
HAL Id: hal-01534101
https://hal.science/hal-01534101v1

Preprint submitted on 7 Jun 2017 (v1), last revised 18 Dec 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Updating key size estimations for pairings
Razvan Barbulescu, Sylvain Duquesne

To cite this version:
Razvan Barbulescu, Sylvain Duquesne. Updating key size estimations for pairings. 2017. �hal-
01534101v1�

https://hal.science/hal-01534101v1
https://hal.archives-ouvertes.fr

Updating key size estimations for pairings

Razvan Barbulescu1 and Sylvain Duquesne2

1 IMJ-PRG, UMR CNRS 7586, Univ Paris 6, Univ Paris 7

razvan.barbulescu@imj-prg.fr
2 IRMAR, UMR CNRS 6625, Univ Rennes 1

sylvain.duquesne@univ-rennes1.fr

Abstract. Recent progress on NFS imposed a new estimation of the security of pairings. In this work we study the

best attacks against some of the most popular pairings. It allows us to propose new pairing-friendly curves of 128

bits and 192 bits of security.

Introduction

Pairing based cryptography has now many practical applications such as short signature schemes [BLS04], identity

based cryptography [BF01] or broadcast encryption [BGW05]. A pairing is a non degenerate bilinear map

e : G1 ×G2 → G3.

It is usually realized thanks to elliptic curves. More precisely, the groups G1 and G2 are subgroups of an elliptic curve

defined over a finite field Fq or one of its extensions and G3 is a subgroup of F∗
qk where k is called the embedding

degree. Of course a suitable pairing for cryptographic applications requires that the discrete logarithm problem is suffi-

ciently difficult on these 3 groups. Because of recent attacks on the discrete logarithm problem in small characteristic

finite fields [Jou13,BGJT14], it is now clear that prime base fields should be used. In this case, ordinary elliptic curves

are the only ones allowing large embedding degrees.

The security of pairings defined over Fp having embedding degree k and group order r is determined by:

1. the cost of the discrete logarithm problem (DLP) on an order r subgroup of an elliptic curve defined over Fp (the

curve side);

2. the cost of the DLP in the multiplicative group of Fpk (the finite field side).

The security evaluation on the curve side is simple: if s is the desired level of security, we select r such that log2 r ≥ 2s
because of Pollard’s rho algorithm (and by consequence log2 p ≥ 2s). Attacks on the field side however are harder

to estimate since the best algorithms belong to the Index Calculus family and their complexity is hard to write down

explicitly. The goal of this paper is to give a precise evaluation of these algorithms in the pairing context, namely

with parametrized parameters, and then to propose new parameters for pairing based cryptography ensuring the right

security level.

Roadmap. After explaining the necessity of a new and more precise evaluation of key sizes in Section 1 we recall

the most popular families of pairings in Section 2 and identify the best variant of NFS that an attacker can use against

these families in Section 3. The proposition of new curves is done in three steps: first we study NFS and find what are

the field sizes which correspond to 128 bits of security (Section 4), then we search for curves of this size (Section 6)

and finally we do an analysis even more precise than before for each of the curves we propose (section 7). We end with

a comparison of the estimated complexity of an optimal Ate pairing for these new curves (Section 8) and we present

curves for higher security (192-bits security level, subgroup secure curves) in Section 9.

1 Big lines of NFS and a simple estimation of complexity

Whether the goal is to factor a composite integer N or to compute discrete logarithms in a field of pn elements, NFS

works in a similar manner. We select a number ring Zi, which is simply Z when factoring and is such that p is inert for

discrete logarithms. Then we select two polynomials f, g ∈ Zi[x] having a common factor ϕ modulo q, where q = N
for factoring and q = p for discrete logarithms. This allows to draw a commutative diagram which is the core of NFS:

Zi[x]

Zi/〈p, ϕ(x)〉 or Z/NZ

Z[αf] ⊂ Of Zi[αg] ⊂ Og

x 7→ αf x 7→ αg

mod 〈p, ϕ(αf)〉 mod 〈p, ϕ(αg)〉

where αf and αg are roots of f and g in their number fields and where Of and Og are the rings of integers of these

same number fields.

The algorithm starts with a stage in which small polynomials φ(x) are enumerated and put in the top of the

diagram. What a small polynomial is changes from variant to variant but the degree and the coefficients are small, the

simplest example being φ(x) = a − bx with integers a, b smaller in absolute value than some parameter. If φ(αf)
and φ(αg) are B-smooth for a parameter B (factor into ideals of norm less than B) then we obtain a multiplicative

relation in Zi[x]/〈q, ϕ〉. At this step the two variants of NFS split: either one transforms multiplicative relations into

linear equations and computes a right kernel to obtain a large number of discrete logarithms or one writes a matrix of

valuations and computes a left kernel to obtain a non-trivial solution to the equation x2 ≡ 1 mod N . In both cases one

finishes with a step of negligible cost.

The classical variant of NFS has complexity LQ[64]
1+o(1) where Q = N or pn and

LQ[c] = exp
(

(c/9)
1

3 (logQ)
1

3 (log logQ)
2

3

)

.

Each of the variants of NFS requires its own complexity analysis but it is always of the form LQ[c]
1+o(1) for some

constant. Joux and Pierrot [JP13] invented a method of polynomial selection which obtains c = 32 for some finite

fields where the characteristic p has a special form. Barbulescu, Gaudry, Guillevic and Morain [BGGM15] proposed

new methods of polynomial selection which achieve c = 48 in some cases intractable with the previous method. Later

Barbulescu, Gaudry and Kleinjung [BGK15] proposed to replace Z by a larger number ring Zi and also obtained

c = 32 for some finite fields, in particular proving that a popular pairings curve estimated to 128 bits can be the target

of this variant. Finally, Kim and Barbulescu [KB16] showed how to use the new methods of polynomial selection

together with the new choices of Zi and obtained c = 32 for a very large range of finite fields. It is reassuring to note

that one can give arguments that one cannot go bellow the c = 32 constant (cf. Appendix B).

o(1)-less estimation. What is the impact of these new constants in the complexity on the real-life security ? To get

a first idea one can start by dropping the o(1) term, so that the cost of each variant of NFS is 2κLQ[c] where κ and c
are two constants. We use the same convention as in [Len01a, Section 2.4.6] and count a clock cycle as one operation.

Thanks to real-life record computations we have a relatively good estimation of κ as summarized in Table 1 and we

conclude on the security estimations in Figure 1. For those fields where the fastest variant applies it seems that we

have to use 5008 bit fields for 128 bits of security and 12871 for 192 bits of security.

variant classical NFS classical MNFS composite n NFS composite n MNFS SNFS

c 64 61.93 48 45.00 32

κ −8[KDL+16] −8 [KDL+16] −7[BGGM15] −7 [BGGM15] −7[AFK+07]

Table 1: Value of κ to match the formula cost(NFS)=2κLQ[c]

.

2

key size

(in bits)

se
cu

ri
ty

(i
n

b
it

s)

−

2930

−

3618

−

5004

−

7406

−

9241

−

12871

replace

3072
replace

8192

128−

192−

NFS
exTNFS

SexTNFS

Fig. 1: Modification of key sizes according to the o(1)-less formula.

The goal of this article is to go beyond the o(1)-less estimation and to study in each case what is the best variant of

NFS which applies, concluding on new key sizes. This type of estimations seem to be rare but we can note the works

of Lenstra [Len01b] and of Bos et al. [BKK+09] who evaluate the security of RSA, DSA and DH. In a recent article

Menezes et al. [MSS16] made a precise estimation for pairings. In our analysis we consider elements which are not

included by Menezes et al. making our work complementary.

2 Families of pairing-friendly curves

Depending on the required embedding degree, some families of curves have been built [FST10]. We recall here the

most popular ones.

2.1 BN curves

A BN curve [BN05] is an elliptic curve E defined over a finite field Fp, p ≥ 5, such that its order r and p are prime

numbers parametrized by

p = 36u4 + 36u3 + 24u2 + 6u+ 1,

r = 36u4 + 36u3 + 18u2 + 6u+ 1,

for some well chosen u in Z. It has an equation of the form y2 = x3 + b, where b ∈ F∗
p. BN curves have an embedding

degree equal to 12. They were widely used for the 128-bit security level till the recent results on the discrete logarithm

problem in F∗
p12 . Indeed, a 256-bits prime p leads to a 256-bits curve and to pairings taking values in F∗

p12 , which is a

3072-bits multiplicative group. Both groups involved are then supposed to match the 128-bit security level according

to the NIST recommendations [Nat12] (which are however now invalidate by [KB16]). By the way, BN curves have

been the object of numerous recent publications ([DSD07,AKL+11,CSF+11,GSNB11,NNS10,GAL+13,UW14]).

Finally, BN curves always have order 6 twists. If ξ is an element which is neither a square nor a cube in Fp2 , the

twisted curve E′ of E is defined over Fp2 by the equation y2 = x3 + b′ with b′ = b/ξ or b′ = bξ. In order to simplify

the computations, the element ξ should also be used to represent Fp12 as a degree 6 extension of Fp2 (Fp12 = Fp2 [γ]
with γ6 = ξ) [DSD07], [LN97].

3

2.2 BLS curves

BLS curves were introduced in [BLS03]. They are also defined over a parametrized prime field Fp by an equation of

the form y2 = x3 + b and have a twist of order 6 defined in the same way than BN curves. Contrary to BN curves they

do not have prime order but their order is divisible by a large parametrized prime r and the pairing will be defined on

the r-torsions points. They are available for different embedding degrees but we are only interested here by the BLS12

and BLS24 families having embedding degrees 12 and 24 with respect to r. Till now, they were used for the 192-bis

security level [AFCK+13]. The parametrizations are given by

BLS12 BLS24

p = (u− 1)2(u4 − u2 + 1)/3 + u p = (u− 1)2(u8 − u4 + 1)/3 + u
r = u4 − u2 + 1 r = u8 − u4 + 1

2.3 KSS curves

KSS curves are also available for different embedding degrees [KSS08]. If the required embedding degree is 18, this

is very similar to BLS curves (same defining equation, degree 6 twist, parametrized primes p and r|#E(Fp)). In this

case, the parametrization is given by

p = (u8 + 5u7 + 7u6 + 37u5 + 188u4 + 259u3 + 343u2 + 1763u+ 2401)/21

r = (u6 + 37u3 + 343)/343

If the required embedding degree is 16, the KSS16 curves are defined over a parametrized prime field Fp by an equation

of the form y2 = x3 + ax and have a twist of order only 4. Again they do not have a prime order but it is divisible by

a parametrized prime r and the pairing will be defined on the r-torsions points. In this case, the parametrization is

p = (u10 + 2u9 + 5u8 + 48u6 + 152u5 + 240u4 + 625u2 + 2398u+ 3125)/980

r = (u8 + 48u4 + 625)/61250

Whatever the family, a curve is always obtained by finding a parameter u such that both p and r are prime numbers.

The curve and its twist are generated by finding suitable coefficients which can usually be chosen small. More details

on the generation process are given in Section 6.

