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SOME REMARKS AND EXPERIMENTS ON

GREENBERG’S p-RATIONALITY CONJECTURE

RAZVAN BARBULESCU AND JISHNU RAY

Abstract. A recent result of Greenberg raises the question of solving the
inverse Galois problem for p-rational number fields. In this article we recall
the cases which are directly inferred from the literature and the cases that are
consequences of conjectures in the literature. We propose new algorithms to
compute the density of p-rational fields faster than by applying the algorithm
of Pitoun and Varescon.

1. Introduction

The notion of p-rationality of number fields naturally appears in several branches
of number theory. In Iwasawa theory, the study of Galois groups of infinite towers of
number fields, a celebrated conjecture of Greenberg concerns the λ-invariant [Gre76]
which has been connected to p-rationality [Sau98, Th. 1.1]. In the study of the
inverse Galois problem, Greenberg [Gre16] proposed a method to prove that a p-
adic Lie group appears as a Galois group over Q under the assumption of existence
of p-rational fields. In algorithmic number theory, the density of p-rational number
fields is related to the Cohen-Lenstra-Martinet heuristic [CL84b, CM90] and to the
valuation of the p-adic regulator [Gra14, HZ16].

The context in which the notion of p-rationality was introduced includes the work
of Shafarevich [Sha66] which, for any regular prime p, proved properties of the p-
part of the Ray class group of the p-th cyclotomic fields. Gras and Jaulent [GJ89]
defined p-regular number fields, which have similar properties to cyclotomic fields
associated to regular primes. Movahhedi [Mov88, Chap II] defined the p-rational
fields in his thesis. Nguyen Quang Do and Jaulent [JNQD93] proved that there is
a large intersection between the set of p-regular and p-rational fields. The object
of this paper is to describe families of p-rational Galois fields over Q.

Let K be a Galois number field of signature (r1, r2), p an odd prime, µ(K)p the
roots of unity in K whose order is a power of p, Sp the set of prime ideals of K
above p, M the compositum of all finite p-extensions of K which are unramified
outside Sp and Mab the maximal abelian extension of K contained in M . Note
that the group Γ := Gal(M/K) is a pro-p group and that Γab ∼= Gal(Mab/K) is
the maximal abelian quotient of Γ.

Proposition-Definition 1.1 ([MNQD90] and [Mov90]). The number field K is
said to be p-rational if the following equivalent conditions are satisfied:

(1) rankZp
(Γab) = r2 + 1 and Γab is torsion-free as a Zp-module,

(2) Γ is a free pro-p group with r2 + 1 generators,
(3) Γ is a free pro-p group.

If K satisfies Leopoldt’s conjecture [Was97, Sec 5.5] (e.g. K is abelian) then the
above conditions are also equivalent to
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(4) •
{

α ∈ K× | αOK = ap for some fractional ideal a
and α ∈ (K×

p )p for all p ∈ Sp

}

= (K×)p

• and the map µ(K)p →
∏

p∈Sp
µ(Kp)p is an isomorphism.

The equivalent conditions of 1, 2, 3 and 4 can also be found in [Gre16, Sec. 3]
and chapter II of Movahhedi’s thesis [Mov88]. One can directly prove that a field is
p-rational using this definition, but more elaborated results allow to write shorter
proofs. All over the article we illustrate the strength of each result by proving
p-rationality of some number fields. Many of these number fields are settled to be
p-rational or not, the focus is on the method of proof not on the examples.
Examples 1.2.

(1) The imaginary quadratic fields of class number one, i.e. Q(i), Q(
√
−2),

Q(
√
−3), Q(

√
−7), Q(

√
−11), Q(

√
−19), Q(

√
−43), Q(

√
−67), Q(

√
−163)

are p-rational for any primes p ≥ 5. Indeed, in order to use point (4) of
Definition 1.1 let K be any of the above fields and α an element of K which
is a p-th power in all the p-adic completions of K and such that the principal
ideal generated by α is a p-th power. Since the ring of integers of K is a
principal ideal domain α is a p-th power in K, up to multiplication by a
unit. Since the unit rank of K is zero and since K has no p-th roots of unity
we conclude that α is a p-th power of K. Since p ≥ 5, Qp and its quadratic
extensions have no p-th roots of unity so that µ(K)p →

∏

p∈Sp
µ(Kp)p is

an isomorphism.
(2) Q(i) is 2-rational As in the case of p ≥ 5 we are left with showing that if

a unit of Q(i) is a square in the 2-adic completion then it is a square in
Q(i). Suppose that i is a square in the completion of Z[i] with respect to
p = 〈1 + i〉. Then there exist two integer a and b such that

(a+ ib)2 ≡ i (mod p2).

But p2 = 2Z[i], so 2ab ≡ 1 (mod 2), which is a contradiction. Hence the
only elements of Q(i) which are squares in the 2-adic completion of Q(i)
are also squares in Q(i).

These examples are also treated in [Mov90, Example (c), page 24].

For many properties of p-rational fields we refer the reader to the corresponding
chapter of [Gra13, Ch IV.3].

Greenberg’s result [Gre16, Prop 6.1] is as follows: if K is abelian and p-rational
with the order of Gal(K/Q) dividing p − 1 then, for all n ∈ N, there exists an
explicit continuous representation

ρ : Gal(M/Q)→ GL(n,Zp)

such that ρ(Γ) is the pro-p Iwahori subgroup of SL(n,Zp), i.e. the subgroup of
SL(n,Zp) whose reduction mod p is the upper unipotent subgroup, under an as-
sumption on the characters of Gal(K/Q). We recall that M is the compositum of
all finite p-extensions of K which are unramified outside the places of K above p.
We obtain hence the existence of the morphism ρ above as soon as we can prove
the existence of p-rational fields K with an additional property on the characters.

Using the existence of the same p-rational number fields, Cornut and Ray [CR16,
Sec 3] showed that the pro-p Iwahori subgroup I(1) of an adjoint simple reductive
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group G appears as a Galois group of an infinite extension of K. More precisely,
they have constructed a continuous morphism

ρ : Gal(M/Q)→ I

such that ρ(Gal(M/K)) = I(1), where I is the Iwahori subgroup of G (cf. corollary
3.4.4 of [CR16]). This gives the construction of Galois representations with large
open images in the Zp-points of the reductive group G. Note that the assumption
on the characters is met if K is the cyclotomic field Q(ζp) and p is a prime greater
than a constant cG depending on the type of G (cf. Sec 3.4 of [CR16]).

Greenberg also noted that the hypothesis on the characters are met if K is
complex and the Galois group Gal(K/Q) = (Z/2Z)t for some t, which raises the
question of existence of p-rational fields with such Galois groups. The goal of this
work is to investigate the following conjecture:

Conjecture 1.3 (Greenberg [Gre16]). For any odd prime p and for any t, there
exist a p-rational field K such that Gal(K/Q) ∼= (Z/2Z)t.

In this article we are investigating a generalization of Greenberg’s conjecture to
other finite groups.

Problem 1.4. Given a finite group G and a prime p, decide the following state-
ments:

(1) Greenberg’s conjecture holds for G and p: there exists a number field of
Galois group G which is p-rational, in this case we say that GC(G, p) is
true;

(2) the infinite version of Greenberg’s conjecture holds for G and p: there exist
infinitely many number fields of Galois group G which are p-rational, in
this case we say that GC∞(G, p) is true.

Note that this problem is a strengthening of the inverse Galois problem, which
is itself open in the non-abelian case (cf [MM13]). Also note that we don’t discuss
the related conjecture of Gras [Gra14, Conj. 8.11] which states that every number
field is p-rational for all but finitely many primes.

Remark 1.5. One should not confound this new conjecture to an older conjecture
on Iwasawa invariants (cf [Gre76]). Let K be the pairs of totally real fields K and
primes p which otally splits in K. Due to Remark 2.2 of [Gra16], a particular case
of the celebrated conjecture of Greenberg concerning the Iwasawa invariants and a
strengthening of the newer p-rationality conjecture of Greenberg can be stated as
follows :

invariants conjecture: ∀(K, p) ∈ K, λ = µ = 0
p-rationality conjecture: ∀t, ∀p, ∃K,(K, p) ∈ K, Gal(K) = ( Z

2Z )
t, λ = µ = ν = 0,

where λ = λp(K), µ = µp(K), ν = νp(K) are the Iwasawa invariants associated to
the ideal class group of the cyclotomic Zp-extension K∞/K (cf. [Gre76], see also
[Was97] for the fact that µ = 0 when K is abelian). The case of totally split p
is a particular case of Greenberg’s invariants conjecture, but it is an open case.
Greenberg’s p-rationality conjecture doesn’t put conditions on K being totally real
but any compositum of quadratic fields has a maximal real subfield whose degree
is at least half of the total degree. The condition that p is totally split is not
discussed in the rest of the article but numerical experiments show that it is not
hard to satisfy this additional constraint.
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The main results in this article are summarized by the following theorem. Let
Φm denote the cyclotomic polynomial associated to m and ϕ(m) its degree.

Theorem 1.6.

(1) For all odd primes p, GC∞(Z/2Z, p) holds.
(2) Assume there exist infinitely many odd integers a 6≡ 21, 23 (mod 25) so

that, for m = 1
4 (a

2+27), 3 | ϕ(m), 11 ∤ ϕ(m) and Φm is irreducible modulo
11 and 2. Then GC∞(Z/3Z, 5) holds.

