
HAL Id: hal-01534235
https://hal.science/hal-01534235

Submitted on 13 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Can robot navigation bugs be found in simulation? An
exploratory study

Thierry Sotiropoulos, Hélène Waeselynck, Jérémie Guiochet, Félix Ingrand

To cite this version:
Thierry Sotiropoulos, Hélène Waeselynck, Jérémie Guiochet, Félix Ingrand. Can robot navigation
bugs be found in simulation? An exploratory study. 2017 IEEE International Conference on Software
Quality, Reliability and Security (QRS2017), Jul 2017, Prague, Czech Republic. 10p. �hal-01534235�

https://hal.science/hal-01534235
https://hal.archives-ouvertes.fr


Can robot navigation bugs be found in simulation?
An exploratory study

Thierry Sotiropoulos, Hélène Waeselynck, Jérémie Guiochet and Félix Ingrand
LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France

Email: firstname.lastname@laas.fr

Abstract—The ability to navigate in diverse and previously
unknown environments is a critical service of autonomous robots.
The validation of the navigation software typically involves test
campaigns in the field, which are costly and potentially risky for
the robot itself or its environment. An alternative approach is to
perform simulation-based testing, by immersing the software in
virtual worlds. A question is then whether the bugs revealed in
real worlds can also be found in simulation. The paper reports
on an exploratory study of bugs in an academic software for
outdoor robots navigation. The detailed analysis of the triggers
and effects of these bugs shows that most of them can be revealed
in low-fidelity simulation. It also provides insights into interesting
navigation scenarios to test as well as into how to address the
test oracle problem.

Index Terms—simulation-based testing; autonomous systems;
safety; domain specific defects; exploratory study.

I. INTRODUCTION

The ability to navigate in diverse and previously unknown
environments is a critical service of autonomous robots. The
underlying navigation software may be complex and must be
thoroughly validated. To do so, the usual practice is field test-
ing, i.e., experimentations with a physical robot in real world.
But this approach is quite expensive and potentially risky in
case of misbehavior (for the hardware, the environment or the
humans). In contrast, simulation-based testing is cheaper and
may explore a large number of navigation scenarios in virtual
worlds without incurring any physical risk. Existing robotic
simulators seem to have reached a sufficient level of maturity
to be used for testing. For example, a recent survey [1] points
to two open-source general purpose simulators, Gazebo [2]
and MORSE [3], that provide adequate physical fidelity with
respect to navigation and mission planning functions. How-
ever, in practice, such tools are mainly used for prototyping
purposes. There is currently no principled test method that
would exploit their facilities for intensive validation purposes.

The long-term objective of our research is to develop such a
method. This is challenging, as the test selection and test oracle
problems are specifically difficult in the case of autonomous
navigation missions in unpredictable environments:

• Test selection — The input domain is a hypothetical space
of worlds in which the robot is intended to navigate. No
need to say, the domain is infinite, incompletely specified
(what are the key characteristics to consider in world
models?), and it is hard to determine which test selection
criteria should be used.

• Test oracle — Given an arbitrary world and mission in
this world, there is no ground truth about the decisions
that the robot should take. For example, failure to reach a
destination point may be due to some misbehavior or to
the infeasibility of the mission, but the automated oracle
has no means to decide between the two.

The relevance of simulation-based testing is questionable:
could it be the case that most bugs only surface in real-world
conditions? Thus, there is a need to study the reproducibility
of bugs in simulation, their trigger conditions, as well as their
observable effect. This paper reports on such an exploratory
study applied to an academic software for outdoor robots
navigation. The sample of bugs considered is reasonably sized
(33 bugs) for an in-depth analysis of each of them. We
made a detailed analysis of their triggers and effects, to the
point of trying to experimentally reproduce some of them
in MORSE simulations. The analysis shows that low-fidelity
simulation could reveal most of the navigation bugs found for
this software. It also provides feedback about input scenarios
and observation data we missed in previous test experiments
with this software [4]. More generally, the study confirms that
the diversity of misbehavior patterns makes the oracle problem
very challenging, and provides useful insights into how to
approach it.

The structure of the paper is as follows. After a discussion of
related work (Section II), we present the navigation software
under study in Section III. The case study design is detailed in
Section IV. Section V discusses results, derived insights and
threats to validity. Section VI concludes.

II. RELATED WORK

The testing of autonomous systems has started to attract
interest from the testing community. Test selection strategies
have been investigated, based on an abstract model of test
situations, that describes the involved entities, their relation-
ships and some interaction patterns. The authors of [5] use
UML (Unified Modeling Language) to specify a metamodel
of entities and a set of interaction scenarios. The approach is
applied to a vacuum cleaner robot, using metaheuristic search
techniques to generate abstract test data from the models.
In [6], the structural model of entities is in UML and the
dynamic part consists of Petri nets. In [7], the behavior of
the load handling device of an industrial transport robot is
modelled and tested using label transition system. The work



of [8] defines several types of mid-air collision situations,
and uses them to guide the evolutionary testing of a drone
collision avoidance algorithm. The same authors extend their
work to find challenging situations with a Genetic-Algorithm-
based approach for a UAV collision avoidance system [9].

All these approaches have a very simplified view of the sim-
ulated environment and do not call for sophisticated simulation
means. To the best of our knowledge, the work of [10] is the
only one to consider complete virtual world environments, in
the framework of 2D simulations. An interesting contribution
of this work is to establish a connection with world content
generation techniques used in the domain of video games
[11], which we believe is a promising direction of research.
Work along these lines has recently started at LAAS. We are
developing a test framework based on MORSE and using the
generation of virtual 3D worlds to challenge the navigation
of robots. Preliminary results consider the ability to control
the difficulty of a navigation mission (feasibility, time and
detours to reach the destination point) by tuning some 3D
world generation parameters [4].