2.4 Optimal Ate pairing

Their are several available pairings (Weil, Tate, Ate, R-Ate, ...) but the most efficient pairing is always the so-called

optimal Ate pairing [Ver09]. Let us recall this pairing in the context of ordinary elliptic curves defined over prime

fields and more precisely in the case of the considered families.

Let E be an elliptic curve defined over the prime field Fp. Let r be a prime divisor of #E(Fp) and k the embedding

degree relatively to r. Let Ẽ be a degree d twist of E defined over Fpe where e = k/d [HSV06]. The optimal Ate

pairing is defined over G1 ×G2 and takes its values in G3 where

– G1 is the set of rational points on E of order r.

– G2 is the image of Ẽ(Fpe)[r] in E(Fpk) by the twisting isomorphism.

– G3 is the order r subgroup of F∗
pk

For the considered parametrized curves, the optimal Ate pairing of P and Q is mainly made of 2 parts. The first

one (usually called the Miller loop) is the computation of fu,Q(P) where u is (usually) the family parameter and the

second one is an exponentiation to the power pk−1
r . Assuming ℓA,B denotes the line through points A and B, the

precise pairing are given in Table 2 [HSV06,Ver09].

4

Curve Miller loop of P and Q final exponent

BN f6u+2,Q(P) · ℓ[6u+2]Q,[p]Q(P) · ℓ[6u+2+p]Q,[p2]Q(P) (p12 − 1)/r

BLS12 fu,Q(P) (p12 − 1)/r

KSS16
(

fu,Q(P) · ℓ[u]Q,[p]Q(P)
)p3

· ℓQ,Q(P) (p16 − 1)/r

KSS18 fu,Q(P) · f3,Q(P)p · ℓ[u]Q,[3p]Q(P) (p18 − 1)/r

Table 2: Optimal Ate pairings

3 The spectrum of possibilities for an attack on the field side

An attacker who uses an algorithm of Index calculus type can make a series of choices : decide which algorithm and

variant to use, make practical improvements, select polynomials, and optimize the main parameters. In this section we

explain what are the reasonable choices for an attacker and give arguments to eliminate other choices.

3.1 Choice of algorithm

Let us make a list of the algorithms which can be implemented on a classical computer.

We discard the FFS algorithm [Adl94,AH99,JL02,JL06] and its pinpointing variant [Jou13] by estimating the size

of the factor base. Indeed, when the target is Fpn , the factor base of FFS is formed of all the monic polynomials Fp[x]
of degree less than a parameter b. This has been confirmed by implementations of FFS [JL06,HSW+10,HSST12] and

pinpointing [Jou13,SS16a]. Hence the factor base has at least p elements and then the linear algebra step has a cost of

at least p2 operations, which is more than the security on the curve side evaluated to p
1

2 operations.

We also discard the MNFS variants, i.e. the variants of NFS in which more than two sides are used. Indeed, the

asymptotic complexity is close to that of NFS ([KB16, Table 2] so the “o(1)-less” extrapolation leads us to results

which are similar to those of the classical case (see Figure 1). Detrey [Det14] and Lenstra and al. [KBL14] made

proof-of-concept implementations of FFS and NFS for factoring, which are similar to NFS for discrete logarithms.

Their results seem to show that the crossing point between classical and MNFS variants of NFS is around 1000 bits,

but the gain is small, say less than 2 bits of security, so that we can ignore it in this article.

The three variants of NFS, classical [Gor93,Sch93,JL03], TNFS [Sch00,BGK15] and JLSV [JLSV06], can be seen

as particular cases of exTNFS [KB16], which remains the only algorithm to consider.

When p can be written as P (u)/v, for some polynomial P ∈ Z[x] and some integers u and v (as it is the case

for pairing applications), the polynomial selection is done differently and one of f and g has small coefficients. To

emphasize this difference we give a different name to the algorithm by adding the letter S: the “special” variant of

NFS is called SNFS, the special variant of exTNFS is called SexTNFS, the corresponding variant of TNFS is STNFS

and the special variant of JLSV will be called S-JLSV or simply Joux-Pierrot.

In order to fix notations we recall the SexTNFS algorithm [KB16]:

1. Polynomial selection. Given a parameter η, chosen among the divisors of n, one selects a polynomial h ∈
Z[x] of degree η which is irreducible modulo p. Then one selects two polynomials f and g in Z[t, x] so that

f mod 〈h(t), p〉 and g mod 〈h(t), p〉, seen as elements of Fpη [x], have a common factor k(x) which is irreducible

of degree κ := n/η. In the particular case gcd(η, κ) = 1 we can take f, g ∈ Z[x] which share an irreducible factor

of degree κ, whereas in the case gcd(η, κ) 6= 1 we have to guarantee that f and g are not defined over a proper

subfield of the number field of h.

2. Sieve. Given two parameters A and B, one collects all (up to sign) the degree 1 polynomials in Fpn [x] or equiv-

alently tuples in the set {(a0, . . . , aη−1, b0, . . . , bη−1 ∈ [−A,A]2η | a0 ≥ 0}, called sieving domain, so that Nf

and Ng are B-smooth (all prime factors are less than B), where

Nf = Rest

(

Resx

(

η−1
∑

i=0

ait
i − x

η−1
∑

i=0

bit
i, f(t, x)

)

, h(t)

)

5

is the norm on the f side, and similarly for g instead of f . In order to emphasize the analogy with the simpler

variants of NFS, we put E = Aη which is a good approximation of the square root of the cardinality of the sieving

domain.

3. Filtering. Unknowns which occur in a single relation are called singletons and are deleted together with the cor-

responding equation. Additionally, using elementary transformations of the matrix one can create new singletons.

This leads to a smaller matrix and hence a faster resolution of the linear system.

4. Linear algebra step. One computes the right kernel of the sparse matrix obtained after the filtering using the Wiede-

mann or Lanczos algorithm or their block variants. The coordinates of the kernel vector are called virtual loga-

rithms.

5. Individual logarithms. Given a generator g of Fpn and an element h, compute the discrete logarithm logg h using

the virtual logarithms.

3.2 Practical improvements

Although the complexity of NFS for DLP in Fp hasn’t changed for almost 30 years, its real-life speed was improved

continuously. In the jargon of the NFS community an improvement which changes only the o(1) term in the complex-

ity is called a practical improvement.

3.2.1 Filtering. If an ideal occurs in a single relation then we can erase this ideal and its relation from the matrix.

Thanks to the exceeding number of relations compared to the cardinality of the factor base, one can erase rows and

do linear operations on the rows in order to create new singletons [CH02, Ch 3]. Table 3 summarizes how does the

filtering behave in practice. It is hard to compare the different rows of the table because the authors of different records

made different choices, some of which collected much more relations than needed (oversieved) and hence helped the

filtering step reduce considerably the matrix.

record rows before filtering rows after filtering size reduction log2 B

SNFS-1039 (factor) 13.8G 82.8M 167 38

NFS-768 (factor) 47.7G 192.8M 247 40

FFS-809 67.4M 3.6M 19 28

SNFS-1024 (DLP) 249M 28M 9 31

NFS-768 (DLP) 9.0G 23.5M 382 36

Table 3: Behavior of filtering in practice

We made an asymptotic estimation of the number of ideals which might be used to reduce the matrix and we

obtained the following statement.

Conjecture 1. In the filtering step of NFS one reduces the matrix by a factor (logB)1+o(1), where B is the smoothness

bound.

Justification: Let q be an ideal in the factor base of NFS lying above a prime q and let N denote the size of the norms

product and B the smoothness bound. We shall argue that the following statements are true:

1. If q < B/(logB)1+ǫ with ǫ > 0 then q occurs in a number of relations which tends to infinity as B and N go to

infinity.

2. If q > B/(logB)1−ǫ with ǫ > 0 then q will occur in a number of relations which tends to 0 as B and N go to

infinity.

6

The sieving domain has B2 elements (parameter tuning in NFS implies E = B where E is the square root of the

number of sieved pairs [BLJP93]) and a proportion of 1/q are divisible by q. They produce relations if the cofactor

of size N/q is B-smooth, for which we have no proven formula, but which is approximated by the proportion of

integers in the interval [1, N/q] which are B-smooth. Due to the theorem of Canfield, Erdös and Pomerance [CEP83]

this proportion is ρ
(

log(N/q)
logB

)

where ρ is Dickman’s function, i.e. the function such that ρ(v) = 1 for v ≤ 1 and

ρ′(v) = −ρ(v − 1)/v for v > 1.

number of relations where q occurs ≈ B2/q · ρ
(

log(N/q)

logB

)

.

Recall that in NFS we set B so that ρ
(

logN
logB

)−1

= B (once again see [BLJP93]). We put v = logN
logB , so that we have

logB = v log v, logN = v2 log v and q > B/v1+2ǫ (resp. q < B/v1−2ǫ). We replace all variables in the the right

hand side member by their expressions in terms of v and obtain that its logarithm is equivalent to v1+ǫ − v. It tends

to ∞ if ǫ > 0 so the ideals of norm q < B/(logB) occur in a very large number of relations and are unlikely to

create singletons, so they are not erased during filtering. The right member tends to −∞ if ǫ < 0 so the ideals of norm

q > B/ log(B) occur in almost no relations, and are very likely to be used during filtering.

Hence the filtering erases most of the ideals of norm larger than B/(logB)1+o(1) and keeps all but a negligible

fraction of the others, so that the matrix size is reduced by a factor (logB)1+o(1). �

It seems then plausible that the filtering gain is a constant times log(B), and by comparing it with Table 3 we

model the gain by log2 B.

3.2.2 Exploiting automorphisms. Record computations with FFS [HSW+10,HSST12] and NFS [BGGM15] showed

that if the target field is of the form pκη for two integers η and κ so that κ is small, then one can gain a factor κ in the

sieve and a factor κ2 in the linear algebra.

Kim and Barbulescu [KB16] explained that one has a similar gain in SexTNFS, where κ is to be replaced by

A, the number of automorphisms of h which fix g times the number of automorphisms of g. If κ = 1 and h has η
automorphisms then the exact number of automorphisms is A = η, e.g. A = ℓ − 1 if h = Φℓ, the ℓ-th cyclotomic

polynomial, for some prime ℓ. If κ = 2 one doubles the number of automorphisms thanks to the automorphisms of

g. For example if h = Φ7 and g = x2 + αx + β + t4 + t2 + t − u for some integers α, β then A = 6 because any

automorphism in the set {τ iσj , 0 ≤ i ≤ 1, 0 ≤ j ≤ 2} can be used (here σ : t 7→ t2 and τ : x 7→ −α− x). Finally,

if κ = 3 and η = 4 an attacker might use h = φ8 and find polynomials g which have 3 automorphisms, so for a worst

case analysis we count A = 12.

3.3 Selection of polynomials

The polynomial selection consists of selecting h, f and g.

3.3.1 Choice of h. The polynomial h ∈ Z[x] has two constraints, its degree is η and it is irreducible modulo p.

Among the possible choices we select those having small norms for Nf and Ng , which generally corresponds to the

case when h has small coefficients. In all examples we could select h with coefficients in {0,−1, 1} and experiments

confirmed that the best choice is never much better than h = tη − t− 1.

