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Formulae for the convolution of G1 skeleton curves into

smooth surfaces

Alvaro Javier Fuentes Suárez∗†and Evelyne Hubert‡

Inria Méditerranée, France

1 Introduction

Representation based on skeletons have a major role in interactive modeling and animation of 3D
shapes. Skeletons of 3D shapes are made of curves and surfaces, with a preference for the former.
Several techniques are used to create a surface enclosing a volume around a skeleton. In this paper
we focus on convolution surfaces. This technique provide surfaces with good mathematical features
stemming from their definition.

Convolution surfaces are the level sets of a convolution function that results from integrating a
kernel function K along the skeleton S. The mathematical smoothness of the surface obtained
depends only on the smoothness of the kernel. The additivity property of integration makes the
convolution function independent of the partition of the skeleton. In practice, a kernel function
(power inverse, Cauchy, compact support, . . . ) is selected so as to have closed form expressions
for the convolution functions associated to basic skeleton elements (line segments, triangles, . . . ).
Skeletons are then approximated and partitioned into the selected set of basic elements. The
convolution function for the whole skeleton is obtained by adding the convolution functions of the
constitutive basic elements. See for instance [3, 6, 9, 12, 13, 14, 21, 20, 25, 24].

Line segments are the most commonly used 1D basic skeleton elements. When a skeleton curve
has high curvature and torsion, its approximation might require a great number of line segments
for the convolution surface to look as intended. In this paper we take the stance that arcs of circles
form a very interesting class of basic skeleton elements in the context of convolution. Indeed any
space curves can be approximated by circular splines in a G1 fashion [18, 22]. A lower number of
basic skeleton elements are then needed to obtain an appealing convolution surface, resulting into
better visual quality at lower computational cost.

To model a wider variety of shapes it is necessary to vary the thickness around the skeleton. Several
approaches have been suggested: weighted skeletons [11, 12, 14], varying radius [9], scale invariant
integral surfaces [25], the latter two actually providing a more intrinsic formulation. While general
closed form formulae were obtained for weighted line segments in [11], there has been a lack of
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2 CONVOLUTION SURFACES

generality in terms of closed form formulae for convolution with varying radius and scale invariant
integral surfaces over line segments and, even more so, over arcs of circles. This paper addresses
this very issue for the family of power inverse kernels, of even degree.

As initiated in [10, 11], the generality for closed form formulae of the convolution function associated
to line segements and arcs of circle for a varying radius or scale is offered in terms of recurrence
formulae. Closed form formulae allow eficient evaluation. With recurrence formulae we elegantly
reach a higher level of generality: with a simple code we can use kernels of any degree. This contrasts
with previous works where the formulae for the convolution functions had to be implemented
individually for kernels of each degree. The recurrence formulae in [10, 11] mostly drew on integral
functions that appear in some classical tables. An innovative approach is taken in this paper. The
recurrence formulae we present in this paper were obtained with the help of Creative Telescoping,
an active topic of research in computer algebra. A limited set of pointers is [4, 7, 16] as they provide
the background to available software.

In Section 2, we provide the definition of convolution surfaces associated to a skeleton made of
curves, with varying thickness. In Section 3 we examine the convolution of line segments, providing
the closed form formulae for the convolution functions, with varying thickness. In Section 4 we
turn to arcs of circles. In Section 5 we demonstrate the interest of having arcs of circles as basic
skeleton elements for convolution and discuss future directions.

2 Convolution surfaces

In this section we recall the basics of convolution surfaces. We first discuss families of kernels that
arose in computer graphics literature. Thereafter, we shall mainly focus on the family of power
inverse kernels. We then define convolution function generated by bounded regular curves and the
alternative definitions of convolution that allow to generate shapes with varying thickness around
the skeleton.

2.1 Kernels

The kernels in use in the literature are given by functions K : R+ → R+ that are at least con-
tinuously differentiable. The argument is the distance between a point in space and a point on
the skeleton. Those kernels are decreasing functions on R+ and strictly decreasing when non zero:
K(r) > 0⇒ K ′(r) < 0.