None of these works is based on fault studies in autonomous
systems, and indeed there are not many such studies. One
of them is [12] where the authors designed the RoboX tour
guide robot and studied the deployment of 11 of them during
5 months (13,313 hours of operational time) at a robotics
exhibition. A significant amount of robot failures - 96% of
the critical ones, leading to the robot stopping and requiring
human intervention - were caused by software. The navigation
system represented 17% of those critical software failures, vs.
83% for the payload software, which was still in a test phase
at the beginning of the exhibition.

In [13], Steinbauer presents the results of a study conducted
in the context of the roboCup competition [14], to acquire
knowledge on the nature of faults that affects autonomous
robots. This study involved the participants of the competition,
who were asked to answer a questionnaire investigating which
part of robot systems are affected by faults, what the root
causes are, what the failures caused are and what their impact
and frequency are. The study incorporated the responses for
17 robots. It showed that software faults are more frequent
than hardware faults.

In contrast to the above two studies, this paper focuses
on the navigation software only. It performs an in-depth
analysis of a (necessarily much smaller) dataset. Examples
of in-depth analysis of faults can be found for other types of
software. In [15], the authors perform an exploratory study of
109 performance bugs collected from Apache, Chrome, GCC,
Mozilla and MySQL. They report having spent more than one
year to analyze these bugs. The focus of [16] is on variability
bugs, in the sense of variability in highly configurable systems.
The study involves a qualitative analysis and documentation
of 42 bugs from the Linux Kernel repository, and required an
effort of several person-months. A third example is [17] on
environment-dependent bugs in MySQL Server software. The
authors extracted 7 hard-to-reproduce bugs from the manual
analysis of 568 bug reports, and performed experimental test

Fig. 1. P3D Arcs in front of robot (for depth=2 and nbArcs=20.

campaigns to study the influence of memory occupation, disk
usage and level of concurrency on the failure reproducibility.

Our study is comparable in terms of effort and number
of analyzed bugs. It involves a mix of manual analysis and
test experiments, for a total effort of 6 person.months. Thirty-
three bugs were extracted from 356 Git commits, analyzed
in-depth and documented, and we additionally carried out test
runs for a subset of them. For the bug documentation, we
adapted the recommendations provided by [18], who propose
a method to identify domain-specific defect classes based on
reading change history. The authors provide an exemplary
template form, which the analyst can fill in to document the
findings. We modified the form to better integrate our concern
for reproducibility in simulation (see Sect. IV-B).

III. TARGETED NAVIGATION SOFTWARE

The targeted navigation software is part of the OpenRobots
software repository1, which includes software mostly devel-
oped at LAAS for the study and design of various kinds
of robotic platforms: outdoor, indoor, UAVs. We use the
Robotpkg infrastructure2 to install and compile OpenRobots
components and dependencies for the Mana platform ded-
icated to outdoor navigation. The Mana meta-package in
OpenRobots3 contains all the necessary software to han-
dle localization, mapping, image acquisition and processing,
hardware, path-planning, mathematical operations, motion and
communication. We focus here on the navigation service
encompassing localisation (pom-genom module), local path-
planning (p3d-genom module) and 3D mapping (dtm-genom
module).

The P3D local path-planning is an academic implementation
of NASA’s GESTALT algorithm [19] for Mars exploration
rovers. Its principle is to choose the path that minimizes both
a traversability-stability cost and the distance to the goal [20].
The algorithm considers a fixed number of arc-shaped paths

1https://www.openrobots.org/wiki
2http://robotpkg.openrobots.org/
3http://robotpkg.openrobots.org/robotpkg/meta-pkgs/mana/index.html



Fig. 2. Simplified diagram of the test architecture

Module name .c .h .gen Total
pom-genom 1929 340 435 2704
p3d-genom 1984 677 592 3253

LibP3D 7526 1115 0 8641
dtm-genom 2256 232 434 2922

Total 13695 2364 1461 17520

Table I
Lines of code numbers for all modules of the targeted navigation software

by type of considered files.

in front of the robot, and different points (called nodes) along
each arc as one can see in Figure 1. The cost of putting
the robot at a particular point increases with the slope at
this location. Cost is infinite if the terrain is unknown (no
perception). P3D computes the cost and reward associated with
each arc and selects the best one.

The study covers the successive versions of this software
between 2005 and 2015. In 2005, the software had already
reached a relatively mature level (most of the initial devel-
opments were made before 2005, but the commit logs were
not archived). During the 2005-2015 period, this navigation
service was used for all outdoor field experiments conducted
by LAAS researchers in various collaborative projects. Al-
though it is an academic software, the functionalities and the
complexity are representative of a real navigation service.

Figure 2 gives a schematic view of the existing test platform
for this software in [4]. The navigation software is immersed
into virtual 3D worlds by using simulated versions of the
sensors and actuators: the simulated modules Rflex (wheel
control and odometry), Velodyne (3D laser scanner sensor)
and Pose (position sensor) are all handled by MORSE. The
tested modules DTM4 (3D mapping manager), POM5 (posi-
tion management) and P3D6 (motion planning) are the exact
replicas of the modules running on the real robot. They are
developed with GenoM (Generator of Module) [21]. GenoM is
a tool to specify, deploy and encapsulate the needed algorithms
into standardized server components. In our experiments,
GenoM modules communicate via the pocolibs middleware,

4http://trac.laas.fr/git/robots/dtm-genom.git
5http://trac.laas.fr/git/robots/pom-genom.git
6git://trac.laas.fr/git/robots/p3d-genom

Fig. 3. Comments example. Top: comment of a commit correcting a bug,
bottom: comment of a commit not related to a bug.

using shared memory primitives called posters. GenoM uses
a description file (.gen) and a set of algorithms written in
C language (also called codels) to automatically generate a
robotic module. The System Under Test (SUT) includes the
.gen and .c files, plus the library for the execution support
of modules, plus functional libraries dedicated to a specific
module (e.g., LibP3D) or to a set of modules (e.g., the generic
LibT3D library for 3D geometry), for a total of 35K lines of
code. The various modules and libraries are developed and
archived in separate git repositories. To keep the manual effort
tractable, the collection and documentation of bugs focuses
on a subset of these repositories, the ones that seemed to us
the most relevant to navigation issues. This subset contains
the three core modules and the functional library of P3D, as
shown as Table I. It represents a bit more than 17K lines of
code.

