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SOME REMARKS AND EXPERIMENTS ON

GREENBERG’S p-RATIONALITY CONJECTURE

RAZVAN BARBULESCU AND JISHNU RAY

Abstract. The object of this article is to discuss a conjecture of Greenberg
and its links to the Galois inverse problem. We show that it is related to well
established conjectures in algebraic number theory and that some particular
cases are corollaries of known results. Finally, we do numerical experiments
which allow to formulate new conjectures which imply Greenberg’s conjecture.

1. Introduction

The notion of p-rationality of number fields naturally appears in several branches
of number theory. In Iwasawa theory, the study of Galois groups of infinite towers
of number fields, a celebrated conjecture of Greenberg concerns the λ-invariant [18]
which has been connected to p-rationality [33, Th. 1.1]. In the study of the inverse
Galois problem, Greenberg [19] proposed a method to prove that a p-adic Lie group
appears as a Galois group over Q under the assumption of existence of p-rational
fields. In algorithmic number theory, the density of p-rational number fields is
related to the Cohen-Lenstra-Martinet heuristic [8, 10] and to the valuation of the
p-adic regulator [14, 22].

This classical notion traces back to the work of Gras and Jaulent [16] which was
continued by Movahhedi, Nguyen Quang Do and Jaulent [30, 24]. The object of
this paper is to describe families of p-rational Galois fields over Q.

Let K be a Galois number field of signature (r1, r2), p an odd prime, µ(K)p the
roots of unity in K whose order is a power of p, Sp the set of prime ideals of K
above p, M the compositum of all finite p-extensions of K which are unramified
outside Sp and Mab the maximal abelian extension of K contained in M . Note
that the group Γ := Gal(M/K) is a pro-p group and that Γab ∼= Gal(Mab/K) is
the maximal abelian quotient of Γ.

Proposition-Definition 1.1 ([30] and [29]). The number field K is said to be
p-rational if the following equivalent conditions are satisfied:

(1) rankZp
(Γab) = r2 + 1 and Γab is torsion-free as a Zp-module,

(2) Γ is a free pro-p group with r2 + 1 generators,
(3) Γ is a free pro-p group.

If K satisfies Leopoldt’s conjecture [36, Sec 5.5] (e.g. K is abelian) then the above
conditions are also equivalent to

(4) •
{

α ∈ K× | αOK = ap for some fractional ideal a
and α ∈ (K×

p )p for all p ∈ Sp

}

= (K×)p

• and the map µ(K)p →
∏

p∈Sp
µ(Kp)p is an isomorphism.

We are very grateful to Ralph Greenberg who encouraged us to study this conjecture.
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Examples 1.2. (1) The imaginary quadratic fields Q(
√
−7), Q(

√
−11), Q(

√
−19),

Q(
√
−43), Q(

√
−67), Q(

√
−163) are p-rational for any odd primes p. In-

deed, they have no units other than ±1 and their rings of integers are
principal, so point (4) of the definition is verified.

(2) The field Q(i) is not 2-rational but is p-rational for every odd prime. Indeed,
〈2〉 = 〈1 + i〉2 but 2 is not a square in Q(i), so point (4) is not satisfied.

For many properties of p-rational fields we refer the reader to the corresponding
chapter of [13, Ch IV.3]. Greenberg’s result [19, Prop 6.1] is as follows: if K is
abelian and p-rational with the order of Gal(K/Q) dividing p − 1 then, for all
n ∈ N, there exists an explicit continuous representation

ρ : Gal(M/Q)→ GL(n,Zp)

such that ρ(Γ) is the pro-p Iwahori subgroup of SL(n,Zp), i.e. the subgroup of
SL(n,Zp) whose reduction mod p is the upper unipotent subgroup, under an as-
sumption on the characters of Gal(K/Q). Under the same hypothesis, that there
exists a p-rational number field K, Cornut and Ray [11, Sec 3] showed that the
pro-p Iwahori subgroup of the adjoint simple reductive group is Gal(M/K), which
solves particular cases of the inverse Galois problem.

Greenberg noted that the hypothesis on the characters are met if the Galois
group Gal(K/Q) = (Z/2Z)t for some t, which raises the question of existence of
p-rational fields with such Galois groups. The goal of this work is to investigate the
following conjecture:

Conjecture 1.3 (Greenberg [19]). For any odd prime p and for any t, there exist
a p-rational field K such that Gal(K/Q) ∼= (Z/2Z)t.

In this article we are investigating a generalization of Greenberg’s conjecture to
other finite groups.

Problem 1.4. Given a finite group G and a prime p, decide the following state-
ments:

(1) Greenberg’s conjecture holds for G and p: there exists a number field of
Galois group G which is p-rational, in this case we say that GC(G, p) is
true;

(2) the infinite version of Greenberg’s conjecture holds for G and p: there exist
infinitely many number fields of Galois group G which are p-rational, in
this case we say that GC∞(G, p) is true.

Note that this problem is a strenghtening of the inverse Galois problem, which
is itself open in the non-abelian case (cf [27]). Also note that we don’t discuss the
related conjecture of Gras [14, Conj. 8.11] which states that every number field is
p-rational for all but finitely many primes.

Let Φm denote the cyclotomic polynomial associated to m and ϕ(m) its degree.
The main results in this article are summarized by the following result.

Theorem 1.5. (1) For all odd primes p, GC∞(Z/2Z, p) holds.
(2) Assume there exist infinitely many odd integers a 6≡ 21, 23 (mod 25) so

that, for m = 1
4 (a

2+27), 3 | ϕ(m), 11 ∤ ϕ(m) and Φm is irreducible modulo
11 and 2. Then GC∞(Z/3Z, 5) holds.

(3) Under conjectures based on heuristics and numerical experiments (Conjec-
ture 5.4 and Conjecture 5.2), when q = 2 or 3, for any prime p and any
integer t such that p > 5qt, GC∞((Z/qZ)t, p) holds.
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Roadmap. In Section 2, we relate the notion of p-rationality to that of class
number and p-adic regulator, which is enough to prove GC∞(Z/2Z, 3), which is
point (1) of Theorem 1.5, and to give an example of p-rational field with Galois
group (Z/2Z)5. We also recall the existing conjectures on class number (Cohen-
Lenstra-Martinet) and p-adic regulator.

In Section 3, we start by recalling an algorithm to test the divisibility by p of
the class number of cyclic cubic fields without computing the class number, due to
N.-M. Gras. Furthermore we give a new algorithm to produce units in cyclic cubic
fields which are used to test the valuation in p of the p-adic regulator, which is faster
then computing a system of fundamental units. Then we recall the algorithm of
Pitoun and Varescon to test p-rationality for arbitrary number fields, which allows
us to give examples of p-rational number fields of non-abelian Galois groups.

In Section 4, we find a family of cyclic cubic number fields which contains in-
finitely many 5-rational fields under a list of arithmetic assumptions; this proves
point (2) of Theorem 1.5.

