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Abstract

In this paper, we study how a swarm of robots adapts over time to
solve a collaborative task using a distributed Embodied Evolutionary ap-
proach, where each robot runs an evolutionary algorithm and they locally
exchange genomes and fitness values. Particularly, we study a collabo-
rative foraging task, where the robots are rewarded for collecting food
items that are too heavy to be collected individually and need at least
two robots to be collected. Further, the robots also need to display a
signal matching the color of the item with an additional effector. Our
experiments show that the distributed algorithm is able to evolve swarm
behavior to collect items cooperatively. The experiments also reveal that
effective cooperation is evolved due mostly to the ability of robots to
jointly reach food items, while learning to display the right color that
matches the item is done suboptimally. However, a closer analysis shows
that, without a mechanism to avoid neglecting any kind of item, robots
collect all of them, which means that there is some degree of learning to
choose the right value for the color effector depending on the situation.

1 Introduction

Swarm robotics aims at designing robot systems composed of a large number
of simple robotic agents to perform tasks. Such systems rely on the number of
agents rather than on their complexity. Swarm systems can have good properties
such as redundancy and graceful degradation if some robots fail. Additionally, a
swarm is able to solve tasks that are intrinsically cooperative, i.e. that a single
agent could not solve.

How to design such swarm robot behavior is a fundamental question, and
several methodologies have been proposed (Brambilla et al. (2013); Francesca



and Birattari (2016)). Lacking a well-established engineering methodology to
design swarm behavior, machine learning approaches to automatically build
swarm robot control systems appear as a promising alternative, and many of
the proposed approaches belong to the field of Evolutionary Robotics (ER, Nolfi
and Floreano (2000)) and Evolutionary Swarm Robotics (ESR, Trianni (2008)).
ER approaches use Evolutionary Algorithms (EA) to design robot controllers,
and are of particular interest since those methods do not require complex in-
formation to guide the search for behavior, only an overall evaluation of the
performance is required. Among these, Embodied Evolution (EE, Watson et al.
(2002); Eiben et al. (2010a)) is a family of algorithms that take place online,
once the robots are already deployed for operation. Evolution of behaviors is
carried in a decentralized manner: each robot runs an Evolutionary Algorithm
onboard, robots exchange genetic material when meeting (i.e. with robots in a
close vicinity), and selection and variation are performed locally by the robot
(Bredeche et al. (2015)). As such there is no central authority orchestrating the
evolutionary process, in contrast with traditional ER approaches, and learning
in the swarm emerges from interactions among the individual agents.

To perform cooperative tasks, swarms of robots need to coordinate their
individual behaviors, and the task is solved by the resulting collective behavior.
Evolving behaviors for intrinsically cooperative tasks is a complex problem.
Several authors have addressed this problem in different contexts (Bernard et al.
(2015); Waibel et al. (2009); Hauert et al. (2014)). In this paper, we study how
a fully distributed EE algorithm can evolve swarm behavior for a cooperative
foraging task that requires coordination between robots to collect different kinds
of food items. The contributions of this paper are two-fold:

e First, we show that our EE algorithm run by every robot effectively learns
a cooperative foraging task where different kinds of food items need to be
collected.

e Second, we show that the task is indeed solved by learning a good strategy
to coordinate behaviors, instead of learning simple opportunistic strate-
gies. We show that all kind of food items are collected, although in differ-
ent proportions, without resorting to any mechanism to avoid neglecting
any of them.

The remainder of this paper is organized as follows. We first describe re-
lated approaches regarding evolution of cooperation, as well as studies on EE
of swarm behavior. Then, we describe our experimental methodology, including
the collective foraging task to be learned, as well as the Embodied Evolution
algorithm run by the robots. Finally, we describe the results of the experi-
ments and we discuss them, pointing out the contributions of this paper, and
we conclude with some final remarks and perspectives.