The first convolution surfaces that appeared in computer graphics [2, 3] were based on the Gaussian
kernel: r 7→ e−s r

2
that depends on a parameter s > 0. The difficulty in evaluating the resulting

convolutions prompted the introduction of kernels that provided closed form expressions for the
convolution functions associated to basic skeleton elements. [20, 21] promoted the Cauchy kernel
r 7→ 1

(1+σ r2)2
after [23] introduced the inverse function r 7→ 1

r . For faster convolution [9, 6] intro-

duced the power inverse cube kernel r 7→ 1
r3

. [12] also exhibited the benefit of using the quintic
inverse r 7→ 1

r5
.

This paper is mostly concerned with the family of power inverse kernels. They are indexed by
i ∈ N \ {0} and given by
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2 CONVOLUTION SURFACES

pi : r 7→
(

1

r

)i
The convolution surfaces obtained with a power inverse kernel always enclose the skeleton since
these functions tend to infinity when approaching the skeleton. As exploited in [11, 10] the closed

form formulae of convolution functions using the family of Cauchy kernels ciσ : r 7→
(

1
1+σ r2

) i
2

differ

only slightly from the ones using power inverse kernels.

The power inverse kernels decrease relatively fast with distance but have an infinite support and
can lead to unwanted bulges or blending (Figure 3). Kernels with compact support allow to avoid
these to some extent as a given point on the skeleton has a finite radius R of influence. A family
of compact support kernels is indexed by i ∈ N \ {0} and given by

kiR : r 7→


(

1−
(
r
R

)2) i
2

if r < R

0 otherwise.

Their use necessitates to determine the geometry of the intersection of the skeleton with spheres.
To obtain convolution surfaces that are at least continuously differentiable we consider only kiR for
i ≥ 3. For i < 3, kiR is not differentiable at r = R. The case i = 4 is actually the case considered
in [15, 21]. As we increase i though, we obtain smoother shapes.

Figure 1: The graphs of the kernel functions pi and kiR, varying i.

2.2 Notations

Typically P = (p1, p2, p3)T ∈ Rn represents a point in space and A = (a1, a2, a3)T , B =

(b1, b2, b3)T represent the end points of a line segment [AB] or arc of circle ÂOB with center O. The
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2 CONVOLUTION SURFACES

straight line through A and B is denoted as (AB). Then
−→
AP represent the vector from A to P . In

the following −→u = (u1, u2, u3)T , −→v = (v1, v2, v3)T ∈ Rn also represent vectors. The scalar product
of two vectors −→u = (u1, u2, u3)T and −→v = (v1, v2, v3) ∈ Rn is then −→u ·−→v = u1v1 +u2v2 +u3 v3. The
distance between two points A and B is denoted as |AB| =

√
(b1 − a1)2 + (b2 − a2)2 + (b3 − a3)2

2.3 Convolution of regular curves

We assume here that the skeleton can be partitioned into regular patches defined by bounded
regular curves parametrized by an interval [a, b] of R. The convolution function for the skeleton is
then obtained by summing the convolution functions for each of those patches.

Consider first a parametrized curve Γ : [a, b] ⊂ R → R3. It is a regular curve if Γ is continuously
differentiable and Γ′ doesn’t vanish. The infinitesimal arc-length is |Γ′(t)|dt. The convolution
function based on S = Γ([a, b]) at a point P ∈ R3 is then defined by

CKΓ (P ) =

∫ b

a
K (|PΓ(t)|) |Γ′(t)|dt.

The integral is independent of the (regular) parametrization of the curve used. Convolution func-
tions with a power inverse kernel K = pi are infinitely differentiable outside of the curve Γ([a, b]).
Convolution functions with a compact support kernel K = kiR are b i−1

2 c continuously differentiable.