In Section 5, we do a numerical experiment to test divisibility by p of the class
number of cyclic cubic fields with discriminant up to 1014, which extends the exist-
ing calculations [9], confirming the Cohen-Lenstra-Martinet conjecture. Then we
do a numerical experiment for number fields of Galois group (Z/3Z)2 and discrim-
inant up to 1012 and, thanks to its agreement with the Cohen-Lenstra-Martinet
heuristic, we can write down Conjecture 5.2 on the divisibility by p of the class
number of such fields. Next we prove a Kuroda-like formula for p-adic regulators of
fields of Galois group (Z/2Z)2, which relates the p-adic regulator of the compositum
to those of the quadratic subfields. Based on a heuristic and numerical experiments
we write down Conjecture 5.4 which applies to fields of Galois group (Z/qZ)t where
q = 2 or 3. This allows us to prove point (3) of Theorem 1.5.

2. Preliminaries

In the general case, p-rationality is hard to test so that it is important to have
a simple criterium in terms of classical invariants as the class number and p-adic
regulator (Sec 2.1). This raises the question of the density of number fields whose
class number is not divisible by p (Sec 2.2) and of the valuation in p of the p-adic
regulator (Sec 2.3).

In this sequel, p denotes an odd prime and K an abelian number field, Disc(K)
the discriminant of K, OK the ring of integers, EK the unit group, cl(K) the ideal
class group of K, clp(K) the p-part of the class group cl(K), hK the class number
of K, (r1, r2) the signature of K, r = r1 + r2 − 1 the rank of EK , Sp the set of
primes of K lying above p, Kp the completion of K at a prime p ∈ Sp. For c ∈ N∗

we denote ζc a primitive c-th root of unity.

2.1. A simple criterion to prove p-rationality. Let us call p-primary unit, any
unit in (

⋂

p|p K
p
p)−Kp.

Lemma 2.1 ([19] Rem 3.2). Assume K is an abelian field, p an odd prime such
that p ∤ hK and K has no pth roots of unity. Then K is p-rational if and only if K
has no p-primary units.

Proof. If K has a p-primary unit α then αOK = (OK)p and this proves that K is
not p-rational (point (4) of Definition 1.1).
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Conversely assume that K has no p-primary units. Let α ∈ K∗ be such that
αOK = ap and ∀p | p, α ∈ (Kp)

p. Then a is a p-torsion element in the class group,
which has order relatively prime to p so a is a principal ideal. If β be a generator of
a then αOK = βpOK so ε := αβ−p is a unit. For all p | p, α ∈ (Kp)

p so ε ∈ (Kp)
p.

Since K is assumed without p-primary units there exists η ∈ K so that αβ−p = ηp,
so α ∈ Kp. Hence K is p-rational. �

Lemma 2.2 ([19] Prop 4.1.1(i) ). Let p be an odd prime and K a quadratic
imaginary number field; if p = 3 we additionally assume that it is unramified. If
p ∤ hK then K is p-rational.

Proof. Case p = 3 unramified. The equation ϕ(n) ≤ 2, where ϕ is Euler’s totient
function, has no odd solutions other than 3. If K contains the 3rd primitive root
of unity ζ3 then it also contains Q(ζ3) so 3 is ramified, hence the conditions in
the hypothesis rule out the existence of 3rd roots of unity. After Lemma 2.1, K is
3-rational.

Case p ≥ 5. Since K is imaginary, the unit rank is zero, so it contains no
p-primary units. Lemma 2.1 allows to conclude that K is p-rational. �

Hartung proved what it takes to conclude GC∞(Z/2Z, p) for p = 3 and noted
that his method works for any p:

Lemma 2.3 ([21]). For any prime odd prime p there exist infinitely many square-
free D < 0 such that h

Q(
√
D) ·D 6≡ 0 (mod p).

Corollary 2.4. For all odd prime p, GC∞(Z/2Z, p) holds.

The study of p-rationality in general case of G = (Z/2Z)t with t ≥ 1 reduces to
the case of quadratic fields as proven by a result of Greenberg.

Lemma 2.5. ([19, Prop 3.6]) Let q 6= p be a prime, K be a number field such that
its Galois group Gal(K/Q) ∼= (Z/qZ)t. Then K is p-rational if and only if all the
subfields of K of degree q is p-rational.

We combine the previous results to obtain:

Proposition 2.6. Let K be a number field such that Gal(K/Q) ≃ (Z/qZ)t for
some prime q and let p ≥ 5 be a prime different from q. Then if for all cyclic
subfields of K the class number is not divisible by p and has no p-primary units
then K is p-rational.

Example 2.7. The field K = Q(
√
2,
√
3,
√
11,
√
47,
√
97) is p-rational. Indeed,

Table 2.7 lists all the quadratic subfields of K together with their class numbers
and normalized 5-adic regulators.

In order to investigate the existence of p-rational fields it is necessary to discuss
the density of fields whose class number is divisible by p.

2.2. Density of fields where p | h : the Cohen-Lenstra heuristic. Cohen and
Lenstra [8, 7] created a heuristic principle which can be used to derive conjectures
on the density of class numbers divisible by a given integer. We say that a set S of
number fields has a density δ and write Prob(S) = δ if

lim
X→∞

#{K ∈ S | Disc(K) ≤ X}
#{K | Disc(K) ≤ X} = δ.
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D hQ(
√
D) ε

Q(
√
D

ε24
Q(

√
D
−1

5 (mod 5)

2 1
√
2 + 1 4

√
2

3 1
√
3− 2

√
3

11 1 3
√
11 + 10

√
11

47 1 7
√
47− 48 3

√
47

97 1 569
√
97 + 5604 2

√
97

6 1 2
√
6 + 5 2

√
6

22 1 42
√
22− 197 3

√
22

94 1 221064
√
94− 2143295 4

√
94

194 2 14
√
194− 195 4

√
194

33 1 4
√
33 + 23 4

√
33

141 1 8
√
141− 95 3

√
141

291 4 17
√
291 + 290

√
291

517 1 465/2
√
517− 10573/2

√
517

1067 4 43
√
1067 + 98 3

√
1067

4559 4 8728944
√
4559− 589381505

√
4559

66 2 8
√
66 + 65 4

√
66

282 2 140
√
282− 2351 3

√
282

582 4 8
√
582 + 193 4

√
582

1034 2 494
√
1034− 15885 2

√
1034

1551 4 1377/2 ∗ a+ 308365/2
√
1551

2134 8 210
√
2134− 9701 2

√
2134

3201 8 168
√
3201 + 9505 3

√
3201

9118 4 13498005384
√
9118 + 1288900496447 4

√
9118

13677 4 39/2
√
13677 + 4561/2

√
13677

50149 12 1377/2
√
50149 + 308365/2 4

√
50149

3102 4 19642
√
3102 + 1093973 2

√
3102

6402 8 80
√
6402 + 6401 4

√
6402

27354 8 432184
√
27354− 71479105

√
27354

100298 8 22440231983820
√
100298 + 7106789938093649 4

√
100298

150447 32 8
√
150447− 3103 3

√
150447

300894 16 3654497770649690
√
300894 + 2004631106498511701 2

√
300894

Table 1. The 31 quadratic subfilds of Q(
√
2,
√
3,
√
11,
√
47,
√
97).