In Section 3.2 we saw that in order to use the Galois automorphisms the attacker has to find a polynomial h
with non-trivial automorphisms. We ran an exhaustive search of integer polynomials with coefficients less than 10
and obtained a very small set of such polynomials which have no automorphism of order different from 2, that we

summarize in Table 4.

7

degree 6 12 16 18

polynomials Φ7, Φ9, Φ14, Φ18 Φ13, Φ26 Φ17, Φ34 Φ19, Φ38

Table 4: List of all monic polynomials h ∈ Z[x] of degree between 6 and 20 such that ‖h‖ ≤ 10 and Aut(h) has

elements of order larger than 2.

3.3.2 Construction of f and g. One produces a large number of pairs of polynomials using one of the following

methods: base-m [BLJP93], base-m-SNFS [LLJMP90], Joux-Pierrot [JP13], Conjugation [BGGM15], JLSV1 [JLSV06,

Section 2.3], GJL [BGGM15,Mat06], algorithms A,B,C or D of Sarkar and Singh [SS16c,SS16d,SS16b].

In this article we focus on families of pairings where p is parametrized, then one choice of polynomials is by far the

most natural. Let P (x) ∈ Z[x] and the integers u, v be such that p = P (u)/v. Then one can take f = P (xκ +S(t, x))
and g = xκ+S(t, x)−u for some S ∈ Z[t, x] of degree in x less than κ so that g is irreducible in (Fp[t]/h)[x]. In most

cases this is the only choice but for instance in the case of KSS 18 one can also take f = P (x− 2) and g = x− 2− u,

with a non negligible effect on the complexity estimation.

How can we be sure that the attacker cannot find choices of f that we could not predict ? See [FGHT16] for a

discussion about the consequences of this question on discrete logarithms in Fp. The attacker cannot use the fastest

versions of NFS (SNFS, STNFS, SexTNFS, Joux-Pierrot) unless he finds three polynomials, T (x, y) ∈ Z[x, y] and

U, V ∈ Z(x) whose coefficients are bounded by an absolute constant, so that p = T (U(u), V (u)) for some integer u,

in which case he sets

f = T (x) and g = V (u)x− U(u).

In the case of SexTNFS, the coefficients of f occur at large powers in the norms and hence we can restrict the search

to very small constants. We ran the exhaustive search and obtained that the only alternative choices are f = P (x− 1)
for KSS 16, f = P (x − 2) for KSS 18 and f = 4x4 − 4x3 + 12x2 − 10x+ 7 and g = x − (3u + 1) for BN. In the

rest of the security evaluation we considered the alternative choices together with the natural ones.

3.3.3 Optimization. Murphy [Mur98] introduced a map α : Q[x] → R which allows to decide which are the

best polynomials for NFS. Barbulescu and Lachand [BL17] proved, when f is quadratic of fundamental negative

discriminant, that for a random pair of relatively prime integers the normN = Resx(a−bx, f) has the same probability

to be B-smooth (for a parameter B) as a random integer less than eα(f)N . Because of the uncertainty on α we

cannot predict the exact cost of a DLP computation with NFS. In the previous paragraph we saw that in the case of

parametrized pairings we only have one or two choices of f and g. For each choice we verify directly that α(f) ≈ 0
whereas for linear polynomials the value of α is constant equal to 0, 56... which is also the average value of α on all

polynomials [BL17].

4 Optimization of parameters

Given a field Fpn where the characteristic is parametrized by a polynomial P (u)/v of degree d, we decided to use

SexTNFS with f = P (xκ + S(t, x)) and g = xκ + S(t, x) − u for some polynomial S of degree in x less than n.

We also decided to use, if possible, h from Table 4 and otherwise h = tn/κ − t− 1 because it is the simplest one and

then the one providing the smallest norms. This choice is the best possible one for the attacker. At this point we need

to decide which value of κ to use and to optimize parameters A and B.

8

4.1 Choice of κ.

According to [KB16, Section 4.1] the parameter κ is chosen to minimize the norms product NfNg ≈ E(d+1)κQ
1

dκ ,

where E is the square root of the cardinality of the sieve space and Q is pn. This corresponds to

κ ≈
√

log2 Q

d(d+ 1) log2 E
.

It was useful for us to guess the optimal value of κ, which received the most attention, even though we had to test all

possible values. Our method was to approximate log2 Q from Figure 1 and to take E2 = 2s where s is the security

level, which leads to Table 5. We verified that in every case the best value is in this table.

security level d = 4 d = 6 d = 8 d = 10

128 2 or 3 1 or 2 1 or 2 1

192 2 or 3 1 or 2 1 or 2 1 or 2

Table 5: Rule of thumb values for κ.

4.2 Optimization of the bounds A and B.

As before B denotes the smoothness bound and A the bound on the coefficients of the sieved polynomials. A pair of

values is valid if the sieve produces enough relations, so we need to estimate the number of relations. The sieving space

is formed of the pairs a(t), b(t) in Z(t)/h so that deg a, deg b ≤ η − 1. If µ(t) is a root of unity of the number field

of h then the pairs (µa, µb) and (a, b) give the same multiplicative relation. In Section 3.1 we restricted a0 to positive

values to account for the unit −1, here the sieving space shrinks further by the number of roots of unity divided by

two.

sieving space=(2A+ 1)2η/(2w),

where w is the index of {1,−1} in the group of roots of unity. By a Monte Carlo integration we estimate the bit

size of the norms: we considered random tuples (a0, . . . , aη−1, b0, . . . , bη−1) each of the components being uniformly

chosen in the interval [−A,A]. We call bit size of the norms the arithmetic mean of the bits sizes of the norms for each

tuple in a sample of 25600 tuples (see Appendix A for more details). We emphasize that we average log2(Nf) and

log2(Ng) and not Nf and Ng because this value is used to compute the smoothness probabilities pf = ρ
(

log
2
Nf

log
2
B

)

and pg = ρ
(

log
2
Ng

log
2
B

)

. This gives us the total number of relations which is

relations = (sieving space) · pf · pg .

The factor base is formed of the prime ideals of norm less than B in the number fields of f and g, so the cardinality

of the factor base is asymptotically equal to 2B/ log(B). In some record computations the number of relations is less

than the cardinality of the factor base, e.g. 68% in [AFK+07], but for simplicity and without changing the complexity

results by more than one bit, we consider that the attacker must collect at least as many relations as elements in the

factor base. Hence the validity condition is

(2A+ 1)2η

2w
· pf · pg ≥ 2B

log(B)
. (1)

Due to Galois automorphisms (see the discussion in Section 3.2.2) 2B
A log(B) non-conjugate relations can be used

to obtain 2B/log(B) relations (where A is the number of automorphisms of h times the number of automorphisms

of Fpn/Fpη which fix f and g). Equivalently, we collect only 2B
A log(B) relations and we keep one ideal in each class

9

of conjugacy so that the cardinality of the reduced factor base becomes 2B
A log(B) . Each relation is obtained on aver-

age after testing p−1
f p−1

g elements of the sieving space, so the total number of enumerated (or sieved) elements is

2B/(A log(B)pfpg).
The ratio between the real cost of the sieve and the number of tuples enumerated (or sieved) in the sieve is hard to

evaluate so we call it csieve. According to Table 6, csieve is almost constant in various computations realized with various

variants of NFS. We stay on the safe side and model csieve to be a constant equal to 1 even though we believe its value

should increase slowly with the input size and the first implementations on SexTNFS will be much more costly than

the implementations of NFS which obtained these costs (compare for example to some sieving implementations for

Fp6 done by Zajac [Zaj10], Hayasaka et al. [HAKT15] and Gaudry et al. [GGV16]). The literature contains no record

with NFS with a,b living in a ring with roots of unity other than ±1 but we stay on the safe side and consider that they

will introduce no extra cost for the attacker (the case a, b ∈ Z[i] is discussed in Section 7.1 of [BGK15]). Finally

sieve cost =
2B

A log(B) · pf · pg

The size of the matrix sent to filtering is 2B/A log(B). As explained in Section 3.2 it is reduced by a factor

log2 B. The number of non-zero entries per row in the reduced matrix varies between 100 and 200 in all records

that we consider and we will approximate it by 128. Let then clin.alg be such that the cost of the linear algebra is

clin.alg2
7B2/(A log(B) log2(B))2, as it is expected to be using Wiedemann’s algorithm. The factor clin.alg accounts for

the cost of a multiplication in Fr, where r is the order of the pairings group. Since log2 r varies by at most a factor 2
between various types of pairings and various security levels between 128 and 256, we expect clin.alg to be a constant.

The records we summarize in Table 6 confirm that clin.alg is a constant close to 1.

record log2 E log2(cost of sieve) log2 B log2(cost of lin.alg) log2(csieve) log2(clin.alg)

SNFS-1039 (factor) 31.0 63.0 38 63.0 1 1

NFS-768 (factor) 33.0 66.5 40 64.5 0.5 −2

FFS-809 27.0 57.5 28 55.0 3.5 2

SNFS-1024 (DLP) 31.5 64.5 31 63.5 1.5 2

NFS-768 (DLP) 35.0 68.0 36 66.0 −2 −4

Table 6: A list of records and their parameters.

We conclude this section with a model of the cost:

cost =
2B

A logB
ρ

(

log2(Nf)

log2 B

)−1

ρ

(

log2(Ng)

log2 B

)−1

+ 27
B2

A2(logB)2(log2 B)2
, (2)

where A can be upper bounded by ηκ/ gcd(η, κ).
For each pairing curve and choice of polynomials one has to solve an optimization problem: find the values of

log2 A and log2 B which minimize the cost in equation 2 under the condition in Equation 1.

5 Estimating SexTNFS complexity

In this section, we use the previous result to estimate the security level provided by a given finite field Fpn .

5.1 Summarizing the process for computing SexTNFS cost

Let us first summarize the way to estimate the complexity of the SexTNFS algorithm. It is made of 4 steps.

10

– Step 1: Parameter selection. The first choice to be made is the one of the κ value according to Table 7 and/or

trying few values and only keep the one given the best results in the following steps. Then one has to choose the

polynomial h such that A is as large as possible and h is as simple as possible (small and few coefficients) and

the polynomials f and g to define the commutative diagram given in the introduction. The details on the ways to

choose these polynomials are given in Section 3.3. In this step, we also determine the values w and A
– Step 2: Choice of the bounds A and B. These bounds will define the number of enumerated relations and

the size of the factor basis so they have a direct impact on the complexity. As already explained they must be

chosen to minimize the cost in Equation 2 under the condition in Equation 1 (these are steps 3 and 4 below).

This optimization problem will be solve by brute force because we do not need a very high accuracy. We first

enumerate only integer values of log2 A ∈ [1, 100η] and log2 B ∈ [1, 100] because the cost is lower bounded

by (A2η + B2)/1000 which is more than 2192 for larger values of A and B. We call log2 A0 and log2 B0 the

optimum of this integer search. In a second time we test all values of log2 A in the set {log2 A0 + i/100 |
i integer in [−100, 100]} and all values of log2 B in the set {log2 B0 + j/5 | j integer in [−25, 25]}. For small

values of A, one can even enumerate A one by one.