(3) Under conjectures based on heuristics and numerical experiments (Conjec-
ture 5.4 and Conjecture 5.2), when q = 2 or 3, for any prime p and any
integer t such that p > 5qt, GC∞((Z/qZ)t, p) holds.

Roadmap. In Section 2, we relate the notion of p-rationality to that of class
number and p-adic regulator, which is enough to prove GC∞(Z/2Z, 3), which is
point (1) of Theorem 1.6, and to give an example of p-rational field with Galois
group (Z/2Z)5. We also recall the existing conjectures on class number (Cohen-
Lenstra-Martinet) and p-adic regulator.

In Section 3, we start by recalling an algorithm to test the divisibility by p of
the class number of cyclic cubic fields without computing the class number, due to
N.-M. Gras. Furthermore we give a new algorithm to produce units in cyclic cubic
fields which are used to test the valuation in p of the p-adic regulator, which is faster
then computing a system of fundamental units. Then we recall the algorithm of
Pitoun and Varescon to test p-rationality for arbitrary number fields, which allows
us to give examples of p-rational number fields of non-abelian Galois groups.

In Section 4, we find a family of cyclic cubic number fields which contains in-
finitely many 5-rational fields under a list of arithmetic assumptions; this proves
point (2) of Theorem 1.6.

In Section 5, we do a numerical experiment to test divisibility by p of the class
number of cyclic cubic fields with discriminant up to 1014, which extends the exist-
ing calculations [CM87], confirming the Cohen-Lenstra-Martinet conjecture. Then
we do a numerical experiment for number fields of Galois group (Z/3Z)2 and dis-
criminant up to 1012 and, thanks to its agreement with the Cohen-Lenstra-Martinet
heuristic, we can write down Conjecture 5.2 on the divisibility by p of the class num-
ber of such fields. Next we prove a Kuroda-like formula for p-adic regulators of fields
of Galois group (Z/2Z)2, which relates the p-adic regulator of the compositum to
those of the quadratic subfields. Based on a heuristic and numerical experiments
we write down Conjecture 5.4 which applies to fields of Galois group (Z/qZ)t where
q = 2 or 3. This allows us to prove point (3) of Theorem 1.6.

Acknowledgments

We are very grateful to Ralph Greenberg who encouraged us to study this con-
jecture.

2. Preliminaries

In the general case, p-rationality is hard to test so that it is important to have
a simple criterion in terms of classical invariants as the class number and p-adic
regulator (Sec 2.1). This raises the question of the density of number fields whose
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class number is not divisible by p (Sec 2.2) and of the valuation in p of the p-adic
regulator (Sec 2.3).

In this sequel, p denotes an odd prime and K an abelian number field, Disc(K)
the discriminant of K, OK the ring of integers, EK the unit group, cl(K) the ideal
class group of K, clp(K) the p-part of the class group cl(K), hK the class number
of K, (r1, r2) the signature of K, r = r1 + r2 − 1 the rank of EK , Sp the set of
primes of K lying above p, Kp the completion of K at a prime p ∈ Sp. For c ∈ N∗

we denote ζc a primitive c-th root of unity.

2.1. A simple criterion to prove p-rationality. Let us call p-primary unit, any
unit in K which is a p-th power in Kp for any p but which is not a p-th power in K.

Lemma 2.1 ([Mov88] Chap II). Assume K is a number field which satisfies
Leopoldt’s conjecture, p an odd prime such that p ∤ hK and K has no p-th roots
of unity. Then K is p-rational if and only if K has no p-primary units.

Proof. If K has a p-primary unit α then αOK = (OK)p and this proves that K is
not p-rational (point (4) of Definition 1.1).

Conversely assume that K has no p-primary units. Let α ∈ K∗ be such that
αOK = ap and ∀p | p, α ∈ (Kp)

p. Then a is a p-torsion element in the class group,
which has order relatively prime to p so a is a principal ideal. If β be a generator of
a then αOK = βpOK so ε := αβ−p is a unit. For all p | p, α ∈ (Kp)

p so ε ∈ (Kp)
p.

Since K is assumed without p-primary units and K has no p-th roots of unity, there
exists η ∈ K so that αβ−p = ηp, so α ∈ Kp. Hence K is p-rational. �

Lemma 2.2. For any prime p ≥ 5 not belonging to { 12a2 ± 1 | a ∈ N} the real

quadratic number field K = Q(
√

p2 − 1) is p-rational.

Proof. First note that ε = p+
√

p2 − 1 is a fundamental unit of K. Indeed, let ε0
be the fundamental unit of K which is larger than 1 and let n be such that ε = εn0 .

If n is even then η := ε
n/2
0 is such that ε = η2. Then NK/Q(ε) = NK/Q(η)

2 = 1.

Furthermore η2 cancels the minimal polynomial of ε so η cancels P (x) := x4 −
2px2 + 1 = 0. Since η is a unit it’s minimal polynomial is µη := x2 − 2ax± 1 = 0,
where a = Tr(η). Since µη(x) divides P (x) we obtain that p = 1

2a
2 ± 1, which

contradicts the assumption on p. Therefore n is odd we have

(εn0 +
1

εn0
) = ω(ε0 +

1

ε0
),

where ω = εn−1
0 + εn−3

0 + · · ·+ 1
εn−3
0

+ 1
εn−1
0

. Since ε0 · (ε0 − Tr(ε0)) = ±1 we have

ω ∈ Z[ε0]. We also have ω = Tr(ε)/Tr(ε0) ∈ Q so ω belongs to Q
⋂

Z[ε0] = Z. Since
Tr(ε) = 2p the only possibilities for µε0 are x2 ± 2px± 1, x2 ± px± 1, x2 ± 2x± 1
and x2±x± 1. The discriminants of these polynomials cannot divide p2− 1 except
for x2± 2px± 1, so ε0 ∈ {±ε,± 1

ε0
}. If ε0 is chose such that it is larger than 1 then

ε0 = ε.
By a result of Louboutin [LOU98, Theorem 1] we have the effective bound

h(K) ≤
√

Disc(K)
e log(Disc(K))

4 log ε
.

Since Disc(K) ≤ p2 − 1, we conclude that h(K) < p and hence p ∤ h(K).
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Let us show that ε is not a p-primary unit. We have

εp
2−1 − 1 ≡ (p2 − 1)

p2−1
2 − 1 + p(p2 − 1)

p2−3
2

√

p2 − 1 (mod p2Z[
√

p2 − 1])

≡ ±p
√

p2 − 1 (mod p2Z[
√

p2 − 1]).

Since p2Z[
√

p2 − 1] ⊂ p2OK this shows that the p-adic logarithm of ε is not a
multiple of p2, so ε is not p-primary. By Lemma 2.1 we conclude that K is p-
rational. �

In the sequel the number fields K have no p-th roots of unity.

Lemma 2.3 ([Gre16] Prop 4.1.1(i) ). Let p be an odd prime and K a quadratic
imaginary number field; if p = 3 we additionally assume that it is unramified. If
p ∤ hK then K is p-rational.

Proof. Case p = 3 unramified. The equation ϕ(n) ≤ 2, where ϕ is Euler’s totient
function, has no odd solutions other than 3. If K contains the 3rd primitive root
of unity ζ3 then it also contains Q(ζ3) so 3 is ramified, hence the conditions in
the hypothesis rule out the existence of 3rd roots of unity. After Lemma 2.1, K is
3-rational.

Case p ≥ 5. Since K is imaginary, the unit rank is zero, so it contains no
p-primary units. Lemma 2.1 allows to conclude that K is p-rational. �

Hartung proved what it takes to conclude GC∞(Z/2Z, p) for p = 3 and noted
that his method works for any p:

Lemma 2.4 ([Har74]). For any prime odd prime p there exist infinitely many
square-free D < 0 such that h

Q(
√
D) ·D 6≡ 0 (mod p).

Corollary 2.5. For all odd prime p, GC∞(Z/2Z, p) holds.

One can ask if it is possible to additionally impose in Problem 1.4 that K is
totally real. Almost forty years after Hartung’s work on imaginary fields, Byeon
proved the corresponding result in the case of real fields.

Lemma 2.6 ([Bye01a] Prop. 3.3, [Bye01b] Thm. 1.1). For p ≥ 5, there exists

infinitely many integers D > 0 so that h
Q(

√
D) ·D 6≡ 0 (mod p) and Q(

√
D) has no

p-primary units.

Corollary 2.7. For all prime p ≥ 5 there exist infinitely many real quadratic fields
K which are p-rational.

The study of p-rationality in general case of G = (Z/2Z)t with t ≥ 1 reduces to
the case of quadratic fields as proven by a result of Greenberg.

Lemma 2.8. ([Gre16, Prop 3.6]) Let q 6= p be a prime, K be a number field such
that its Galois group Gal(K/Q) ∼= (Z/qZ)t. Then K is p-rational if and only if all
the subfields of K of degree q is p-rational.