2 Related work

A number of contributions have been made in evolving cooperative behaviors for
robot swarms. This is a compelling problem in the field of evolutionary collec-
tive robotics. Although it has been widely studied with different aims, most of
these works use a clonal approach where all the robots carry a copy of the same
controller, leading to homogeneous team compositions (Francesca and Birattari
(2016); Waibel et al. (2009); Tuci et al. (2008)). The teams are evaluated on the
global fitness of the group that a centralized EA uses to optimize their behavior.
On the other hand, there are some works that used coevolutionary approaches,
where the population is decomposed in separate subpopulations, possibly one
per robot (Gomes et al. (2015); Bernard et al. (2015)). Each genome in a
subpopulation is evaluated against genomes of the other subpopulations, and
evolution proceeds based on such fitness values. In this case, the composition of
the team is by definition heterogeneous, i.e. the agents carry different genomes.
In all these works, both clonal and coevolutionary approaches, evolution is per-
formed in a centralized, offline manner, where an EA uses the fitness evaluations
of all the agents to select the offspring for the next generations. Here, we study
the evolution of cooperative behaviors using a distributed Embodied Evolution
approach.

Embodied Evolution (Watson et al. (2002)) approaches are concerned with
online evolution of behaviors run in parallel by each robot in the swarm. Robots
exchange genetic material and possibly fitness measures when meeting, and
evolution proceeds in such a distributed and asynchronous manner, which is
akin of natural evolution. Many authors have addressed Embodied Evolution of
behaviors for swarms of robots in different contexts, and several algorithms have
been proposed. In those works, the authors use EE to study different topics
and tasks: parameter tuning (Eiben et al. (2010b)), adaptation to changing
environments (Dinu et al. (2013)), environment-driven survival (Bredeche et al.
(2012)) evolution of self-assembly and aggregation (Silva et al. (2015); Weel
et al. (2012)), topological neuroevolution (Silva et al. (2015); Ferndndez Pérez
et al. (2015)), phototaxis and navigation (Silva et al. (2015); Karafotias et al.
(2011)).

Distributed EE of swarm robot behavior raises some questions about the
emergence of behavior for cooperative tasks, of division of labor or specializa-
tion. For example, Montanier et al. (2016) study the conditions for evolving
specialization using Embodied Evolution approaches. They concluded that be-
havioral specialization is difficult to achieve in EE approaches, unless there is
some degree of reproductive isolation in the swarm. Additionally, the authors
insist on the importance of the size of the swarm and the selection pressure as
parameters that may influence the emergence of specialized behaviors. In (Haas-
dijk et al. (2014)), the authors proposed a “market” mechanism that explicitly
balances between different tasks to avoid neglecting hard tasks over easier ones
(e.g. the most frequent or most rewarding). They test their approach in a for-
aging context where items of different types need to be collected individually by
the robots. The authors consider collecting each type of item as a different task.



Different types of items available in different amount and in different areas of
the environment, thus making some of the tasks easier than others.

The problem of evolving cooperative behavior for multirobot teams and
robot swarms has already been studied using centralized EAs (see above). How-
ever, a legitimate question one could ask is: how can we evolve behaviors for an
intrinsically cooperative foraging task in the distributed context of Embodied
Evolutionary Robotics? In this paper, we evolve swarm robot behaviors in a
cooperative foraging task with items of different colors using a simple Embodied
Evolutionary algorithm which is a version of mEDEA (minimal Environment-
driven Distributed Evolutionary Algorithm, Bredeche and Montanier (2010))
with selection pressure at the individual level. We compare the results with a
case in which there is no selection pressure toward collecting items. We also
take measures regarding the evolved strategies to collect food items of different
colors, and conclude that there is no color neglected without resorting to explicit
balancing mechanisms as in (Haasdijk et al. (2014)), although some of them are
collected more frequently than others.

3 Collaborative item collection

In our experiments, a swarm of robots is deployed at random positions in an
enclosed circular environment containing food items of different colors. We
defined a task in which the robots must learn to collect these items cooperatively,
since each item needs at least two robots next to it to be collected. To collect
an item, robots must display a matching color signal using an additional colored
led effector that is controlled by the robot’s neurocontroller. Furthermore, the
color signal that the robots display must match the color of the item to be
collected. This imposes a synchronization constraint to the task, so robots are
required to have some degree of coordination, or at least to reach a consensus
on a color to use when collecting.