For simplicity we write Prob(property) to designate the density of the set of number
fields satisfying the property. Cohen and Lenstra studied the case of quadratic
fields, Cohen and Martinet [10, 9] studied the case of fields K of degree 3 and 4,
not necessarily cyclic, while more recently Miller [28, Sec 3] studied the case of
cyclic extensions:

Conjecture 2.8 ([28] Sec 3). Let K be a cyclic extension of Q of odd prime degree

q and p a prime not dividing q. Then Prob(p ∤ hK) =
∏

k≥2(1− p−kω)
q−1
ω where ω

is the multiplicative order of p modulo q.
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In the particular case of cubic cyclic fields this conjecture corroborates with the
conjecture of Cohen and Martinet:

Conjecture 2.9 ([9] Sec 2, Ex 2(b)). Let K be a cyclic cubic number fields and m
an integer non divisible by 3. Then we have

Prob(m | hK) =
∏

p|m,p≡1 mod 3

(

1− (p)2∞
(p)21

)

∏

p|m,p≡2 mod 3

(

1− (p2)∞
(p2)1

)

,

where (p)∞ =
∏

k≥1(1− p−k) and (p)1 = (1− p−1).

For an overview on recent progress on the Cohen-Lenstra-Martinet heuristic we
refer the reader to a series of recorded lectures of Fouvry [12].

2.3. Density of fields with p-primary units : valuation of p-adic regulator.

The condition about p-primary units in Lemma 2.1 can be stated in a simpler
manner when K is totally real. For this, we define the normalized p-adic regulator
as an element of Zp and its divisibility by p will be equivalent to the existence of
p-primary units (Def (2.10)).

Let rad(p) =
∏

p|p p be the radical of p in K and

τ : {x ∈ K∗ | ∀p | p, valp(x) = 0} → 1 + rad(p)
x 7→ xe,

where E = lcm({N(p)−1, p | p}) and N(p) is the norm of p. Let ℓp(1−x) =
∑∞

i=1
xi

i
be the p-adic logarithm defined on 1+rad(p) with values in rad(p). Then we finally
set logp = ℓp ◦ τ , i.e. for any integer x of K whose valuation at p is zero for all p | p,
we call p-adic logarithm

logp x =
∞
∑

i=1

(−1)i
i

(xE − 1)i.

Definition 2.10. Let K be totally real of degree n and unit rank r = n− 1. Then
we call p-adic regulator

RK,p = det
(

logp(σj(εi))
)

,

where σj are r embeddings of K in Qp. We then call normalized p-adic regulator

R′
K,p =

(RK,p)
n

N(rad(p))r
.

Note that R′
K,p = (RK,p/p

r)n if p is unramified.

Lemma 2.11. Let p be a prime and K a totally real number field. If p is ramified
we moreover assume that deg(K) < p−1. Then R′

K,p is an element of Zp. Moreover

p divides R′
K,p if and only if K has p-primary units.

Proof. The p-adic regulator RK,p belongs a priori to Qp and since it is stable by
any automorphism of K, it belongs to Qp. As a quotient of RK,p by an element of
Qp, R

′
K,p is also in Qp.

Let ε1, . . . , εn−1 be a system of fundamental units, where n = degK. Let
σ1, . . . , σn be the embeddings of Qp ⊗ K in Qp. Let Op be the ring of integers

of Qp. Note that if ε is a unit then
∑n

j=1 σj(logp(ε)) = logp(1) = 0. Hence, if

∀j 6= n σj(logp(ε)) = 0 then σn(logp(ε) = 0.
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If p is unramified, we have R′
K,p = (det(

logp σj(εi)

p ))n. Suppose now that p is

ramified. Let p be a prime ideal dividing p and γ be such that p = 〈p, γ〉. Then
γ belongs to p but to none of the other prime ideals dividing p. Then ∀x ∈ Op,
x
γ ∈ pOp if and only if x ∈ prad(p). Also note that N(rad(p)) and

∏

σj(γ) are

equal up to a factor relatively prime to p.
Note that the ramification index e of rad(p) is at most n, hence it is less than or

equal to p− 1. Then the following conditions are equivalent:

(1) logp(x) ∈ p · rad(p)
(2) x is a pth power in every completion.

Indeed, let us suppose (1). Then valp(
logp(x)

p ) ≥ valp(rad(p)) = 1
e > 1

p−1 , so

x = exp(
logp x

p )p so it is a pth power in every completion. Suppose (2), i.e. x =

yp for some y in
⋂

p|p Kp, then
logp x

p = logp y and, since logp maps into rad(p),

logp x ∈ p · rad(p).
We have then

p | R′
K,p

⇔ p | det
(

σj(
logp(εi)

γ )
)

⇔ det
(

σj(
logp(εi)

γ )
)

∈ pOp

⇔ ∃a1, . . . , ar ∈ Zr − (pZ)r ∀j 6= n σj(
logp(

∏
i ε

ai
i )

γ ) ∈ pOp

⇔ ∃a1, . . . , ar ∈ Zr − (pZ)r ∀j σj(
logp(

∏
i ε

ai
i )

γ ) ∈ pOp

⇔ ∃a1, . . . , ar ∈ Zr − (pZ)r
logp(

∏
i ε

ai
i )

γ ∈ pOp

⇔ ∃ε ∈ EK − Ep
K logp(ε) ∈ p · rad(p)

⇔ K has a p-primary unit

�

Very little is known on the probability that the normalized regulator is divisible
by p. Schirokauer [34, p. 415] made the heuristic that the matrix which defines R′

K,p

modulo p is a random matrix with coefficients in Fp and therefore the probability
that p | R′

K,p isO( 1p ). Later Hofman and Zhang studied the case of cyclic cubic fields

and gave heuristic arguments and numerical experiments in favor of the following
conjecture.

Conjecture 2.12 ([22] Conj 1). For primes p > 3 we have

Prob(p | R′
K,p) =







1
p2 , if p ≡ 2 (mod 3)

2
p − 1

p2 , if p ≡ 1 (mod 3).

3. Algorithmic tools

Gathering numerical data on the class group, unit group and respectivey ray
class group of number fields is a hard task despite the important progress done in
the design of algorithms. Indeed, the best algorithms to compute class number are
derived from Buchman’s algorithm [3] and have a non-polynomial complexity. In
the context of the Cohen-Lenstra-Martinet heuristic it is not necessary to compute
hK but only to test its divisibility by p. In Section 3.2 we recall an algorithm
of polynomial complexity which tests the divisibility of hK by p without other
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complete
information

class group unit group ray group

partial
information

p divides hK p divides R′
K,p K is p-rational

Table 2. List of invariants associated to a number field K and of
partial information associated to a prime p.

information on hK . Similar questions can be studied for the unit and ray class
groups.

In the context of the p-adic regulator valuation it is not necessary to compute
the regulator to infinite precision, but only to test the divisibility of the normalized
p-adic regulator by p. When using the best known algorithms there is no gain in
complexity when the precision is reduced because one needs to compute a system
of fundamental units, which is done by a variant of Buchman’s class number algo-
rithm [3]. This motivates us in Section 3.3 to propose a fast method to compute
units, which are not necessarily a basis of the unit group but which allow us in
general to test the divisibility by p of the normalized p-adic regulator.

