page (school blog vs. specialist) could
greatly influence the utility of the word “bombardment” for
the extraction of information. We might hope that the system
would learn from the user interactions that the best action is:
– to stop the treatment if the current state descriptor “typeEx-
tracted” is “true” and the descriptor “type” is “school blog”;
– to pass the document to an extraction service using the
word “bombardment” among the trigger words, if the type
is extracted, but not “school blog”;
– to pass the document to a type-recognition service otherwise.

Finally, the analysts consult the summaries produced by the
system (which show the events extracted and link to the origi-
nal source documents). The corrections made by the analyst to
the extracted information indirectly furnish a feedback on the
treatment the document received. The rewards r(s) are thus
given to the system only for the final states of a treatment,
and are defined in three ways: a quantitative value based on
the corrections made to the extraction (if any) by the analyst
and the document treatment time (Section VI); a qualitative
reward based on the user’s purely ordinal preference on the
results; and a weighted ordinal preference giving a middle-
ground between the first two (Section VII).

V. EXPERIMENTAL FRAMEWORK

To assess the validity of our approach, we ran experiments
using a simple, but typical chain, as described in Section II, to
which we added the possibility of choosing a “useless” service
Geo. The chain is written as a Camel [28] route in XML. Each
service is defined as an endpoint, and we use the Dynamic
Router to give BIMBO control over the services called, their
order and their parameters, specifically the choice of gazetteers
(trigger words) of GATE [15] for event detection in a text. The
available actions are therefore to choose the next service from
{Tika, NGramJ, GATE, Geo}, to choose a GATE gazetteer, or



to STOP the treatment and return any extracted events. These
services are “black boxes” to the algorithms and BIMBO, so
that knowledge of, e.g., their WSDLs is unnecessary.

A state is represented by the characteristic attributions:
• information already extracted: language ∈ {“en”,“ ”};

format ∈ {“text/plain”,“ ”}; interesting ∈ {true, false}
(true if a given type of event has been extracted); any
∈ {true, false} (true if any events have been extracted);

• parameters chosen: nounGazetteer (the noun gazetteer
currently chosen, if any), similarly verbGazetteer;

• system state: timeTakenSoFar (seconds since the current
document treatment started in timeInterval (parametriz-
able) steps; nbServices ∈ {0−5, 6−20, 21+} (the number
of services through which the document has passed).

We use an open-source corpus in which the events are
already known: the Global Terrorism Database (GTD) [29],
consisting of details of over 125 000 worldwide terrorist events
from 1970 to 2014. We mapped the event types from the GTD
to WOOKIE, to construct a set of documents {d1 . . . dN},
from which a perfect chain could extract perfect events
E1, . . . , EN , respectively (as in Examples II.1,II.2), if it had
infinite time, and access to an infinite number of perfectly
parametrised web services. Such a chain does not exist in real
life, so we use the results from an expert chain (constructed by
hand) as a reference. We expect our AI to learn to construct
chains that eventually perform as well as this expert chain,
learning not only the correct order of the services and the best
parameters, but also the fact that certain actions (service Geo,
some GATE gazetteers) are not useful.

As explained in Section III, we test the AI’s learning ca-
pacity with no a priori knowledge. Such an AI is “untrained”.
After treating a certain number of documents, it learns what
it considers to be an optimal policy, becoming “trained”. In
production, to avoid learning from scratch, we would capitalise
on existing expertise by initialising BIMBO with a policy (here
the Q-Values) of an expert chain.

A. Measuring the quality of the results
To measure the quality of the results, we must first define

the similarity between an event extracted from the document
by the chain E1 = (C1, T1, S1, A1), and the corresponding
“perfect” event E2 = (C2, T2, S2, A2) in the GTD :

σ(E1, E2) =
aσ(C1, C2) + bσ(T1, T2) + cσ(S1, S2) + dσ(A1, A2)

(a+ b+ c+ d)

We define the semantic (resp.geographical) similarity
σ(C1, C2) (resp.σ(S1, S2)) to be 1 if there is a common
element between the semantic (resp.geographical) dimensions
of E1 and E2, and 0 otherwise. For example, for C1 =
{Attack,Bombing} and C2 = {Bombing}, we obtain
C1 ∩ C2 = {Bombing}, so σ(C1, C2) = 1.

The temporal similarity σ(T1, T2) is 1 for T1 ∩ T2 6= ∅.
Otherwise, we use partial and derived information, e.g., for
T1 = {7 October 1969} (a Tuesday), T2 = {October},
T3 = {Tuesday}: σ(T1, T2) = 1

10 and σ(T1, T3) = 1
7 (the

values were chosen by experiment, highlighting the difficulty
of putting a numerical value on a comparison).

