Intermolecular interactions in AST zeolites through 14N NMR and DFT calculations
Résumé
The structure of the silica AST zeolites (octadecasil) synthesized in fluoride medium using tetramethylammonium (TMA) as the organic structure-directing agent has been reinvestigated using 14N NMR quadrupolar parameters and DFT calculations. The value of the experimental 14N quadrupolar coupling constant (CQ = 27 kHz) is larger than expected for a TMA cation possessing a high degree of motion. The analysis of a DFT-optimized octadecasil cluster along with the comparison between measured and calculated 14N NMR parameters demonstrate the presence of weak C—H...O hydrogen bonds between the TMA in the [46612] cages and the silica skeleton. These intermolecular interactions can be related to the presence of Si...F tetrel bonds within the [46] cages. These new results provide additional information with regard to the formation mechanisms and structure of the octadecasil zeolites.