Ray class group is related to the cartesian product of the class number and the
unit group and from an algorithmic view point, it is similar to these two groups,
and it is not surprizing that the algorithm of Cohen et al. [6] has a non-polynomial
complexity. It is not clear what is the relevant partial information to associate to
the ray class group, but Pitoun and Varescon [32] showed that it allows to test if
K is p-rational by an algorithm that we recall in Section 3.4.

3.1. An algorithm to enumerate abelian number fields. Numerical compu-
tations of densities require to make the list of all the number fields K of a given
degree and Galois group such that |Disc(K)| is less than a given bound X . The task
is very much simplified in the case of abelian extensions due the following classical
result.

Lemma 3.1 ([36] Thm 3.11,The Conductor-discriminant formula). Let K be an
abelian number field and let Ξ be the group of characters Gal(K/Q) → C∗. Then
we have

Disc(K) = (−1)r2
∏

χ∈Ξ

cχ,

where cχ is the conductor of χ.

In particular if Gal(K/Q) ≃ (Z/qZ)t, where q is a prime number, we have a very
simple relation between the conductor and the discriminant.

Lemma 3.2. Let K be a number field such that Gal(K/Q) ≃ (Z/qZ)t. Then we
have,

(1) the conductor cK of K can be written as cK = p1 · · · ps or cK = q2p1 · · · ps−1

where pi ≡ 1 mod q are distinct primes;

(2) Disc(K) = c
(q−1)qs−1

K .

Proof. (1) For any abelian group G we call q-rank of G, denoted by rankqG, the
dimension of the Fq vector space G/Gq. Then one easily checks that for any prime
pi 6≡ 1 mod q different than q, rankq(Z/p

ei
i Z)∗ = 0; for any prime pi ≡ 1 (mod q)
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and any ei ≥ 1, rankq(Z/p
ei
i Z)∗ = rankq(Z/piZ)

∗. Hence rankq(Z/qZ)
∗ = 0 and

for any e ≥ 2, rankq(Z/q
eZ)∗ = 1. If c is an integer of the form in point (1) and c′

is a multiple of c then (Z/cZ)∗ and (Z/c′Z)∗ have the same q-rank. By definition,
the conductor of a number field of Galois group (Z/qZ)t is the smallest integer c so
that the q-rank of (Z/cZ)∗ is t.

(2) For each prime power a dividing cK we have to count the number of characters
defined on (Z/cKZ)∗ which are not trivial on (Z/aZ)∗. This is the number of
subgroups of Gal(K/Q) ≃ (Z/qZ)t whose quotient group is Z/qZ and further the
number of linear forms from Ft

q to Fq which are non-zero on the first component,

hence the total number is (q − 1)qt−1. Due to the conductor-discriminant formula
(Lemma 3.1) we obtain the result for Disc(K). �

In numerical experiments, we enumerate all fields K of Galois group (Z/qZ)t

with |Disc(K)| ≤ X by enumerating all positive integers c less than X
1

qt−1(q−1) of
the form given by point (1) of Lemma 3.2. Next we compute all subgroups H of
(Z/cZ)∗ such that (Z/cZ)∗/H ≃ (Z/qZ)t. Finally we compute the fixed field of H .

In the particular case of cubic cyclic fields one does not need any computations
because there exists a canonical polynomial to define every cyclic cubic number
fields of conductor m.

Lemma 3.3 ([5] Thm 6.4.6). Let m be an integer of the form
∏t

i=1 pi or 9
∏t−1

i=1 pi
where pi ≡ 1 (mod 3). Then there are 2t−1 cubic cyclic fields of conductor m. Each

of them corresponds to one solution of the equation m = a2+27b2

4 by the formula

(3.1) fa(x) =

{

x3 + x2 + 1−m
3 x− m(3+a)−1

27 , if 3 ∤ a
x3 − m

3 x− am
27 , otherwise.

The subfamily m = a2+27
4 has a pleasant property that deserves our attention.

3.1.1. A family with explicit units. For a particular family of cubic cyclic fields we
have a closed formula of the minimal polynomial of a unit of infinite order.

Lemma 3.4. Let a be an odd integer, m = 1
4 (a

2+27) and let K be the number field
defined by Equation (3.1). Then K contains an integer ω whose minimal polynomial
is

ga(x) = x3 −mx2 + 2mx−m

and η := σ(ω)/ω is a a unit whose minimal polynomial is

µa(x) = x3 − 2m− 3− a

2
x2 +

2m− 3 + a

2
x− 1.

Additionally, K contains a unit whose minimal polynomial is

νa(x) = x3 + (m− 3)x2 + 3x− 1.

Proof. Let α be a root of fa in K. One can plug in ga the element

ω =

{

α2

36 + αa
3 + α2 + 3

4 , if 3 ∤ a
a2

36 + aα
3 + α2 + a

9 + 2
3α+ 31

36 , otherwise.

and note that ga(ω) = 0, so ga has a root in K for any a. We set η = σ(ω)
ω and, for

i ∈ N, ωi = σi(ω). Let x3 −Ax2 +Bx− 1 be the minimal polynomial of ω over Q.
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Then

A+B =

2
∑

i=0

ωi+1

ωi
+

ωi

ωi+1
=

1

m
(

2
∑

i=0

ω2
i+1ωi + ωi+1ω

2
i )

=
1

m



(
2
∑

i=0

ωiωi+1)(
2
∑

i=0

ωi)− 3
2
∏

i=0

ωi



 = 2m− 3.

We also have

AB = (

2
∑

i=0

ωi+1

ωi
)(

2
∑

i=0

ωi

ωi+1
) = m2 − 4m+ 9.

Hence A and B are such that the minimal polynomial of η = σ(ω)/ω is µa.
Finally, we test by direct computations that νa has a root

η′ =

{

9−(a+6α)2

36 , if 3 ∤ a
(a+6α+5)(a+6α−1)

36 , otherwise.

which is automatically a unit in K. �

Remark 3.5. Let ηg = NQ(ζm)/K

(

ζg
m−1

ζm−1

)

for some g ∈ N. For all odd value of a in

[1, 2000] such that m has no square factors other than 9 the minimal polynomial of
ηg is

µηg ,Q =

{

µa , if 3 ∤ a
νa , otherwise.

However, ga is not necessarily the minimal polynomial of ω = NQ(ζm)/K(ζm−1). For

example, when m = 313 the minimal polynomial of ω is x3−143mx2+122mx−m.

3.2. An algorithm to test if p divides hK. Nicole-Marie Gras [17] designed an
algorithm which allows to test if hK is divisible by p without computing hK .

Definition 3.6. Let K be an abelian number field. We call cyclotomic units of

Leopoldt the set CK of units of K which are of the form ±ηa := NQ(ζc)/K(
ζa
c −1
ζc−1 )

where c is the conductor of K and a runs through all elements of Z/cZ.