Finally, for the agentive similarity, we use the Leven-
shtein distance (the minimum number of characters to delete,
insert or replace to convert one string into the other) on
each pair of agents a1, a2 in A1, A2. As named entity
(NE) extractors, such as GATE can make partial matches,
or over-match, we make this distance “fuzzy” (FL(a1, a2))
by comparing the substrings [30], and define σ(A1, A2) as
1−min{FL(a1, a2) | ∀a1 ∈ A1,∀a2 ∈ A2} if over a certain
threshold θ, and 0 otherwise (in practise, θ = 0.45 gave the
best results). For example, if A1 = {Dr Dolittle PhD}
and A2 = {Doolittle}, σ(A1, A2) is 1 − FL(��HHDr Dolittle
���XXXPhD,Do�Aolittle) = 1 − 1

8 = 0.875. We do not try here to
associate named entities such as London / capital of England,
but the modularity of the system would allow this.

The quality of the events extracted (if they exist) weighs this
similarity against the time taken to treat the document. More
precisely, if the extraction of Êi from document di took time t
with target event Ei, we define the quality Q of the extraction
to be σ(Êi, Ei)/t if σ(Êi, Ei) 6= 0, and −t otherwise (no
event extracted, or null similarity with the target event).

We thus formalise that the correct extraction of events is
primordial, it must be done in a reasonable time, and the AI
should rapidly detect if there is no interesting event to extract.

VI. TESTS WITH NUMERICAL FEEDBACK

The AI receives numerical feedback as defined in Section V
on the quality of its results. In production, this is the distance
between the event which it has extracted (if any), and the
extraction as corrected by the human analyst, considered to
be the “perfect” event which could be extracted from the
document (if any). This is non-intrusive, relying on corrections
which the analyst would need to make anyway, but requires
fine-tuning of the definition of the similarity and its parame-
ters, a cognitively difficult task. Note that the numerical reward
given to the AI here is standard in RL but not natural in real
life. In Section VII, we show the qualitative feedback results.
Q-learning was run with standard parameters: exploration rate
ε = 0.4, then divided by 2 every 500 documents until ε = 0.1,
learning rate α = 0.2. λ was 0 (no eligibility traces).

a) Training and production simulation: We first tested
the quality of the policy learnt (1) after training repeatedly on
a small set of documents, and (2) from scratch. We trained our
AI on 100 documents taken from the GTD , 64% of which
described “interesting” events (see below), 17% described
other events, and 19% contained no extractable events. We
treated these documents in the same order 30 times. The
AI had the choice of six gazetteers (three lists of verbs and
three of nouns). Two pairs of these gazetteers (bombing and
injure verbs and nouns) contained lists of words likely to
trigger the extraction of events of that type. Another pair of
dummy gazetteers contained words not present in the GTD. We
represented an analyst’s preference by defining “interesting”
events as Bombings and emphasising semantic similarity
(specifically a = 20, b = c = d = 1). The AI should thus
favour the bombing gazetteers over the injury gazetteers, and
ignore the dummys as they never lead to an extraction.
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We then simulated a production phase by running the policy
learnt by this trained AI as well as an untrained AI on 1 000
documents chosen randomly from the GTD , “seeing” them for
the first time. Only 29% of these contained Bombing events,
7% other events, and 64% no extractable events.

The untrained AI (starting “from scratch”) managed to
extract 39% of the possible events from the 1 000 unknown
documents, generalising well, its performance improving the
more different documents it encountered (Figure 3).

The trained AI demonstrated an optimal policy, extracting
100% of the events, showing that it also generalises well,
applying a learnt policy successfully to unknown documents.
Both AIs learnt not only to order the chain, but to optimise
it. They don’t call the service Geo, and only use the bombing
verb list. However, they unexpectedly preferred injure nouns to
those of bombing. On investigation, we found that the GATE
service used relied on verbs for extraction, ignoring the nouns.
This shows that the AI was able to discover strategies which
were not clear, even to the expert calibrating the chain.

b) Performance testing: We now assess how fast an
untrained AI can learn an “expert-like” policy (able to extract
100% of the events), and how well this policy performs (how
similar the events extracted are to the targets). We treated a set
of 63 documents from the GTD in the same order repeatedly
(in rounds). We expanded the action space by giving the AI the
choice of ten gazetteers (five lists of verbs and five of nouns):
three single-event pairs (bombing, shooting and injure), one
dummy pair, and one mixed pair containing a mix of words
likely to result in the detection of several types of events. We
sought to verify that the AI would learn to use the mixed
gazetteers rather than the single-event or dummy gazetteers,
and that it was not sensitive to a larger action space.

We first trained the AI with feedback given for each
document. It turned out that after only 1 008 documents (that
is, 16 rounds), the learnt policy was able to extract 100% of
the events. More importantly, the quality of the extraction with
this policy is on a par with that of the expert chain (Figure 4a).