Each robot moves using two differential wheels which are also controlled by
the robot’s neurocontroller. Each robot has the following sensors:

e 8 obstacle proximity sensors,
e 8 robot proximity sensors,
e 8 food item proximity sensors,

e 8 color sensors, returning a value in [—1, 1], corresponding to the color of
the detected item, if any.

The robot’s controller is an artificial recurrent neural network with the sensors
as inputs and a bias unit, which are fully connected to three outputs neurons
for the two wheels and the color effector. Additionally, all the outputs have
recurrent connections from the previous right and left wheel speeds. The ANN
computes the weighted sum of the sensors using a vector of synaptic weights



that is encoded in the genome, and the activation is squashed using a tanh(-)
function taking values between —1 and 1.

The task we define is a cooperative version of the concurrent foraging prob-
lem (Jones and Mataric (2003)), a problem in which different kinds of food
items are available at the same time and have to be gathered in different ways,
rather than having a single resource. In our case, whenever two or more robots
are next to a food item and display the same color of the item, these robots
collect the item, one point of reward is split among them, and another item of
the same color appears at a random position in the environment. As such, the
total number of items and the number of items of each color are kept constant.
The weights of the neural network that controls both the movement and the
color of the led on the robots are subject to evolution using an EE algorithm
run by each robot (see below).

3.1 Embodied Evolution algorithm

All the robots in the swarm run an instance of the same EE algorithm, which
is a variant of mEDEA that adds task-driven selection pressure. The idea of
adding selection pressure toward a user-defined task to mEDEA is not new and
was already studied in several works (Haasdijk et al. (2014); Ferndndez Pérez
et al. (2014)). The algorithm is shown in Algorithm 1.

Algorithm 1 mEDEA with task-driven selection pressure

1. gq := random()

2: while true do

3 fqa:=0.0

4: 1:=10

5. fort=1to T, do
6 exec(gq)

7 fa := update_fitness(g,)
8 broadcast(ga, fa)

9 1:=1listen()

10:  end for

1 L= 1U{(ga, fa)}

12:  selected := select(1)

13: g4 := mutate(selected)

14: end while

At the beginning, the robot randomly initializes its active genome, which
encodes the vector of synaptic weights of its neurocontroller. For T, timesteps
(one generation), the robot executes and evaluates its active controller. At every
timestep, a robot runs its controller by reading the sensor inputs and computing
the motor outputs. It updates the fitness value of its controller based on the
outcome of its actions, and locally broadcasts to nearby robots its genome and
current fitness. Those robots store the received genomes and fitness values into
a local list. If the same genome is received several times during a generation,



its fitness value is updated (i.e. multiple copies of the same genome are not
allowed in local lists).

Once T, timesteps are elapsed, the generation is finished, and the robot needs
to choose a new active genome for the following generation. To do so, it selects a
genome from its local list, possibly based on its fitness value. Subsequently, the
selected genome is mutated using a Gaussian mutation. The resulting genome
is mapped to the active controller for the following generation, and the local
list is emptied. This means that selection is performed on the set of genomes of
robots that were encountered during the previous generation. At this moment,
the evaluation of the new controller begins.

Regarding the selection method, we use an elitist selection method, dubbed
Best, which selects the genome with the highest fitness in the local list. In
(Ferndndez Pérez et al. (2014)), it was shown that such method leads to the
highest performing behaviors in a navigation with obstacle avoidance and in an
individual item collection tasks. To provide quantitative comparisons, we also
run a variant where selection is done randomly, as in mEDEA, thus disregarding
any task objective (e.g. collecting items). Such method induces no task-driven
selection pressure, and, as shown by Bredeéche et al. (2012), evolves survival
behaviors where robots learn to spread their genomes (e.g. by navigating to
maximize mating opportunities). This provides a baseline for our experiments.