We combine Lemmas 2.8 and 2.1 to obtain:

Proposition 2.9. Let K be a number field such that Gal(K/Q) ≃ (Z/qZ)t for
some prime q and let p ≥ 5 be a prime different from q. If for all cyclic subfields
of K the class number is not divisible by p and has no p-primary units then K is
p-rational.
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p t d1, . . . , dt

5 7 2,3,11,47,97,4691,-178290313
7 7 2,5,11,17,41,619,-816371
11 8 2,3,5,7,37,101,5501,-1193167
13 8 3,5,7,11,19,73,1097,-85279
17 8 2,3,5,11,13,37,277,-203
19 9 2,3,5,7,29,31,59,12461, -7663849
23 9 2,3,5,11,13,19,59,2803,-194377
29 9 2,3,5,7,13,17,59,293,-11
31 9 3,5,7,11,13,17,53,326,-8137
37 9 2,3,5,19,23,31,43,569,-523
41 9 2,3,5,11,13,17,19,241,-1
43 10 2,3,5,13,17,29,31,127,511,-2465249
47 10 2,3,5,7,11,13,17,113,349,-1777
53 10 2,3,5,7,11,13,17,73,181,-1213
59 10 2,3,5,11,13,17,31,257,1392,-185401
61 10 2,3,5,7,13,17,29,83,137, -24383
67 11 2,3,5,7,11,13,17,31,47,5011,-2131
71 10 2,3,5,11,13,17,19,59, 79,-943
73 10 2,3,5,7,13,17,23,37,61,-1
79 10 2,3,5,7,11,23,29,103,107,-1
83 10 2,3,5,7,11,13,17,43,97,-1
89 11 2,3,5,7,11,23,31,41,97,401,-425791
97 11 2,3,5,7,11,13,19,23,43,73,-1

Table 1. Examples of p-rational number fields of the form Q(
√
d1, . . . ,

√
dt).

Remark 2.10. All over this article we assume that p ∤ [K : Q] because the p-
rational extensions of Q of degree p are characterized in Example 3.5.1 of Section
IV of [Gra13]: Assume L is a p-extension of Q which satisfies Leopoldt’s conjecture
at p. Then L is p-rational if and only if the following two conditions are satisfied:

(1) L/Q is unramified outside p,
(2) L/Q is unramified outside of {p, l}, where l 6= p is prime and satisfies

p2 ∤ (lp−1 − 1) if p ≥ 3 or 8 ∤ (l ± 1) if p = 2.

See loc. cit. for 2-rational abelian 2-extensions of Q and 3-rational abelian 3-
extensions of Q.

Example 2.11. For each prime between 5 and 97, Table 1 gives examples of fields
K of the form Q(

√
d1, . . . ,

√
dt) which are p-rational.

For each of these fields we applied Proposition 2.9 for which we verified that
the 2t−1 − 1 read quadratic subfields have class number non divisible by p and no
p-primary units, and that the 2t−1 imaginary quadratic subfields have class number
non divisible by p.

The examples were found using sage scripts available in the online comple-
ment [BR17] by testing the smallest possible value of d1 ≥ 1, and recursively
for i = 2, 3, . . . , t − 1 we found the smallest possible value of di ≥ di−1 + 1 so
that Q(

√
d1, . . . ,

√
di) is p-rational. Finally we selected dt as the negative integer
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of smallest absolute value such that the class numbers of all the imaginary real
subfields of K are not divisible by p.

Note that d1, . . ., dt−2 are relatively small showing that it was easy to find exam-
ples with small t. However there can be large gaps between dt−2 and dt−1 showing
that this becomes much more difficult as t increases. We give an explanation for this
observation in Remark 5.5. The value of |dt| is not very large showing that it was
relatvely easy to go from a totally real to a totally complex example, as required
by Greenberg’s method to construct Galois representations with open image (cf.
discussion before Conjecture 1.3, see also Prop 6.7 and Prop 6.1 of [Gre16]). The
search of the negative determinant dt is fast also due to the Hurwitz-Eichler theorem
which to compute recursively class numbers of imaginary quadratic fields [Coh13,
Section 5.3.2].

Greenberg and Pollack [Gre16, Sec 4.2, page 99] gave the examples of the fields

Q(
√
13,
√
145,
√
209,
√
269,
√
373,
√
−1), which is 3-rational, and of the 5-rational

field Q(
√
6,
√
11,
√
14,
√
59,
√
−1), for which t = 5 is smaller that that of the exam-

ple on the first row of Table 1.

In order to investigate the existence of p-rational fields it is necessary to discuss
the density of fields whose class number is divisible by p.

2.2. Density of fields where p | h : the Cohen-Lenstra heuristic. Cohen and
Lenstra [CL84b, CL84a] created a heuristic principle which can be used to derive
conjectures on the density of class numbers divisible by a given integer. We say
that a set S of number fields has a density δ and write Prob(S) = δ if

lim
X→∞

#{K ∈ S | Disc(K) ≤ X}
#{K | Disc(K) ≤ X} = δ.

Here #{K | Disc(K) ≤ X} denotes the number of fields with discriminant less than
or equal to X For simplicity we write Prob(property) to designate the density of the
set of number fields satisfying the property. Cohen and Lenstra studied the case of
quadratic fields, Cohen and Martinet [CM90, CM87] studied the case of fields K
of degree 3 and 4, not necessarily cyclic, while more recently Miller [Mil15, Sec 3]
studied the case of cyclic extensions:

Conjecture 2.12 ([Mil15] Sec 3). Let K be a cyclic extension of Q of odd prime

degree q and p a prime not dividing q. Then Prob(p ∤ hK) =
∏

k≥2(1 − p−kω)
q−1
ω

where ω is the multiplicative order of p modulo q.

In the particular case of cubic cyclic fields this conjecture corroborates with the
conjecture of Cohen and Martinet:

Conjecture 2.13 ([CM87] Sec 2, Ex 2(b)). Let K be a cyclic cubic number fields
and m an integer non divisible by 3. Then we have

Prob(m | hK) =
∏

p|m,p≡1 mod 3

(

1− (p)2∞
(p)21

)

∏

p|m,p≡2 mod 3

(

1− (p2)∞
(p2)1

)

,

where (p)∞ =
∏

k≥1(1− p−k) and (p)1 = (1− p−1).

For an overview on recent progress on the Cohen-Lenstra-Martinet heuristic we
refer the reader to a series of recorded lectures of Fouvry [Fou14].
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2.3. Density of fields with p-primary units : valuation of p-adic regulator.

The condition about p-primary units in Lemma 2.1 can be stated in a simpler
manner when K is totally real.

Definition 2.14. Let K be a totally real Galois number field and p a prime which
is unramified in K. Let ε1, . . . , εr be a system of fundamental units and σ1, . . .,
σr+1 the automorphisms of K. Let p be a prime ideal above p and logp the p-adic

logarithm of Kp, logp(x + 1) =
∑

i≥1(−1)i x
i

i . Call Op the ring of integers in Kp.

We set E = lcm({N(p′) − 1, p′ | p}) where N(p) is the norm of p. By abuse of
notations we also denote by logp the following map that we only apply to elements
of EK :

logp : {x ∈ K∗ | ∀p′ | p, valp′(x) = 0} → 1 + pOp

x 7→ logp(x
E).

We call normalized p-adic regulator the quantity Rp = det( 1p logp(σj(εj)1≤i,j≤r)).

It is classical (see for example [Was97]) that Rp belongs to Zp and is independent
of the choice of p and of the labeling of fundamental units and of the automorphisms.
For completion we state a simple and classical property of RK,p.

Lemma 2.15. For all γ ∈ K, if K has a p-primary unit then Rp is divisible by p.

Proof. Let ε =
∏r

i=1 ε
ai

i , a1, . . . , ar ∈ Z be a p-primary unit. Then (a1, . . . , ar) is
in the kernel of the matrix which defined RK,p reduced modulo p. Hence RK,p is
divisible by p and, since it belongs to Zp, it is also divisible by p. �

Very little is known on the probability that the normalized regulator is divisible
by p. Schirokauer [Sch93, p. 415] made the heuristic that the matrix which defines
RK,p modulo p is a random matrix with coefficients in Fpf for some f and therefore

the probability that p divides RK,p is O( 1p ). Later Hofman and Zhang studied the

case of cyclic cubic fields and gave heuristic arguments and numerical experiments
in favor of the following conjecture.

Conjecture 2.16 ([HZ16] Conj 1). For primes p > 3 we have

Prob(p divides RK,p) =







1
p2 , if p ≡ 2 (mod 3)

2
p − 1

p2 , if p ≡ 1 (mod 3).

3. Algorithmic tools

complete
information

class group unit group ray group

partial
information

p divides hK p divides RK,p K is p-rational

Table 2. List of invariants associated to a number field K and of
partial information associated to a prime p.

Gathering numerical data on the class group, unit group and respectively ray
class group of number fields is a hard task despite the important progress done
in the design of algorithms. Indeed, the best algorithms to compute class number
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are derived from Buchman’s algorithm [BW89] and have a non-polynomial com-
plexity. In the context of the Cohen-Lenstra-Martinet heuristic it is not necessary
to compute hK but only to test its divisibility by p. In Section 3.2 we recall an
algorithm of polynomial complexity which tests the divisibility of hK by p without
other information on hK . Similar questions can be studied for the unit and ray
class groups.

In the context of the p-adic regulator valuation it is not necessary to compute
the regulator to infinite precision, but only to test the divisibility of the normalized
p-adic regulator by p. When using the best known algorithms there is no gain in
complexity when the precision is reduced because one needs to compute a system
of fundamental units, which is done by a variant of Buchman’s class number al-
gorithm [BW89]. This motivates us in Section 3.3 to propose a fast method to
compute units, which are not necessarily a basis of the unit group but which allow
us in general to test the divisibility by p of the normalized p-adic regulator.

Ray class group is related to the cartesian product of the class number and the
unit group and from an algorithmic view point, it is similar to these two groups,
and it is not surprising that the algorithm of Cohen et al. [CDO98] has a non-
polynomial complexity. Pitoun and Varescon [PV15] showed that it allows to test
if K is p-rational by an algorithm that we recall in Section 3.4.

