Context and notation

We have a potentially infinite set of measurements, each having K possible outcomes. Dice rolls and their six outcomes are a typical example. I use the terms "measurement" and "outcome" to lend concreteness to the discussion, but the formulae below apply to much more general contexts.

The proposition that the nth measurement has outcome k is denoted E (n) k . The relative frequencies of the K possible outcomes in a set of measurements are denoted f : ( f k ). It may happen that in a measurement we observe not directly an outcome but an "observable" having values (O k ) : O for the K outcomes. This observable may be vector-valued.

The empirical average of the observable in a set of N measurements with outcomes {k 1 , . . . ,

k N } is N n 1 O k n /N, equivalent to k O k f k .
Probabilities have propositions as arguments (for good definitions of what a proposition is -it isn't a sentence, for example -see [START_REF] Strawson | Introduction to Logical Theory[END_REF][START_REF] Copi | Symbolic Logic[END_REF]; [START_REF] Barwise | Language, Proof and Logic[END_REF]). Johnson's definition remains one of the simplest and most beautiful: "Probability is a magnitude to be attached to any possibly true or possibly false proposition; not, however, to the proposition in and for itself, but in reference to another proposition the truth of which is supposed to be known" [START_REF] Johnson | Logic. Part III: The Logical Foundations of Science[END_REF] Appendix, § 2). See also [START_REF] Hailperin | Sentential Probability Logic: Origins, Development, Current Status, and Technical Applications[END_REF][START_REF] Hailperin | Logic with a Probability Semantics: Including Solutions to Some Philosophical Problems[END_REF] formalization, sadly neglected in the literature. The assumptions or knowledge underlying our probabilities -our "model" -will be generically denoted by I , with subscripts denoting specific assumptions. We will sometimes let a quantity stand as abbreviation for a proposition, for example f for "the observed relative frequencies in N measurements are f ". In such cases the probability symbol will be in lower-case to remind us of our notational sins.

Lest this note become an anthill of indices let's use the following notation: for positive K-tuples x : (x i ), y : (y i ), and number a, ax : (ax i ),

x/y : (x i /y i ), x y : (x i y i ), x y : (x i y i ), exp x : (exp x i ), ln x : (ln x i ), x! : (x i !),

x :

k x k , x : k x k , a ax : a! (ax)!
.

(1)

The symbol δ indicates a Dirac delta [START_REF] Lighthill | Introduction to Fourier Analysis and Generalised Functions[END_REF]; even better [START_REF] Egorov | A contribution to the theory of generalized functions[END_REF]2001) or a characteristic function (cf. [START_REF] Knuth | Two notes on notation[END_REF], depending on the context.

The Shannon entropy H(x) :x ln x, and the relative Shannon entropy or negative discrimination information H(x; y) :x ln(x/y). Let's keep in mind the important properties H(x; y) ⩽ 0, H(x; y) 0 ⇔ x y.

(2)

The problem typically addressed by maximum-entropy is this: given that in a large number N of measurements we have observed an average having value in a convex set A (which can consist of a single number),

O f ∈ A, (3) 
what is the probability of having outcome k in an (N +1)th measurement?

In symbols,

P E (N+1) k O f ∈ A, I ? (4) 
where I denotes our state of knowledge. The maximum-entropy answer [START_REF] Mead | Maximum entropy in the problem of moments[END_REF][START_REF] Fang | Entropy Optimization and Mathematical Programming[END_REF][START_REF] Boyd | Convex Optimization, 7th printing with corrections[END_REF]) has the form

r k exp(λ O k ) r exp(λ O) (5)
where r is a reference distribution and λ is determined by the constraints in a way that we don't need to specify here. The convexity of A ensures the uniqueness of this answer.