– Step 3: Sieving. For each choice of A, we use a Monte Carlo integration to estimate the average bit size of

the norms Nf and Ng. Hopefully, these norms are essentially proportional to Adeg f deg h so we do not need to

recompute it each time for a first approximation. They allow to estimate the number of enumerated pairs necessary

to get enough relations.

– Step 4: Final cost. We can deduce from Step 3 the sieving cost (which is the number of enumerated pairs, assum-

ing csieve = 1) and from B the cost of linear algebra which is 27B2/(A log(B) log2(B))2. The overall complexity

is the sum of these 2 costs.

5.2 Example: a BN curve where the finite field has 3072 bits

One of the most popular BN curve is the one associated to u = −262 − 255 − 1 which was evaluated to 128 bits of

security before the recent developments on NFS. Let us follow Section 5.1 to estimate its real security level.

– Step 1: Parameter selection. We decide to use the SexTNFS algorithm with κ = 2 and η = 6 because it gives

the best result from the viewpoint of the attacker. The intermediate field will be defined by h = t6 − t3 − t − 1
which is irreducible modulo p. Indeed the cyclotomic polynomials Φ7, Φ9, Φ14 and Φ18 are not irreducible in this

case and h is the ”smallest” irreducible polynomial (in the sense that he has only 4 non-zero coefficients which

moreover equal ±1). We tried several polynomials and find that x2 + t− u is irreducible in Fp6 = Fp[t]/h(t) so

that Fp12 = Fp6 [x]/(x2 + t− u). Hence we can take f = P (x2 + t) (where P is the polynomial parametrizing p
given in Section 2.1) and g = x2 + t− u. In this case, we have no non-trivial roots of unity (w = 1) and A = 2
because g has degree two (as explained in Section 3.2.2).

– Step 2: Choice of the bounds A and B. As explained in Section 5.1, we applied Steps 3 and 4 for many values

of A and B to find that log2 A = 7.36 and log2(B) = 57 are minimizing the cost given by the Equation 2.

– Step 3: Sieving. The total number of tuples in the sieving space is (2A+ 1)2η/(2w), where w = 1 is the number

of automorphisms of h, so the size of the sieving space is 299.45. By Monte Carlo integration we estimates the

norms on the two sides of the commutative diagram and then one can approximate the smoothness probability

using Dickman’s function

log2(Nf) ≈ 414.7 ⇒ ρ

(

log2(Nf)

log2(B)

)

≈ 2−21.41 and log2(Ng) ≈ 460.8 ⇒ ρ

(

log2(Ng)

log2(B)

)

≈ 2−25.30

Hence the number of relations is approximatively 299.45−21.41−25.30 ≈ 252.74.

On the other hand, the cardinality of the factor base is approximatively 2B/ log(B) ≈ 252.70, which is less than

the number of relations, so we have enough relations (Equation 1 is satisfied).

– Step 4: Final cost. The number of relations we need to collect is 251.70 and each relation is obtained after testing

on average 221.41+25.30 = 246.71 pairs (a, b). Hence the cost of the sieve is csieve2
51.70+46.71 ≈ 298.41 assuming

csieve ≈ 1. On the other hand, Filtering allows to reduce the matrix size by a factor around log2 B = 57, its new

size being N = 251.70/57 ≈ 246.87. The cost of the algorithms of sparse linear algebra is given by 25N2 = 298.73

11

times the cost of an addition modulo p, which counts here for an elementary operation. Finally, we get the overall

cost by adding the cost of the relation collection and the one of the linear algebra :298.65 + 298.73 = 299.69 which

means that the BN curve used in most of the existing implementations ensures no more than the 100-bits security

level.

5.3 General results and recommendations

The goal of this section is to determine the required size of the finite field involved in the pairings given in Section

2 to ensure the 128 and 192-bits security levels. For this, we follow the strategy given in Section 5.1 for each family

of curves making at each step the most favorable choice (for the attacker). For example we assumed that the number

of automorphisms A is maximal. If the parameter u (and therefore p) is selected such that the attacker cannot use the

best polynomials listed in Table 7 then we observed a considerable increase in security. However, for the purpose of

general recommendations, we consider that the attacker can use the best polynomials. The results are given in Tables 8

and 9 which then contain our recommendations for the size of pk where k is the embedding degree. Note that in the

case of KSS16 and KSS18 curves for 128 bits of security the parameter A is very small (A = 9), and one might want

to compute the proportion of elements in the sieving space having each possible value of norms bit size. In every other

case in this article we checked that such a precise analysis arrives to the same results as our analysis.

Family η h g w A

BN, BLS12 6 Φ7 x2
− u+ t 7 6

KSS16 16 Φ17 x− u 17 16
KSS18 18 Φ19 x− u 19 18

Table 7: Best choices of h and g at 128 bits of security

Family log2(p
k) κ A log2 B

BN 5534 2 1145 74.00

BLS12 5530 2 1098 73.65

KSS16 ≈ 4400 1 9 76.5

KSS18 ≈ 4300 1 9 76

Table 8: Size of finite fields associated to pairing-friendly curves which have a cost of 2128 operations. Note that in the

KSS case the curve side is weaker than the field side and additionally the field side is particularly difficult to evaluate.

Family log2 u log2(p
k) κ A log2 B

KSS18 85 12200 1 44 110.2

BLS24 56 13300 1 9 109.4

Table 9: Recommended parameters for pairings of 192 bits of security

12

6 New parameters for the 128-bits security level

The goal of this section is to propose new parameters for the 128-bits security level for the main families of curves

given in Section 2 (BN, BLS12, KSS16 and KSS18). This is done in 2 steps. The first one consists in finding the

size of the extension field ensuring this security level in the general case which means that we assume that the all the

improvements of the NFS-like algorithms can be used. This is done in Section 5.3 and the results are given in Table 8.

We must also take care that the r-torsion subgroup of the elliptic curve involved in the pairing computation ensures the

128-bits security level. For example, this is the limiting factor in the KSS cases. Then, for each family, we know the

size of the curve parameter u that should be used to ensure the 128-bits security level (Table 10) in the general case.

Curve BN BLS12 KSS16 KSS18

log2(u) 114 77 34 44

Table 10: Bit size of the parameter u ensuring the 128-bits security level

The second step is to generate the best possible parameter u satisfying this condition. Note that since the recommenda-

tions correspond to the weakest curve we could have considered slightly smaller values of u for which the specialized

security analysis would conclude that they ensure the 128-bits security level. We decided not to do it to keep a small

security margin in order to eventually balance the few simplifying assumptions we made on the complexity estimation

of SexTNFS. Let us start with the generation of a BN curve.

6.1 New BN parameter

The way to build the parameter u is detailed in [DMHR15]: it should be chosen sparse and congruent to 7 or 11 mod

12 so that building Fp12 can be done via Y 6 − (1 + i) over Fp2 = Fp[i]. We also impose the condition that the curve

obtained is twist-secure [VLFR08] which means that p+1+ t should have a 256-bits prime factor (where t is the trace

of the Frobenius as usual). We then performed an exhaustive search on u having increasing Hamming weight. There

are no result of weight 2. We found some values having Hamming weight 3 but not satisfying the congruence. More

precisely, the extension tower should be build using
√
−5 which is much less interesting in terms of Fp12 arithmetic.

Finally, we found the value u = 2114 + 2101 − 214 − 1 which is satisfying all the required conditions. The curve E
defined over Fp by

E : y2 = x3 − 4

is twist-secure (p+ 1+ t has a 280-bits prime factor) and u = 7 mod 12 so that Fp2 is defined by X2 +1 and Fp12 by

Y 6 − (1 + i). The twisted curve E′ is defined over Fp2 by

E′ : y2 = x3 − 4(1 + i)

6.2 New BLS12 parameter

Most of the results of [DMHR15] can be used for BLS curves because the extension degree is also 12. Again, we

performed an exhaustive search on the parameter u having increasing Hamming weight. We do not find any value of

weight 2 but we found two having Hamming weight 3, −277 + 250 + 233 and −277 − 259 + 29. In both cases Fp12

can be build via Y 6 − (1 + i) over Fp2 = Fp[i] which provides the best possible Fp12 arithmetic. We recommend to

use the first one because if the second one is used, the cyclotomic polynomial Φ7 is irreducible and can be used for h
which improves the algorithm. Then, for u = −277+250 +233, the elliptic curve E (resp. its twist E′) is defined over

Fp (resp. Fp2) by

E : y2 = x3 + 4, E′ : y2 = x3 + 4(1 + i)

E is of course twist-secure (thanks to a 273 prime factor).

13

6.3 New KSS16 parameter

In this case, the parameter u should have at least 34 bits to ensure the 128-bits security level on the elliptic curve side.

Unfortunately, an exhaustive search does not provide any suitable value of the parameter having Hamming weight less

than or equal to 5. The sparser parameter we found is −234 + 227 − 223 + 220 − 211 + 1. In this case, the extension

field is defined by X16 − 2 which provides the best possible Fp16 arithmetic. The elliptic curve E (resp. its twist E′)

is defined over Fp (resp. Fp2) by

E : y2 = x3 + x, E′ : y2 = x3 + 2
1

4x

And again, E is twist-secure (thanks to a 318-bits prime factor). However we found a suitable 35-bits parameter having

Hamming weight 5. Such a parameter will of course involve an additional doubling/squaring step in the exponentiation

algorithms but it will also involve one addition/multiplication step less. The impact on the Miller loop is negligible,

but in the final exponentiation this means that a Fp12 multiplication is replaced by a cyclotomic squaring and this

happens 9 times since 9 exponentiations by u are performed (see Section 8 for details). Since a cyclotomic squaring

is more than twice faster than a Fp12 multiplication, it is better to use the 35-bits parameter as long as Fp arithmetic is

not impacted. For example, p has 330 bits for the 34-bits value of u and 340 for the 35-bits value. Hence, if a 32-bits

device is used, both values of p require 11 words so the Fp arithmetic is not impacted. On the contrary, if a 16-bits

device is used, choosing the 35-bits value of u implies that p requires 22 words instead of 21. Then the 34-bits value

may be preferred in this case. This parameter is u = 235 − 232 − 218 + 28 + 1, Fp16 is also defined by X16 − 2 and

the elliptic curve E (resp. its twist E′) is defined over Fp (resp. Fp2) by

E : y2 = x3 + x, E′ : y2 = x3 + 2−
1

4x

E is of course twist-secure (thanks to a 281-bits prime factor).

6.4 New KSS18 parameter

Again, the limiting factor for the security level is the elliptic curve size so that u should have at least 44 bits. Our

exhaustive search provides no values having weight 2 or 3 and only one having weight 4. It is u = 244 +222 − 29 +2.