The main ingredient of Gras’ algorithm is a result due to Leopoldt:

Lemma 3.7 ([15] section III 3). Let K be a cyclic number field of odd prime degree.
Then

hK = [EK : CK ],

where CK is the group of cyclotomic units of Leopoldt.

For every a in (Z/cZ)∗ we denote by σa the automorphism of Q(ζc) given by
ζc 7→ ζac . One starts the algorithm by computing ηa for every a in a system of
representatives of

(Z/cZ)∗/{a ∈ (Z/cZ)∗ | σa|K = id},
where id is the identity map. Then one tests if one can form a product of ηa’s
which is an p-th power. This step was improved by van der Linden [35] and
Hakkarainen [20] to take a polynomial time instead of exponential.
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Lemma 3.8. Let K be a cyclic number field of degree n and conductor m. Let
p and q be two primes such that q ≡ 1 (mod p). Let q be a prime ideal of Q(ζm)
above of q and let ρq : Z[ζm] → kq be the canonical projection on kq = Z[ζm]/q
which is the residual field of q. Then for any γ ∈ Z[ζm] we have

ρq(NQ(ζm)/K(γ))
q−1
p = ρq(γ)

ϕ(m)
n

q−1
p .

Consequently, if there exists q such that ρq(γ)
ϕ(m)

n
p−1
q 6= 1 then γ is not a pth power

in K.

Proof. All τ ∈ Gal(Q(ζm)/Q) induce automorphisms of kq so ρq(τ(γ)) = ρq(γ)
qc for

some c ∈ N. Since q ≡ 1 (mod p), (ρq(γ)
qc)

q−1
p = ρq(γ)

q−1
p . We conclude because

ρq(NQ(ζm)/K(γ)) =
∏

τ∈Stab(K) ρq(τ(γ)), where Stab(K) = {σ ∈ Gal(Q(ζm)/Q) |
σ(K) = K}. �

The van der Linden algorithm, that we recall in Algorithm 1, consists in trying
various primes q and in applying Lemma 3.8.

Algorithm 1 van der Linden

Require: a constant P and a cyclic cubic number field K given by a conductor m
and an element g of (Z/mZ)∗ such that ζm 7→ ζgm doesn’t fix K

Ensure:
false, if q ∤ h
true with probability P , if q | h.

N ← ⌈logp 1
1−P ⌉

repeat

q ← next prime congruent to 1 mod p
increment i

until i>N or xg−1
x−1

ϕ(m)
3

q−1
p 6≡ 1 mod 〈q, f(x)〉

3.3. An algorithm to test if p divides the normalised p-adic regulator.

The relevant notion in this section is the p-adic logarithm but for computational
issues we focus on a truncation of it that deserves its own name.

Definition 3.9 ([34]). Let f ∈ Z[x] be a monic irreducible polynomial and let p
be a prime which does not divide the index of f , i.e. p ∤ [OK : Z[α]] where OK is
the ring of integers in the number field K of f and α is a root of f in its number
field. The Schirokauer map associated to f and p is

λf,p : {a1(x)
a2(x)

| a1, a2 ∈ Z[x], p ∤ Res(a1a2, f)} → Fp[x]/〈f(x)〉 ≃ Fdeg f
p

a1/a2 ∈ Q(x) 7→ (ape−1
1 −1)−(ape−1

2 −1)

p mod 〈p, f〉,

where e = lcm({deg fi | fi divides f in Fp[x]} and Res denotes the resultant. Note
that the definition is well defined because, for all a, b ∈ Z[x], λf,p(ab) = λf,p(a) +
λf,p(b).

Also note that we can identify Q[x]/〈f(x)〉 and K so that every element of K is
represented by a polynomial. In this language the condition p ∤ Res(a1a2, f) states
that ∀p | p, valp(a1

a2
) = 0.
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When p is non-ramified R′
K,p is not divisible by p if and only if the matrix

formed with λf,p(ε1) . . . , λf,p(εr) has full rank. This implies that the result of the
computations is independent on the choice of f .

The remaining question is that of computing a system of generators for EK/Ep
K .

In the case of the family of Section 3.1.1, this is easily done using an explicit formula.
However in the general case of cyclic cubic fields we propose a new technique.

Lemma 3.10. Let K be a number field of odd prime degree q and of cyclic Galois
group and call m its conductor. Then we have:

(1) for any prime factor ℓ of m there exists a principal ideal l so that lq = ℓOK ;
(2) Let ω ∈ OK be a generator of l and let σ be a generator of Gal(K/Q). Then

σ(ω)
ω is a unit.

Proof. (i) Let ℓ be a prime factor of m other than q. Then ℓ is ramified in K and,
since degK = q is prime, there exists a prime ideal l so that ℓ = lq. Also, since
ℓZ[ζℓ] = ((ζℓ− 1)Z[ζℓ])

(ℓ−1), ℓZ[ζm] = ((ζℓ− 1)Z[ζm])(ℓ−1) so that in Z[ζm] we have

lq = 〈ζm − 1〉ℓ−1.

By unique factorization we deduce that lZ[ζm] = 〈ζm−1〉
ℓ−1
q and, since the exponent

is an integer, we conclude that l is principal.
(ii) Since ωOK = l, σ(ω)OK = σ(l). But σ(l) = l because mq = ℓOK =

σ(ℓ)OK = σ(l)q and the factorization into prime ideals is unique. Then ωOK =
σ(ω)OK , hence their quotient is a unit. �

Algorithm 2 Fast computation of a unit of cyclic cubic K.

Require: a cubic cyclic field K and a factorization of its conductor m
Ensure: a unit of K
1: for ℓ ≡ 1 mod q factor of m do

2: factor ℓ in OK to obtain l using [5, Sec 4.8.2]
3: compute a generator ωℓ of the ideal l using [4].
4: end for

5: return a product of the units ηℓ := σ(ωℓ)/ωℓ

In order to do statistics about the p-adic regulator we proceed as in Algorithm 3.
Note that Schirokauer’s function is an application with image in 〈p2, f〉 where f is
a defining polynomial of K. Hence we call λ0, λ1, λ2 the coefficients of 1, x and x2

of the image of each element.

3.4. An algorithm to determine p-rationality. For any n let Apn denote the
p-part of the ray class group ([13] Ch I.4) of K with respect to the ideal pn. For
any finite abelian group G we denote by FI(G) the invariant factors of G i.e. the
integers [d1, . . . , dk] so that G ≃ ⊕k

i=1Z/diZ and d1 | d2 | · · · | dk. The following
result reduces the problem of testing p-rationality to that of computing the ray
class group, which is studied for example in [6] and implemented in PARI [1].