4 Experiments

In this section, we describe the experimental settings in our work, as well as
the measures and experimental methodology for the post-analysis of the corre-
sponding results.

4.1 Settings

In our experiments, 200 robotic agents are deployed in a circular environment
containing 100 food items of 8 different colors, with the same proportion of each
color. Each robot runs a copy of the algorithm presented in the previous section.

At every moment, each agent carries an active genome, which defines its
current controller. The controller is run and the agent updates its fitness value
when it collects an item, and locally broadcasts both its genome and its current
fitness value to other nearby agents. The initial active genome of each robot is
initialized with random weights between —1 and 1. When the evaluation period
(lasting T, = 800 timesteps) is finished, the agent selects a genome from its
local list and mutates it by adding a normal random variable to each gene, with
mean 0 and variance o2, N'(0,0%) (in our experiments, & = 0.1). Then, the
local list of genomes is emptied and a new evaluation phase starts. We consider
each evaluation phase as one generation.

Since our goal is to evolve cooperative foraging behaviors, in our experiments
we use a task-driven selection method that deterministically chooses the best
genome from the local list on each agent, in terms of fitness. When two or more



Table 1: Experimental settings.

Experiments

Environment size 1000 x 1000 px
Number of food items 100
Food item radius 5 px
Swarm size 200 agents
Agent radius 6 px

Sensor range 20 px

Exp. length 1.6 x 107 sim. steps
Number of runs 3

Evolution
Evolution length 200 generations
T 800 sim. steps

Genome size 105

Mutation step-size o=01

agents are next to an item and they display a color matching the color of the
item, 1 point of reward is split among all these robots. Fitness is measured as
the sum of rewards obtained when collecting food items. Table 1 summarizes
our experimental settings. The choice of those was based on preliminary exper-
iments, although the exact values did not change the results significantly. For
example, the evaluation period of T, = 800 timesteps was chosen for the robots
to have enough time to collect items, the mutation step of ¢ = 0.1 was chosen so
the mutations were not too disruptive, and the density of robots (ratio between
number of robots and environment size), as well as the communication and sen-
sor ranges, were chosen to provide enough communication between robots for
the distributed algorithm, while not having a too dense environment that would
relatively hinder free movement.

We compare our results when using a task-driven selection pressure (Best
selection) with a variant with random selection over the local list of each agent,
as in mEDEA, (Random selection), which is our control experiment.

We use the Roborobo! simulator (Bredeche et al. (2013)), a simple and
fast 2D simulator developed mainly for experiments in swarm robotics. Figure
1 shows a snapshot of the simulator with a robot swarm and different colored
items. For each experiment, we run 30 independent runs to get statistical results.

Our experiments aim at answering two main questions:
e Does the swarm evolve behaviors to collect food items cooperatively?

e Are evolved behaviors opportunistic regarding the color of collected items?
Otherwise stated, does the swarm learn to collect items of all colors, or
are some of them neglected?

4.2 Measures

Here, we describe the post-analysis measures we use to answer the previously
stated questions, and how we draw conclusions from them. To ascertain if
cooperative collecting behaviors are evolved, we measure the total number of
collected items by the swarm per generation, that we name Swarm Fitness.
Since EE approaches evolve behaviors during robot operation (i.e. online), the



Figure 1: The simulated circular environment containing robots (black circles with thin

hairlines representing sensors) and food items (colored dots).

best Swarm Fitness value or the Swarm Fitness at the last generation of our ex-
periments are not reliable measures. Performance measures taking into account
the quality of behaviors over time are thus needed. Following our previous work
(Ferndndez Pérez et al. (2014)), we measure the average accumulated Swarm
Fitness at the end of evolution as the average Swarm Fitness during the final
20% generations of each run.

Additionally, we measure the average individual reward obtained per col-
lected item, over generations. Since each time an item is gathered one fitness
point is split among the robots that participated in collecting it, averaging the
individual rewards tells us if items are mainly collected by pairs of robots or by
larger groups.