In this case, Fp18 cannot be defined by X18 − 2 but by X18 − 3. The elliptic curves are defined by

E : y2 = x3 + 3, E′ : y2 = x3 + 3.3
1

3 (or 3.3−
1

3)

The curve E is twist-secure (thanks to a 333-bits prime factor).

7 Effective security of selected curves

Let us now apply the strategy given in Section 5.1 to evaluate the real security of the proposed curves

7.1 BN

We study the BN curve proposed in the previous section, which has parameter u = 2114 + 2101 − 214 − 1.

– Step1. The best results are obtained with κ = 2 and η = 6. The best choices for the polynomials are h =
t6 − t4 + t2 + 1, g = x2 − t3 − u and f = P (x2 − t3). In this case, we have w = 1 and A = 2 as in Section 5.2.

As a consequence we will find a higher security level here than in the general case.

– Step2. A = 1129 and B = 274.2 are minimizing Equation 2 and satisfying Equation 1.

– Step3. The size of the sieving space is (2A + 1)12/2 ≈ 2132.70. The Monte Carlo integration gives log2(Nf) ≈
558.5 and log2(Ng) ≈ 809.4. Then the smoothness probabilities are approximatively equal to ρ

(

log
2
(Nf)

log
2
(B)

)

≈

2−22.82 and ρ
(

log
2
(Ng)

log
2
(B)

)

≈ 2−40.31. Hence we expect a number of 2132.45−22.82−40.31 ≈ 269.32 relations which

is larger than the cardinality of the factor base which is around 269.07.

– Step4. Evaluating Equation 2 with these data finally gives an overall complexity of 2133.49.

14

7.2 BLS 12

The recommended parameter is u = −277 + 250 + 233.

– Step 1. We chose κ = 2 and η = 6. The best polynomials are h = t6 − t− 1, f = P (x2 + t+ t2 + t4 +1) where

P (x) = (x− 1)2(x4 − x2 + 1) + 3x and g = x2 + t+ t2 + t4 + 1− u. In this case, we have w = 7 and A = 2
(because g is quadratic).

– Step 2. A = 1169 and log2 B = 73.50
– Step 3.

• log2(sieve space) = 133.30
• log2(Nf) = 791.2 ⇒ log2(smoothness probability on the f side) = −39.17
• log2(Ng) = 584.8 ⇒ log2(smoothness probability on the g side) = −24.67
• log2(relations) = 69.46
• log2(reduced factor base) = 67.83 (enough relations)

– Step 4. security=131.8

7.3 KSS 16

The recommended parameter is u = 235 − 232 − 218 + 28 + 1.

– Step 1. We chose κ = 1 and η = 16. The best polynomials are h = Φ17, f = P (x − 1) and g = x − u − 1. In

this case, we have w = 17 and A = 16.

– Step 2. A = 12 and log2 B = 80
– Step 3.

• log2(sieve space) = 143.52
• log2(Nf) = 920.4 ⇒ log2(smoothness probability on the f side) = −43.23
• log2(Ng) = 628.9 ⇒ log2(smoothness probability on the g side) = −24.21
• log2(relations) = 76.08
• log2(reduced factor base) = 71.20 (enough relations)

– Step 4. security=138.97. Note that this is the security only on the finite field side. The security on the elliptic curve

side is 128 as required.

7.4 KSS 18

The recommended parameter is u = 244 + 222 − 29 + 2.

– Step 1. We chose κ = 1 and η = 18. The best polynomials are h = t18 − t4 − t2 − t − 1, f = P (x − 2) and

g = x− u− 2. In this case, we have w = 1 and A = 1.

– Step 2. A = 11 and log2 B = 82.5
– Step 3.

• log2(sieve space) = 161.85
• log2(Nf) = 920.4 ⇒ log2(smoothness probability on the f side) = −36.21
• log2(Ng) = 628.9 ⇒ log2(smoothness probability on the g side) = −38.33
• log2(relations) = 87.31
• log2(reduced factor base) = 77.66 (enough relations)

– Step 4. security=152.41. Note that this is the security only on the finite field side. The security on the elliptic curve

side is 128 as required.

8 Complexity estimations and comparisons for the 128 bits security level

The goal of this section is to compare the pairing computation cost for the curves given in section 6 at the 128 bits

security level. For this, we evaluate the cost of an optimal pairing computation in each case (BN, BLS12, KSS16 and

KSS18). Let us first recall the steps of the computation.

15

8.1 Optimal Ate pairing computation

We do not give here the detailed algorithm to compute pairings but only what is necessary to analyze its complexity.

More details can be found for example in [EMJ17].

8.1.1 The Miller loop. Miller explains how to compute fu,Q in [Mil04]. The algorithm is based on the computation

of [u]Q using the double and add algorithm. At each step of this algorithm, f is updated with the line function involved

in the elliptic curve operation. This algorithm has been improved by many authors in particular using the twisted curve

to eliminate denominators and replace Fpk multiplications by sparse ones. The best known complexity for each step

are obtained using projective coordinates [GS10]. They are given below

– If d = 6, the doubling step requires one squaring in Fpk , denoted Sk, one sparse multiplication in Fpk , denoted

sMk (for updating f) together with 2 multiplications in Fpe , denotedMe, 7 squarings in Fpe and 2e multiplications

in Fp, denoted M (for doubling on the curve and computing the line involved in this doubling). If d = 4, the curve

side requires one additional Se.

– If d = 6, the mixed addition step requires one sMk for updating f together with 11Me, 2Se and 2eM (or 9Me,

5Se and 2eM if d = 4).

– Additional lines in the pairing given in Table 2 are nothing but extra addition steps. In term of complexity, the

last one is usually less expensive (4Me and 2eM for the curve side) because the resulting point on the curve is

useless.

– The computation of points of the form [p]Q is very easy because Q is in the p-eigenspace of the Frobenius map.

Then it requires no more than 2 Frobenius mapping in Fpk , denoted Fk. In practice, it requires even less but there

is no interest to get into these kind of details for this comparison work.

8.1.2 The final exponentiation. It is usually split in 2 parts, an easy one with the exponent pk−1
φk(p)

(where φk is the

k-th cyclotomic polynomial) and a hard one with the exponent
φk(p)

r . The easy part is made of an inversion, denoted

Ik, and few multiplications and Frobenius mappings in Fpk . The hard part is much more expensive but Scott et al.

[SBC+09] reduce this cost by writing the exponent in base p (because p-th powering is only a Frobenius mapping).

As p is polynomially parametrized by u, the result is obtained thanks to degu(p) − 1 exponentiations by u and some

additional Fpk operations. The number of these additional operations can be reduce by considering powers of the

pairing [FKR11]. Note also that, thanks to the easy part of the final exponentiation, the squaring operations (which are

widely used during the hard part) can be simplified. We can either use cyclotomic squarings [GS10], denoted cSk, or

compressed squarings [Kar13,AKL+11], denoted sk. Compressed squarings are usually more efficient. However, this

method have been developed in the case of degree 6 twists [Kar13,AKL+11]. It makes no doubt that it can be adapted

to the case of degree 4 twists (and then to KSS16 curves) but we did not find explicit formulas in the literature. Then,

for a fairer comparison between the curves, we chose to consider both squaring methods in the following.

8.2 Finite field arithmetic

In order to compare the different candidates, we need a common base. It cannot be the field Fp because p has not the

same size in all cases. So we have to go to the data-words level. We assume that we work on a 32 bits device (as an

average between software, FPGA and embedded devices) and that Fp arithmetic is quadratic (even if the multiplication

complexity can be subquadratic, the reduction usually stays quadratic). For simplicity, we will also assume that Fp

multiplications and squarings have almost the same cost and we will neglect additions. Of course, these assumptions

are very dependent on the device so we do not pretend that our result is valid in every case. Anyway, our goal here is

not to get an universal comparison (which is not possible) but to have an idea of which curve has to be chosen to get

the best efficiency. At the end, nothing will replace practical implementations to ensure that one curve is better than

another one in a given context.

Pairing computation makes a large use of Fpe arithmetic. Let us first recall them in Table 11 for the considered

values of e.

16

Fp2 Fp3 Fp4

Multiplication 3M 6M 9M
Squaring 2M 5M 6M

Table 11: Complexities of Fpe arithmetic

Concerning the Fpk arithmetic, the complexities are given in the literature in the pairing context for extensions of

degree 12 [AFCK+13,DMHR15], 16 [ZL12] and 18 [AFCK+13]. They are summarized in Table 12

Fp12 Fp16 Fp18

Multiplication 54M 81M 108M
Sparse multiplication 39M 63M 78M

Inversion I + 97M I + 134M I + 172M
Frobenius 11M 15M 17M
Squaring 36M 54M 66M

Cyclotomic squaring 18M 36M 36M
Compressed squaring 12M – 24M
Simult. decompression

I + (24n− 5)M – I + (51n− 6)M
of n elements

Table 12: Complexities of Fpk arithmetic

We made the simplistic assumption that the cost of Frobenius mapping in Fpk is always (k− 1)M which is not always

the case (for example for p2 or p3 powering) but this has negligible impact on our comparison (there are few such

mapping and this remark holds for all the considered cases).

8.3 Fp complexities estimations

8.3.1 BN curve. In this case, the optimal Ate pairing is given by

(

f6u+2,Q(P).ℓ[6u+2]Q,[p]Q(P).ℓ[6u+2+p]Q,[p2]Q(P)
)

p12−1

r

It is explained in Section 6 that u = 2114 + 2101 − 214 − 1 should be chosen to ensure the 128-bits security level and

the best possible extension field arithmetic. Then 6u+2 has length 116 and Hamming weight 7. As a consequence, the

Miller loop requires 116 doubling steps and 6 addition steps. Extra lines computations require 4 Frobenius mapping

(to compute [p]Q and [p2]Q), one addition step and one incomplete addition step. Then the overall cost is

116(2M2+7S2+4M)+115(S12+sM12)+7(11M2+2S2+4M)+4M2+4M+8sM12+4F12

Using Tables 11 and 12, this step requires 12068 multiplications in Fp.

There are many ways to compute the final exponentiation for BN curves. The most efficient one is given in [FKR11]

and requires I12+12M12+3cS12+4F12 in addition to the 3 exponentiation by u (because p has degree 4 in u). As u
has length 114 and Hamming weight 4, each of these exponentiations requires 114 squarings and 3 multiplications. If

the cyclotomic squaring are used, we need 114cS12+3M12 = 2214M according Table 12. If the compressed squaring

technique is used, we additionally need the simultaneous decompression of 4 elements. Then, according to Table 12

each exponentiation by u requires 1621M + I .

The final exponentiation then requires 7485M + I or 5706M + 4I depending on the way to perform squarings.

Finally computing the optimal Ate pairing for BN curve ensuring the 128-bits security level requires 19553M + I or

17774M + 4I depending on the way to perform squarings during the final exponentiation.