As the reverse image of a closed set by a k-continuously differentiable map, k ≥ 1, the resulting
convolution surfaces

{
P ∈ R3 | CKΓ (P ) = κ

}
are closed (in a topological sense) and smooth, provided

κ is not a critical value* of CKΓ . It is the boundary of a smooth 3-dimensional manifold Vκ ={
P ∈ R3 | CKΓ (P ) ≥ κ

}
. Furthermore Vκ and Vκ′ are diffeomorphic provided that there is no critical

values in the interval [κ, κ′] [17, Theorem 3.1]. With the power inverse kernel, the skeleton is in
Vκ for any κ > 0. This is not always the case with a compact support kernel; Vκ can even be the
empty set for too high values of κ.

2.4 Discussion on the choice of a kernel

With compact support kernels kiR the smoothness of the convolution surface increases with i. With
power inverse kernels pi the convolution functions are smooth at all points outside the skeleton.
Yet, as i increases, the convolution surface is sharper around the skeleton. This is illustrated in
Figure 2.

When the convolution function has a critical point, chances are that there is a change in the topology
of the convolution surface as it goes through the critical value [17]. This is illustrated in Figure 3
with a skeleton made of two line segments. The convolution function has a critical point and the
convolution surface through this point has a singularity. The corresponding level set is a transition
from bulging to blending, from two connected components to a single component. Figure 3 also
illustrates the fact that compact support kernels allow to dismiss the influence of skeleton elements
that are at distance more than R, thus avoiding some of the bulging and blending that appear for
the kernels with infinite support kernel.

*A critical point of a function f : (x, y, z) 7→ f(x, y, z) is a point (x0, y0, z0) at which the gradient (fx, fy, fz) of f
vanishes. A critical value of f is the value f(x0, y0, z0) of f at a critical point (x0, y0, z0).
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2 CONVOLUTION SURFACES

Figure 2: Convolution curves for a set of segments with power inverse kernel p2, p3, p4. The
convolution function for the whole set is obtained as the sum of the convolution functions for each
line segment. The level set is adapted to have identical thickness at the tips. Note that sharpness
increases from left to right.

2.5 Varying thickness

Several alternatives have been introduced for varying the thickness of the convolution surface along
the skeleton. A first idea was to use a weight function along the skeleton. For a skeleton given by
a regular curve Γ : [a, b]→ R3, one uses a weight function w : [a, b]→ R. The convolution function
is then defined as

CKΓ,w(P ) =

∫ b

a
w(t)K (|PΓ(t)|) |Γ′(t)|dt.

The convolution function is now dependent on the parametrization used for the skeleton curve.
Polynomial weight functions are used in [11, 12, 13, 14]. The drawback of this approach was
illustrated in [11, Figure 9]: the influence of the weight diminishes as the degree of the kernel
increases. Alternative more intrinsic formulations were proposed in [9] and [25].

2.5.1 Varying radius as proposed by Hornus et al. [9]

In [9] Hornus et al. proposed a different way of computing the convolution function. This allows
the user to modify the shape of the final surface according to a radius assigned to each point in
the skeleton: the distance is divided by the radius at the corresponding point in the skeleton. For
a skeleton curve Γ : [a, b] → R3 the radius is given by a function ρ : [a, b] → R+. The convolution
function is then defined by

HKΓ,ρ(P ) =

∫ b

a
K

(
|PΓ(t)|
ρ(t)

)
|Γ′(t)| dt.

If additional precaution are not imposed on the radius function ρ, this convolution function is not
independent of the parametrization of the curve Γ. In practice it makes sense to have a radius
function that is approximately linear in the arc-length.
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3 CONVOLUTION WITH LINE SEGMENTS

Figure 3: Convolution curves based on two parallel segments. The top line uses the cubic inverse
kernel p3 and the bottom line a compact support kernel k3

R. Columns correspond to an identical
sought thickness. For the cubic inverse kernel, a bulge and then a blend appear between the line
segments, while the convolution surfaces get only thicker with the compact support kernel.