To evaluate how robots collect items cooperatively, we measure two of the
components of the Swarm Fitness. First, we measure the average ratio of food
items that could be collected at any moment over the total number of items, per
generation (i.e. the number of items at every timestep that have at least two
robots next to them, divided by the total number of items, averaged for each
generation). The better the robots are in reaching items in groups of at least two
robots, the higher will be the ratio of items that could be collected. Second, we
measure the average ratio of items at every timestep that are actually collected
among the possible items, over generations. This gives us an idea of how good
behaviors are in terms of synchronizing the color effectors by jointly displaying
the right color when collecting.



In order to evaluate if items of all the 8 colors are gathered, we measure the
total number of items collected of each color for each run, and we compute the
ratio over the total number of collected items (i.e. the proportion of collected
items of each color in each run). Additionally, we compute the entropy of the
proportion of items of each color, H(p) = — >, colors Pi-[092pi, which indicates
how close is a proportion of items of each color to a uniform distribution where
all colors are collected in the same quantity. When all the colors are collected
in equal proportion (i.e. Vi, p; = %), the entropy is maximal with a value of
3. However, when only items of one color are collected, the entropy is minimal
with a value of 0.

Finally, we perform pairwise comparisons of the aforementioned color pro-
portions among all 30 runs of each experiments, to test if all the runs of each
experiment yield a similar distribution of color proportions. First, the vectors
of the 8 color proportions of a run are linearly normalized. Since different runs
could evolve a preference toward different colors, we sort the coordinates of the
normalized vectors from the most frequent color to the least frequent one. We
compute a pairwise similarity measure between each pair of sorted vectors by
using the dot product. The dot product yields 1 if the two vectors are collinear,
0 if they are orthogonal, and —1 if they are antiparallel. Summarizing, this
measure gives us an idea of how similar are runs in terms of proportion of col-
lected items per color. Note that this similarity measure is computed on the
sorted vector, because we are interested in how the runs compare in terms of
proportion between colors, not in the actual color value.

In the next section, we present the results of the experiments in terms of the
aforementioned measures. To provide statistical results, we show the measures
over 30 independent runs. In the case of measures over generations, the plots
show the median and the interquartile range of the measure for the 30 runs
over time. In the case of single measures, we provide violin plots showing the
kernel density function of the dispersion on the data, as well as the datapoints
as reference. The violin plots also show the median value, and the whiskers
correspond to the maximum and minimum value over the 30 independent runs.

5 Results and discussion

In this section, we present and discuss the results of our experiments. A video of
one simulation run using Best can be found at rebrand.ly/FernandezECAL2017.
Figure 2 shows the Swarm Fitness (i.e. the number of collected items) per gen-
eration (left) for the experiment with task-driven selection pressure (Best, in
blue) and for the experiment without task-driven selection pressure (Random,
in orange). There is a clear increasing trend showing that the swarm learns how
to collect items cooperatively in the case of Best. It reaches values of around
150 items per generation. There is also a slight trend of improvement in the
case of Random, although much lower (around 12 items per generation). This is
due to the fact that the robots learn to spread their respective genomes, and, as
a byproduct, sometimes two of them meet on an item while displaying the right



color, thus collecting the item. On the right, we show the average accumulated
Swarm Fitness for both experiments. A Mann-Whitney U test shows that the
difference between Best and Random is highly significant.
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Figure 2: (Left) Total number of cooperatively collected items over time. (Right) Average
fitness cumulated during the last 20% of the experiments in 30 independent runs. Mann-
Whitney U tests show highly significant statistical difference between Best and Random
(p-value = 1.5-10711).

The average individual reward obtained per collected item has an almost
constant value of 0.5 units in both Best and Random in all the runs (not shown
here). This means that items are almost always collected by pairs of robots,
and only very occasionally an item is collected by more than two robots. This is
expected, for two reasons. First, reaching items and simultaneously displaying
the right color in larger groups (more than two robots) is more complicated than
reaching it in pairs. Second, when two robots collect an item, they get each a
reward of 0.5 units. When an item is collected by more than two robots, the
individual reward is lower. Since the number of items is always kept constant,
there is no shortage of resources in the environment, and robots do not need to
compete for them, i.e. they can search for other items to collect rather than
collect items in large groups. Concretely, there is a reproductive disadvantage
in terms of fitness in collecting items in larger groups.