The authors of the code were PhD students and postdocs
who have now left the lab. No bug tracking tool was used. The
only information available to us is the diff of the successive
commits and the comment entered by the author of the
commit. Figure 3 shows two examples of comments. As can
be seen, they are typically quite succinct. In addition, code
changes may have other motivations than bug fixes such as
code cleaning or re-factoring, upgrades driven by new versions
of libraries, etc. Manual analysis has to determine which
commits correspond to a bug, and what the bug consists of.

IV. DESIGN OF THE EXPLORATORY STUDY

The aim of this exploratory study is to gain new insights into
navigation bugs. It involves an in-depth qualitative analysis of
a set of bugs extracted from the commit history of the above
software.

A. Research Questions

The main objective of this study is to have a feedback on
the relevance of testing in simulation, compared to testing in
real worlds only. Our hypothesis is that many bugs do not
require the reproduction of complex physical phenomena to
be revealed. For example, let us consider the test platform
described in Figure 2 as a baseline. This platform is based on
an existing simulation configuration used in the prototyping



-subdivision
-deformation

Ground

TreeBuilding

-percentage_obstruction
-smoothness
-size

M a p

-size
-location

Obstacle

1
1

1

0..*

Fig. 4. Old input model.

of the Mana robot, with additional aspects related to the
generation of virtual worlds and the observation of the robot
behavior [4]. It corresponds to a low-fidelity simulation of
the dynamics of the robot (for example the inertia is not
simulated, neither are the reactions between wheels and ground
during collision with rocks, or in slippery areas). MORSE
may offer more realistic simulation of the physics, but at the
price of longer computing times and greater effort to develop
realistic actuator modules. So we want to evaluate whether
a low-fidelity configuration like this is sufficient for efficient
simulation-based testing, possibly with some improvements. It
leads us to our first research question:

RQ1 : Can the triggers and effects of robot navigation bugs
be reproduced in low-fidelity simulation?

Furthermore, we want, from the detailed analysis of triggers
and effects, to draw lessons on the design and implementation
of simulation-based testing. We are seeking new insights into
the input domain definition, the raw output data to collect, and
the oracle procedures to automate their analysis. Here again,
we can take our previous work as a baseline.

The inputs to a robot navigation run were a randomly
generated world instance and a navigation mission in this
world. We used the simple world model shown in Figure 4. It
was designed based on the 3D image of an area where the real
robot was deployed for experimentation. A world is composed
of the ground and obstructing objects like trees and buildings.
The ground is rather smooth but with many local irregular-
ities. World generation parameters allowed us to control the
granularity (subdivision) and amplitude (deformation) of
these irregularities, as well as the percentage of obstruction.
A navigation mission was defined by a starting position
and a target arrival position. Besides this simple model, we
seek feedback on the important characteristics of worlds and
missions to consider for test input selection.

RQ2 : From the analysis of triggers, which elements are to
be considered in the input model of worlds and missions used
for testing?

Some additional input configuration data are required to
define test experiments. They concern the physical robot
configuration (e.g., size, number and placement of sensors) and
the parameters of the navigation algorithms (e.g., the number
of arcs explored by P3D). Unfortunately, the developers did

not archive the configuration files used for experiments in the
field. Our previous work used an exemplary configuration that
was given to us.

RQ3 : From the analysis of triggers, which elements are to
be considered in the input data configuration (for the robot,
for the navigation algorithms)?

Finally, how to approach the oracle problem is an open
issue, for which we crucially need new insights. Our previous
experiments did not put emphasis on revealing faults —
rather, it focused on world generation issues and on tuning
the difficulty level of navigation missions by means of a
few parameters. We implemented a set of observation mech-
anisms to monitor the trajectory of the robot, record collision
events, timeouts, error messages issued by the software, and
also collect data relevant to the robot’s subjective view (its
perceived position, the last map it sees at the end of the
run). However, the processing of the collected raw data was
oriented toward assessing the difficulty of missions, not toward
detecting incorrect behavior. Failure of a mission was not
interpreted as failure of the navigation software, except for
failure due to a collision. The analysis of the effect of real
bugs will provide knowledge about misbehavior patterns, and
may generate ideas on how to automatically detect them.

RQ4 : From the analysis of effects, which observation data
and oracle procedures should be considered?

B. Approach to address the Research Questions

We consider the commits of P3D, LibP3D, DTM and POM
from their respective Git repositories. Their total number is not
too large (less than 400), making it possible to examine all of
them. Otherwise, we might have used strategies to choose the
commits that are more likely to exhibit a fault correction —
e.g., the commits with large changes [18].

For each commit, a first analysis of the author’s comment
and of the code diff is performed. Its aim is to determine
whether or not the change may correspond to a bug fix. If it
may, the commit is retained for more in-depth analysis. The
findings of the in-depth analysis of bugs are recorded in the
form shown in Figure 5 (more details to be provided below).
The form is inspired by the template proposed by [18] to derive
domain-specific knowledge about bugs. We add a section on
reproducibility in simulation in order to adapt the template
to our research questions. If the overall analysis is in favor of
reproducibility, we try to validate our understanding of the bug
trigger and effect by dedicated test runs using the existing test
platform. Once in-depth analysis of all identified bugs has been
completed, the low-level findings of each bug are gathered
to derive answers to the research questions. The answers are
intended to provide insights into how to improve the baseline
test platform, as well as more general insights into testing
robot navigation software.