8.3.2 BLS12 curve. The optimal Ate pairing is simpler in this case since it is given by

(fu,Q(P))
p12−1

r

17

We have seen that the best choice of u is −277 + 250 + 233 so that the Miller loop is made of 77 doubling steps and 2
addition steps. Then, its cost is

77(2M2+7S2+4M)+76(S12+sM12)+2(11M2+2S2+4M)+2sM12 = 7708M

According [AFCK+13], the final exponentiation requires I12 + 12M12 + 2cS12 + 4F12 = 825M + I in addition to

the 5 exponentiation by u (because p has degree 6 in u). As u has length 77 and Hamming weight 3, each of these

exponentiations requires 77 squarings and 2 multiplications. If the cyclotomic squaring are used, we need 77cS12 +
2M12 = 1494M . If the compressed squaring technique is used, we additionally need the simultaneous decompression

of 3 elements so that each exponentiation by u requires 1099M + I .

The final exponentiation then requires 8295M+I or 6320M+6I depending on the way to perform squarings. Finally

computing the optimal Ate pairing for BLS12 curve ensuring the 128-bits security level requires 16003M + I or

14028M + 6I .

8.3.3 KSS16 curve. For KSS16 curves, the optimal Ate pairing is given by

(

(

fu,Q(P).ℓ[u]Q,[p]Q(P)
)p3

.ℓQ,Q(P)
)

p16−1

r

and u has been chosen to be 235 − 232 − 218 + 28 + 1 in section 6. Then the Miller loop requires 35 doubling steps

and 4 addition steps. According [ZL12], extra lines computations require 3 Frobenius mapping (2 to compute [p]Q
and one to raise to p3) and two incomplete addition steps. The overall cost is then

35(2M4+8S4+8M)+34(S16+sM16)+4(9M4+5S4+8M)+3F16 + 5M4+S4+16M+6sM16 = 7534M

According [GF16], the final exponentiation requires I16 + 32M16 + 34cS16 + 24M4 + 8F16 in addition to the 9
exponentiation by u (because p has degree 10 in u). As u has length 35 and Hamming weight 5, each of these

exponentiations requires 35 cyclotomic squarings and 4 multiplications. According Table 12, each exponentiation

by u then requires 1584M . Note that we do not find in the literature formulas for compressed squaring in the KSS16

case.

The final exponentiation then requires 18542M + I . Finally computing the optimal Ate pairing for KSS16 curve

ensuring the 128-bits security level requires 26076M + I .

8.3.4 KSS18 curve. In this case, the optimal Ate pairing is given by

(

fu,Q(P).f3,Q(P)p.ℓ[u]Q,[3p]Q(P)
)

p18−1

r

The best choice of u to ensure the 128-bits security level is 244 + 222 − 29 + 2 so that the Miller loop is made of 44
doubling steps and 3 addition steps. Extra lines computations requires one addition step and one Frobenius mapping (to

compute f3,Q(P)p) together with one Fp18 multiplication (to multiply the result by fu,Q(P)), 2 Frobenius mappings

and one incomplete addition step [AFCK+13]. Then its cost is

44(2M3+7S3+6M)+43(S18+sM18)+4(11M3+2S3+6M)+4sM18+M18+3F18+4M3+6M+sM18 = 9431M

According [FKR11,AFCK+13], the final exponentiation requires I18 + 54M18 + 8cS18 + 29F18 = 6785M + I in

addition to the 7 exponentiation by u (because p has degree 8 in u). As u has length 44 and Hamming weight 4, each

of these exponentiations requires 44 squarings and 3 multiplications. If the cyclotomic squaring are used, we need

44cS18 + 3M18 = 1908M . If the compressed squaring technique is used, we additionally need the simultaneous

decompression of 4 elements so that each exponentiation by u requires 1578M + I .

The final exponentiation then requires 20141M + I or 17831M + 8I depending on the way to perform squarings.

Finally computing the optimal Ate pairing for KSS18 curve ensuring the 128-bits security level requires 29572M + I
or 27262M + 8I .

18

8.4 Comparison

Let us first summarize the complexities obtained in the previous subsections.

Using cyclotomic Using compressed
Base field size

squarings squarings

BN 19553M + I 17774M + 4I 461 bits

BLS12 16003M + I 14028M + 6I 461 bits

KSS16 26076M + I – 340 bits

KSS18 29572M + I 27262M + 8I 348 bits

Table 13: Fp complexities of optimal Ate pairing computation

We can obviously conclude that BLS12 curve is more efficient than BN one and that KSS16 is better than KSS18. It is

more complicated to compare BLS12 and KSS16 because the base fields are not the same. For this, let us first compare

the costs ofM which is depending of p. For BN and BLS12 curves, p has 461 bits so that 15 32-bits words are necessary.

For the KSS curves, 11 32-bits words are necessary. As a consequence, we can assume that M = 152 = 225 for BN

and BLS12 curves while M = 112 = 121 for KSS ones. Reporting these values in Table 13, we get the comparative

table 14.

Using cyclotomic Using compressed

squarings squarings

BN 4399425+ I 3999150+ 4I
BLS12 3600675+ I 3156300+ 6I
KSS16 3155196+ I –

KSS18 3578212+ I 3298702+ 8I

Table 14: Comparative complexities of optimal Ate pairing computation

In any case, the KSS16 curve gives the best result which was not expected at the beginning of this work. Of course the

complexity for the BLS12 curve using compressed squaring is very close to the complexity of the KSS16 curve with

cyclotomic squarings and a practical implementation should be done to confirm the estimated result obtained here. But

KSS16 curves have been very few studied compared to BN curves and more generally to curves having a degree 6

twist. Then we are quite confident that optimal pairing on the KSS16 curve given in section 7.3 can be improved for

example by computing the formulas for compressed squaring in this case.

9 Higher security

9.1 Some curves for 192 bits of security

In the case of higher levels of security we prefer to be more cautious. Instead of a comparison of the best curves we

simply give our own propositions. In terms of security we are once again cautious, our curves having more than 192

bits of security. This is due to the nature of our approach (the targetted extension field size is first determined in the

worst case) but this also allows a safety margin in case of progress on NFS. We give only a KSS18 and a BLS24 curve

since it makes no doubt that BN, BLS12 and KSS16 will be less efficient.

9.1.1 KSS18 curve. We saw in Table 9 that the parameter u should be chosen such that log2(u) ≥ 85. As in the

128-bits case, we perform an exhaustive search of low Hamming weight values for u. The best value we found is

u = −285 − 231 − 226 + 26. In this case, Fp18 can be defined by X18 − 2. The elliptic curves are defined by

E : y2 = x3 + 2, E′ : y2 = x3 + 2.2
1

3 (or 2.2−
1

3)

The curve E is twist-secure (thanks to a 652-bits prime factor). To evaluate its real security, we use the way described

in Section 5.1 and we get

19

– Step 1. We chose κ = 1 and η = 18. The best polynomials are h = t18 − t4 − t2 − t − 1, f = P (x − 2) and

g = x− u− 2. In this case, we have w = 1 and A = 1.

– Step 2. A = 34 and log2 B = 108.9
– Step 3.

• log2(sieve space) = 161.85
• log2(Nf) = 1114 ⇒ log2(smoothness probability on the f side) = −36.29
• log2(Ng) = 1642 ⇒ log2(smoothness probability on the g side) = −63.99
• log2(relations) = 118.62
• log2(reduced factor base) = 103.66 (enough relations)

– Step 4. security = 204.09.

9.1.2 BLS 24 curve. We saw in Table 9 that the parameter u should be chosen such that log2(u) ≥ 56. As in the

128-bits case, we perform an exhaustive search of low Hamming weight values for u. The best value we found is

u = −256 − 243 +29 − 26. In this case, Fp24 can be build via Y 12 − (1 + i) over Fp2 = Fp[i] which provides the best

possible Fp24 arithmetic. The elliptic curves are defined by

E : y2 = x3 − 2, E′ : y2 = x3 − 2/(1 + i)

E is of course twist-secure (thanks to a 427 prime factor). To evaluate its real security, we use the way described in

Section 5.1 and we get

– Step 1. We chose κ = 1 and η = 24. The best polynomials are h = t24+ t4− t3− t−1, f = P (x) and g = x−u.

In this case, we have w = 1 and A = 1.

– Step 2. A = 9 and log2 B = 109.8
– Step 3.

• log2(sieve space) = 202.90
• log2(Nf) = 1295 ⇒ log2(smoothness probability on the f side) = −44.85
• log2(Ng) = 1460 ⇒ log2(smoothness probability on the g side) = −53.42
• log2(relations) = 104.63
• log2(reduced factor base) = 104.55 (enough relations)

– Step 4. security = 203.72.

9.2 Subgroup-secure curves

All the curves provided are not protected against the so-called subgroup attacks which use the fact that the 3 groups

involved in the pairing may have small cofactors [LL97]. They can be avoided by the use of some (potentially expen-

sive) subgroup membership tests or by choosing resistant parameters. The definition of subgroup security for pairing

is given in [LL97] and implies that one should be able to find factors of G1,G2 and G3. This can be done using the

ECM method but it is very costly so one cannot perform an exhaustive search checking subgroup security at each step.

As explained in [LL97], the most reasonable way to find a subgroup-secure curve for pairing applications is to find a

parameter u such that #G2/r and #G3/r are primes. This is of course much easier to check but on the other hand

there are much fewer candidates.

According Section 8, we are only interested in BLS12 and KSS16 curves in the case of security level 128. We

then made an exhaustive search of increasing Hamming weight values of u satisfying this condition. For BLS12

curves, we find some parameters in weight 7. We give only one here but the other ones are not so difficult to find:

u = −277− 271− 264+237+235+222− 25. In this cases Fp12 can be build via Y 6− (1+ i) over Fp2 = Fp[i] which

provides the best possible Fp12 arithmetic. The elliptic curve E (resp. its twist E′) is defined over Fp (resp. Fp2) by

E : y2 = x3 − 2, E′ : y2 = x3 − 2/(1 + i)

E is of course twist-secure (thanks to a 433 prime factor).

20

The case of KSS16 curves is more complicated. We first remark that #G2/r and #G3/r are always even and

often divisible by 17 [GF16] so we have interest to relax the condition. Unfortunately it was not sufficient to find a

parameter of Hamming weight less than or equal to 10. This is due to the fact that log2(u) = 34 implies that there are

not enough possibilities for u to have a reasonable probability that all the numbers involved (p, r, #G2/2r, #G3/2r)

are primes together (up to some 17n factor).

Conclusion

It was already known that the BN curve widely used in the literature for the 128-bits security level does not ensure this

security level because of the SexTNFS algorithm. In this paper, we carefully estimate the complexity of this algorithm

in the context of most common pairing families. As a consequence, we give the updated security level of this curve

which is in fact 100 bits. We also use this complexity estimation to determine the sizes of the finite field extensions

that has to be used to ensure the 128 and the 192-bits security level and then give recommendations on the sizes of the

parameter to be used depending on the pairing family. According to these recommendations, we generate new pairing

parameters especially in the 128-bits security level that are twist-secure (but also some that are twist and subgroup-

secure). Finally, we estimate the complexity of the optimal-Ate pairing in each case and conclude that, at the 128-bits

security level, BLS12 and more surprisingly KSS16 are the most efficient choices. Then we encourage the community

to study more precisely these curves and to propose software or hardware implementation to confirm our conclusions.