2.5.2 SCALIS as proposed by Zanni et al. [25]

An alternative convolution introduced in [25] allows to properly model shapes with pieces at different
scales. For a regular curve Γ : [a, b] ⊂ R→ R3, the SCALIS convolution function is

SKΓ,λ(P ) =

∫ b

a
K

(
|PΓ(t)|
λ(t)

)
|Γ′(t)|
λ(t)

dt,

where λ : [a, b] → R+ is called the scale function. Notice that λ plays a similar role as ρ in the
formulation by Hornus. To apprehend all the good features of this new definition of convolution
surface, the reader is referred to [25, 24]. Let us just observe the case where λ is a constant. If
we write λ · P and λ · Γ for the point and the regular curve obtained through a homothety (a.k.a
homogeneous dilatation or scaling) with ratio λ, then

SKλ·Γ,λ(λ · P ) = CKΓ (P ) or equivalently SKΓ,λ(P ) = CKλ−1·Γ
(
λ−1 · P

)
.

This implies that the convolution surface of equation SKλ·Γ,λ(P ) = c is homothetic to the convolution

surface CKΓ (P ) = c with a ratio λ.

3 Convolution with line segments

We examine the convolution of line segments for power inverse kernels, with varying radius or
varying scale*. First we express the convolution functions, with varying radius or scale, in terms of

*Results for convolution of weighted line segments with power inverse and Cauchy kernels can be found in [11].
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3 CONVOLUTION WITH LINE SEGMENTS

an integral function indexed by two integers:

Ii,k(a, b, c, λ, δ) =

∫ 1

−1

(λ+ δ t)k

(a t2 − 2 b t+ c)i
dt

We then provide recurrence formulae on this integral so as to have all the convolution functions
for line segments with (even) power inverse kernels. The recurrence relationships we exhibit can be
adapted to work for all powers. Furthermore, though we do not give details, these recurence also
allows to deal with the convolution of line segments with the family of compact support kernels.
We choose to restrict here to even powers as they provide easier formulae to evaluate (odd power
inverse kernels bring out elliptic functions in the convolution of arcs of circles and planar polygons).
This does not affect too much the variety of shapes we can obtain.

3.1 Integrals for convolution

Two points A,B ∈ R3 define the line segment [AB]. A regular parametrization for this line segment
is given by Γ : [−1, 1]→ R3 with Γ(t) = A+B

2 + B−A
2 t. Therefore for a point P ∈ R3 we have

4 |PΓ(t)|2 = |AB|2 t2 − 2
−−→
AB ·

−−→
CP t+ |CP |2 where C =

A+B

2

is the mid point of the line segment [AB]. Hence |Γ′(t)| = |AB|
2 .

The simple convolution of this line segment with the power inverse kernel p2i is thus given by:

C2i
[AB](P ) =

|AB|
2

∫ 1

−1

1

|PΓ(t)|2i
dt =

|AB|
2

Ii,0

(
1

4
|AB|2, 1

4

−−→
AB ·

−−→
CP,

1

4
|CP |2, λ, δ

)
.

If we choose the radius function ρ : [a, b] → R to be linear in the arclength we can find λ, δ ∈ R
such that ρ(t) = λ+ δt. Convolution with varying radius is then given by:

H2i
[AB],ρ(P ) =

∫ 1

−1

(λ+ δ t)2i

|PΓ(t)|2i
|AB|

2
dt =

|AB|
2

Ii,2i

(
1

4
|AB|2, 1

4

−−→
AB ·

−−→
CP,

1

4
|CP |2, λ, δ

)
.

If we now take the scale function to be Λ(t) = λ+ δt, then

S2i
[AB],Λ(P ) =

∫ 1

−1

(λ+ δ t)2i

|PΓ(t)|2i
|AB|

2(λ+ δ t)
dt =

|AB|
2

Ii,2i−1

(
1

4
|AB|2, 1

4

−−→
AB ·

−−→
CP,

1

4
|CP |2, λ, δ

)
.