Maximum-entropy from a model by exchangeability

Let's assume that in our state of knowledge I x we deem the measurements to be infinitely exchangeable (Bernardo et al. 2000 § 4.2); that is, there can be a potentially unlimited number of them and their indices are irrelevant for our inferences. De Finetti 's theorem (1930;[START_REF] Kyburg | La probabilità e la statistica nei rapporti con l'induzione, secondo i diversi punti di vista[END_REF][START_REF] Heath | De Finetti's theorem on exchangeable variables[END_REF] states that this assumption forces us to assign probabilities of this form:

P E (1) k 1 , . . . , E (N) k N I x q k 1 • • • q k N p(q| I x ) dq ≡ q N f p(q| I x ) dq, (6) 
where the distribution q can be interpreted as the relative frequencies in the long run,1 and integration is over the (K -1)-dimensional simplex [START_REF] Grünbaum | Convex Polytopes[END_REF] of such distributions, {q ∈ R K ⩾0 | q 1}. The term p(q| I x ) dq can be interpreted as the prior probability density of observing the long-run frequencies q in an infinite number of measurements. This probability is not determined by the theorem. Let's call the expression above an exchangeability model (Bernardo et al. 2000 § 4.3).

We assume that our state of knowledge I x is also expressed by a particular prior density for the long-run frequencies:

p(q| I x ) dq κ(L, r) L Lq r Lq dq, L ⩾ 1, (7) 
which we can call "multinomial prior" because is a sort of continuous interpolation of the multinomial distribution (Johnson et al. 1996 ch. 35).

in the latter each q k assumes discrete values in {0, 1/L, . . . , 1} and the normalizing constant is unity; for this reason the normalizing constant κ(L, r) ≈ L in eq. ( 7). The results that follow also hold for any other prior density that is asymptotically equal to the one above for L large, for example proportional to exp[LH(q; r)], which appears in [START_REF] Rodríguez | The metrics induced by the Kullback number[END_REF][START_REF]Entropic priors for discrete probabilistic networks and for mixtures of Gaussians models[END_REF] entropic prior and in Skilling's (1989a;[START_REF] Egorov | A contribution to the theory of generalized functions[END_REF] prior for "classical" and "quantified" maximum-entropy.

To find the probability (4) queried by maximum-entropy we need the probability for each possible frequency distribution in the N measurements, which by combinatorial arguments is

p( f | I x ) N N f q N f p(q| I x ) dq. (8)
There are N+K-1 K-1 possible frequency distributions [START_REF] Csiszár | Information theory and statistics: a tutorial[END_REF]. By marginalization over the subset of frequencies consistent with our data, the probability for the empirical average is

P O f ∈ A I x f δ( O f ∈ A) N N f q N f p(q| I x ) dq.
(9) Finally using Bayes's theorem with the probabilities (6)-( 9) we find

P E (N+1) k O f ∈ A, I x q k f δ( O f ∈ A) N N f q N f p(q| I x ) dq f δ( O f ∈ A) N N f q N f p(q| I x ) dq , (10)
where the density p(q| I x ) dq is specified in eq. ( 7), even though the formula above holds as well with any other prior density.

I have graphically emphasized this formula because it is the exact answer given to the question (4) by a general exchangeability model: it holds for all numbers K of possible outcomes, all numbers N of observations, and all sets A -even non-convex ones.

If N and L are large we can use the bounds of the multinomial (Csiszár et al. 1981 Lemma 2.3) (11) analogously for L Lr . From the bounds above it can be shown that the exact probability expression (10) has the asymptotic form

N N f ϵ(N, f ) exp[N H( f )], (N + 1) -K ⩽ ϵ(N, f ) ⩽ 1,
P E (N+1) k O f ∈ A, I x ≃ κ(N, L, r) q k f δ( O f ∈ A) exp[NH( f ; q) + LH(q; r)] dq, N, L large. ( 12 
)
I prefer the symbol "≃", "is asymptotically equal to" (iso 2009; ieee 1993; iupac 2007), to the limit symbol "→" because the latter may invite to think about a sequence, but no such sequence exists. In each specific problem N has one, fixed, possibly unknown value, and cannot be increased at will. The symbol "≃" says that the right side differs from the left side by an error that may be negligible. It is our duty to check whether this error is really negligible for our purposes. The asymptotic expression above shows an interesting interplay of two relative entropies. The two exponential terms give rise to two Dirac deltas. The delta in f requires some mathematical care owing to the discreteness of this quantity; see [START_REF] Csiszár | Sanov property, generalized I-projection and a conditional limit theorem[END_REF]1985), and[START_REF] Berk | Limiting behavior of posterior distributions when the model is incorrect[END_REF][START_REF] Andersen | Sufficiency and exponential families for discrete sample spaces[END_REF] for an analysis in a slightly different setting. In particular, if N < K the discrete set of N+K-1 K-1 possible frequency distributions lies within the (N -1)-dimensional facets of the (K -1)-dimensional simplex of distributions q; it does not "fill" the simplex. In this case the frequency sum f cannot be meaningfully approximated by an integral. The approximations below are valid if the number N of observations is much larger than the number K of possible outcomes.