Lemma 3.11 ([32] Thm 3.7 and Cor 4.1). Let K be a number field which satisfies
Leopoldt’s conjecture. Let e be the ramification index of p in K. Then there exists
n ≥ 2 + e so that the invariant factors of FI(Apn) can be divided into two sets
FI(Apn) = [b1, . . . , bs, a1, . . . , ar2+1] such that
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Algorithm 3 Test if p | R′
K,p for a list of random cyclic cubic fields

Require: a list of cyclic cubic fields
Ensure: a certificate on the divisibility of R′

K,p by p
for K in list of cyclic cubic fields do

Apply Algorithm 2 to compute a unit η
Apply algorithms in [37] to factor a defining polynomial of K in K[x] and

obtain a non-trivial automorphism σ
Compute the rank r of the matrix

(

λ0(ε1) λ1(ε1) λ2(ε1)
λ0(ε2) λ1(ε2) λ2(ε2)

)

,

where λ0, λ1, λ2 are the Schirokauer maps of a polynomial defining K
if r == 2 then

return p ∤ RK,p

else

Compute a truncation of the normalized p-adic regulator using algorithms
in [31] and return the result of the test whether this rank is 2

end if

end for

(1) min(valp(ai)) > max(valp(bi)) + 1;
(2) FI(Apn+1) = [b1, . . . , bs, pa1, . . . , par2+1].

Moreover, K is p-rational if and only if valp(b1) = valp(b2) = · · · = valp(bs) = 0.

Example 3.12. The algorithm does not restrict to abelian number fields so that
we could construct a examples of p-rational fields for each Galois group of quartic
polynomials. In Table 3.12 we list the set of primes less than 100 where the number
fields of the listed polynomials are not p-rational.

Galois
group

∀p ≤ 100, p− rational non 7-rational

Z/4Z x4 + x3 + x2 + x+ 1 x4 − 23x3 − 6x2 + 23x+ 1
V4 x4 − x2 + 1 x4 + 10x2 + 1
D4 x4 − 3 x4 − 6
A4 x4 + 8x+ 12 x4 − x3 − 16x2 − 7x+ 27
S4 x4 + x+ 1 x4 + 35x+ 1

Table 3. p-rationality of a list of number fields.

To sum up we have a fast criterion for p-rationality given by Lemma 2.1 and a
slow condition which works in the general case which is given by Lemma 3.11. For
efficiency reasons we implemented a combination of the two as given by Algorithm 4.

In an experiment we tested p-rationality the 158542 cyclic cubic fields of con-
ductor less than 106. The proportion of fields where 5 | hK is expected to be
0, 000016 and the proportion of fields where 5 | R′

K,5 is expected to be 0.04, which
is matched very well by the experiments: 5351 fields found for an expected number
of 0.04 · 158542 ≈ 6127. It turns out that in all the 5351 cases where we couldn’t
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Algorithm 4 test p-rationality of a list of cyclic cubic fields

Require: a prime p and a list of cyclic cubic fields
Ensure: for each number field the information whether it is p-rationality

for K in list of cyclic cubic fields do

Apply Algorithm 1 to certify that p does divides hK when it is possible
Apply Algorithm 3 to certify that p does not divides R′

K,p when it is possible

if we have certificates that p ∤ hKR′
K,p then

return True and certificates
else

Apply Lemma 3.11 to decide if K is p-rational
Return answer and certificate

end if

end for

apply the criterion in Lemma 2.1 the field was actually non 5-rational. In terms of
speed the criterion is much faster making the application of the criterion for 158542
fields negligible with respect to the application of Lemma 3.11 for the 5351 fields
where the criterion couldn’t be applied. Hence we had a speed-up of 52 and, for a
prime p, we expect a speed-up of p/2 when p ≡ 1 (mod 3) and of p2 when p ≡ 2
(mod 3).

4. Some families of p-rational fields

Recall that, when given a cyclic cubic field K, in Algorithm 1 one searches for a
prime q where Lemma 3.8 applies, and hence certifies that the class number is not
divisible by p. The idea of this section is to fix q = 11 and to search for cyclic cubic
fields where Lemma 3.8 applies for p = 5. Under some arithmetic assumptions this
allows to construct an infinite family of fields of class number non-divisible by 5.
We can also find a family of number fields where the 5-adic regulator is not divisible
by 5 thanks to the explicit formula in Section 3.1.1. Under the assumption that the
two families intersect we obtain an infinite family of 5-rational cyclic cubic fields.

Lemma 4.1. Let m be an integer such that 3 | ϕ(m), 11 ∤ ϕ(m) and Φm is
irreducible modulo 11 and modulo 2. Then the number field of fa defined in Equa-
tion (3.1) has class number not divisible by 5.

Proof. Since 2 is a generator of (Z/mZ)∗, η := NQ(ζm)/K(
ζ2
m−1

ζm−1 ) is a generator of

the group of cyclotomic units. By Lemma 3.7 the class number is divisible by 5 if
and only if η is a 5th power. We will prove that ρq(η)

2 6= 1, which shows that ρq(η)
is not a 5th power and therefore η is not a 5th power.

We apply Lemma 3.8 to γ =
ζ2
m−1

ζm−1 , n = 3, p = 5 and q = 11, so ρq(η)
2 =

(ρq(ζm)+1)
2ϕ(m)

3 . Since 11 is a generator of (Z/mZ)∗, Φm is irreducible modulo 11,
so ρq(ζm+1) = (x+1) (mod Φm) where Φm is seen as an irreducible polynomial in

F11[x]. The finite field F11[x]/〈Φm(x) admits the basis (1, x, x2, . . . , xϕ(m)−1. Since
2ϕ(m)

3 < ϕ(m) the coordinates of (x+1)
2ϕ(m)

3 mod Φm on the basis of F11[x]/〈Φm(x)

are the same as the coefficients of the polynomial (x + 1)
2ϕ(m)

3 .
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The coefficient of x in (x + 1)
2ϕ(m)

3 is 2ϕ(m)
3 which is not 0 modulo 11 by the

assumptions on m. Hence (x+1)
2ϕ(m)

3 6≡ 1 mod Φm ∈ F11[x], so the class number
is not divisible by 5. �

Remark 4.2. Artin’s conjecture states that if a is a non-square integer other than
−1 then the set of primes m such that a is primitive in (Z/mZ)∗ has a positive
density. In particular this proves that there are infinitely many primes m such that
Φm is irreducible modulo 11 (resp 2). Hooley [23] proved the conjecture under a
generalization of Riemann’s Hypothesis

Lemma 4.3. For all integers a 6= 21, 23 (mod 25) the number field defined by fa
as defined in Equation (3.1) has no RK,5 6≡ 0 (mod 5).

Proof. We have Disc(fa) = Disc(Q(α))[OQ(α) : Z[α]]
2 where α is a root of fa in its

number field. Since

Disc(a) = a4 + 6a3 + 27a2 + 54a+ 81,

5 is not ramified and doesn’t divide the index [OQ(α) : Z[α]]. The definition of

Schirokauer maps implies that if f ≡ g (mod p2Z[x]) are two polynomials then
they have the same Schirokauer maps.

For each a in the interval [1, 52] other than 21 and 23 we compute the matrix
(

λ0(α) λ1(α) λ2(α)
λ0(−α+1

α ) λ1(−α+1
α ) λ2(−α+1

α )

)

,

where α is a root of fa in its number field. One verifies that in each case the
normalized 5-adic regulator is not divisible by 5. Hence, for any integer a 6≡ 21, 23
(mod 2)5, the 5-adic regulator of {α,−α+1

α } divided by 25 is not divisible by 5.
Finally, the normalized 5-adic regulator of fa is not divisible by 5. �

When combining Lemma 4.1 and Lemma 4.3 one obtains point (2) of Theo-
rem 1.5.