3.2 Closed forms through recurrence formulae

First of all, given that

I1,0(a, b, c, λ, δ) =
1√

ac− b2

[
arctan

(
a t− b√
ac− b2

)]1

−1

we can determine Ii,0(a, b, c, λ, δ) for all i ≥ 1 thanks to the recurrence relationship

2 i
(
ac− b2

)
Ii+1,0 + (1− 2 i) a Ii,0 =

[
at− b

(at2 − 2 bt+ c)i

]1

−1

.
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4 CONVOLUTION WITH ARCS OF CIRCLE

One then observes that:

2 a (1− i) Ii,1 = 2 (3− i) (aλ+ bδ) Ii,0 +

[
δ

(at2 − 2 bt+ c)i−1

]1

−1

This recurrence is actually obtained by specializing the following recurrence to k = −1

a (k − 2 i+ 3) Ii,k+2+2 (i− 2− k) (aλ+ bδ) Ii,k+1+(k + 1)
(
aλ2 + cδ2 + 2 bλ δ

)
Ii,k =

[
δ (λ+ δ t)k+1

(at2 − 2 bt+ c)i−1

]1

−1

One can thus determine Ii,k for all i ≥ 1 and k ≥ 0 and therefore Ii,2i and Ii,2i−1 that are needed
for convolution with varying radius or scale.

Alternatively, to determine the convolution with varying radius, we can consider the recurrence

2 i (i+ 1) a
(
ac− b2

)
Ii+2,2i+4 − i

(
λ a (1 + 2 i) (2 bδ + aλ) +

(
(4 i+ 5)ca− 2 (i+ 2)b2

)
δ2
)
Ii+1,2i+2

+δ2(i+ 1)(1 + 2 i)
(
aλ2 + cδ2 + 2 bλ δ

)
Ii,2i =

[
(λ+ δ t)2 i+1

(at2 − 2 bt+ c)i+1
C

]1

−1

where
C =

((
ac+ 2 b2i

)
t2 − bc (3 i+ 2) t+ c2 (i+ 1)

)
δ3

+
(
2 ab (1 + 2 i) t2 −

(
2 (i+ 2) b2 + 3 aic

)
t+ bc (i+ 2)

)
λ δ2

+
(
a2 (1 + 2 i) t2 − ab (i+ 2) t− ac (i− 1)

)
λ2δ + ai (at− b)λ3

.

A similar recurrence can be obtained for Ii,2i−1. As the previous ones, it is obtained by Cre-

ative Telescoping. We have mostly used Mgfun* by F. Chyzak (in Maple) but we have also tried
HolonomicFunctions* by C. Koutschan (in Mathematica).

4 Convolution with arcs of circle

We examine the convolution of an arc of circle for power inverse kernels. Though arcs of circles
appear in the literature about convolution surfaces [13, 26], there is no general formulae for these.
In this section we choose a parametrization for arcs of circle that allows us to write the convolution
functions (with varying radius or scale) in terms of an integral indexed by two integers:

F i,k(a, b, c, λ, δ) =

∫ T

−T

(λ+ δ t)k (t2 + 1)i−1

(a t2 − 2 b t+ c)i
dt

We then show how to determine closed form formula for these integrals thanks to some recurrences.
We restrict our attention to convolution of arcs of circle with even power inverse kernels. With
odd power inverse kernels, the closed form formulae for the convolution function involve elliptic
functions and can be rather impractical to evaluate.

*https://specfun.inria.fr/chyzak/mgfun.html
*http://www.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html
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4 CONVOLUTION WITH ARCS OF CIRCLE

The closed form formulae for the convolution of arcs of circle with the family of compact support
kernels are challenging to obtain. The software MixedCT* by L. Dumont (in Maple) does meet this
challenge. The result would be too cumbersome to be presented here and it is not clear at this
stage how to use it efficiently.

4.1 Rational parametrization

When it comes to integration, rational functions are the dependable class [5]. The main ingredient
in obtaining closed-form convolution primitives for arcs of circle is to introduce an appropriate
rational parametrization.