The form to be filled for each bug has 6 sections. Location
contains factual data that identifies the bug. The Line(s)
subsection reports on the bug fix according to the diff result.
Fault contains free text to describe the bug. As noted by [18],
the success of bottom-up knowledge building depends on how



• Location: location of the patch
– Version:
– Commit id:
– Fault id:
– File(s):
– Line(s):
– Function(s):

• Fault: what was wrong in the code
• Failure: how the fault manifested itself
• Time to fix: when the fault was inserted and when the

patch was inserted
– Fault inserted:
– Fault fixed:

• Reproducibility: how the fault can be triggered and the
failure observed in simulation

– Overall Judgment : no/yes/YES
– Constraint(s) on the simulation fidelity:
– Constraint(s) on the world/mission:
– Constraint(s) on the configuration data:
– Raw data to observe:
– Post-Processing to detect misbehavior:

• Description: other findings and context

Fig. 5. Form to be filled for each bug.

much information the low-level bug reports contain. Hence,
the bug description should be sufficiently detailed to clearly
state what was wrong in the code. For example, “Variable
uTurning is not re-initialized when a new destination point
is passed as a parameter” is preferable to the mere indication
of an initialization fault. Similarly, Failure contains free text to
describe the induced failure with a sufficient degree of details.
Time to fix reports the dates for bug insertion and bug fix.
While the fix is at the currently analyzed commit, the insertion
date must be determined by a manual analysis, backwards
in the history of commits. Note that the duration of the bug
is actually not meaningful for our target academic software,
because it underwent a sporadic development process. For
example, we identified a crude bug preventing P3D to start,
which remained nine months unnoticed. It could mean that
there was no outdoor experiment planned during those nine
months, or that the experiments used a P3D version not yet
archived into the repository. While duration is irrelevant, we
kept this section in case we need to analyze the sequential
ordering of related bugs. Reproducibility is the core section
of the form. It synthesizes the results of the analysis of the
bug with respect to the research questions. Based on the
understanding of the bug, we identify triggering conditions
that must be fulfilled by the input cases (world/mission, input
configuration data), and determine observation means to detect
the failure. We also determine whether physical phenomena
need to be reproduced. Finally, an overall judgment about
reproducibility is issued based on the manual analysis and

possibly on additional test experiments: no if we judge that
the bug exposure would require a high degree of fidelity with
respect to real-world navigation, yes if low-fidelity simulation
appears sufficient, but the analysis results could not be val-
idated by test runs, Y ES if we successfully reproduced the
bug by runs in simulation.

For the test experiments intended to turn a yes bug into a
Y ES, we considered two options:

1) Re-create the software version before the commit,
2) Inject the identified bug into the current version of the

software.

Option 1 was not retained. A first problem is that the devel-
opers did not systematically archive all versions of the various
modules and libraries, and did not archive the configuration
files at all. Given a commit date for one module, if we take
the versions of other modules corresponding to this date, we
are not sure to recreate the software that was executed when
the bug was revealed. Moreover, a second problem is that the
current test scripts no longer work for the old versions of
navigation. We considered that it would require a significant
amount of effort to downgrade the scripts for the various
versions to test.

Option 2 was then selected, so that the current test platform
can be used. It also allows us to study the bugs one by one,
by injecting a single bug at a time. However, injecting the bug
may prove technically difficult. In some cases, the bug affects
a function that no longer exists. Or the code changed so much
that the injection is not merely a matter of re-introducing the
lines changed by the fix: one has to undo changes in other
parts of the software. It was not always possible to identify the
changes required to inject the bug. In these cases, we discussed
our understanding of the bug with a research engineer having
contributed to the LAAS robot software architecture, and more
specifically to GenoM modules. It allowed a form of expert
validation of our findings for the bugs.

V. EMPIRICAL RESULTS

We analyzed 356 commits:

• P3D: 69 commits
• LibP3D: 154 commits
• DTM: 50 commits
• POM: 83 commits

A. Overview of Bugs and their Reproducibility (RQ1)

We identified 33 bugs from the commits. Table II gives
the breakdown of fault types across components. We use the
ODC classification [22], but add a separate memory class to
emphasize the high number of such bugs in the studied soft-
ware. Programmers forgot to free the dynamically allocated
memory, yielding memory leaks. The other important classes
of bugs concern data assignments, incorrect implementation
of algorithms and interface problems due to the handling
of parameters in different measurement units or in different
storage formats.



P3D LibP3D DTM POM Total
Assignment 2 2 2 1 7
Checking 2 0 0 0 4
Algorithm 4 3 0 0 7

Timing 1 0 0 0 1
Memory management 0 9 1 0 10

Function 1 0 0 0 1
Interface 2 0 0 3 3

Table II
Orthogonal Defect Classification.

Name no yes YES
P3D 1 7 4

LibP3D 0 9 5
DTM 0 1 2
POM 0 4 0
Total 1 21 11

Table III
Judgment about the reproducibility of bugs. No: not reproducible; yes:

reproducible in theory; YES: reproduced.