Figure 3 (respectively, Figure 4) shows the average ratio of items that could
be collected over the total number of items over generations (resp., the average
ratio of collected items over the number of items that could be collected). These
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are two components of the Swarm Fitness, as discussed in the previous section.
The trends in the results provide an interesting insight on the evolved behaviors
regarding the cooperative item collection task.

The ratio of items that could be collected (Figure 3) improves considerably
over time in the case of Best, reaching values of arond 20% of the total items,
which is a high value, considering the number of items and robots, and the fact
that, if an item gets collected, robots must search for another one, and thus will
spend some time before they are next to it, even with an optimal controller.
Consequently, this means that robots get very proficient at finding and getting
next to food items. In the case of Random selection, the values are much lower,
there is not such improvement, and the ratio even decreases slightly, stabilizing
around 2% of the items in the environment. This shows that, at least in our
experiments, getting next to items does not increase the chances for spreading
robots’ genomes, and the robots ignore the items. We visually observed that,
indeed, the robots in this case do not move toward the items. Additionally, we
show on the right the average accumulated ratio of items that could be collected
over the last 20% of each run. Mann-Whitney U tests show a highly significant
difference between Best and Random.
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Figure 3: (Left) Proportion of items that have at least two robots next to them over time.
(Right) Average accumulated proportion of items that could be collected during the last 20%
of the experiments over 30 runs. Mann-Whitney U tests show highly significant statistical
difference between Best and Random (p-value = 1.5-10711).

If we look at the ratio of collected items over the possibly collected items (i.e.
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that had at least two robots), Figure 4 shows a different picture. The measure
over generations in the case of Best is only slightly higher than for Random. We
compute the average accumulated ratio over the last 20% of each run (shown
on the right). Mann-Whitney U tests show that there is a significant statistical
difference between the distribution of values for Best and Random (p-value =
0.0049). However, this difference in terms of actual value is slim. For Best,
the value is around 1%, which means that robots only collect around 1% of the
items having at least two robots next to them. This directly relates to their
overall ability to jointly display the right color when they reach a food item,
which is not very high (although slightly better than in the case of Random).

Proportion of collected items over number of possible per generation
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Figure 4: (Left) Proportion of items that are collected over the number of items that could be
collected over time. (Right) Average accumulated proportion of collected items over possible
ones. Mann-Whitney U tests show significant statistical difference between Best and Random
(p-value= 0.0049).

To summarize, good cooperative foraging behaviors are mainly due to the
ability of robots to jointly reach food items in groups of two robots. However,
robots learn suboptimally to jointly display the color matching the item. The
cause of this could lie in the encoding of the color output neuron in the neu-
rocontroller, which has a sigmoid (tanh(-)) activation function. Such function
squashes the weighted sum of the inputs in a non-linear manner, and values
saturating the neuron toward —1 or 1 are easier to display. This means that the
items of the two colors corresponding to the maximum and minimum values are
easier to collect.
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To further investigate this behavior, we look at how items of different colors
are collected. Figure 5 shows the proportion of the total number of items of each
color collected per run. The violin plots are grouped in pairs corresponding to
Best (left) and Random (right). The figure shows that in the two experiments
the items of colors in both ends of the range are collected more frequently than
the other colors. As said before, this is probably due to the saturation, either
toward high or low values, of the output neuron controlling the color effector
of each robot. However, there is a significant differerence between each pair of
proportions (i.e. between Best and Random), as pairwise Mann-Whitney U
tests reveal (all p-values < 0.03), except for the proportion of one type of items,
orange in Figure 5, with a p-value = 0.1975. Furthermore, not only the difference
is overall significant between Best and Random, but also Best systematically
yields more balanced proportions, approaching a uniform distribution with %
for each color. To get quantitative measures of the balance among colors, we
show on the right of Figure 5 the entropy of the proportion of items per color
of Best and Random (see previous section). The results clearly show that
Best leads to swarm behaviors that are more balanced in terms of the color
of the collected items than in the case of Random. Mann-Whitney U tests
show highly significant difference between both experiments in terms of entropy.
Additionally, the entropy for Best gets close to the maximum value of 3.0 that
would correspond to a completely uniform distribution.