We assume that the points O, A and B are not aligned and such that |OA| = |OB| = r. They
define a plane in space and two arcs of circle, one of angle α the other of angle π + α for some
0 < α < π. We have

α = arccos

(−→
OA ·

−−→
OB

r2

)
with 0 < α < π

and accordingly to which angle is dealt with we set

T = tan
(α

4

)
or T = tan

(
π + α

4

)
.

Momentarily we consider the coordinate system (x, y, z) where the origin is the center of the circle,
the x-axis is the bisector of the chosen angle defined by O, A and B and the (x, y) plane is the
plane of the circle. See Figure 4.

Figure 4: Rational parametrization of an arc of circle.

A parametrization of the arc of circle is then given by

Γ : [−T, T ] −→ R3

t 7→
(
r

1− t2

t2 + 1
, r

2 t

t2 + 1
, 0

)
.

*http://mixedct.gforge.inria.fr
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4 CONVOLUTION WITH ARCS OF CIRCLE

This is obtained by determining the intersection of the circle with the lines of slope t through the
point diametrically opposite to the middle of the arc. Consider a point P = (x, y, z) in space. We
have

|PΓ(t)|2 =
αt2 − 2β t+ γ

t2 + 1
where α = (x+ r)2 + y2 + z2, β = 2 r y, γ = (x− r)2 + y2 + z2.

Note that

γ + α = 2 (|OP |2 + r2)

αT 2 + 2β T + γ = (T 2 + 1) |AP |2

γ T 2 − 2β T + γ = (T 2 + 1) |BP |2

so that (α, β, γ) is actually the solution of a linear system that depends on T and the squares of
the distances of P to O, A and B. There is a unique solution provided that A, O and B are not
aligned, i.e. T (T 2 − 1) 6= 0. This solution is:

α =

(
|PA|2 + |PB|2

)
(T 2 + 1)− 4 (|PO|2 + r2)

T 2 − 1

and

β =

(
|PA|2 − |PB|2

)
(T 2 + 1)

T
γ = 2

(
|PO|2 + r2

)
− α.

4.2 Integrals for convolution

Using the above parametrization of an arc of circle ÂOB the associated convolution function with
the power inverse kernel p2i is

C2i

ÂOB
(P ) =

∫ T

−T

1

|PΓ(t)|2i
2 r

1 + t2
dt = 2 r

∫ T

−T

(1 + t2)i−1

(αt2 − 2β t+ γ)i
dt = 2 rF i,0 (α, β, γ, λ, δ)

as the infinitesimal arclength is |Γ′(t)| = 2r
1+t2

.

We choose a radius or scale function ρ,Λ : [−T, T ] → R that is linear in the parameter t used
above. A more intrinsic choice would be to have a radius or scale function linear in the arc length.
Since the arclenth is 2r arctan(t) ∼ 2 r t + O(t3), linearity in t is a reasonable approximation for
arcs defined by an angle less than π. This is illustrated in Figure 5.

Convolution with varying radius according to ρ : t 7→ λ+ δ t is then given by:

H2i

ÂOB,ρ
(P ) =

∫ T

−T

(λ+ δ t)2i

|PΓ(t)|2i
2 r

1 + t2
dt = 2 rF i,2i (α, β, γ, λ, δ) .

Convolution with scale function Λ : t 7→ λ+ δ t is given by:

S2i

ÂOB,Λ
(P ) =

∫ T

−T

(λ+ δ t)i

|PΓ(t)|i
2 r

1 + t2
dt

1 + δ t
= 2 rF−T,Ti,i−2,i−1 (α, β, γ, λ, δ) .
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4 CONVOLUTION WITH ARCS OF CIRCLE

4.3 Closed forms through recurrence formulae

Given that

F 1,0 =

[
1√

ca− b2
arctan

(
a t− b√
ca− b2

)]T
−T

we can recover the expression for F i,0, for all i ∈ N, thanks to the recurrence relationship