Naturally the analyst is not available 24×7 to consult
each document as it is treated. We therefore ran a similar
experiment, but giving feedback on all extractions once all 63
documents had been treated, hence preventing the AI from
learning during a round. The AI was understandably slightly
slower to learn, but learnt an optimal policy after only 1 260
documents (20 rounds), and again the quality of this policy is
on a par with the expert chain (Figure 4b).

Finally, the analysts are not dedicated trainers, and will not

correct all extractions. To simulate this, we only gave feedback
after each extraction with a probability of 10% (otherwise the
AI received no feedback at all for this extraction). Even with
such sporadic feedback, the AI managed to extract 50% of
the possible events after only 1 890 documents (30 rounds),
and 100% after 5 103 documents (81 rounds). The quality of
these two policies is depicted in Figures 4c,4d, and suggests
that the abilities to extract events and to extract correct events
increase together. Note that the lower quality (compared to the
expert chain) that we observe in the latter plot is due to the
processing time, and not the similarity with the target event.

VII. TESTS WITH INTUITIVE FEEDBACK

We performed a comprehensive set of experiments, with
varying parameters γ (attenuation parameter, see Definition 2),
ε (exploration rate), and λ (decay parameter for eligibility
traces, see Section III). For each of these parameter settings,
we compared the performance of the expert chain and those
of three AIs learning “from scratch”:
QL: Q-learning with numerical feedback as in Section VI but
with varying parameter settings;
DOM: SSB Q-learning (Section III) with probabilistic domi-
nance, that is, purely ordinal feedback, φ ∈ {−1, 0, 1};
MAG: SSB Q-learning expressing preferences of different
magnitudes, φ ∈ {−1000,−100,−10, 0, 10, 100, 1000}.
Recall that SSB Q-learning requires feedback only about the
relative quality of two extractions. We therefore defined the
feedback given to DOM in our experiments as:
f �DOM f ′ ⇔ φDOM(f, f ′) = 1 iff (i) treatment f extracted
an event and f ′ did not, or (ii) neither or both extracted an
event, and f was faster than f ′;
f ∼DOM f ′ ⇔ φDOM(f, f ′) = 0 iff both took approximately
the same time, i.e., the treatments’ total times were within
margin (set to 5) seconds of each other.

We thus encouraged the AI to extract events first, and to do
so fast, or to recognise quickly that there are no events to ex-
tract. This relies on the correlation, demonstrated in Section VI
for Q-learning, between the ability to extract any event, and to
extract the correct events. DOM also demonstrates this corre-
lation. Obviously, this preference relation could be completed
with additional information over the obtained results, such as
the perceived quality of the extraction, etc.

Intuitively, MAG feedback is a middle ground between
QL and DOM, which can be seen as a weighted form of
probabilistic dominance. Yet such feedback remains quite
natural. We emphasised the importance of extracting events,
as compared to the importance of extracting the exact target
events, in turn compared to the importance of running fast:
φMAG(f, f

′) = 1000 iff f extracted an event, f ′ did not;
φMAG(f, f

′) = 100 iff both extracted an event but f extracted
an event of higher quality (Section V-A) than f ′;
φMAG(f, f

′) = 10 iff extractions were of similar quality or
neither extracted, but f was faster by margin seconds;
φMAG(f, f

′) = 0 iff f and f ′ were incomparable with respect
to the previous conditions.
We expect QL to be more effective than MAG, and MAG to
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be more effective than DOM, given the amount of information
they receive. We demonstrate, however, that MAG and DOM
are still perfectly realistic approaches in an industrial setting.

We ran the AIs, initially untrained, on a set of 5 000
GTD documents (presented in the same order, and only seen
once in all experiments). The actions were chosen from ten
gazetteers, the services Tika, NGramJ, GATE, Geo, and STOP.
We measured the quality of the treatment of each document
as described in Section V for all approaches. Obviously, as
the AIs learned from scratch, the policy will initially be poor.
We are interested in how fast a “good” policy is learnt (after
seeing how many documents), and how good this policy is.

Both Q-learning and SSB Q-learning were run with α set
as in [23], i.e. decreasing as the number of visits to the current
state/action pair grows. We varied the other parameters to get
a comprehensive set of results and measure the robustness to
parameter choice.

We ran the following 36 combinations of tests:
– algorithms QL, DOM, and MAG,
– EG parameter ε divided by 2 after 2500 or 1000 documents,
– γ = 0.9 and γ = 1,
– λ = 0, λ = 0.95, and λ = 1.0.
As we cannot show all the results here, we’ve chosen interest-
ing and representative plots. We plot only the extraction quality
where the AI “exploited” i.e., followed its “best” policy for the
whole treatment (blue dotted line), against that of the expert
chain (red solid line), which is why the red line varies between
plots. For readability, we smooth the curve, taking averages on
sets of 50 documents in the same order as they are treated.