If L/N is also large, taking limits in the proper order gives

P E (N+1) k O f ∈ A, I x ≃ r k , N, L, L/N large. ( 13 
)
Note how the data about the average (3) are practically discarded in this (L/N)-large case. Compare with Skilling's remark that the parameter L (his α) shouldn't be "particularly large" (cf. Skilling 1998 p. 2).

The asymptotic case that interests us is N/L large: the exponential in N dominates the integral of eq. ( 12), which becomes

κ(L, r) f f k δ[ O f ∈ A] exp[LH( f ; r)] ≃ O f ∈A arg sup f H( f ; r), (14) 
so that, finally,

P E (N+1) k O f ∈ A, I x ≃ f * k , N, L, L/N large, with f * maximizing H( f ; r) under constraints O f ∈ A, (15) 
which is the maximum-entropy recipe, giving the distribution (5).

Maximum-entropy from a model by sufficiency

Consider the following assumption or working hypothesis, denoted I s :

To predict the outcome of an (N + 1)th measurement given knowledge of the outcomes of N measurements, all we need to know is the average O f of an observable O in those N measurements, no matter the value of N. In other words, any data about known measurements, besides the empirical average of O, is irrelevant for our prediction. The average O f is then called a minimal sufficient statistics (Bernardo et al. 2000 § 4.5;Lindley 2008 § 5.5). In symbols,

P E (N+1) k E (1) k 1 , . . . , E (N) k N , I s p E (N+1) k O f , N, I s . ( 16 
)
Note that the data {E (n)

k n } determine the data { O f , N } but not vice
versa, so some data have effectively been discarded in the conditional. The Koopman-Pitman-Darmois theorem [START_REF] Koopman | On distributions admitting a sufficient statistic[END_REF][START_REF] Pitman | Sufficient statistics and intrinsic accuracy[END_REF][START_REF] Darmois | Sur les lois de probabilité à estimation exhaustive[END_REF]; see also later analyses [START_REF] Hipp | Sufficient statistics and exponential families[END_REF][START_REF] Andersen | Sufficiency and exponential families for discrete sample spaces[END_REF][START_REF] Denny | Sufficient conditions for a family of probabilities to be exponential[END_REF][START_REF] Fraser | On sufficiency and the exponential family[END_REF][START_REF] Barankin | Generalization of the Fisher-Darmois-Koopman-Pitman theorem on sufficient statistics[END_REF] states that this assumption forces us to assign probabilities of this form:

P E (1) k 1 , . . . , E (N) k N I s p(k 1 | λ , r , I s ) • • • p(k N | λ , r , I s ) p(λ | I s ) dλ , ≡ p(k| λ , r , I s ) N f p(λ | I s ) dλ , (17a) with p(k| λ , r , I s ) : r exp(λ O) Z(λ ) , Z(λ ) : r exp(λ O), (17b) 
and we have defined p(k| . . . ) : p(1| . . . ), . . . , p(K| . . . ) . The integration of the parameter λ is over R M , with M the dimension of the vector-valued observable O, and r is a K-dimensional distribution.

Neither r or the distribution p(λ | I s ) are determined by the theorem.

Let's call the expression above a sufficiency model (Bernardo et al. 2000 § 4.5). A sufficiency model can be viewed as a mixture, with weight density p(λ | I s ) dλ , of distributions having maximum-entropy form ( 5) with multipliers λ .