Table III shows the overall judgment about the reproducibil-
ity of bugs in simulation. Only one bug was deemed impos-
sible to reproduce in low-fidelity simulation (no column). It
corresponds to the P3D fault put in the function class of
Table II. The function is the spot turn one. The Mana robot is
a four wheel drive platform and can rotate on the spot by
having the left and right wheels speed opposite. However,
this rotation induces mechanical vibrations of the physical
structure, affecting the sensors in such a way that the robot can
loose its localization and have its 3D map of the environment
corrupted. This functionality has been removed from P3D, and
the spot turn is now managed differently and suspends the map
building while rotating. Revealing this problem in simulation
would require an accurate reproduction of the interactions
between the wheels and the ground, and of the resulting
vibrations.

None of the other bugs depends on the reproduction of
complex physical interactions. The only physics we felt useful
to add to the baseline test platform was inertia. One of the
reproduced P3D bug from the Y ES column leads the robot
to arrive too fast at the destination point, forcing it to brake
abruptly. The baseline platform is sufficient to observe the
abrupt braking, but has an unrealistic immediate stop of the
robot. Inertia is introduced by modifying the avatar of the
robot so that MORSE knows that robot movement is due to
the rotation of the wheels. Then the Bullet Engine (the physics
engine used by MORSE) is able to take care of inertia and
friction during simulation, and the effect of braking is no
longer instantaneous.

As can be seen on Table III, we confirmed reproducibility by
test runs for a subset of 11 bugs. The remaining ones (Column
yes) correspond to the following cases:

• 10 LibP3D and DTM bugs inducing memory leaks. These
bugs were considered as out of the scope of the study,
since they are not specific to navigation issues. They may
be addressed by dedicated tests with the help of dynamic

analysis tools such as Valgrind [23]. But in theory, the
bugs could also be reproduced by regular navigation tests,
in simulation or in the field, provided that the runs are
sufficiently long to exhaust memory.

• 4 bugs in the P3D spot turn function (independent of
the vibration problem we already mentioned). As the
function no longer exists, we cannot inject the bugs in
the current version of the software. However, the bugs
are not difficult to understand, and we are quite confident
that we correctly identified the triggers and effects.

• 3 P3D bugs affecting the logic of a P3D_Blocked error
report. This error is issued when the robot ends up in a
dead-end with obstacles around it, there is an arc selected
by P3D and the first obstacle along the arc is too close
to the robot. We spent a lot of time trying to reproduce
the bug in simulation. But each time, P3D detected that it
could not select any arc and activated the logic of another
error report. We finally came to the conclusion that the
prevalence of the other error report over the desired one
could be due to the used P3D input configuration. We
changed the value of one of the parameters, and could
reproduce the expected triggers and effects. However,
since the tested configuration is not representative of a
realistic value for the parameter, we keep these 3 bugs in
the yes category rather than the Y ES one.

• 3 POM bugs affecting the processing of sensor data. The
processing can accommodate data in different formats and
the bugs affect the conversion logic of one of them. The
baseline platform with the Pose sensor does not allow
the faulty code to be executed because it does not have
the adequate output format. Unfortunately, no MORSE
simulation component is available for sensors with this
format, so the bug could not be reproduced. However, it is
clear that the trigger is related to the robot configuration
(the sensors placed on it), and not to complex physic
interactions. The effect is less obvious. Most probably
would the ill-converted data make the robot unable to
determine its position, but an experimental confirmation
would have been useful.

• 1 POM bug corresponding to an out-of-range indexing
of array (a common fault that that could be caught by
analysis tools). It turns out that the array is embedded
into a union data structure with extra memory space: the
illegal accesses end up there and nothing bad happens.
Our judgment is that this fault cannot yield any failure,
be it in real world or in simulation (we confirmed this
in simulation). But should the embedding union structure
change, an out-of-range error would systematically occur.
Hence, this bug is as reproducible in simulation as in real
world.

In conclusion, we are quite confident on the validity of our
analysis about the reproducibility of bugs, including for the
21 yes bugs. The results support the relevance of simulation-
based testing in virtual worlds. While some faults obviously
require testing in real conditions (like the vibration problem



we mentioned), many bugs can be found in low-fidelity
simulation, with possibly some manageable improvements like
the account for inertia.

B. Insights Into the Input Cases: Worlds, Missions and Con-
figuration Data (RQ2, RQ3)

Trigger conditions

M
is

si
on

Destination point behind the robot at start point

Start point and destination points do not have the same Y value

Long distance between start and destination point

Several way-points per mission, or several missions in sequence

Mission abortion and replacement

W
or

ld

Dead end

Hole

Large map

C
on

fig
.

P3D depth > 1

Goal tolerance is small (tested with 0.1)

Specific sensors

Incorrect P3D parameters

Table IV
inputs and configurations used to trigger the faults

Seven bugs do not need specific trigger conditions as regards
the tested world/mission and input configuration data. A basic
test case suffices, e.g., asking for a straight line navigation
mission in a flat world without obstruction. Table IV shows
the list of conditions we identified for the other bugs.

The conditions on missions may concern the location of the
destination point, the request to reach a sequence of destination
points, or the abortion of a mission to replace it by another
one. Our previous experiments in [4] completely missed these
aspects. We simply had a start point at the bottom left of the
map, a unique destination point at the top right, with work
focusing on the random generation of terrain and obstacles
between the two. For some of the bugs, the mission conditions
have to be combined. For example, a P3D bug affects the
management of a new destination point while turning on the
spot. The revealing case deduced from our manual analysis
sends a first destination point located behind the robot so
that it starts to turn on the spot, and then replacement by
a new destination point occurs while the robot is still turning.
Another interesting example is a DTM bug that affects the
calculation of the Y coordinate value of the robot in its
perceived map. The trigger combines two conditions on the
location of the destination point: it must not have the same
absolute Y-value as the start point and it must be sufficiently
far away to ensure the gradual degradation of the robot’s map
until the navigation’s ability is affected. This is illustrated
by the robot trajectory in Figure 6 that starts correctly but
becomes absurd after a certain distance has been covered. Note

that long distance missions require large world dimensions (see
the large map condition in Table IV).

