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Abstract— Modeling IoT systems behaviors and architectures requires new approaches to be elaborated for handling the challenging 
issues such as: large scale interaction and real-time reconfiguration. This can help both during the design and the operation steps for 
ensuring a correct design and for delivering a performant service. Different studies have been recently conducted and new initiatives, at 
the national, European and international levels, have been taken for the domain of IoT systems and for the more general domain of 
System of Systems. Different modelling approaches have been elaborated. Bridging the models can lead to powerful solutions for 
modelling the next generation systems of systems of the family of IoT complex systems. Cross-disciplines initiatives have to be taken to 
enable the emergence of new Multiscale Multi-objective modelling approaches and frameworks. 

Keywords—IoT, architecture; modelling; multiscale; systems-of-systems  

I.  INTRODUCTION  
We tackle the complexity of architectural design for the Internet of Thing (IoT) complex systems and the future smart systems of 

systems built on top of IoT platforms. Internet of Thing platforms will connect billions of devices deployed on different geographic 
locations and manage different kinds of traffic generated by smart applications such as smart cities and connected vehicles. Design 
and modelling of such systems is a complex task that requires different levels of abstraction to be distinguished according to the 
properties to be validated. Recently, new architectural modelling techniques have been defined [4, 6]. These techniques handle the 
structural properties of communication architectures. The most used in IoT and distributed systems is the mediated communication 
pattern such as publish/subscribe brokers that decouple information producers and consumers, and load-balancers that distribute the 
load on different servers. Dynamic architecture modelling (e.g. graph-based dynamic structures), and analytic or quantitative 
approaches of behavioral performance modelling (e.g. Stochastic modelling, queueing theory) if integrated, can constitute a powerful 
modelling technique for a wide category of IoT systems. Such approaches address respectively, the problems of architectural 
reconfiguration strategies (service composition and deployment, network topology, etc.), and service provisioning policies (intelligent 
load balancing, resource allocation, etc.). The design of new integrated methods can be a promising objective that enables the 
elaboration of efficient multi-model solutions for self-configuring, self-healing, self-optimizing and self-protecting the IoT systems 
and the corresponding smart applications. Our objective, here, is to review the different studies and approaches in order to motivate 
the emergence of new modelling initiatives. We present the modeling challenges for Next Generation Systems in section II. We 
present the principles of multiscale modelling in section III. We consider the case of architectural models in section IV. We give a 
summary of our statements in section V. 

II. MODELING CHALLENGES  FOR NG SYSTEMS 
Next Generation systems of systems such as IoT complex systems will be composed of a large number of interacting entities, 

possessing decision-making autonomy, and whose behavioral evolution is difficult to predict deterministically. A first cause may 
arise from the ignorance of certain parameters governing the evolution of the system or the random nature of their variation. These 
parameters may be intrinsic (internal variables), or context-dependent (external factors). Another cause may be the impossibility of 
performing, accurately or completely, within a reasonable time, the execution of the computation required to make it possible to 
determine the evolution of the state of the system. Communication networks (satellites, routers, gateways, protocol stacks), connected 
objects (sensors, actuators, devices, servers, appliances, machines, etc.) and intelligent services (discovery, security and protection, 
autonomy, etc.) as well as Smart Homes and Buildings, Smart Cities, Smart Power Grids, constitute an important part of the next 
generation complex systems that introduce important challenges for the design and operation steps. 



The modeling of the next generation complex systems is faced with scalability problems, heterogeneity of models, in particular 
structural and behavioral, and importance of both qualitative (correctness) and quantitative (performance or Time constraints). 
Elaborating the appropriate approaches can rely on modeling the evolution of a complex system by characterizing rather than 
enumerating or exploring all the configurations of the system architecture or its states space. To do this, models should be concerned 
with both the structural dimension and the behavioral (or functional) dimension of complex systems for analysis of correctness and 
performance properties. 

Structural models have to be elaborated to describe a software architecture reconfigurable by dynamic integration of components 
or real-time composition of services. These models can also describe the topology of a network for which the graph represents the 
information propagation paths at various levels ranging from a representation of the neighborhood links in a sensor network to the 
relations of acquaintance in social networking or collaborative network platforms. The modeling can be based on conceptual graphs 
and graph grammars [2].  We can consider an initial graph and a set of transformation rules that characterize the set of the possible 
reachable configurations without their explicit enumeration. The transformation can operate by modifying the attributes associated 
with the nodes and the edges of the graph or by transforming its structure by adding or deleting nodes and arcs. 

Behavioral models have to be elaborated to describe the functioning of the system. These models can describe the dissemination 
or the propagation of information according to an epidemic model, taking into account the influence of external factors of types 
interactions with users, and phenomenon of abandonment, etc. We can also proceed by a stochastic modeling of the system, the 
interactions between its components and its environment and we handle the scalability challenge through approximation models such 
as: fluid limits (e.g. for load balancing management) or the average field (e.g. for routing data in sensor networks). The challenge is 
to design systems where performance is associated with intelligence for the routing of information and its autonomous interpretation. 