To find the probability (4) we calculate, as in the previous section, the probabilities for the frequencies:

p( f | I s ) N N f p(k| λ , r , I s ) N f p(λ | I s ) dλ , (18) 
and for the empirical average by marginalization:

P O f ∈ A I s f δ( O f ∈ A) N N f p(k| λ , r , I s ) N f p(λ | I s ) dλ . ( 19 
)
From these using Bayes's theorem we finally find

P E (N+1) k O f ∈ A, I s p(k| λ , r , I s ) f δ( O f ∈ A) N N f p(k| λ , r , I s ) N f p(λ | I s ) dλ f δ( O f ∈ A) N N f p(k| λ , r , I s ) N f p(λ | I s ) dλ . ( 20 
)
This is the exact answer given to the maximum-entropy question by a sufficiency model if the constraints used in maximum-entropy are considered to be a sufficient statistics. This proviso has serious consequences discussed in § 5.2. The expression above holds for all N and all sets A, even non-convex ones.

The asymptotic analysis for large N uses again the multinomial's bounds (11). We find

P E (N+1) k O f ∈ A, I s ≃ κ(N, r) p(k| λ , r , I s ) × f δ( O f ∈ A) exp NH f ; p(k| λ , r , I s ) p(λ | I s ) dλ , N large. (21)
A rigorous analysis of this limit can be done using "information projections" [START_REF] Berk | Limiting behavior of posterior distributions when the model is incorrect[END_REF][START_REF] Andersen | Sufficiency and exponential families for discrete sample spaces[END_REF][START_REF] Csiszár | Sanov property, generalized I-projection and a conditional limit theorem[END_REF]1985); here is a heuristic summary. Consider the sum in f for fixed λ . We have two cases. (1) If λ is such that O p(k| λ , r , I s ) ∈ A, there exists a unique f in the sum for which the relative entropy in the exponential reaches its maximum, zero, making the exponential unity. For all other f the relative entropy is negative and the exponential asymptotically vanishes for large N . The integral therefore doesn't vanish asymptotically. (2) If λ is such that p(k| λ , r , I s ) doesn't satisfy the constraints, the relative entropy in the exponential will be negative for all f in the sum, making the exponential asymptotically vanish for all f . The integral therefore vanishes asymptotically. The distinction between these two cases actually requires mathematical care owing to the discreteness of the sum. The f sum then acts as a delta or characteristic function (depending on whether A has measure zero or not):

f δ( O f ∈ A) exp NH f ; p(k| λ , r , I s ) ≃ δ O p(k| λ , r , I s ) ∈ A .
(22) Thus asymptotically we have, using the explicit expression (17b) for p(k| λ , r , I s ):

P E (N+1) k O f ∈ A, I s ≃ δ O r exp(λ O) Z(λ ) ∈ A r k exp(λ O k ) Z(λ ) p(λ | I s ) dλ , N large. ( 23 
)
This result can also be found first integrating λ and then summing f , using a heuristic argument similar to the one above. This is a mixture, with weight density p(λ | I s ) dλ , of maximum-relative-entropy distributions f * that satisfy the individual constraints O f * a, a ∈ A . The final distribution thus differs from the maximum-entropy one if the set A is not a singleton: maximum-entropy would pick up only one distribution.

But if the constraint set is a singleton, A {a}, we do obtain the same answer (5) as the maximum-entropy recipe:

P E (N+1) k O f a, I x ≃ f * k , N large, with f * maximizing H( f ; r) under constraints O f a. (24)

Heuristic explanation of both asymptotic approximations

First of all let's note that both the exchangeability (6) and sufficiency ( 17) models have the parametric form P E

(1)

k 1 , . . . , E (N) k N I p(k 1 | ν , I ) • • • p(k N | ν , I ) p(ν | I ) dν ≡ p(k| ν , I ) N f p(ν | I ) dν. (25) 
The final probability distribution p for the K outcomes of the (N + 1)th measurement belongs to a (K 19), ( 20). If N is large this weight is very peaked on the subset of distributions that give highest probability to the data, that is, that have expectations very close to the empirical averages. It effectively restricts the second weight p(ν | I ) dν to such "data subset". In our case the data subset consists of all distributions satisfying the constraints. The mechanism described so far is common to the exchangeability and the sufficiency model. Their difference lies in how they choose the final distribution from the data subset.

-1)-dimensional simplex {p ∈ R K ⩾0 | p 1}.
In the exchangeability model ( 6) the choice is made by the weight density p(ν | I ) dν, i.e. the multinomial prior (7). It is extremely peaked owing to the large parameter L, and its level curves are isentropics.