3.1. An algorithm to enumerate abelian number fields. Numerical compu-
tations of densities require to make the list of all the number fields K of a given
degree and Galois group such that |Disc(K)| is less than a given bound X . The task
is very much simplified in the case of abelian extensions due the following classical
result.

Lemma 3.1 ([Was97] Thm 3.11,The Conductor-discriminant formula). Let K be
an abelian number field and let Ξ be the group of characters Gal(K/Q)→ C∗. Then
we have

Disc(K) = (−1)r2
∏

χ∈Ξ

cχ,

where cχ is the conductor of χ.

In particular if Gal(K/Q) ≃ (Z/qZ)t, where q is a prime number, we have a very
simple relation between the conductor and the discriminant. Although the result is
classical (see for example [Gra75]) we recall the proof because one deduces from it
an algorithm to enumerate number fields with Galois group equal to (Z/qZ)t and
discriminant bounded by a given constant.

Lemma 3.2. Let K be a number field such that Gal(K/Q) ≃ (Z/qZ)t. Then we
have,

(1) the conductor cK of K can be written as cK = p1 · · · ps or cK = q2p1 · · · ps−1

where pi ≡ 1 mod q are distinct primes;

(2) Disc(K) = c
(q−1)qs−1

K .

Proof. (1) For any abelian group G we call q-rank of G, denoted by rankqG, the
dimension of the Fq vector space G/Gq. Then one easily checks that for any prime
pi 6≡ 1 mod q different than q, rankq(Z/p

ei
i Z)∗ = 0; for any prime pi ≡ 1 (mod q)

and any ei ≥ 1, rankq(Z/p
ei
i Z)∗ = rankq(Z/piZ)

∗. Hence rankq(Z/qZ)
∗ = 0 and

for any e ≥ 2, rankq(Z/q
eZ)∗ = 1. If c is an integer of the form in point (1) and c′

is a multiple of c then (Z/cZ)∗ and (Z/c′Z)∗ have the same q-rank. By definition,
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the conductor of a number field of Galois group (Z/qZ)t is the smallest integer c so
that the q-rank of (Z/cZ)∗ is t.

(2) For each prime power a dividing cK we have to count the number of characters
defined on (Z/cKZ)∗ which are not trivial on (Z/aZ)∗. This is the number of
subgroups of Gal(K/Q) ≃ (Z/qZ)t whose quotient group is Z/qZ and further the
number of linear forms from Ft

q to Fq which are non-zero on the first component,

hence the total number is (q − 1)qt−1. Due to the conductor-discriminant formula
(Lemma 3.1) we obtain the result for Disc(K). �

In numerical experiments, we enumerate all fields K of Galois group (Z/qZ)t

with |Disc(K)| ≤ X by enumerating all positive integers c less than X
1

qt−1(q−1) of
the form given by point (1) of Lemma 3.2. Next we compute all subgroups H of
(Z/cZ)∗ such that (Z/cZ)∗/H ≃ (Z/qZ)t. Finally we compute the fixed field of H .

In the particular case of cubic cyclic fields one does not need any computations
because there exists a canonical polynomial to define every cyclic cubic number
fields of conductor m.

Lemma 3.3 ([Coh13] Thm 6.4.6). Let m be an integer of the form
∏t

i=1 pi or

9
∏t−1

i=1 pi where pi ≡ 1 (mod 3). Then there are 2t−1 cubic cyclic fields of conductor

m. Each of them corresponds to one solution of the equation m = a2+27b2

4 by the
formula

(3.1) fa(x) =

{

x3 + x2 + 1−m
3 x− m(3+a)−1

27 , if 3 ∤ a
x3 − m

3 x− am
27 , otherwise.

The subfamily m = a2+27
4 has a pleasant property that deserves our attention.

3.1.1. A family with explicit units. For a particular classical family of cubic cyclic
fields we have a closed formula of the minimal polynomial of a unit of infinite order.
We focus on the existence of the unit, which is not necessarily well explained in the
literature.

Lemma 3.4. Let a be an odd integer, m = 1
4 (a

2+27) and let K be the number field
defined by Equation (3.1). Then K contains an integer ω whose minimal polynomial
is

ga(x) = x3 −mx2 + 2mx−m

and η := σ(ω)/ω is a unit whose minimal polynomial is

µa(x) = x3 − 2m− 3− a

2
x2 +

2m− 3 + a

2
x− 1,

where Gal(K/Q) is generated by the automorphism σ. Additionally, K contains a
unit whose minimal polynomial is

νa(x) = x3 + (m− 3)x2 + 3x− 1.

Proof. Let α be a root of fa in K. One can plug in ga the element

ω =

{

a2

36 + αa
3 + α2 + 3

4 , if 3 ∤ a
a2

36 + aα
3 + α2 + a

9 + 2
3α+ 31

36 , otherwise.



12 RAZVAN BARBULESCU AND JISHNU RAY

and note that ga(ω) = 0, so ga has a root in K for any a. We set η = σ(ω)
ω and, for

i ∈ N, ωi = σi(ω). Let x3 −Ax2 +Bx− 1 be the minimal polynomial of η over Q.
Then, equating x3 −Ax2 +Bx− 1 = (x− η)(x − σ(η))(x − σ2(η)), we obtain

A+B =

2
∑

i=0

ωi+1

ωi
+

ωi

ωi+1
=

1

m
(

2
∑

i=0

ω2
i+1ωi + ωi+1ω

2
i )

=
1

m



(
2
∑

i=0

ωiωi+1)(
2
∑

i=0

ωi)− 3
2
∏

i=0

ωi



 = 2m− 3.

Note that ga(x) is the minimal polynomial of ω which links m with ωi’s giving us
the second equality above. We also have

AB = (

2
∑

i=0

ωi+1

ωi
)(

2
∑

i=0

ωi

ωi+1
) = m2 − 4m+ 9.

Hence A and B are such that the minimal polynomial of η = σ(ω)/ω is µa.
Finally, we test by direct computations that νa has a root

η′ =

{

α2 + a−1
3 α+ a2

36 − a
18 + 1

36 , if 3 ∤ a

α2 + (a−3)α
3 + a2

36 − a
6 + 1

4 , otherwise.

which is automatically a unit in K. �

The computations in the proof can be found in the online complement [BR17].

3.2. An algorithm to test if p divides hK . Marie-Nicole Gras [Gra75] designed
an algorithm which allows to test if hK is divisible by p without computing hK .

Definition 3.5. Let K be an abelian number field. We call cyclotomic units of

Leopoldt the set CK of units of K which are of the form ±ηa := NQ(ζc)/K(
ζa
c −1
ζc−1 )

where c is the conductor of K and a runs through all elements of Z/cZ.

The main ingredient of Gras’ algorithm is a result due to Leopoldt:

Lemma 3.6 ([GG77] section III 3). Let K be a cyclic number field of odd prime
degree. Then

hK = [EK : CK ],

where CK is the group of cyclotomic units of Leopoldt.

For every a in (Z/cZ)∗ we denote by σa the automorphism of Q(ζc) given by
ζc 7→ ζac . One starts the algorithm by computing ηa for every a in a system of
representatives of

(Z/cZ)∗/{a ∈ (Z/cZ)∗ | σa|K = id},
where id is the identity map. Then one tests if one can form a product of ηa’s
which is an p-th power. This step was improved to take a polynomial time instead
of exponential. Indeed, the following result is attributed by Hakkarainen to van
der Linden and replaces a product of an exponential number of terms to a power
elevation, which can be done by a fast exponentiation algorithm.
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Lemma 3.7 ([Hak09] Eq (5.1)). Let K be a cyclic number field of degree n and
conductor m. Let p and q be two primes and let f be the order of q modulo p. Let
q be a prime ideal of Q(ζm) above of q and let ρq : Z[ζm] → kq be the canonical
projection on kq = Z[ζm]/q which is the residual field of q. Then for any γ ∈ Z[ζm]
we have

ρq(NQ(ζm)/K(γ)) = ρq(γ)
ϕ(m)
nf

qf −1
p .

Consequently, if there exists q such that ρq(γ)
ϕ(m)
nf

(qf −1)2

p(q−1) 6= 1 then γ is not a p-th
power in K.

Proof. Recall that the morphism

: Gal(Q(ζm)/Q) → Gal(kq/Fq)
τ 7→ τ ,

where ∀a ∈ kq, τ (a) = ρq(τ(γ)) where γ is a lift of a in Q(ζm), is surjective. Hence,

for all i = 0, . . . , f − 1, #{τ ∈ Gal(Q(ζm)/K) | τ (ρq(γ)) = ρq(γ)
qi} = ϕ(m)

nf .

We have then

ρq(NQ(ζm)/K(γ)) =
∏

τ∈Gal(Q(ζm)/K)

τ(ρq(γ)) = (

f−1
∏

i=0

ρq(γ)
qi)

ϕ(m)
nf = ρq(γ)

qf−1
q−1

ϕ(m)
nf .

Consequently, since k∗q is cyclic, an element is a p-th power if and only if its (#kq−
1)/p power is 1. This completes the proof because #kq = qf . �

The Gras-van der Linden algorithm, that we recall in Algorithm 1, consists in
trying various primes q and in applying Lemma 3.7. The implementation of SAGE
code for Algorithm 1 is in Appendix B, and can be downloaded from the online
complement [BR17].