Other triggers require the robot to be exposed to specific
world elements while accomplishing its mission: it must be
trapped into a dead-end, or its trajectory must cross a hole.
We already mentioned dead-ends in the discussion of the P3D
bugs affecting the P3D_Blocked error report. For these bugs,
the dead-end must be an area sufficiently narrow to force the
robot to stop and issue the error report. Otherwise, the robot
will keep moving inside the area in order to find the exit.
Another P3D bug requires the dead-end area to surround the
destination point: when the robot reaches the point, it reports
an error instead of reporting success of the mission. Note that
our previous work did not explicitly include dead ends in the
world model. But the tuning of the percentage of obstruction
produced virtual worlds with dead ends of various sizes, and
we did trigger trap situations. The specific case with the dead
end at the destination point could however not occur, because
we kept a free area around the start and destination points, in
order to avoid trivially infeasible missions.

Holes were missing in our world model. We only considered
local depressions of the terrain. Still, deeper holes are interest-
ing to add because they correspond to areas not perceived by
the robot: for one of the LibP3D bugs, the robot could choose
an arc ending at an unperceived node.

Conditions on the input configuration data were the most
difficult to determine. We would really recommend that all
configuration files be archived with the source code. In some
cases, it was clear that the tested configuration had been
incorrect: the fix introduced a check of the P3D parameters,
or a comment about the parameter value was inserted. In other
cases, we could determine reasonable variants of the baseline
P3D configuration that were necessary to trigger the bug, like
increasing the depth of the arc exploration or diminishing the
tolerance value of the distance to the goal. Such triggers are
reported for the sake of completeness, but we do not intend
to elaborate on them to generically test the robustness of the
software with respect to a set of configurations, correct or
incorrect. Likewise, the hardware configuration (e.g., sensors)
can be the trigger of bugs, but we do not intend to systemati-
cally explore configuration variants. However, these bugs show
that configuration files are as important as the source code
version. We would recommend that a change in configuration
yields a regression test, in the same way as a change in the
code would do.

C. Insights Into Observation Data and Oracle Procedures
(RQ4)

The bugs induce diverse failures, as shown in Table V. The
effects range from obvious failures (crash, P3D does not start),
to performance issues (suboptimal trajectory due to initial bad
alignment to the destination point, mission failure while the
mission is feasible) and even failures that would be dangerous
if the test occurred in real world (the robot falls into a hole,
the speed commands are not refreshed and retain their value
forever).



� Infinite spot turn

� Failure to align to the target destination point

� Jerks in angular speed commands

� Robot does not immediately stop after detecting an error

� The robot arrives successfully at destination

but considers itself as blocked

� The robot brakes too late when arriving at destination

� The speed commands are not refreshed and retain

their value forever

� P3D does not start

� Execution crash

� Unexpected mission failure

� The robot goes round and round in circles until time-out

� The robot falls into a hole

� The robot has an absurd trajectory

Table V
List of encountered failures.

Fig. 6. Absurd trajectory. Starting point and goal point are represented by a
cross. X and Y axis are represented by a red and a green arrow.

If we look at the logs collected by our baseline test platform,
we missed few data to be able to detect these failure. The only
missing observations are the commands sent to the wheels. But
the most difficult problem is not the logging of raw data: it
is their interpretation to automatically detect the misbehavior.
Indeed, the diversity of failure patterns is very challenging for
the test oracle. Also, performance-related issues are hard to
distinguish from legitimate behavior: the misbehavior is only
with respect to some (so far, implicit) reference. For example,
mission failure is a misbehavior only if the mission is expected
to succeed. The trajectory of Figure 6 is absurd only because
we know that the robot should move straight away. Even going
round and round in circles may not be abnormal or, say, is
a known and accepted behavior of the used path planning
algorithm. This is due to the fact that the algorithm is based
on local search. As a result, when the robot is trapped into a

dead end, it is unable to escape if the only exit would increase
its distance to the destination point.

To address the diversity of misbehavior patterns, we advise
trying to devise as many error detectors as possible, each
focusing on a simple property. From our analysis of bugs,
the identification of such simple properties could consider the
following elements:

• Requirements attached to mission phases. For example,
we might not be able to detect a suboptimal trajectory,
but we might be able to detect initial bad alignment to
the destination, should alignment have been identified as a
requirement for the initial phase of the mission. Similarly,
the arrival at the destination point may call for specific
requirements, like sending a success report, not going
beyond the point, etc.

• Thresholds related to robot movement, like the maximal
variation of speed commands (would detect jerks), or the
maximal angle covered by spot turns (should not exceed
180◦, to detect suboptimal turn direction or infinite turns).

• Catastrophic events, like falling into a hole or bumping
into an obstacle.

• Requirements attached to error reports, like the require-
ment that the robot should stop immediately when report-
ing any error.

• Perception requirements, like always having a correctly
perceived position with some tolerance. Detecting bad
map perception is more difficult. For the bug yielding the
absurd trajectory of Figure 6, a detector could have been
the high percentage of unknown areas in the perceived
map.

The set of detectors might be enriched as more experience is
gained on the target system or on similar ones.

The detection of performance-related issues, that would
not be caught by any of the error detectors, is an open
problem. A partial solution is to start with test cases for which
a reference behavior can be pre-determined. For example,
the robot is assigned a trivial mission that it must succeed,
and its trajectory should not depart too much from a pre-
calculated one. But this will not be sufficient for bugs with
complex triggers. Our future work will explore whether our
previous experiments on difficulty levels can offer a partial
solution, in the framework of regression testing. For example,
the introduction of a performance bug can be suspected if
navigation missions that were easy for the previous software
version now become challenging or very difficult for the
new version (the percentage of mission failure increases, the
missions take longer time and involve more detours).