Once it's restricted to the data subset by the data weight p(D| ν , I ), it gives highest weight to the distribution p lying on the highest isentropic curve, which is unique if the data subset is convex; compare with fig.

eq. ( 26). Hence this is a maximum-entropy distribution satisfying the data constraints. For this mechanism to work it's necessary that the dominance of the data weight comes first, and the dominance of the multinomial prior comes second. This is the reason why the correct asymptotic limit (15) has N, L, and N/L large.

In the sufficiency model ( 17) the choice is made by the family of distributions {p(k| ν , I )} ν . These distributions have by construction a maximum-entropy form for the particular observable O. This family intersects the data subset in only one point if the constraint has the form O f a. This point is therefore the maximum-entropy distribution satisfying the data constraints.

The mechanism above also explains why these two models still work if the data subset is non-convex and touches the highest isentropics (exchangeability model) or the exponential family (sufficiency model) in multiple points, bringing the maximum-entropy recipe to an impasse. The final distribution will simply be an equal mixture of such tangency points; it may well lie outside of the data subset.

Discussion

Prediction or retrodiction?

An essential aspect of the maximumentropy method is surprisingly often disregarded in the literature. If we have data from N measurements, we can ask two questions: "Prediction": what is the outcome of a further similar measurement? "Retrodiction": what is the outcome of the first of the N measurements?

Note that despite the literal meaning of these terms the distinction is not between future and past, but between unknown and partially known.

It's rarely made clear whether the maximum-entropy probabilities refer to the first or to the second question. Yet these two questions are fundamentally different; their answers rely on very different principles.

To answer the first question we can -but need not -fully rely on symmetry principles in the discrete case. It is a matter of combinatorics and equal probabilities; a drawing-from-an-urn problem. Most derivations of the maximum-entropy method (e.g. Jaynes 1963;[START_REF] Shore | Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy[END_REF][START_REF] Van Campenhout | Maximum entropy and conditional probability[END_REF][START_REF] Barnard | Discussion [An extended maximum entropy principle and a Bayesian justification] and Reply[END_REF] address this question only, as often betrayed by the presence of "p(x 1 )" or similar expressions in their final formulae.

To answer the second question, symmetry and combinatorics alone are no use: additional principles are needed. This is the profound philosophical question of induction, with its ocean of literature; my favourite sample are the classic Hume (1896 book I, § III.VI), Johnson (1922 esp. chs VIII ff;1924 Appendix;[START_REF]Probability: the deductive and inductive problems[END_REF]), de Finetti (1937;;[START_REF] Kyburg | La probabilità e la statistica nei rapporti con l'induzione, secondo i diversi punti di vista[END_REF][START_REF] Jeffreys | The present position in probability theory[END_REF]1973 ch. I;2003 § 1.0), Jaynes (2003 § 9.4). De Finetti, foreshadowed by Johnson, was probably the one who expressed most strongly, and explained brilliantly, that the probability calculus does not and cannot explain or justify our inductive reasoning; it only expresses it in a quantitative way. This shift in perspective was very much like Galilei's shift from why to how in the study of physical phenomena.2 We do inductive inferences in many different ways (Jaynes 2003 § 9.4). The notion of exchangeability (de Finetti 1937;Johnson 1924 Appendix;[START_REF]Probability: the deductive and inductive problems[END_REF] captures one of the most intuitive and expresses it mathematically.

The calculations of the previous sections and the final probabilities ( 10), (20) for our two models pertain the predictive question, as clear from the E (N+1) in their arguments. The two models can also be used to answer the retrodictive question. The resulting formulae are different; they can again be found applying the rules of the probability calculus and Bayes's theorem. The retrodictive formula for the exchangeability model is (proof in Porta Mana 2009 § B):

P E (n) k O f ∈ A, I x f f k δ( O f ∈ A) N N f q N f p(q| I x ) f δ( O f ∈ A) N N f q N f p(q| I x ) dq dq, n ∈ {1, . . . , N }. ( 27 
)
Graphically it differs from the predictive one (10) only in the replacement of q k by f k . An analogous replacement appears in the retrodictive formula for the sufficiency model. But this graphically simple replacement leads to a mechanism very different from the one of § 4 in delivering the final probability: it's a mixture on the data subset rather than on the whole simplex. Predictive and retrodictive probabilities can therefore be very different for small N. See for example figs 1 and 2 below and their accompanying discussion. This means that the goodness of the maximum-entropy distribution as an approximation of our two models can depend on whether we are asking a predictive or a retrodictive question. This fact is very important in every application.