We also provide some parameters for the 192-bits security level but our study is probably not complete in this case

since other families and/or embedding degrees could be more interesting.

A Numerical integration

The size of the norms can by computed via numerical methods. Due to the known upper bounds we can certify that

our results are correct up to an error probability of 2−128, so that our chances to be wrong are equal to the chances of

an attacker to break the system by pure luck.

Given a polynomial f and a sieve parameterA let c(f,A) be the average of value of {log2 Nf (e) | e tuple in sieving domain}
and U(f,A) an upper bound on the norms on the f side for pairs in the sieving domain. Let e1, . . ., eT be random

tuples in the sieving domain, uniformly and independently chosen. Then the Chernoff theorem applied to the random

variables
log

2
Nf (e1)

log
2
U(f) ,. . .,

log
2
Nf (eT)

log
2
U(f) states that for any constant ε > 0

Prob

(

|c(f,A)−+
1

T

T
∑

i=1

log2 Nf(ei)| < ε log2 U(f,A)

)

≤ 2e−2ε2T . (3)

For ε = 0.05 we solve the equation e−2ε2T = 2−128 and obtain T = 25600.

B One cannot change the complexity inside the frame of NFS

Variants of NFS where p is parametrized (SNFS, STNFS, SexTNFS, Joux-Pierrot) are considered to be the dreamed

situation for an attacker. Fried et al. [FGHT16, Sec 4.1] made a series of arguments very similar to the arguments that

we use below.

Fact 1 Let pn be a prime power and let f, g ∈ Z[x] two polynomials which have a common factor ϕ modulo p which

is irreducible of degree n. A variant of NFS which uses these polynomials and find all relations in a time proportional

to or larger than the size of the sieving space (enumeration or sieving) has complexity at least L[32]1+o(1) where

L[c] = exp(c1/3 log pn1/3 log log(pn)2/3).

Argument:

step 1 We start by proving that pn divides the resultant of f and g : pn | Res(f, g). Indeed, the resultant is the

discriminant of the Sylvester matrix and further the volume of the lattice L = fZ[x] + gZ[x] inside of Z[x]. Since

21

L′ = pZ[x] + ϕZ[x] is a lattice which contains L we conclude that the volume of the latter divides the volume of the

former : pn divides Res(f, g).

step 2 Let df and dg be the degrees of f and g and let E be the sieve parameter (E = Aη in STNFS and SexTNFS).

We have Res(f, g) ≤ df log2‖g‖+ dg log2‖f‖ which creates the constraint

df log2‖g‖+ dg log2‖f‖ ≥ n log2 p.

We easily compute the size of the norms as log2‖f‖ + log2‖g‖ + (df + dg) log2 E. At this point we note that we

have to solve an optimization problem for which we set K := log2(p
n) and log2 E, which are constants, and we set

the variables x1 = df log2 E, x2 = dg log2 E, y1 = max(1, log2‖g‖) et y2 = max(1, log2‖f‖). Hence the problem

becomes:

subject to x1y1 + x2y2 ≥ K
y1, y2 ≥ 1

x1, x2 ≥ log2 E
minimize x1 + y1 + x2 + y2.

(4)

step 3 Put F (x1, y1, x2, y2) = x1y1 + x2y2 and G(x1, y1, x2, y2) = x1 + y1 + x2 + y2. The local extrema of G
on an set where F is constant are obtained in one of the three situations:

1. ∇F ‖ ∇G

2. One of the variables is on the boundary (y1 = 1, y2 = 1, x1 = log2 E or x2 = log2 E), say y1 = 1, and

∇F |{y1=1}‖ ∇G |{y1=1}

3. Two or more variables are on the boundary.

We check that all extrema of points (i) and (ii) are maxima, so we are left with case (iii) which further divides in four

cases:

1. y1 = y2 = 1 i.e. log2‖f‖ ≤ 1 and log2‖g‖ ≤ 1;

2. x1 = x2 = log2 E i.e. df = dg = 1;

3. y2 = 1 and x1 = log2 E i.e. log2‖f‖ ≤ 1 and df = 1 or vice-versa.

4. x1 = log2 E and y1 = 1 or the same for x2 and y2. This is the NFS case with log2‖f‖ = dg = 1.

In case (1), the minimum is x1 + x2 + y1 + y2 = K + 2 while in the case (2) the minimum is 2 log2 E +K/ log2 E.

In case (3) we find that the optimized expression becomes x2 + (K − x2 log2 E) + 1 + log2 E whose minimum is

obtained when y1 = 1 and we are again in case (2). Finally, in case (4) we have x2y2 = K − 1 and we have to

minimize 2 + x2 + y2. This happens when x2 = y2 =
√
K − 1 and x1 + y1 + x2 + y2 = 2 + 2

√
K − 1.

We can now compare the local minima and conclude that the global minimum is

minG |{F=K}= 2 + 2
√
K − 1.

Note that the minimum is independent on the value of E.

step 4 It is classical to estimate the cost of NFS as Bρ(log2
N

log
2
B) + B2 where N is the norms product and ρ is

Dickman’s function, which is 2+2
√
K − 1 ≈ 2

√

log2(p
n). Then the classical analysis of NFS leads to the complexity

of SexTNFS: L[32]1+o(1). ⋄

Fried et al [FGHT16] noted that a multiple variant of SexTNFS is impossible, so it is safe to say that Figure 1

cannot contain a curve below the one used in this article to approximate the security of parametrized pairings.

Practical improvements will continue to come but they will modify only the o(1) term. A hypothetical algorithm

which would beat SexTNFS needs to produce relations faster than by enumerating all elements of a sieving space, as

it happened in small characteristic with pinpointing, or it would have to completely abandon the NFS diagram. Such

an algorithm would be a great discontinuity in the development of algorithmic number theory.

22

References

Adl94. L. M. Adleman. The function field sieve. In Algorithmic number theory symposium –ANTS I, volume 877 of Lecture

notes in computer science, pages 108–121, 1994.

AFCK+13. D. F. Aranha, L. Fuentes-Castañeda, E. Knapp, A. Menezes, and F. Rodrı́guez-Henrı́quez. Implementing pairings at

the 192-bit security level. In Michel Abdalla and Tanja Lange, editors, Pairing-Based Cryptography – PAIRING 2012,

volume 7708 of Lecture notes in computer science, 2013.

AFK+07. K. Aoki, J. Franke, T. Kleinjung, A. Lenstra, and D. A. Osvik. A kilobit special number field sieve factorization. In

Advances in Cryptology – ASIACRYPT 2007, volume 4833 of Lecture notes in computer science, pages 1–12, 2007.

AH99. L. M. Adleman and M. D. A. Huang. Function field sieve method for discrete logarithms over finite fields. Information

and Computation, 151(1):5–16, 1999.

AKL+11. D. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and J López. Faster explicit formulas for computing pairings over

ordinary curves. In Advances in Cryptology EUROCRYPT 2011, volume 6632 of ”Lecture notes in computer science”,

pages 48–68, 2011.

BF01. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In Jo.Kilian, editor, Advances in Cryptol-

ogy - CRYPTO 2001, volume 2139 of ”Lecture notes in computer science”, pages 213–229, 2001.

BGGM15. R. Barbulescu, P. Gaudry, A. Guillevic, and F. Morain. Improving NFS for the discrete logarithm problem in non-prime

finite fields. In Advances in Cryptology - EUROCRYPT 2015, volume 9056 of Lecture notes in computer science, pages

129–155, 2015.

BGJT14. R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé. A heuristic quasi-polynomial algorithm for discrete logarithm in

finite fields of small characteristic. In Advances in Cryptology - EUROCRYPT 2014, volume 8441 of Lecture notes in

computer science, pages 1–16, 2014.

BGK15. R. Barbulescu, P. Gaudry, and T. Kleinjung. The towed number field sieve. In Advances in Cryptology – ASIACRYPT

2015, volume 9453 of Lecture notes in computer science, pages 31–55, 2015.

BGW05. D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with short ciphertexts and private keys.

In V. Shoup, editor, Advances in Cryptology - CRYPTO 2005, volume 3621 of Lecture notes in computer science,

pages 258–275, 2005.

BKK+09. J. Bos, M. Kaihara, T. Kleinjung, A. Lenstra, and P Montgomery. On the security of 1024-bit RSA and 160-bit elliptic

curve cryptography, 2009.

BL17. R. Barbulescu and A. Lachand. Some mathematical remarks on the polynomial selection in NFS. Mathematics of

Computation, 86(303):397–418, 2017.

BLJP93. J. P. Buhler, H. Lenstra Jr., and C. Pomerance. Factoring integers with the number field sieve. In The development of

the number field sieve, pages 50–94. Springer, 1993.

BLS03. P. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with prescribed embedding degrees. In S. Cimato,

G. Persiano, and C. Galdi, editors, Security in Communication Networks, volume 2576 of Lecture notes in computer

science, pages 257–267, 2003.

BLS04. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. Journal of cryptology, 17(4):297–319,

2004.

BN05. P. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In International Workshop on Selected

Areas in Cryptography–SAC 2005, volume 3006 of Lecture notes in computer science, pages 319–331. Springer, 2005.

CEP83. E. R. Canfield, P. Erdös, and C. Pomerance. On a problem of Oppenheim concerning “factorisatio numerorum”.

Journal of Number Theory, 17(1):1–28, 1983.

CH02. S. Cavallar Hedwig. On the number field sieve integer factorisation algorithm. PhD thesis, Universiteit Leiden, 2002.

CSF+11. R. Cheung, S.Duquesne, J. Fan, N. Guillermin, I. Verbauwhede, and G. X. Yao. FPGA implementation of pairings

using residue number system and lazy reduction. In Cryptographic Hardware and Embedded Systems - CHES 2011,

volume 6917 of Lecture notes in computer science, pages 421–441, 2011.

Det14. J. Detrey. FFS factory: Adapting Coppersmith’s ”factorization factory” to the function field sieve. Cryptology ePrint

Archive, Report 2014/419, 2014.

DMHR15. S. Duquesne, N. El Mrabet, S. Haloui, and F. Rondepierre. Choosing and generating parameters for low level pairing

implementation on bn curves. Cryptology ePrint Archive, Report 2015/1212, 2015.

DSD07. A. J. Devegili, M. Scott, and R. Dahab. Implementing cryptographic pairings over Barreto-Naehrig curve. In Pairing-

based cryptography – Pairing 2007, volume 4575 of Lecture notes in computer science, pages 197–207, 2007.

EMJ17. N. El Mrabet and M. Joye. Guide to Pairing-Based Cryptography. Chapman & Hall/CRC Cryptography and Network

Security Series. CRC Press, 2017.

FGHT16. J. Fried, P. Gaudry, N. Heninger, and E. Thomé. A kilobit hidden snfs discrete logarithm computation. arXiv preprint

arXiv:1610.02874, 2016.

23

FKR11. L. Fuentes-Castañeda, E. Knapp, and F. Rdrı́uez-Henrı́quez. Faster hashing to G2. In Selected Areas in Cryptography

- SAC 2011, volume 7118 of Lecture Notes in Computer Science, pages 412–430, 2011.