Algorithm 1 Gras-van der Linden

Require: an integer N and a cyclic cubic number field K given by a conductor m
and an element g of (Z/mZ)∗ such that ζm 7→ ζgm doesn’t fix K

Ensure:
The algorithm returns ’false’, if q ∤ hK

The algorithm returns ’non-certified true’, if q | hK .
i← 0
repeat

q ← next prime congruent to 1 mod p,
we increment i and continue

until i>N or the polynomial xg−1
x−1

ϕ(m)
3

q−1
p 6≡ 1 mod 〈q, f(x)〉

3.3. An algorithm to test if p divides the normalised p-adic regulator.

The relevant notion in this section is the p-adic logarithm but for computational
issues we focus on a truncation of it that deserves its own name.

Definition 3.8 ([Sch93], Sec 3.). Let f ∈ Z[x] be a monic irreducible polynomial
and let p be a prime which does not divide the index of f , i.e. p ∤ [OK : Z[α]] where
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OK is the ring of integers in the number field K of f and α is a root of f in its
number field. The Schirokauer map associated to f and p is

λf,p : {a1(x)
a2(x)

| a1, a2 ∈ Z[x], p ∤ Res(a1a2, f)} → Fp[x]/〈f(x)〉 ≃ Fdeg f
p

a1/a2 ∈ Q(x) 7→ (ape−1
1 −1)−(ape−1

2 −1)
p mod 〈p, f〉,

where e = lcm({deg fi | fi divides f in Fp[x]} and Res denotes the resultant.

Also note that we can identify Q[x]/〈f(x)〉 and K so that every element of K is
represented by a polynomial. In this language the condition p ∤ Res(a1a2, f) states
that ∀p | p, valp(a1

a2
) = 0.

When p is non-ramified R′
K,p is not divisible by p if and only if the matrix

formed with λf,p(ε1) . . . , λf,p(εr) has full rank. This implies that the result of the
computations is independent on the choice of f .

The remaining question is that of computing a system of generators for EK/Ep
K .

In the case of the family of Section 3.1.1, this is easily done using an explicit formula.
However in the general case of cyclic cubic fields we propose a new technique.

Lemma 3.9. Let K be a number field of odd prime degree q and of cyclic Galois
group and call m its conductor. Then we have:

(1) for any prime factor ℓ of m there exists an ideal l so that lq = ℓOK ;
(2) If l is principal, for any generator ω ∈ OK of l and any generator σ

of Gal(K/Q), σ(ω)
ω is a unit.

Proof. (i) Let ℓ be a prime factor of m other than q. Then ℓ is ramified in K and,
since degK = q is prime, there exists a prime ideal l so that ℓ = lq.

(ii) The ideal generated by σ(ω)
ω is σ(l)l−1. Since σ induces an automorphism on

K, σ(l) is a prime ideal above ℓ. But ℓ is totally ramified in K so σ(l) = l. So σ(ω)
ω

is a unit. �

Remark 3.10. The ideal l is not necessarily principal and even if it is, the com-
putation of a generator ω is not fast in the worst case. Indeed, since ℓZ[ζℓ] =
((ζℓ − 1)Z[ζℓ])

(ℓ−1), ℓZ[ζm] = ((ζℓ − 1)Z[ζm])(ℓ−1) so that in Z[ζm] we have

lq = 〈ζℓ − 1〉ℓ−1.

By unique factorization we deduce that lZ[ζm] = 〈ζm − 1〉
ℓ−1
q . We consider the

norms and obtain that NQ(ζm)/K(lZ[ζm]) = 〈NQ(ζm)/K(ζℓ− 1)
ℓ−1
q 〉 is principal, but

this is not necessarily equal to l.
Among the 2217 cyclic cubic number fields with conductor between 7 and 10000

we have:

l is principal and Algorithm 2 succeeds 1237 55.8% x3 + x2 − 2x− 1
Algorithm 2 succeeds but l is not principal 258 11.64% x3 − 21x2 + 35
l is principal but Algorithm 2 fails 402 18.13% x3 − x2 − 30x− 27.

Here we write that l is principal when there exists a prime ℓ above the conductor
m of the number field of f such that l is principal. The case in which l is principal
and Algorithm 2 fails is due to the usage of the LLL algorithm [LLL82]. Indeed,
given a lattice L of dimension n the algorithm finds in polynomial time an element
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of the lattice whose euclidean norm is less than cn| det(L)|
1
n . If ω1, . . . , ωn is an

integer basis of OK and LLL is applied to the lattice

L = {(a0, . . . , an−1) ∈ Zn |
n
∑

i=0

aiωi ∈ l}

computes an element (γ0, . . . , γn) ∈ Zn such that γ =
∑n

i=0 γiωi is such that
NK,Q(γ) ≤ CN(l) for some constant C independent on l. Since C > 1, it is not
always true that LLL finds a generator. Generic algorithms to replace LLL exist
but they are much slower.

In the following we present Algorithm 2 which is used for fast computation of a
unit in cyclic cubic fields. The implementation using SAGE is in Appendix C, and
the program can be downloaded from the online complement [BR17].

Algorithm 2 Fast computation of a unit of cyclic cubic K.

Require: a cubic cyclic field K and a factorization of its conductor m
Ensure: a unit of K
1: for ℓ ≡ 1 mod q factor of m do

2: factor ℓ in OK to obtain l using [Coh13, Sec 4.8.2]
3: search a generator ωℓ of the ideal l using LLL [LLL82].
4: end for

5: return a product of the units ηℓ := σ(ωℓ)/ωℓ

In order to do statistics about the p-adic regulator we proceed as in Algorithm 3.
The implementation of SAGE code for the Algorithm is in Appendix D, and the
program can be downloaded from the online complement [BR17]. Note that Schi-
rokauer’s map λf,p (Definition 3.8) has image in the Fp-vector space Fp[x]/〈f(x)〉
which has the basis (1, x, x2) when f is cubic. Hence we call λ0, λ1, λ2 the compo-
nents of λf,p corresponding to the projections on the line of 1, x and respectively
x2.

3.4. An algorithm to decide p-rationality. For any n let Apn denote the p-
part of the ray class group ([Gra13] Ch I.4) of K with respect to the ideal pn.
For any finite abelian group G we denote by FI(G) the invariant factors of G
i.e. the integers [d1, . . . , dk] so that G ≃ ⊕k

i=1Z/diZ and d1 | d2 | · · · | dk. The
following result reduces the problem of testing p-rationality to that of computing
the ray class group, which is studied for example in [CDO98] and implemented in
PARI [BBB+98].

Lemma 3.11 ([PV15] Thm 3.7 and Cor 4.1, see also Prop. 1.13 of [HM16]). Let
K be a number field which satisfies Leopoldt’s conjecture. Let e be the ramification
index of p in K. Then there exists n ≥ 2+e so that the invariant factors of FI(Apn)
can be divided into two sets FI(Apn) = [b1, . . . , bs, a1, . . . , ar2+1] such that

(1) min(valp(ai)) > max(valp(bi)) + 1;
(2) FI(Apn+1) = [b1, . . . , bs, pa1, . . . , par2+1].

Moreover, K is p-rational if and only if valp(b1) = valp(b2) = · · · = valp(bs) = 0.

The algorithm of Pitoun and Varescon was implemented in PARI [BBB+98] by
Bill Allombert on a large number of imaginary quadratic fields. The algorithm
applies to all number fields satisfying Leopoldt’s conjecture not only to abelian
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Algorithm 3 Test if p | R′
K,p for a list of random cyclic cubic fields

Require: a list of cyclic cubic fields
Ensure: a certificate on the divisibility of R′

K,p by p
for K in list of cyclic cubic fields do

Apply Algorithm 2 to compute a unit η
Apply algorithms in [WR76] to factor a defining polynomial of K in K[x] and

obtain a non-trivial automorphism σ of K
Compute the rank r of the matrix

(

λ0(ε1) λ1(ε1) λ2(ε1)
λ0(ε2) λ1(ε2) λ2(ε2)

)

,

where λ0, λ1, λ2 are the Schirokauer maps of a polynomial defining K
if r=2 then

return p ∤ RK,p

else

we compute a truncation of the normalized p-adic regulator using algo-
rithms in [Pan95] and return the result of the test whether this rank is 2

end if

end for

fields. Indeed, the problem is not the answer which is always correct, but the
fact that the algorithm doen’t terminate when Leopoldt’s conjecture doesn’t hold
for K. To illustrate that the algorithm works also for non-abelian number fields
we construct examples of p-rational fields for all possible Galois groups of quartic
polynomials.

Example 3.12. In Table 3.12 we list the set of primes less than 100 where the
number fields of the listed polynomials are not p-rational. The case for the poly-
nomial x4 + x3 + x2 + x + 1 is already discussed by Greenberg [Gre16, Sec. 4.4],
thanks to the computations of Robert Pollack. The SAGE code for the programme
to verify p-rationality using Lemma 3.11 is in Appendix A, and the programme can
be downloaded fromthe online complement [BR17].

Galois
group

∀p ≤ 100, p− rational non 7-rational

Z/4Z x4 + x3 + x2 + x+ 1 x4 − 23x3 − 6x2 + 23x+ 1
V4 x4 − x2 + 1 x4 + 10x2 + 1
D4 x4 − 3 x4 − 6
A4 x4 + 8x+ 12 x4 − x3 − 16x2 − 7x+ 27
S4 x4 + x+ 1 x4 + 35x+ 1

Table 3. p-rationality of a list of number fields.