Which of the two models is preferable?

A maximum-entropy distribution can be seen as an approximation of the distribution obtained from the exchangeability model or the sufficiency one (repetita iuvant). The two inferential models are not equivalent though, and there are reasons to prefer the exchangeability one -despite the frequent association, in the literature, of maximum-entropy with exponential families. The most important and quite serious difference is this:

Suppose that we have used either model to assign a predictive distribution conditional on the empirical average a of the observable O, obtained from N measurements. If N is large the distributions obtained from either model will be approximately equal, and equal to the maximum-entropy one. Now someone gives us a new empirical average a ′ of a different observable O ′ , obtained from the same N measurements. This observable turns out to be complementary to the previous one, in the sense that in general from knowing the value of O f we cannot deduce the value of O ′ f , and vice versa. These new data therefore reveal more about the outcomes of our N measurements and of possible further measurements.

The new empirical average a ′ can be incorporated in the exchangeability model; the resulting predictive and retrodictive distributions conditional on (a ′ , a) will be numerically different from the ones conditional on a only. They will be approximated by a maximum-entropy one based on the old and new constraints.

If we incorporate the new average in the sufficiency model, however, the resulting predictive conditional distribution will be unchanged: knowledge of the new data has no effect in the prediction of new measurements. The reason is simple: the sufficiency model expresses by construction that the average of the old observable O is all we need for our inferences about further measurements. Any other observable is irrelevant. The new average automatically drops out under predictive conditioning. The only way to obtain a different predictive conditional distribution would be to discard the sufficiency model based on O, and use a new one based on (O, O ′ ). But that would be cheating! This shows how dramatically absolute and categorical the assumption of the existence of a sufficient statistics is. The difficulty above doesn't happen for the retrodictive distribution; the proof is left as an exercise for you.

Since the maximum-entropy method is meant to always employ new constraints, we deduce that it's more correct to interpret it as an approximation of the exchangeability model than of the sufficiency model.

5.3

How good is the maximum-entropy approximation? How does maximum-entropy compare with the exchangeability model ( 6) with multinomial prior (7) away from the asymptotic approximation?

Their distributions are compared in the classic example of dice rolling in figs 1 and 2 for empirical averages of 5 and 6 (see Porta Mana 2009 for the calculations). The maximum-entropy distribution (red) is at the top; the distribution of the exchangeability model with L 1 (blue) and L 50 (bluish purple) is shown underneath for the cases N 2, N 12, N ∞, and for the retrodiction of an "old roll" E The exchangeability model gives very reasonable and even "logical" probabilities for small N. For example, if you obtain an average of 5 in two rolls, it's impossible that either of them was ¥ -unless, of course, you own a six-sided die with nine pips on one face. The exchangeability model logically gives zero probability in this case (fig. 1 bottom left). Maximum-entropy gives an erroneous non-zero probability. And having obtained an average of 5 or 6 in two rolls, would you really give a much higher probability to © or for a third roll? I'd still give 1/6. The exchangeability model reasonably gives an almost uniform distribution, especially for large L (both figures bottom right). The maximum-entropy distribution is unreasonably biased towards high values. If we observe a high average in twelve rolls we start to suspect that the die/dice or the roll technique are biased. The exchangeability model expresses this bias, but more conservatively than maximum-entropy.

In fact the predictive exchangeability-model distribution can have higher entropy than the maximum-entropy one! This happens because, when N is small compared to When is N large enough for the prescription to become reasonable? In other words, when is maximum-entropy a good approximation of the exchangeability model with multinomial prior? The answer depends on the interplay among the number of measurements N, the number of possible outcomes K, the parameter L, the reference distribution r, and the value a (or range A) of the observed average. The first three ingredients determine the maximum heights of the densities involved in the integral and sum of eq. ( 10); the last three ingredients determine the size of the effective integration and sum region relative to the integration simplex, and the distance between the peaks of the data weights and the prior weights of fig.