2 (i+ 1)
(
ac− b2

)
F i+2,0− (1 + 2 i) (a+ c)F i+1,0 + 2 iF i,0 =

[(
1 + t2

)i (
b
(
t2 − 1

)
+ (a− c) t

)
(at2 − 2 bt+ c)i+1

]T
−T

On the other hand, the integrals F i,k satisfy the following recurrence:

a (k + 3)F i,k+4−A3 F i,k+3+A2 F i,k+2+A1 F i,k+1+A0 (k + 1)F i,k =

[
δ3
(
1 + t2

)i
(λ+ δ t)k+1

(at2 − 2 bt+ c)i−1

]T
−T

where

A3 = −2 (2 k + 5) aλ− 2 b (i+ 2 + k) δ,

A2 = 6 (k + 2) aλ2 + 2 b (5 + 3 k + 2 i) δ λ+ ((3 + k − 2 i) a+ (k + 2 i+ 1) c) δ2,

A1 = −2 a (3 + 2 k)λ3 − 2 b (4 + 3 k + i) δ λ2 + 2 ((i− 2− k) a− (i+ 1 + k) c) δ2λ+ 2 b (i− 2− k) δ3,

A0 =
(
δ2 + λ2

) (
λ2a+ cδ2 + 2 bλ δ

)
.

By specializing the above equation to k = −1 one can obtain F i,3 from F i,2, F i,1 and F i,0. These
latter are thus sufficient to determine F i,k for all k ≥ 4.

To determine F i,1 we observe that, for i 6= 0,

aF i+1,1 − F i,1 = (b δ + a λ)F i+1,0 − λF i,0 −
δ

2 i

 (
1 + t2

) i
2

(at2 − 2 bt+ c)
i
2

T
−T

and

F 1,1 =

[
(b δ + a λ)

a
√
ac− b2

arctan

(
at− b√
ac− b2

)
+
δ

2a
ln
(
at2 − 2 bt+ c

)]T
−T

.

To determine F i,2 we can use the linear recurrence that provides F i,k+1 in terms of F i,k+1,
F i,k,F i+1,k, and F i+2,k. Specialized to k = 0 this recurrence simplifies to:

A02 F i,2 +A01 F i,1 +A00 F i,0 +A10 F i+1,0 +A20 F i+2,0 =

[
δ

(λ+ δ t)
(
1 + t2

)i
(at2 − 2 bt+ c)i+1

C

]T
−T

where

A02 = a
(
(a− c) δ λ+ b(δ2 − λ2)

)
,

A01 = −2 (ibδ + λ a)
(
−λ2b+ (a− c) δ λ+ bδ2

)
,

A00 = −
(
δ2 + λ2

) (
b ((2 i− 1) a+ 2 ci) δ2 +

(
(2 i− 1) a2 + ac+ 2 b2i

)
λ δ + λ2ab

)
,

A10 = (1 + 2 i) a2 (a+ c) δ λ3 + b
(
3 a2 (1 + 2 i) + ac (3 + 4 i) + 2 ib2

)
δ2λ2

+
(
(4 i+ 1) ca2 + a

(
c2 + 2 b2 (i+ 1)

)
+ 2 b2 (3 i+ 1) c

)
δ3λ+ b

(
(4 i+ 1) ca+ (1 + 2 i) c2 − 2 ib2

)
δ4,

A20 = −2 δ (i+ 1) (λ a+ bδ)
(
ac− b2

) (
aλ2 + cδ2 + 2 bλ δ

)
,

11



5 APPLICATION AND OUTLOOK

and

C = a2
(
b− bt2 − (a− c) t

)
λ2 +

(
a2bt2 − b2 (3 a+ c) t+ b

(
c2 + 2 b2

))
δ2

+
(
a2 (a− c) t2 − 2 b

(
b2 + 2 a2 − ac

)
t+ b2 (3 a+ c)

)
δ λ.

5 Application and outlook

The formulae presented above were used to compute some examples.

Figure 5 shows the convolution with a varying radius of a line segment and four arcs of circles. The
skeleton curves all have the same extremeties but different radius. The angle supporting the arc of
circle thus varies. Only when this angle is close to 2π does one detect that the thickness does not
vary linearly with the arc length.