To sum up we have a fast criterion for p-rationality given by Proposition 2.9 and
a slow condition which works in the general case which is given by Lemma 3.11. For
efficiency reasons we implemented a combination of the two as given by Algorithm 4.
An implementation of this algorithm is available in the online complement [BR17].
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Algorithm 4 test p-rationality of a list of cyclic cubic fields

Require: a prime p and a list of cyclic cubic fields
Ensure: for each number field the information whether it is p-rationality

for K in list of cyclic cubic fields do

Apply Algorithm 1 to certify that p does divides hK when it is possible
Apply Algorithm 3 to certify that p does not divides R′

K,p when it is possible

if we have certificates that p ∤ hKR′
K,p then

return True and certificates
else

Apply the algorithm of Pitoun and Varescon in Appendix A, based on
Lemma 3.11 to decide if K is p-rational

Return answer and certificate
end if

end for

In an experiment, using Algorithm 4, we tested p-rationality the 158542 cyclic
cubic fields of conductor less than 106. The proportion of fields where 5 | hK

is expected to be 0, 000016 (Conjecture 2.13) and the proportion of fields where
5 | R′

K,5 is expected to be 0.04 (Conjecture 2.16), which is matched very well by
the experiments: 5351 fields found for an expected number of 0.04 · 158542 ≈ 6127.
It turns out that in all the 5351 cases where we couldn’t apply the criterion in
Lemma 2.1 the field was actually non 5-rational. The data can be found in the
online complement [BR17]. The total time used by the 153191 number fields where
the fast criterion could be applied was negligible with respect to the total time
used for the 5351 number fields where the algorithm of Pitoun and Varescon was
applied. Hence we had a speed-up of approximatively 158542/5351 ≈ 52. In the
general case, for a prime p, we expect a speed-up of p/2 when p ≡ 1 (mod 3) and
of p2 when p ≡ 2 (mod 3).

4. Some families of p-rational fields

Recall that, when given a cyclic cubic field K, in Algorithm 1 one searches for a
prime q where Lemma 3.7 applies, and hence certifies that the class number is not
divisible by p. The idea of this section is to fix q = 11 and to search for cyclic cubic
fields where Lemma 3.7 applies for p = 5. Under some arithmetic assumptions this
allows to construct an infinite family of fields of class number non-divisible by 5.
We can also find a family of number fields where the 5-adic regulator is not divisible
by 5 thanks to the explicit formula in Section 3.1.1. Under the assumption that the
two families intersect we obtain an infinite family of 5-rational cyclic cubic fields.

Lemma 4.1. Let m be a prime such that 3 | ϕ(m), 11 ∤ ϕ(m) and Φm is irreducible
modulo 11. Then the number field of fa defined in Equation (3.1) has class number
not divisible by 5.

Proof. Let η := NQ(ζm)/K(
ζ2
m−1
ζm−1 ) be a unit not necessarily cyclotomic. By Lemma 3.6

the class number cannot be divisible by 5 if η is not a 5th power. We will prove
that ρq(η)

2 6= 1, which shows that ρq(η) is not a 5th power and therefore η is not
a 5th power.
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We apply Lemma 3.7 to γ =
ζ2
m−1

ζm−1 , n = 3, p = 5 and q = 11, so ρq(η) =

(ρq(ζm) + 1)
2ϕ(m)

3 . We have to test if ρq(η) = ±1. Since 11 is a generator of
(Z/mZ)∗, Φm is irreducible modulo 11, so ρq(ζm + 1) = (x + 1) (mod Φm) where
Φm is seen as an irreducible polynomial in F11[x]. The finite field F11[x]/〈Φm(x)

admits the basis (1, x, x2, . . . , xϕ(m)−1). Since 2ϕ(m)
3 < ϕ(m) the coordinates of

(x+1)
2ϕ(m)

3 mod Φm on the basis of F11[x]/〈Φm(x) are the same as the coefficients

of the polynomial (x+ 1)
2ϕ(m)

3 .

The coefficient of x in (x + 1)
2ϕ(m)

3 is 2ϕ(m)
3 which is not 0 modulo 11 by the

assumptions on m. Hence (x+1)
2ϕ(m)

3 6≡ ±1 mod Φm ∈ F11[x], so the class number
is not divisible by 5. �

Remark 4.2. Artin’s conjecture states that if a is a non-square integer other than
−1 then the set of primes m such that a is primitive in (Z/mZ)∗ has a positive
density. In particular this implies that there are infinitely many primes m such that
Φm is irreducible modulo 11 (resp 2). Hooley [Hoo67] proved the conjecture under
a generalization of Riemann’s Hypothesis

Lemma 4.3. For all integers a 6= 21, 23 (mod 25) the number field defined by fa
as defined in Equation (3.1) has no RK,5 6≡ 0 (mod 5).

Proof. We have Disc(fa) = Disc(Q(α))[OQ(α) : Z[α]]
2 where α is a root of fa in its

number field. Since

Disc(a) = a4 + 6a3 + 27a2 + 54a+ 81,

5 is not ramified and doesn’t divide the index [OQ(α) : Z[α]]. The definition of

Schirokauer maps implies that if f ≡ g (mod p2Z[x]) are two polynomials then
they have the same Schirokauer maps.

For each a in the interval [1, 52] other than 21 and 23 we compute the matrix
(

λ0(α) λ1(α) λ2(α)
λ0(−α+1

α ) λ1(−α+1
α ) λ2(−α+1

α )

)

,

where α is a root of fa in its number field. Here the λi’s are defined as in Algorithm
3. Note that α+1

α is the image of α by an automorphism of fa. One verifies that
in each case the normalized 5-adic regulator is not divisible by 5. Hence, for any
integer a 6≡ 21, 23( mod 25), the 5-adic regulator of {α,−α+1

α } divided by 25 is
not divisible by 5. Finally, the normalized 5-adic regulator of fa is not divisible
by 5. �

When combining Lemma 4.1 and Lemma 4.3 one obtains point (2) of Theo-
rem 1.6.

5. Numerical investigation of the density of p-rational fields

The Cohen-Lenstra-Martinet heuristic predicts very simple formulae for the den-
sity of number fields with class number prime to p and with Galois group (Z/qZ)t

for every prime q and integer t. However, the authors of the heuristic conjectured
only those heuristic statements which corroborate with numerical experiments. We
bring new evidence in favor of the conjecture for cubic cyclic fields in Section 5.1.
Then in Section 5.2 we bring evidence in many cases (Z/2Z)t and (Z/3Z)t for
t = 2, 3, 4 and are able to state the corresponding conjectures. In Section 5.3, we



GREENBERG’S p-RATIONALITY CONJECTURE 19

extend the results of Hofmann and Zhang to the case of Galois groups (Z/3Z)t and
(Z/2Z)t with t = 2, 3, 4 and conclude by proving point (3) of the main theorem
(Th 1.6) in Section 5.4.

5.1. Numeric verification of the Cohen-Lenstra heuristics. One of the most
interesting facts about the Cohen-Lenstra heuristic is how well it is supported by
statistical data. Encouraged by the case of quadratic fields one would expect a
similar situation for the case of cyclic cubic fields, but in 1989 Cohen and Martinet
wrote that “we believe that the poor agreement [with the tables] is due to the fact
that the discriminants are not sufficiently large”.

Puzzled by this assertion we repeated their computations and made statistics
on the fields of conductor less than 8000, i.e. discriminant less than 64106, which
was the bound for the computations of that time (e.g. [Gra75] considered the fields
of conductor less than 4000). Since then computers’ capabilities have increased
by more than a factor 1000 so that we could compute the statistics for fields of
conductor less than 107, i.e. discriminant less than 1014, in roughly one calendar
month, in parallel on several 30 cores and summed up to roughly 2.5 CPU years.

Looking at the data in Table 4 we understand what happened: the convergence
speed to the mean density is very slow and the statistics to 8000 have a relative
error between 19% and 100% which didn’t allow Cohen and Martinet to conclude.
However statistics to 107 have only a relative error between 0.2% and 15.5%, so we
can conclude that the numerical data confirms their conjecture. More details are
available in the online complement [BR17].

p theoretic
density

stat. density
cond. ≤ 8000

relative
error

stat. density
cond. ≤ 107

relative
error

5 0.00167 3
1269 ≈ 0.0236 46% 3316

1714450 ≈ 0.00193 15.5%

7 0.0469 45
1269 ≈ 0.0355 24% 78063

1714450 ≈ 0.0456 3%

11 0.0000689 0 100% 133
1714450 ≈ 0.0000775 12.5%

13 0.00584 6
1269 ≈ 0.00472 19% 10232

1714450 ≈ 0.00584 2%

19 0.0128 11
1269 ≈ 0.0086 48% 21938

1714450 ≈ 0.0128 0.2%

Table 4. Statistics on the density of cyclic cubic fields whose class
number is divisible by p = 5, 7, 11, 13 and respectively 19.

5.2. Cohen-Lenstra-Martinet for Galois group (Z/3Z)t and (Z/2Z)t.

Lemma 5.1 (Kuroda’s class number formula ([Lem94] Sec 3 and [Kur50] Sec 10)).
Let q be a prime and K a totally real Galois extension such that Gal(K/Q) =

(Z/qZ)t. Then K contains qt−1
q−1 subfields of degree q and there exists an integer A

such that

hK = qA
∏

ki subfield of degree q

hki
.
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The Cohen-Lenstra-Martinet heuristic implies that that the class groups of the
intermediate cyclic fields of prime ki behave independently, and they obtain the
following heuristic statement.

Conjecture 5.2 (reformulation of statements in [CM87]).