III. PRINCIPLES OF MULTISCALE MODELING 
Multiscale modeling enables to look at a problem simultaneously from different scales and different levels of detail. It takes 

advantage of data available at distinct scales by modeling interaction between those scales, accordingly managing the complexity of 
behavior involved [3,7]. Practically this can be achieved by decomposing a problem into a set of single scale models that exchange 
information across the scales. In this context Borgdorff et al [1], gives a definition of a sub-model multiscale as a component model 
which describes only one scale of the system. He also considers a multiscale model as a composite model formed from two or more 
sub-models that describe different behaviors at different scales. 

A. Multiscale modeling strategies 
The key issue in multiscale modeling is the order in which the multiscale model is constructed. There are four strategies, discussed 

by [5], to establish such multiscale models: 

– Bottom-up: Complex Systems can be understood on the higher scale by analyzing lower-scale mechanisms. A model is 
developed to describe the finest scale of interest, then models at increasing scales are constructed in turn; time or length scales may 
be used. 

– Top-Down: A large scale model is constructed. It is refined by successively adding smaller scale models until detail and accuracy 
goals are reached. 

– Middle-out: In some multiscale biological applications ‘middle-out’ modelling is favored. This refers to constructing a 
multiscale model by starting with the scales that are richest in data and best understood, and then working ‘outwards’ from there, to 
smaller and larger scales. 

– Concurrent: All levels in the process hierarchy should be attacked simultaneously, from the microscopic level to the macroscopic 
level. 

B. Multiscale modelling steps: 
With the four strategies presented above, three steps are involved [5]: 

– Step 1: identifying and selecting scales to include in the multiscale model 

– Step 2: adopting or developing appropriate sub-models at each scale of interest 

– Step 3: linking, or integrating, the sub-models into a coherent multiscale model. There are several broad ways of linking sub-
models into a multiscale model. 

An important part of multiscale modeling is how the scales of different behaviors relate to each other. Multiscale simulation 
enables coupling of behaviors at various scales from the quantum scale to the molecular, mesoscopic, device, and plant scale [5]. 

Two approaches for linking sub-models at different scales are considered: sequential multiscale modeling and concurrent 
multiscale modeling.  

With sequential multiscale modeling, the smallest (finest) scale model is solved first, and its results are passed to the larger 
(coarser) scale. For instance, some details of the macroscale model are precomputed using microscale models.  



Concurrent multiscale modeling is preferred when the macroscale model depends on many variables, and becomes difficult to 
extract by precomputing from microscale models. In addition, in some cases, the one-way coupling is inadequate, and fully coupled 
models across scales are needed, i.e., two-way information traffic exists. There are two types of multi-scale models: 

IV. MULTISCALE MODELING OF IOT SYSTEMS 
Most problems in IoT are multiscale in nature. Things are made of sensors, actuators, gateways and servers at the atomic scale, 

and at the same time are characterized by their own architectural composition, geographic distribution as well as networking and 
processing capacities that have a larger order of magnitude.   

A. Scale concepts 
A scale is characterized by two major concepts: the grain and the extent. The grain is the finest spatial resolution; the resolution 

refers to the granularity used in the sub-system modelling. The extent refers to the structural or functional scope covered by the global 
system modelling. In the context of IoT systems modelling, the extent scale can refer to the abstract description considering a sub-
system of the system architecture. Variation in extent can be used, for example, to describe a given description level or a given 
communication layer in the IoT infrastructure. It allows the architect to describe the necessary details to understand the system 
behavior and validate the associated functional and structural properties. Besides, the grain scale refers to the level of details and 
precision pertaining to the abstract description, providing more details of a given current description, such as composition and 
interactions in a given system description. 

B. Top-down scale transformations 
The top-down scale transformation process, much like regular refinement, begins with a high-level model of a system, which we 

describe as a whole. Then, scale changes are applied to obtain a more detailed description, by describing components that compose 
the subsystems and their connections. An iterative modeling allows to refine IoT systems descriptions: A vertical refinement can be 
applied to add the architecture composition details iteratively and to obtain a more detailed description by zooming on previously 
defined components. A horizontal refinement is needed to add details on the interconnections between components and their 
interfaces, and to establish the compatibility of interfaces by determining interfaces that can satisfy all possible sequences of required 
and provided relationships. 

V. CONCLUSION 
Multi-scale modelling of IoT systems architectures can be used to validate their behavioral properties both from the functional 

and non-functional points of views. We can consider static and dynamic structures with spatio-temporal properties. The abstraction 
or refinement related to grain and extent can address both components composition, routing or processing functions and exchanged 
data structure. The modelling strategies can be conducted in a bottom-up way allowing to characterize emerging properties in IoT 
systems viewed as systems of systems. We can also proceed by a top down modelling until we reach the necessary detail level for 
proving a given property such as information propagation in networked services.  
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