QL gave excellent results, but proved quite sensitive to
changing parameters. γ = 0.9 gave excellent results with

λ = 0.95 (Figure 4e) where the AI learns a “good enough”
policy after only 250 documents (the events are extracted
correctly but it takes a few seconds longer than the expert
chain), and a optimal one after 1 200 documents. γ = 0.9 also
gave very good results with λ = 0 (not shown). With γ = 0.9
and λ = 1, however, the results were mediocre, and γ = 1
(Figure 4f) gave very bad results regardless of λ: the AI learns
to STOP very early, suggesting a risk-adverse behaviour.

DOM, like QL, was sensitive to the choice of γ and λ. With
γ = 0.9, the results were very bad for λ = 1 (not shown) and
λ = 0.95 (Figure 4j). However, reasonably good results (not
shown) were achieved with γ = 0.9, λ = 0 for the longer ε
reduction strategy, and with γ = 0.9, λ = 0 and γ = 0.9, λ =
0.95 for the shorter strategy. With γ = 1, the results were
good to excellent, and Figure 4i shows the best results for
γ = 1, λ = 1, which learns a “good enough” policy after
1 000 documents and stabilises with an optimal policy after
3 750 documents (verified on a further 5 000 (not shown)).

MAG proved robust to parameter change, quickly learning
a “good enough” policy in every case (e.g. Figure 4g).

We see a slight improvement in all results with a faster re-
duction in ε (every 1 000 documents vs every 2 500), i.e., with
less exploration overall. Finally, SSB Q-Learning sometimes
degrades after learning an optimal policy. The events are still
extracted, but it starts taking too long (Figures 4k, 4l). The AI
learns that passing through GATE from a given state gives a
good reward, and if γ and λ are not correctly set, although it
takes longer, it starts to prefer this action to stopping.

In summary QL can give excellent results, but is sensitive
to parameter variation and depends on numerical feedback. At
the other extreme, DOM only requires purely ordinal feedback,



and yet with the correct parameters is able to learn expert-
like policies. MAG offers a good middle ground: it is robust
to parameter choice, uses mostly intuitive feedback, yet still
learns a good to optimal policy very quickly. It is therefore
viable to automatically improve a document treatment chain,
and even to learn one from scratch, in settings where very
little or no numerical information is given.

VIII. CONCLUSION AND FUTURE WORK

We modelled a document treatment chain as a Markov
Decision Process, and solved it using reinforcement learning.
Our approach could be applied to any treatment, for instance,
to the process of object recognition in an image. Many
detection devices, and numerous algorithms exist for this, and
it is not yet clear how best to combine them.

We developed an application BIMBO (Benefiting from Intel-
ligent and Measurable Behaviour Optimisation) into which we
can “plug” different algorithms, web services and models to
measure their impact on the learning. We established that our
approach gave good results with sporadic numerical feedback.
We then integrated a reward function formalising naturally
expressed user preferences, demonstrating that this still gives
good results while requiring much less cognitive effort to
define the feedback. We thus showed that it is possible to
have a self-improving treatment chain, which does not require
intervention or tuning by a human user, and which collects its
feedback in a non-intrusive manner. Our work also evaluates,
in an industrial context, the applicability of various algorithms
and the impact of changing parameters for important RL
approaches, which is of independent interest.

The sets of states and actions in this article were chosen to
demonstrate the validity of our approach. The next step is to
make the chain more complex, by adding alternative services
(e.g. translation), expanding the state set (e.g. complete list of
languages), and introducing a wider range of input. We aim
to show that the system is capable of building different chains
for different types of document. Even with this larger state /
action space, the calculation time should not be an obstacle
with a Q-learning type algorithm, where the calculations are
instantaneous at each time step.
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[21] C. Szepesvári, “Algorithms for reinforcement learning,” Synthesis Lec-
tures on Artificial Intelligence and Machine Learning, vol. 4, no. 1, pp.
1–103, 2010.

[22] C. J. C. H. Watkins, “Learning From Delayed Rewards,” Ph.D. disser-
tation, Kings College, May 1989.

[23] H. Gilbert, B. Zanuttini, P. Viappiani, P. Weng, and E. Nicart, “Model-
free reinforcement learning with skew-symmetric bilinear utilities,”
2015, accepted at UAI16. Available at http://zanuttini.users.greyc.fr/
research/ssbQLearning.pdf.

[24] R. I. Brafman and M. Tennenholtz, “R-max-a general polynomial time
algorithm for near-optimal reinforcement learning,” The Journal of
Machine Learning Research, vol. 3, pp. 213–231, 2003.

[25] K. Rao and S. Whiteson, “V-MAX: A General Polynomial Time Al-
gorithm for Probably Approximately Correct Reinforcement Learning,”
Ph.D. dissertation, Amsterdam, Sep. 2011.
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