FST10. D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing-friendly elliptic curves. Journal of cryptology, 23(2):224–

280, 2010.

GAL+13. G. Grewal, R. Azarderakhsh, P. Longa, S. Hu, and D. Jao. Efficient implementation of bilinear pairings on arm

processors. In L. Knudsen and H. Wu, editors, Selected Areas in Cryptography, volume 7707 of Lecture Notes in

Computer Science, pages 149–165, 2013.

GF16. L. Ghammam and E. Fouotsa. Adequate elliptic curves for computing the product of n pairings. In S. Duquesne and

S. Petkova-Nikova, editors, Arithmetic of Finite Fields – WAIFI 2016, volume 10064 of Lecture notes in computer

science, pages 36–352, 2016.

GGV16. P. Gaudry, L. Gremy, and M. Videau. Collecting relations in the number field sieve in gf(p6). LMS Journal of

Computation and Mathematics, 19(A):332–350, 2016.

Gor93. D. Gordon. Discrete logarithms in GF (p) using the number field sieve. SIAM J. Discret. Math., 6(1):124–138,

February 1993.

GS10. R. Granger and M. Scott. Faster squaring in the cyclotomic subgroup of sixth degree extensions. In Public Key

Cryptography - PKC 2010, volume 6056 of Lecture notes in computer science, pages 209–223, 2010.

GSNB11. C. C. F. Pereira Geovandro, M. A. Jr. Simplıcio, M. Naehrig, and P. Barreto. A family of implementation-friendly bn

elliptic curves. Journal of Systems and Software, 84(8):1319–1326, 2011.

HAKT15. K. Hayasaka, K. Aoki, T. Kobayashi, and T. Takagi. A construction of 3-dimensional lattice sieve for number field

sieve over fpn . IACR Cryptology ePrint Archive, 2015:1179, 2015.

HSST12. T. Hayashi, T. Shimoyama, N. Shinohara, and T. Takagi. Breaking pairing-based cryptosystems using ηt pairing over

GF(397). In Advances in cryptology – ASIACRYPT 2012, volume 7658 of Lecture notes in computer science, pages

43–60, 2012.

HSV06. F. Hess, N. Smart, and F. Vercauteren. The eta pairing revisited. IEEE Transactions on Information Theory,

52(10):4595–4602, 2006.

HSW+10. T. Hayashi, N. Shinohara, L. Wang, S. Matsuo, M. Shirase, and T. Takagi. Solving a 676-bit discrete logarithm

problem in GF(36n). In Public Key cryptography – PKC 2010, volume 6056 of Lecture notes in computer science,

pages 351–367, 2010.

JL02. A. Joux and R. Lercier. The function field sieve is quite special. In Algorithmic number theory symposium – ANTS V,

volume 2369 of Lecture notes in computer science, pages 431–445. Springer, 2002.

JL03. A. Joux and R. Lercier. Improvements to the general number field for discrete logarithms in prime fields. Mathematics

of Computation, 72(242):953–967, 2003.

JL06. A. Joux and R. Lercier. The function field sieve in the medium prime case. In Advances in cryptology –EUROCRYPT

2006, volume 4005 of Lecture notes in computer science, pages 254–270, 2006.

JLSV06. A. Joux, R. Lercier, N. Smart, and F. Vercauteren. The number field sieve in the medium prime case. In Advances in

Cryptology - CRYPTO 2006, volume 4117 of Lecture notes in computer science, pages 326–344, 2006.

Jou13. A. Joux. Faster index calculus for the medium prime case application to 1175-bit and 1425-bit finite fields. In Advances

in cryptology – EUROCRYPT 2013, volume 7881 of Lecture notes in computer science, pages 177–193, 2013.

JP13. A. Joux and C. Pierrot. The special number field sieve in Fpn – application to pairing-friendly constructions. In

Pairing-Based Cryptography - Pairing 2013, volume 8365 of Lecture notes in computer science, pages 45–61, 2013.

Kar13. K. Karabina. Squaring in cyclotomic subgroups. Mathematics of Computation, 82(281), 2013.

KB16. T. Kim and R. Barbulescu. The extended tower number field sieve: A new complexity for the medium prime case. In

Advances in Cryptology – CRYPTO 2016, volume 9814 of Lecture notes in computer science, pages 543–571, 2016.

KBL14. T. Kleinjung, J. Bos, and A. Lenstra. Mersenne factorization factory. In International Conference on the Theory

and Application of Cryptology and Information Security, volume 8873 of Lecture notes in computer science, pages

358–377. Springer, 2014.

KDL+16. T. Kleinjung, C. Diem, A. Lenstra, C. Priplata, and C. Stahlke. Discrete logarithms in GF(p) — 768 bits, 2016.

Announcement available at the NMBRTHRY archives, item 004917.

KSS08. E. J. Kachisa, E. F. Schaefer, and M. Scott. Constructing Brezing-Weng pairing-friendly elliptic curves using elements

in the cyclotomic field. In Steven D. Galbraith and Kenneth G. Paterson, editors, Pairing-Based Cryptography –

Pairing 2008, volume 5209 of Lecture notes in computer science, pages 126–135, 2008.

Len01a. A. Lenstra. Unbelievable security matching AES security using public key systems. In International Conference on the

Theory and Application of Cryptology and Information Security, volume 2188 of Lecture notes in computer science,

pages 67–86, 2001.

Len01b. A. Lenstra. Unbelievable security: Matching AES security using public key systems. In Advances in cryptology –

ASIACRYPT 2001, volume 2248 of Lecture notes in computer science, pages 67–86, 2001.

24

LL97. C. H. Lim and P. J. Lee. A key recovery attack on discrete log-based schemes using a prime order subgroup. In B. S.

Kaliski, editor, Advances in Cryptology — CRYPTO ’97, volume 1294 of Lecture notes in computer science, pages

249–263, 1997.

LLJMP90. A. Lenstra, H. Lenstra Jr., M. Manasse, and J. Pollard. The number field sieve. In Proceedings of the twenty-second

annual ACM symposium on Theory of computing, pages 564–572. ACM, 1990.

LN97. R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, 1997.

Mat06. D. Matyukhin. Effective version of the number field sieve for discrete logarithms in the field GF(pk) (in Russian).

Trudy po Discretnoi Matematike, 9:121–151, 2006.

Mil04. V. Miller. The Weil pairing and its efficient calculation. Journal of Cryptology, 17(4):235–261, 2004.

MSS16. A. Menezes, P. Sarkar, and S. Singh. Challenges with assessing the impact of NFS advances on the security of pairing-

based cryptography. In Proceedings of Mycrypt, 2016.

Mur98. B. Murphy. Modelling the yield of number field sieve polynomials. In Algorithmic number theory symposium– ANTS

III, volume 1423 of Lecture notes in computer science, pages 137–150. Springer, 1998.

Nat12. National Institute of Standards and Technology (NIST). Nist special publication 800-57 part 1 (revised) :

Recommendation for key management, part 1: General (revised), July 2012. Publication available online at

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf.

NNS10. M. Naehrig, R. Niederhagen, and P. Schwabe. New software speed records for cryptographic pairings. In Progress in

cryptology – LATINCRYPT 2010, volume 6212 of Lecture notes in computer science, pages 109–123, 2010.

SBC+09. M. Scott, N. Benger, M. Charlemagne, L. J. Dominguez Perez, and E. J. Kachisa. On the final exponentiation for

calculating pairings on ordinary elliptic curves. In Pairing-Based Cryptography - Pairing 2009, Lecture Notes in

Computer Science, pages 78–88. Springer, 2009.

Sch93. O. Schirokauer. Discrete logarithms and local units. Philosophical Transactions of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, 345(1676):409–423, 1993.

Sch00. O. Schirokauer. Using number fields to compute logarithms in finite fields. Mathematics of Computation,

69(231):1267–1283, 2000.

SS16a. P. Sarkar and S. Singh. Fine tuning the function field sieve algorithm for the medium prime case. IEEE Transactions

on Information Theory, 62(4):2233–2253, 2016.

SS16b. P. Sarkar and S. Singh. A generalisation of the conjugation method for polynomial selection for the extended tower

number field sieve algorithm. Cryptology ePrint Archive, Report 2016/537, 2016.

SS16c. P. Sarkar and S. Singh. New complexity trade-offs for the (multiple) number field sieve algorithm in non-prime fields.

In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 429–458.

Springer, 2016.

SS16d. P. Sarkar and S. Singh. Tower number field sieve variant of a recent polynomial selection method. Cryptology ePrint

Archive, Report 2016/401, 2016.

UW14. T. Unterluggauer and E. Wenger. Efficient pairings and ECC for embedded systems. In L. Batina and M. Robshaw,

editors, Cryptographic Hardware and Embedded Systems - CHES 2014, volume 8731 of Lecture Notes in Computer

Science, pages 298–315, 2014.

Ver09. F. Vercauteren. Optimal pairings. IEEE Transactions of Information Theory, 56:455–461, 2009.

VLFR08. F. Valette, R. Lercier, P.-A. Fouque, and D. Réal. Fault attack on elliptic curve montgomery ladder implementation. In

5th Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 92–98. IEEE, 2008.

Zaj10. P. Zajac. On the use of the lattice sieve in the 3d nfs. Tatra Mountains Mathematical Publications, 45(1):161–172,

2010.

ZL12. X. Zhang and D. Lin. Analysis of optimum pairing products at high security levels. In Progress in Cryptology -

INDOCRYPT 2012, volume 7668 of Lecture Notes in Computer Science, pages 412–430, 2012.

25

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf

	Updating key size estimations for pairings
	Big lines of NFS and a simple estimation of complexity
	Families of pairing-friendly curves
	BN curves
	BLS curves
	KSS curves
	Optimal Ate pairing

	The spectrum of possibilities for an attack on the field side
	Choice of algorithm
	Practical improvements
	Filtering.
	Exploiting automorphisms.

	Selection of polynomials
	Choice of h.
	Construction of f and g.
	Optimization.

	Optimization of parameters
	Choice of .
	Optimization of the bounds A and B.

	Estimating SexTNFS complexity
	Summarizing the process for computing SexTNFS cost
	Example: a BN curve where the finite field has 3072 bits
	General results and recommendations

	New parameters for the 128-bits security level
	New BN parameter
	New BLS12 parameter
	New KSS16 parameter
	New KSS18 parameter

	Effective security of selected curves
	BN
	BLS 12
	KSS 16
	KSS 18

	Complexity estimations and comparisons for the 128 bits security level
	Optimal Ate pairing computation
	The Miller loop.
	The final exponentiation.

	Finite field arithmetic
	Fp complexities estimations
	BN curve.
	BLS12 curve.
	KSS16 curve.
	KSS18 curve.

	Comparison

	Higher security
	Some curves for 192 bits of security
	KSS18 curve.
	BLS 24 curve.

	Subgroup-secure curves

	Numerical integration
	One cannot change the complexity inside the frame of NFS