5. Numerical investigation of the density of p-rational fields

The Cohen-Lenstra-Martinet heuristic predicts very simple formulae for the den-
sity of number fields with Galois group (Z/qZ)t for every prime q and integer t.
However, the authors of the heuristic conjectured only those heuristic statements
which corroborate with numerical experiments. We bring new evidence in favor of
the conjecture for cubic cyclic fields in Section 5.1. Then in Section 5.2 we bring
evidence in many cases (Z/2Z)t and (Z/3Z)t for t = 2, 3, 4 and are able to state
the corresponding conjectures. In Section 5.3, we extend the results of Hofmann
and Zhang to the case of Galois groups (Z/3Z)t and (Z/2Z)t with t = 2, 3, 4 and
conclude by proving point (3) of the main theorem (Th 1.5) in Section 5.4.

5.1. Numeric verification of the Cohen-Lenstra heuristics. One of the most
interesting facts about the Cohen-Lenstra heuristic is how well it is supported by
statistical data. Encouraged by the case of quadratc fields one would expect a
similar situation for the case of cyclic cubic fields, but in 1989 Cohen and Martinet
wrote that “we believe that the poor agreement [with the tables] is due to the fact
that the discriminants are not sufficiently large”.

Puzzled by this assertion we repeated their computations and made statistics
on the fields of conductor less than 104, i.e. discriminant less than 108, which



16 RAZVAN BARBULESCU AND JISHNU RAY

was the bound for the computations of that time (e.g. [17] considered the fields of
conductor less than 4000). In the midwhile computers capabilities have increased
by more than a factor 1000 so that we could compute the statistics for fields of
conductor less than 107, i.e. discriminant less than 1014, in roughly one calendar
month, in parallel on several 30 cores and summed up to roughly 2.5 CPU years.

Looking at the data in Table 4 we understand what happened: the convergence
speed to the mean density is very slow and the statistics to 104 have a relative
error between 19% and 100% which didn’t allow Cohen and Martinet to conclude.
However statistics to 107 have only a relative error between 0.2% and 15.5%, so we
can conclude that the numerical data confirms their conjecture.

p theoretic
density

stat. density
cond. ≤ 8000

relative
error

stat. density
cond. ≤ 107

relative
error

5 0.00167 3
1269 ≈ 0.0236 46% 3316

1714450 ≈ 0.00193 15.5%

7 0.0469 45
1269 ≈ 0.0355 24.5% 78063

1714450 ≈ 0.0456 3%

11 0.0000689 0 100% 133
1714450 ≈ 0.0000775 12.5%

13 0.00584 6
1269 ≈ 0.00472 19% 21938

1714450 ≈ 0.00128 0.2%

19 0.0128 11
1269 ≈ 0.0086 48.55% 10232

1714450 ≈ 0.00584 2%

Table 4. Statistics on the density of cyclic cubic fields whose class
number is divisible by p = 5, 7, 11, 13 and respectively 19.

5.2. Cohen-Lenstra-Martinet for Galois group (Z/3Z)t and (Z/2Z)t.

Lemma 5.1 (Kuroda’s class number formula ([26] Sec 3 and [25] Sec 10)). Let q
be a prime and K a totally real Galois extension such that Gal(K/Q) = (Z/qZ)t.

Then K contains qt−1
q−1 subfields of degree q and there exists an integer A such that

hK = qA
∏

ki subfield of degree q

hki
.

The Cohen-Lenstra-Martinet heuristic implies that that the class groups of the
intermediate cyclic fields of prime ki behave independently, and they obtain the
following heuristic statement.

Conjecture 5.2 (reformulation of statements in [9]).

(1) If K = Q(
√
d1, ...,

√
dt), and p an odd prime, then

Prob(p ∤ hK) =
(p)∞
(p)1

2t−1

.

(2) If K has degree 3t and is the compositum of t cyclic cubic fields and p ≥ 5
is a prime then

Prob(p ∤ hK) =











( (p)∞(p)1
)2

3t−1
2 , if p ≡ 1 (mod 3);

(p2)∞
(p2)1

3t−1
2

, if p ≡ 2 (mod 3).
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The conjecture is supported by the numerical evidence in Table 5.

p theoretic
density

stat. density
cond. ≤ 106

relative
error

5 0.00334 933
203559 ≈ 0.00458 37%

7 0.0916 23912
203559 ≈ 0.0354 28%

11 0.000138 26
203559 ≈ 0.000128 7.5%

13 0.0116 6432
203559 ≈ 0.0316 72%

17 0.0000140 4
203559 ≈ 0.0000197 40.5%

19 0.0254 3536
203559 ≈ 0.0173 31.5%

Table 5. Statistics on the density of fields of Galois group Z/3Z×
Z/3Z whose class number is divisible by p = 5, 7, 11, 13, 17 and
respectively 19.

5.3. On the p-adic regulator for Galois groups (Z/2Z)t and (Z/3Z)t. We are
interested in the probability that all the cyclic subfields of number field of Galois
group (Z/qZ)t are without p-primary unity, or equivalently we want to investigate
the relations between the normalized p-adic regulators of a compositum and of its
subfields. We have here a similar result to Kuroda’s formula.

Lemma 5.3. Let p be an odd prime and K = Q(
√
a,
√
b)) with a, b and ab positive

rational numbers which are not squares. Let R denote the normalized p-adic regula-
tor of K, then R1, R2 and R3 the p-adic regulators of Q(

√
a), Q(

√
b) and Q(

√
ab).

Then there exists an integer α such that

R = 2αR1R2R3.

Proof. A simple regulator calculation (e.g. [2]) implies that there exists β such that

[E : E1E2E3] = 2β
h

h1h2h3
,

where E and h are the unit group and the class number of Q(
√
a,
√
b), and Ei and

hi are the unit groups and class numbers of the quadratic subfields.
By Kuroda’s formula (Lemma 5.1), h/(h1, h2h3) is a power of 2 so

[E : E1E2E3] = 2γ

for some integer γ. Hence the p-adic regulator of E is equal to the p-adic regulator
of E1E2E3 up to multiplication by a power of 2.

Let {σ0 = id, (σ1 :
√
a 7→ −√a,

√
b 7→

√
b), (σ2 :

√
a 7→ √a,

√
b 7→ −

√
b) and

(σ3 :
√
a 7→ −√a,

√
b 7→ −

√
b)} be the automorphisms of K.

If ε1 is a fundamental unit of Q(
√
a) then ε1σ1(ε1) = NQ(

√
a)/Q(ε1) = ±1 so that

logp(σ1(ε1)) = − logp(ε1).

Since σ2(ε1)ε1 we have

logp(σ2(ε1)) = logp(σ3(ε1)) = logp(ε1).
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Similar equations hold for the fundamental units ε2 and ε3 of Q(
√
b) and Q(

√
ab).