(1) If K = Q(
√
d1, ...,

√
dt), and p an odd prime, then

Prob(p ∤ hK) =
(p)∞
(p)1

2t−1

.

(2) If K has degree 3t and is the compositum of t cyclic cubic fields and p ≥ 5
is a prime then

Prob(p ∤ hK) =











( (p)∞(p)1
)2

3t−1
2 , if p ≡ 1 (mod 3);

(p2)∞
(p2)1

3t−1
2

, if p ≡ 2 (mod 3).

The conjecture is supported by the numerical evidence in Table 5. The data is
available in the online complement [BR17].

p theoretic
density

stat. density
cond. ≤ 106

relative
error

5 0.00334 933
203559 ≈ 0.00458 37%

7 0.0916 23912
203559 ≈ 0.0354 28%

11 0.000138 26
203559 ≈ 0.000128 7.5%

13 0.0116 6432
203559 ≈ 0.0316 72%

17 0.0000140 4
203559 ≈ 0.0000197 40.5%

19 0.0254 3536
203559 ≈ 0.0173 31.5%

Table 5. Statistics on the density of fields of Galois group Z/3Z×
Z/3Z whose class number is divisible by p = 5, 7, 11, 13, 17 and
respectively 19.

5.3. On the p-adic regulator for Galois groups (Z/2Z)t and (Z/3Z)t. We are
interested in the probability that all the cyclic subfields of number field of Galois
group (Z/qZ)t are without p-primary unity, or equivalently we want to investigate
the relations between the normalized p-adic regulators of a compositum and of its
subfields. We have here a similar result to Kuroda’s formula.

Lemma 5.3. Let p be an odd prime and K = Q(
√
a,
√
b)) with a, b and ab positive

rational numbers which are not squares. Let R denote the normalized p-adic regula-
tor of K, then R1, R2 and R3 the p-adic regulators of Q(

√
a), Q(

√
b) and Q(

√
ab).

Then there exists an integer α such that

R = 2αR1R2R3.
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Proof. A simple regulator calculation (e.g. [BP79]) implies that there exists β such
that

[E : E1E2E3] = 2β
h

h1h2h3
,

where E and h are the unit group and the class number of Q(
√
a,
√
b), and Ei and

hi are the unit groups and class numbers of the quadratic subfields.
By Kuroda’s formula (Lemma 5.1), h/(h1, h2h3) is a power of 2 so

[E : E1E2E3] = 2γ

for some integer γ. Hence the p-adic regulator of E is equal to the p-adic regulator
of E1E2E3 up to multiplication by a power of 2.

Let {σ0 = id, (σ1 :
√
a 7→ −√a,

√
b 7→

√
b), (σ2 :

√
a 7→ √a,

√
b 7→ −

√
b) and

(σ3 :
√
a 7→ −√a,

√
b 7→ −

√
b)} be the automorphisms of K.

If ε1 is a fundamental unit of Q(
√
a) then ε1σ1(ε1) = NQ(

√
a)/Q(ε1) = ±1 so that

logp(σ1(ε1)) = − logp(ε1).

Since σ2(ε1) = ε1 we have

logp(σ2(ε1)) = logp(σ3(ε1)) = logp(ε1).

Similar equations hold for the fundamental units ε2 and ε3 of Q(
√
b) and Q(

√
ab).

Hence the p-adic regulator of the subgroup generated by ε1, ε2 and ε3 is
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

logp(ε1) logp(σ1(ε1)) logp(σ2(ε1))

logp(ε2) logp(σ1(ε2)) logp(σ2(ε2))

logp(ε3) logp(σ1(ε3)) logp(σ2(ε3))

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

logp(ε1) − logp(ε1) logp(ε1)

logp(ε2) logp(ε2) − logp(ε2)

logp(ε3) − logp(ε3) − logp(ε3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The latter determinant is equal to (−4) logp ε1 logp ε2 logp ε3, which completes the
proof. �

Our heuristic is to assume that the factors R1, R2 and R3 in Lemma 5.3 are
independent.

Conjecture 5.4. Let q = 2 or 3, p > q a prime and t an integer. Then the
density of totally real number fields K such that Gal(K) = (Z/qZ)t for which the
normalized p-adic regulator is divisible by p for at least one of the cyclic subgroups
is

(1) Prob
(

∃F ⊂ K,R′
F,p ≡ 0[p]|Gal(K) = (Z/2Z)t tot. real

)

= 1− (1− 1
p )

2t−1

(2) Prob
(

∃F ⊂ K,R′
F,p ≡ 0[p] | Gal(K) = (Z/3Z)t

)

= 1− (1−P) 3t−1
2 , where

P =











2
p − 1

p2 , if p ≡ 1 (mod 3)

1
p2 , otherwise.

In a numerical experiment, we considered all number fields to verify Conjecture
5.4 of the form Q(

√
d1,
√
d2,
√
d3) with d1, d2 ∈ [2, 300] squarefree and distinct, then

the fields of Galois group (Z/3Z)3 and conductor less than 105, i.e. discriminant
less than 1030. In Table 6 we compare the statistical density with 1 − (1 − 1

p )
7.

The numerical computations use Algorithm 3 with SAGE code in Appendix D. The
programme can be downloaded from the online complement [BR17].
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p experimental Conj 5.4 relative

density density error

5 29301
37820 ≈ 0.775 0.790 2%

7 19538
37820 ≈ 0.517 0.660 22%

11 17872
37820 ≈ 0.473 0.487 3%

Table 6. Numerical verification of Conjecture 5.4 in the case
where Gal(K) = (Z/2Z)3. The sample consists of number
fields which can be written as K = Q(

√
d1,
√
d2,
√
d3) with 2 ≤

d1, d2, d3 ≤ 300 squarefree and distinct.

Remark 5.5. Conjecture 5.4 describes well the computations required to find Ex-
ample 2.11. With notations as in Example 2.11 we set d1 = −1 and d2 = 2 and,
for i ≥ 3 we define di as the smallest integer larger than di−1 such that, for all
subfield F ⊂ Q(d1, . . . , di), R

′
F,p is not divisible by p. Then the conjecture predicts

log2 di ≈ c2i for some constant c since the expectancy of di is the inverse of the

probability of Q(
√
d1, . . . ,

√

di−1,
√
d) has normalized p-regulator non divisible by

p when d is a random integer, which corroborates with experimental values:

i 3 4 5 6 7

di 3 11 47 97 4691

2−i log2(di) 0.20 0.21 0.17 0.10 0.19

One can expect d9 ≈ 20.2·2
9 ≈ 2 ·1015, which is out of reach of nowadays computers.

Moreover, once the condition on p-adic regulators is satisfied, one has to also test
the condition on class numbers. It seems to indicate that one needs new theoretical
results before finding examples of the Greenberg’s conjecture for p = 5 and Galois
groups (Z/2Z)t with t larger than 10.

5.4. Greenberg’s conjecture as a consequence of previous conjectures.

Since the Conjectures 2.16 and 2.13 predated Greenberg’s conjecture and are sup-
ported by strong numerical evidence it is interesting to note that they imply that
GC∞(Z/3Z, p) holds.

Theorem 5.6. Under Conjecture 2.13 and Conjecture 2.16, for all prime p > 3,
GC∞(Z/3Z, p) holds.

Proof. For any D let K(D) be the set of cubic cyclic number fields with conductor
less than D. Then we have

lim sup
D→∞

#{K ∈ K(D) non p-rational}
#K(D)

≤ lim sup
D→∞

#{K ∈ K(D), p | hKR′
K,p}

#K(D)

≤ Prob(p | hK) + Prob(p | R′
K,p)

≤ 2

p
+ 1−

∞
∏

i=1

(1− p−i) <
1

2
.
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Hence, there exist cyclic cubic fields K with arbitrarily large conductors such that
p doesn’t divide hKR′

K,p, and which by Lemma 2.1 are p-rational. �

Thanks to Conjecture 5.4 we can prove a similar result in the case of composite
of quadratic and respectively cubic cyclic real fields.

Theorem 5.7. Let t be an integer, q = 2 or 3 and p a prime such that p > 5qt. Un-
der Conjecture 5.4 and Conjecture 5.2, there exist infinitely many p-rational number
fields of Galois group (Z/qZ)t, or equivalently GC∞((Z/2Z)t, p) and GC∞((Z/3Z)t, p)
hold.

Proof. Let K(D) denote the set of totally real number fields of Galois group (Z/qZ)t

of conductor less than D. Then we have

lim sup
D→∞

#{K ∈ K(D) non p-rational)

#K(D)
≤ lim sup

D→∞

#{K | K(D) ∃F ⊂ K p | hFR
′
F,p}

#K(D)

≤ Prob(p | hK) + Prob(∃F ⊂ K, p | R′
F,p)

≤ 2− (1− 2

p
)

qt−1
q−1 − (1 −

∞
∑

i=1

p−i)
qt−1
q−1

≤ 2qt

q − 1
(
2

p
+

1

p(p− 1)
)

≤ 5qt

p
(
4

5
+

2

5(p− 1)
) < 1.

�

Note that Theorem 5.7 has a conclusion which encompass the one of Theorem 5.6,
but the difference in assumptions justifies to separate the two results. Also note
that the condition p > 5qt is artificial and it could be improved if one proved

Prob(p | hKR′
K,p) < Prob(p | hK) + Prob(p | R′

K,p).

If these two divisibility properties were orthogonal then Greenberg’s conjecture for
groups (Z/qZ)t, q = 2 or 3, would hold without any condition on p and t.