Figure 5: Convolution with varying radius for a line segment (top left) and arcs of circles supported
respectively by an angle π

24 , π
3 , 2π

3 and 19π
10 (bottom, with a different scale).

We can combine several arcs of circles and line segments to model G1curves to serve as skeleton.

12



5 APPLICATION AND OUTLOOK

This is illustrated for two closed curves in Figure 6.

Figure 6: Convolution surface modeling a smooth chain ring. Top row: modeling with arcs only;
bottom: arcs and segments. Left image: the surface; right: the skeleton composed of only 4 arcs;
in black the joint points.

The widely used approach for more elaborate skeleton curves is to use an approximation by line
segments [6, 9, 14, 21, 25]. An issue with this versatile approach is that either the resulting
convolution surface presents some visible turns at the joints of line segments, or the number of
segments must be increased significantly in order to get a visually smooth surface. Convolution
for arcs of circles were also examined in [13, 26], in particular for the possible deformations into
helices that have powerful modeling properties for the animation of hair [1]. The warping technique
used in [26] allows to decrease substantially the number of skeleton basic elements to be used to
obtain a natural looking shape. This provides a substantial gain on the computational cost as
the visualization of the surface requires the repeated evaluation of the convolution function. Yet
the surfaces obtained by warping in [26] exhibit artifacts and singularities so that this technique
requires a fine tuning of the warping parameters.

The alternative approach we want to bring forth in this paper is to use a G1-approximation of
the skeleton curve. Arcs of circles have the great advantage to allow the construction of G1-curves
that can approximate any curve [18, 22]. One can thus achieve both mathematically smooth and
visually appealing shapes with skeleton curves consisting of few basic elements. This improves
visual quality and decreases the computational cost. Figures 7,8 and 9 compare the convolution
surfaces with skeleton curves generated with arcs of circle and line segments. The visual quality of
the surface is obtained with much fewer arcs of circles rather than line segments.

Conclusion: In this paper we have focused on convolution surfaces along skeleton consisting
of a single curve, either open or closed. We propose to use approximation by line segments and
arcs of circles to approximate this curve so as to obtain quality convolution surfaces with lower
computational cost. To this effect we provided explicit formulae for the convolution functions for
both line segments and arcs of circles, with varying radii or scale functions. These formulae have

13



5 APPLICATION AND OUTLOOK

Figure 7: Convolution surface around an approximation of the spiral (1
2 t cos t, 3

4 t sin t, 4
5 t), t ∈ [0, 2π].

Left image: approximation with 14 arcs of circle; right image: approximation with 14 line segments.

great generality that draws from the use of recurrence formulae that were obtained with a new
technique, creative telescoping.

This is nonetheless a first contribution in an ambitious project about convolution surfaces. The
great advantage of convolution is indeed to provide a practical mathematical definition of a smooth
surface around a complex skeletons made of intersecting curves and surfaces. Contrary to offset,
sweep or canal surfaces, convolution surfaces naturally blend smoothly multiple primitive shapes.
There are nonetheless challenges in their use. First the visualization mostly relies on refined march-
ing cube algorithms. An alternative approach would be based on the prior construction of a scaffold
around the skeleton as introduced in [19], with an alternative approach in [8]. A second challenge is
the control of the topology and geometry. This problem was tackled in [24]. We expect to provide
an alternative more intrinsic formulation, with mathematical guarantees.

14



5 APPLICATION AND OUTLOOK

Figure 8: Convolution surface around an approximation of the elliptical helix (2 cos t, 3 sin t, t),
t ∈ [0, 6π]. Top image: approximation with 42 arcs of circle; bottom image: approximation with
42 line segments.

Figure 9: Convolution surface around an approximation of the closed curve (−10 cos t− 2 cos 5t+
15 sin 2t,−15 cos 2t + 10 sin t − 2 sin 5t, 10 cos 3t), t ∈ [0, 2π]. Left image: approximation with 34
arcs of circle; right image: approximation with 34 line segments.

15



REFERENCES

References

[1] Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F., and Lévêque, J.-L.
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