D. Threats to Validity

Our results are based on the analysis of a specific academic
navigation software, which can be a threat to external validity.
However, we argue that this software is representative of many
navigation services, in terms of both the underlying algorithms
and code complexity. During the period covered by the study,
it was actually used in several real applications, some of them
deployed out of the lab.



The development process may not be representative of
an industrial one. An academic development is often not
continuous, and furthermore we cannot assume a systematic
archiving of versions. To account for this, we avoided to
interpret data that might be not significant. For instance, the
“time to fix the bug” information does not really represent a
continuous use of the targeted software. It may reflect a period
of non-activity or simply a gap in the archiving process. Hence,
we excluded the analysis of this data.

Like in all similar studies based on bug fixes, our analysis
considers bugs that have been found. It may induce an over-
representation of the easy-to-reveal bugs compared to the more
difficult and still unknown ones. Moreover, our dataset is
composed of bugs that have been found with non-formalized
test procedures, with field tests that are usually constrained
in terms of testing inputs (few real scenarios are tested). We
consider that the over-representation of easy bugs would be
more a problem for deriving quantitative findings than for
the kind of qualitative insights we were looking for. Besides
bugs that can be revealed by “easy” cases (i.e. flat world,
no obstacle, straight movement), we also found interesting
examples of triggers and could identify diverse failure patterns.
As regards the issue of reproducibility, the results are sufficient
to convince that simulation-based testing is an approach worth
considering. Even if our data set missed some hard-to-reveal
bugs that would not be reproducible in simulation, it would
still be the case that many bugs currently found in field
experiments could also be caught by simulation-based testing.

Regarding the internal validity of our experimental study,
we may have missed some bugs due to our manual analysis,
and thus missed some lessons learnt. It is actually an issue in
every bug study based on manual analysis, but this does not
reduce the relevance of the lessons learnt from the bugs we
identified. Another debatable issue is the way we reproduced
the bugs: we opted for fault injection in the current software
version rather than replay of a complete deprecated version,
which could induce differences in the triggers and effects.
Nevertheless, we performed an in-depth manual analysis of
each bug in the context of its version. For the bugs that we
successfully reproduced with the current version, the triggers
and effects were the ones expected from analysis. For the bugs
we unsuccessfully tried reproduce, we validated our manual
findings with a software robotic engineer involved in the
development of the considered software.

VI. CONCLUSION

In this paper, we explored the reproducibility in simulation
of bugs that affect the navigation software of an outdoor robot.
The bugs were collected using manual analysis of the commit
history of the software.

The in-depth analysis of bugs provided useful insights into
domain-specific triggers and effects, as intended, but also
suggests a few common sense recommendations about the
validation process in general. One of them is to consider
the configuration files as an integral part of the software.
Indeed, several bug triggers were related to the hardware (e.g.,

sensors put on the robot) or software (e.g., parameters used
to tune the path-planning algorithm) configuration. It is then
very important to archive the configuration, and to validate
configuration changes in the same way as one must validate
code changes. This was not done in the case of the academic
software we studied. Another general recommendation is to
have separate consideration for common and not domain-
specific bugs like memory leaks and out-of-range array in-
dexing. They represented one third of the bugs we analyzed.
Dedicated analysis with the help of tools like Valgrind can
catch those bug before one concentrates on the validation
of the core navigation functionalities, which is the primary
objective of our work.

Overall, the study supports our hypothesis that many naviga-
tion bugs do not require the reproduction of complex physical
phenomena to be revealed. A single bug is related to tough
aspects of the physics. It concerns an incompatibility of the
spot turn and map building functions, which surfaces via
mechanical vibrations of the platform. The triggers and effects
of the other analyzed bugs are well-amenable to reproduction
in low-fidelity simulation. As far as physics is concerned, the
only suggested improvement to our platform was to account
for inertia, allowing us to observe that the robot may brake
too late when arriving at destination. Interestingly, a few bugs
induced a dangerous behavior (the robot falls in a hole, does
no longer refresh the speed commands), which further supports
the relevance of simulation-based testing for safety concerns.

The triggers we identified suggested improvements to the in-
put model we considered in previous experiments. We realized
we did not pay sufficient attention to the mission definition in
terms of the relative position of start and destination points,
the number of waypoints to reach, or to mission management
aspects like aborting and replacing missions. We also missed
elements on the 3D terrain like holes that the robot must
consider as unknown and potentially dangerous area to avoid.
Some triggers were found to combine several conditions on
missions, world elements, or the current robot status (e.g.,
mission replacement while the robot is turning on the spot
to align to a point behind it, narrow dead-end blocking the
robot at the destination point). Such tricky cases support the
recommendation made by others to consider situation-based
testing [24]. Our future work will have a closer look at
how to guide and observe situation coverage, thinking in
terms of interactions of the robots with (a combination of)
world/mission model elements.

The observed effects of bugs were diverse and not easy to
distinguish from normal behavior in the absence of a precise
reference. Such a precise reference (e.g., including a reference
trajectory) can be pre-determined only for the simplest cases.
To alleviate the problem, we propose to insert numerous fine-
grained error detectors, to be used generically for all tested
navigation missions. From the bug we analyzed, the checked
properties should at least cover the following dimensions: re-
quirements attached to mission phases, threshold-based invari-
ants related to robot movement, absence of catastrophic events,
requirements attached to error reports, and good perception



requirements. Our future work will also consider the detection
of performance bugs by means of regression tests, using a
sample of worlds and missions of various difficulty levels [4].