As previously mentioned, Haasdijk et al. (2014) proposed a “market” mech-
anism to avoid neglecting tasks and balance the effort in a concurrent foraging
task using a similar algorithm to ours. In their work, different types of items are
found in different proportions, and are detected using different sets of sensors
to emphasize the fact that the tasks are distinct. In constrast with that work,
in our experiments all the types of food items are in the same amount. As such,
it may seem that collecting items of each type is equally difficult. However,
counterintuitively, due to the encoding of the color effector activation to collect
the items (a single value between -1 and 1, discretized into 8 intervals for 8 dif-
ferent colors) and the neural activation function of the controller (a hyperbolic
tangent, tanh(-)), the colors corresponding to saturated activations (-1 or +1)
are easier to display.

Finally, we measured the collinearity of the color proportions with the dot
product for all the pairwise combinations of the 30 runs of Best, as described
in the previous section. The results yielded values close to 1.0 (median = 0.946,
upper quartile = 0.987, lower quartile = 0.866). This means that the indepen-
dent runs of Best follow a similar trend regarding the balance between colors.
Figure 6 shows the number of collected items over time of a typical run of Best,
and the colored areas correspond to the number of items of each color collected
per generation. The figure shows that items of all the colors are collected, so
no one is neglected, and the number of collected items of each color increases
over time, which means that robots progressively learn to cooperatively collect
items of all the colors.
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Figure 5: (Left) Proportion of collected items of each color over the total number of collected
items. Each pair of violin plots shows such proportion of the corresponding color, for Best
(left) and Random (right) selection methods. (Right) Entropy of the proportions of collected
items of each color over the total number of collected items, with both selection methods.

Mann-Whitney U tests reveal a highly statistical difference (p-value = 5.1 - 10’7).

6 Conclusion and perspectives

In this paper, we studied the capability of a distributed EE algorithm, mEDEA
with task-driven selection pressure, to evolve swarm robot behaviors to solve
a cooperative foraging task with different kinds of food items. The evolution
of cooperative multirobot behaviors in ER is a challenge that has been widely
studied from different points of views and with different approaches. Here, we
used a fully distributed EE algorithm, that evolves heterogeneous controllers
to learn collaborative behaviors. We showed that such an algorithm evolves
behaviors for a cooperative foraging task with several types of food items that
requires two or more robots to synchronize their actions to collect the items.
We also showed that items are collected by pairs of robots rather than larger
groups. Furthermore, we showed that the robot swarm evolves behaviors that
do not neglect any kind of items, even without an explicit mechanism to enforce
it.

Our experiments also showed that cooperative item collection is achieved
mostly by jointly reaching food items. However, choosing the right color is
achieved suboptimally. Additionally, even if our algorithm evolves behaviors
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Figure 6: Number of collected items of each color in a typical run of the experiments using

Best task-driven selection.

that do not neglect any type of items, the proportions of collected items of each
color are not equal. These two facts could be due to the encoding of the color
effector in the neurocontroller, which should be further studied. It would also
be interesting to investigate if the learned strategies are different if we increase
the frequency at which the items reappear for the colors in the middle (would
the agents collect more of them?), if there is a shortage of items, or, in the
same vein, if the reward is increased when items are collected by more than two
robots (would agents collect items in larger groups to share the reward?). The
analysis of the results of this paper sheds some light on the distributed evolution
of cooperative foraging behavior, and it also raises several new questions about
how to further improve the cooperative strategies, and how can resources of
different types be shared in the robot population, depending on item density
or proportion per type of item. Further research is needed to answer these
questions.
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