Conclusion and open questions

To sum up, Greenberg’s conjecture is solved in the particular case of G = Z/2Z
and it is well supported by heuristics and numerical experiments for G = (Z/qZ)t

when q = 2 or 3. In the general case of non-abelian Galois groups however our
results are limited to a list of examples.

The problem raises new questions about the independence of class numbers and
of p-adic regulators, which could be tackled by techniques of analytic number the-
ory, similar to the recent progress on the Cohen-Lenstra-Martinet heuristic. It is
interesting to create new algorithms to test divisibility of p-regulator and of the class
number by p with a better complexity than computing a system of fundamental
units and respectively the class number.

Greenbergs’ p-rationality conjecture corresponding to the case G = (Z/2Z)t

offers a new technique to construct Galois representations with open image in
GLn(Zp) with 4 ≤ n ≤ 2t−1 − 3 (cf [Gre16, Prop 6.7], solving new cases of the
inverse Galois problem. The previous results were restricted to n = 2 and n = 3,
so that the known examples with G = (Z/2Z)5 are enough to improve on previous
results.
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Appendix A. The algorithm of Pitoun and Varescon

"""

Compute the invariant factors as in Corollary 4.1 in the reference article.

"""

def FI(K,p,n):

f=K.defining_polynomial()

r1,r2=K.signature()

ab=pari(’ K = bnfinit(’ + str(f) + ’,1); ’+\

’ bnfcertify(K); ’+\

’ Kr = bnrinit(K, ’ + str(p^n)+ ’); ’+\

’ Kr.clgp.cyc ’)

# Kr is the Ray class group.

return ab

# return val(ai) and val(bj)

# where A_{p^{n}}(K) = Z/a1 x ... x Z/a_r2+1 x Z/b1 x ... x Z/bt

# and val_p(a1) >= ... >=val_p(a_r2+1) >= val_p(b1) >= ...

"""

Test is the number field of f is p-rational.

If this number field doesn’t verify Leopoldt’s conjecture

then the programme doesn’t terminate.

"""

def is_p_rational(f,p):

Zx=f.parent()

K.<a>=NumberField(f)

r1,r2=K.signature()

OK=K.ring_of_integers()

factorization_p=factor(p*OK) # pairs (pi,vi)

e=max([pivi[1] for pivi in factorization_p]) # second component of (pi,vi)

s=valuation(e,p)

n=2+s

old_ab=FI(K,p,n)

old_a=FI(K,p,n)[:r2+1] # first r2+1 components returned by FI

# old_a=[val_p(a1),val_p(a2),...,val_p(a_r2+1)]

old_b=FI(K,p,n)[r2+1:] # old_b=[val_p(b1),val_p(b2),...,val_p(bt)]

n+=1

found=false

while not found:

new_ab=FI(K,p,n)

new_a=FI(K,p,n)[:r2+1] # similar to old_a, corresponds to n+1

new_b=list(FI(K,p,n)[r2+1:]) # similar to old_b, corresponds to n+1

if new_a == [p*ai for ai in old_a] and min(new_a) > p*max(new_b+[1]):

# if new_b is empty we replace max(new_b) by 1

found=true

if new_b == len(new_b)*[1]: # the elements of new_b are non-negative

answer=true # their sum is 0 if they are all zero

else:

answer=false

old_ab=new_ab # increase n by 1
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old_a=new_a

n+=1

return answer

Appendix B. Implementation of Algorithm 1

"""

Given a cyclic cubic field K=Q(z) and an integer R, the function searches

a certificate that (z^R-1)/(x-1) is not a p-th power in K.

R,p = two integers

f = a polynomial defining a cyclic cubic field

m = conductor f

factm = factorization of m

OK = ring of integers of the number field of f

required_trials = number of failures before we give up

"""

def is_cyclo_p_th_power(R,p,m,factm,OK,f,required_trials):

euler_phi_m = prod([qe[0]^qe[1]-qe[0]^(qe[1]-1) for qe in factm])

# Euler totient of m

m1 = euler_phi_m // 3 # constant used in Lemma 3.8

q = next_prime(p)

trials = 0

while true:

# q runs through primes = 1 mod (p) larger than p

# next 4 lines generate next q

q = next_prime(q+1)

if q % p != 1:

q=next_prime(q+1)

continue

trials += 1 # increase number of trials

gq = (q*OK).factor()[0][0] # gq (gothic q) is a prime ideal above q

k_gq = gq.residue_field() # k_gq is the residue field of gq

abar = f.roots(k_gq)[0][0] # abar is a root of f in k_gq

e = m1*(norm(gq)-1)//p # expression used in Lemma 3.8

epsbar = (abar^R-1)/(abar-1) # image in k_gq of (z^R-1)/(z-1)

if epsbar^e != 1: # if (z^R-1)/(z-1) is not 1 (mod gq)

# then gq is a certificate

return False

else:

if trials >= required_trials:

return True

Appendix C. Implementation of Algorithm 2

"""

This function takes as parameter a polynomial f whose number field K is cyclic cubic.

The output is a unit u, which is not necessarily of infinite order.

If ord(u) is infinite and p is a prime which doesn’t divide the p-adic regulator of K,

then u is used to rapidly certify it.

"""

def fast_units(f):

K.<a>=NumberField(f)

OK=K.ring_of_integers()
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m=K.disc().sqrt() # m is the conductor of K because it is cyclic cubic

# the following 5 lines compute gm, an ideal such that gm^3=(m)

gm=OK

for p in m.prime_factors():

pfact=(p*OK).factor()

gp=prod([pe[0]^(pe[1]//3) for pe in pfact])

# # gp prime ideal such that gp^3=(p)

gm=gm*gp

if not gm.is_principal(): # is_principal uses LLL and \

# is not certified to find a generator\

# even if gm is principal

return K(1),K(1)

omega=gm.gens_reduced()[0] # (omega)=gm. Uses LLL.

sigma=K.automorphisms()[1] # sigma is a non-trivial automorphism of K

eps=sigma(omega)/omega # a unit of K, according to Remark 3.10

return eps,sigma(eps)

Appendix D. Implementation of Algorithm 3

"""

Schirokauer map associated to z and p. Parameter E doesn’t depend on z so it is pre-computed.

"""

def Schirokauer(z,p,E,gamma=None):

v = exp_mod_pk(z,E,p,k=2)-1 # Definition 3.9

unramified = not (z.parent().disc() % p == 0) # p divides Disc(K) ?

if unramified and gamma == None:

gamma=p # if NO we are done

elif gamma == None: # if YES and we have a

# uniformizer we are done

# otherwise compute a uniformizer

# next 6 lines compute a uniformizer gamma

K = z.parent() # deduce K from z

OK = K.ring_of_integers() # ring of integers

n=K.degree() # degree of K

rad=prod([gp_[0]^(gp_[1]//n) for gp_ in (p*OK).factor()] )

# rad = product of prime ideals above p

_,gamma=rad.gens_two()

# gamma is such that <p,gamma> == rad

Pcoeffs = (v/gamma).vector()

# Compute a polynomial P such that P(a) = v/gamma

# where a is such that K=Q(a).

# Call Pcoeffs the coefficients of P.

return [GF(p)(e) for e in Pcoeffs]

# Reduce the coefficients of P modulo p.

"""

Given a polynomial f and a prime p tries to find a certificate that

the p-adic regulator is not divisible by p.

"""

def criterium_p_not_divides_pRegulator(f,p):

K.<a>=NumberField(f) # K=Q(a) is the number field of f

OK=K.ring_of_integers() # ring of integers
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m = K.disc().sqrt() # since K is cyclic cubic, m=cond(K)

eps0,eps1=fast_units(f) # try to find unit using Algorithm 2.

if eps0 == 1: # in case of failure

return "Maybe" # we do not have a basis of subgroup

# of finite index

if (f.disc() // K.disc()) % p^2 == 0: # if p divides [OK:Z[a]]

return "Maybe" # we answer "Maybe"

# Compute E denoted e in Definition 3.9

E=ZZ(lcm([ee[0].norm()-1 for ee in (p*OK).factor()]))

# The next 9 lines compute gamma, a uniformizer of p

if K.disc() % p == 0:

OK=K.ring_of_integers()

n=K.degree()

rad=prod([gp_[0]^(gp_[1]//n) for gp_ in (p*OK).factor()] )

_,gamma=rad.gens_two()

if gamma == p:

gamma=p

else:

gamma=p

# compute the rank of the matrix in Algorithm 3.

Srank=Matrix(GF(p),2,3,[Schirokauer(eps0,p,E,gamma),Schirokauer(eps1,p,E,gamma)]).rank()

if Srank == 2:

return True

# Main enumeration.

Qx.<x>=QQ[’x’]

line=fd.readline() # line = next line of file fd

cond=0 # cond = conductor of previous field

while line != "": # until end f file

if not line[0] == "x": # skip comment lines

cond=int(line)

else:

f=Qx(line.strip()) # f = polynomial read in file

K.<a>=NumberField(f) # K=Q(a) is the number field of f

OK=K.ring_of_integers() # ring of integers

m = K.disc().sqrt() # since K is cyclic cubic, m=cond(K)

if m < cond: # skip f if its conductor is smaller

line=fd.readline() # than previous conductor because

continue # it has been already treated

for p in ps:

bool = criterium_p_not_divides_pRegulator(f,p)

if bool == "True":

bools = bools + ",False"

else:

bools = bools + ",Maybe"

gd.write(str(f)+":"+bools+"\n")

gd.flush()

line=fd.readline()
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