Work along the above-mentioned lines — input modeling,
situation coverage, fine-grained detectors and performance-
related regression tests — will benefit from access to an
industrial case study: an agricultural robot to weed vegetable
crops. The navigation software of this robot will provide a
case study to develop and transfer the insights gained from
the analysis of bugs presented in this paper.

ACKNOWLEDGEMENT

This work was supported in part by the EU CPSE Labs
project funded by the H2020 program under grant agreement
No 644400. We wish to acknowledge the contribution of
Anthony Mallet and Simon Lacroix from LAAS-CNRS, whose
participation helped us get a better understanding of the code
and faults.

REFERENCES

[1] D. Cook, A. Vardy, and R. Lewis, “A survey of auv and robot sim-
ulators for multi-vehicle operations,” in Proceedings of the IEEE/OES
Conference on Autonomous Underwater Vehicles AUV, pp. 1–8, 2014.

[2] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in International Conference on
Intelligent Robots and Systems (IROS), vol. 3, pp. 2149–2154, 2004.

[3] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan, “Modular
open robots simulation engine: Morse,” in IEEE International Confer-
ence on Robotics and Automation ICRA, pp. 46–51, 2011.

[4] T. Sotiropoulos, J. Guiochet, F. Ingrand, and H. Weaselynck, “Virtual
worlds for testing robot navigation: a study on the difficulty level,” in
IEEE 12th European on Dependable Computing Conference EDCC,,
pp. 153–160, 2016.

[5] Z. Micskei, Z. Szatmári, J. Oláh, and I. Majzik, “A concept for testing
robustness and safety of the context-aware behaviour of autonomous
systems,” in Agent and Multi-Agent Systems. Technologies and Applica-
tions, pp. 504–513, Springer, 2012.

[6] A. Andrews, M. Abdelgawad, and A. Gario, “World model for testing
autonomous systems using petri nets,” in IEEE 17th International
Symposium on High Assurance Systems Engineering HASE, pp. 65–69,
2016.

[7] C. Mühlbacher, S. Gspandl, M. Reip, and G. Steinbauer, “Improving de-
pendability of industrial transport robots using model-based techniques,”
in 2016 IEEE International Conference on Robotics and Automation
(ICRA), pp. 3133–3140, 2016.

[8] X. Zou, R. Alexander, and J. McDermid, “Safety validation of sense and
avoid algorithms using simulation and evolutionary search,” in Computer
Safety, Reliability, and Security, pp. 33–48, Springer, 2014.

[9] X. Zou, R. Alexander, and J. McDermid, “On the validation of a
uav collision avoidance system developed by model-based optimization:
Challenges and a tentative partial solution,” in IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks Workshop,
pp. 192–199, 2016.

[10] J. Arnold and R. Alexander, “Testing autonomous robot control software
using procedural content generation,” in Computer Safety, Reliability,
and Security, pp. 33–44, Springer, 2013.

[11] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, pp. 172–186, 2011.

[12] N. Tomatis, G. Terrien, R. Piguet, D. Burnier, S. Bouabdallah, K. O.
Arras, and R. Siegwart, “Designing a secure and robust mobile inter-
acting robot for the long term,” in Proceedings of IEEE International
Conference on Robotics and Automation ICRA, vol. 3, pp. 4246–4251,
2003.

[13] G. Steinbauer, “A survey about faults of robots used in robocup,” in
RoboCup Robot Soccer World Cup XVI, pp. 344–355, Springer, 2013.

[14] U. Visser and H.-D. Burkhard, “Robocup: 10 years of achievements and
future challenges,” AI magazine, vol. 28, no. 2, p. 115, 2007.

[15] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding
and detecting real-world performance bugs,” ACM SIGPLAN Notices,
vol. 47, no. 6, pp. 77–88, 2012.

[16] I. Abal, C. Brabrand, and A. Wasowski, “42 variability bugs in the linux
kernel: a qualitative analysis,” in Proceedings of the 29th ACM/IEEE in-
ternational conference on Automated software engineering, pp. 421–432,
2014.

[17] D. G. Cavezza, R. Pietrantuono, J. Alonso, S. Russo, and K. S. Trivedi,
“Reproducibility of environment-dependent software failures: An ex-
perience report,” in IEEE 25th International Symposium on Software
Reliability Engineering ISSRE, pp. 267–276, 2014.

[18] T. Nakamura, L. Hochstein, and V. R. Basili, “Identifying domain-
specific defect classes using inspections and change history,” in Proceed-
ings of the ACM/IEEE international symposium on Empirical software
engineering, pp. 346–355, 2006.

[19] J. J. Biesiadecki and M. W. Maimone, “The mars exploration rover
surface mobility flight software driving ambition,” in IEEE Aerospace
Conference, pp. 15–pp, 2006.

[20] D. Bonnafous, S. Lacroix, and T. Siméon, “Motion generation for a
rover on rough terrains,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 2, pp. 784–789, 2001.

[21] A. Mallet, C. Pasteur, M. Herrb, S. Lemaignan, and F. Ingrand,
“GenoM3: Building middleware-independent robotic components,”
in IEEE International Conference on Robotics and Automation,
pp. 4627–4632, 2010.

[22] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S.
Moebus, B. K. Ray, and M.-Y. Wong, “Orthogonal defect classification-
a concept for in-process measurements,” IEEE Transactions on software
Engineering, vol. 18, no. 11, pp. 943–956, 1992.

[23] M. D. Bond, N. Nethercote, S. W. Kent, S. Z. Guyer, and K. S.
McKinley, “Tracking bad apples: reporting the origin of null and
undefined value errors,” in ACM SIGPLAN Notices, pp. 405–422, 2007.

[24] R. Alexander, H. Hawkins, and D. Rae, “Situation coverage–a coverage
criterion for testing autonomous robots,” tech. rep., University of York,
Department of computer science, 2015.