Hence the p-adic regulator of the subgroup generated by ε1, ε2 and ε3 is
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

logp(ε1) logp(σ1(ε1)) logp(σ2(ε1))

logp(ε2) logp(σ1(ε2)) logp(σ2(ε2))

logp(ε3) logp(σ1(ε3)) logp(σ2(ε3))

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

logp(ε1) − logp(ε1) logp(ε1)

logp(ε2) logp(ε2) − logp(ε2)

logp(ε3) − logp(ε3) − logp(ε3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The latter determinant is equal to (−4) logp ε1 logp ε2 logp ε3, which completes the
proof. �

Our heuristic is to assume that the factors R1, R2 and R3 in Lemma 5.3 are
independent.

Conjecture 5.4. Let q = 2 or 3, p > q a prime and t an integer. Then the
density of totally real number fields K such that Gal(K) = (Z/qZ)t for which the
normalized p-adic regulator is divisible by p for at least one of the cyclic subgroups
is

(1) Prob
(

∃F ⊂ K,R′
F,p ≡ 0[p]|Gal(K) = (Z/2Z)t tot. real

)

= 1− (1− 1
p )

2t−1

(2) Prob
(

∃F ⊂ K,R′
F,p ≡ 0[p] | Gal(K) = (Z/3Z)t

)

= 1− (1−P) 3t−1
2 , where

P =











2
p − 1

p2 , if p ≡ 1 (mod 3)

1
p2 , otherwise.

In a numerical experiment, we considered all number fields Q(
√
d1,
√
d2,
√
d3)

with d1, d2 ∈ [2, 300] squarefree and distinct, then the fields of Galois group (Z/3Z)3

and conductor less than 105, i.e. discriminant less than 1030. In Table 6 we compare
the statistical density with 1− (1− 1

p )
7.

p experimental Conj 5.4 relative

density density error

5 29301
37820 ≈ 0.775 0.790 2%

7 19538
37820 ≈ 0.517 0.660 22%

11 17872
37820 ≈ 0.473 0.487 3%

Table 6. Numerical verification of Conjecture 5.4 in the case
where Gal(K) = (Z/2Z)3. The sample consists of number
fields which can be written as K = Q(

√
d1,
√
d2,
√
d3) with 2 ≤

d1, d2, d3 ≤ 300 squarefree and distinct.

Remark 5.5. Conjecture 5.4 describes well the computations required to find Ex-
ample 2.7. We set d1 = −1 and d2 = 2 and, for i ≥ 3 we define di as the smallest
integer larger than di−1 such that, for all subfield F ⊂ Q(d1, . . . , di), R

′
F,p is not

divisible by p. Then the conjecture predicts log2 di ≈ c2i for some constant c, which
corroborates with experimental values:
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i 3 4 5 6 7

di 3 11 47 97 1567

2−i log2(di) 0.20 0.21 0.17 0.10 0.08

One can expect d9 ≈ 20.2·2
9 ≈ 2 ·1015, which is out of reach of nowadays computers.

Moreover, once the condition on p-adic regulators is satisfied, one has to also test
the condition on class numbers. It seems to indicate that one needs new theoretical
results before finding examples of the Greenberg’s conjecture for p = 5 and Galois
groups (Z/2Z)t with t larger than 10.

5.4. Greenberg’s conjecture as a consequence of previous conjectures.

Since the Conjectures 2.12 and 2.9 predated Greenberg’s conjecture and are sup-
ported by strong numerical evidence it is interesting to note that they imply that
GC∞(Z/3Z, p) holds.

Theorem 5.6. Under Conjecture 2.9 and Conjecture 2.12, for all prime p > 3,
GC∞(Z/3Z, p) holds.

Proof. For any D let K(D) be the set of cubic cyclic number fields with conductor
less than D. Then we have

lim sup
D→∞

#{K ∈ K(D) non p-rational}
#K(D)

≤ lim sup
D→∞

#{K ∈ K(D), p | hKR′
K,p}

#K(D)

≤ Prob(p | hK) + Prob(p | R′
K,p)

≤ 2

p
+ 1−

∞
∏

i=1

(1− p−i) <
1

2
.

Hence, there exist cyclic cubic fields K with arbitrarily large conductors such that
p doesn’t divide hKR′

K,p, and which by Lemma 2.1 are p-rational. �

Thanks to Conjecture 5.4 we can prove a similar result in the case of composita
of quadratic and respectively cubic cyclic real fields.

Theorem 5.7. Let t be an integer, q = 2 or 3 and p a prime such that p > 5qt. Un-
der Conjecture 5.4 and Conjecture 5.2, there exist infinitely many p-rational number
fields of Galois group (Z/qZ)t, or equivalently GC∞((Z/2Z)t, p) and GC∞((Z/3Z)t, p)
hold.

Proof. Let K(D) denote the set of totally real number fields of Galois group (Z/qZ)t

of conductor less than D. Then we have

lim sup
D→∞

#{K ∈ K(D) non p-rational)

#K(D)
≤ lim sup

D→∞

#{K | K(D) ∃F ⊂ K p | hFR
′
F,p}

#K(D)

≤ Prob(p | hK) + Prob(∃F ⊂ K, p | R′
F,p)

≤ 2− (1− 2

p
)

qt−1
q−1 − (1 −

∞
∑

i=1

p−i)
qt−1
q−1

≤ 2qt

q − 1
(
2

p
+

1

p(p− 1)
)

≤ 5qt

p
(
4

5
+

2

5(p− 1)
) < 1.
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Note that Theorem 5.7 has a conclusion which encompass the one of Theorem 5.6,
but the difference in assumptions justifies to separate the two results. Also note
that the condition p > 5qt is artificial and it could be improved if one proved

Prob(p | hKR′
K,p) < Prob(p | hK) + Prob(p | R′

K,p).

If these two divisibility properties were orthogonal then Greenberg’s conjecture for
groups (Z/qZ)t, q = 2 or 3, would hold without any condition on p and t.

Conclusion and open questions

To sum up, Greenberg’s conjecture is solved in the particular case of G = Z/2Z
and it is well supported by heuristics and numerical experiments for G = (Z/qZ)t

when q = 2 or 3. In the general case of non-abelian Galois groups however our
results are limited to a list of examples.

The problem raises new questions about the independence of class numbers and
of p-adic regulators, which could be tackled by techniques of analytic number the-
oryi, similar to the recent progress on the Cohen-Lenstra-Martinet heuristic. It is
interesting to create new algorithms to test divisibility of p-regulator and of the class
number by p with a better complexity than computing a system of fundamental
units and respectively the class number.

Greenbergs’ p-rationality conjecture corresponding to the case G = (Z/2Z)t

offers a new technique to construct Galois representations with open image in
GLn(Zp) with 4 ≤ n ≤ 2t−1 − 3 (cf [19, Prop 6.7], solving new cases of the in-
verse Galois problem. The previous results were restricted to n = 2 and n = 3,
so that the known examples with G = (Z/2Z)5 are enough to improve on previous
results.
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