-eq. ( 26). All five ingredients determine how good are the delta approximations in the integral and sum of eq. ( 10). We saw in § 2, p. 5, after eq. ( 12), that N needs to be much larger than K for the integral and delta approximations of the frequency sum to be meaningful. Maximum-entropy approximations are not meaningful if the number of possible outcomes is much larger than the number of observations.

It would be very useful to have explicit estimates of the maximumentropy-approximation error as a function of the four quantities above. I hope to analyse them in a future note, and promise it would be a shorter note.

Is this a "derivation" of maximum-entropy?

The heuristic explanation of § 4 shows that the maximum-entropy distributions appear asymptotically owing to our specific choices of a multinomial prior in the exchangeability model, and of an exponential family with observable O in the sufficiency model. They are therefore not derived only from first principles or from some sort of universal limit. This is why I don't call the asymptotic analysis discussed in this note a "derivation" of the maximum-entropy "principle". In my opinion this analysis shows that it is not a principle at all.

The information-theoretic arguments -or should we say incentivesbehind the standard maximum-entropy recipe can be lifted to a meta4 level and used for priors asymptotically equivalent to the multinomial prior (7), as done by [START_REF] Rodríguez | The metrics induced by the Kullback number[END_REF][START_REF]Entropic priors for discrete probabilistic networks and for mixtures of Gaussians models[END_REF] for the entropic prior (see also Skilling 1989a;[START_REF] Egorov | A contribution to the theory of generalized functions[END_REF]. Such arguments don't determine the parameters L and r, though. They seem to be prone to an infinite regress; Jaynes was aware of this (Jaynes 2003 § 11.1, p. 344).

It would be useful if the multinomial or entropic priors could be uniquely determined by intuitive inferential assumptions, as for example is the case with the Johnson-Dirichlet prior, proportional to q L dq: this prior must be used if we believe (denote this by I J ) that the frequencies of other outcomes are irrelevant for predicting a particular one:

p E (N+1) k f , N, I J p E (N+1) k f k , N, I J , k ∈ {1, . . . , K}, (28) 
a condition called "sufficientness" [START_REF] Johnson | Logic. Part III: The Logical Foundations of Science[END_REF][START_REF]Probability: the deductive and inductive problems[END_REF]Good 1965 ch. 4;[START_REF] Zabell | 's "sufficientness" postulate[END_REF]Jaynes 1996). Asymptotically it leads to a maximum-entropy distribution with [START_REF] Burg | Maximum entropy spectral analysis[END_REF] entropy ln x (see Jaynes 1996;[START_REF] Porta Mana | On the relation between plausibility logic and the maximum-entropy principle: a numerical study[END_REF]. But, after all, the logical calculus doesn't tell us which truths to choose at the beginning of a logical deduction. Why should the probability calculus tell us which probabilities to choose at the beginning of a probabilistic induction?

Conclusion

Interpreting the maximum-entropy method as an approximation of the exchangeable model ( 6) with multinomial prior (7) has many advantages: • it clears up the meaning of the "expectation average" prescription of the maximum-entropy method;

• it identifies the range of validity of such prescription;

• it quantifies the error of the maximum-entropy approximation;

• it gives a more sensible solution when this approximation doesn't hold;

• it clearly differentiates between prediction and retrodiction;

• it can be backed up by information-theoretic incentives [START_REF] Rodríguez | The metrics induced by the Kullback number[END_REF][START_REF]Entropic priors for discrete probabilistic networks and for mixtures of Gaussians models[END_REF] if you're into those. Disadvantages:

• It can't be used to answer the question "Where did the cat go?". But this question lies forever beyond the reach of the probability calculus. That's all [START_REF] Hanshaw | My Blackbirds are Bluebirds now[END_REF].

  The expression above first selects, within this simplex, a family of distributions {p(k| ν , I )} parametrized by ν; then it delivers the distribution p as a mixture of the distributions of this family, with weight density p(ν | I ) dν. In the exchangeability model this family is actually the whole simplex (that's why it's sometimes called a "nonparametric" model). In the sufficiency model it is an exponential family(Bernardo et al. 2000 § 4.5.3;[START_REF] Barndorff-Nielsen | Information and Exponential Families: In Statistical Theory[END_REF].When we conditionalize on data D, the weight density is determined by the mutual modulation of two weights: that of the probability of the data p(D| ν , I ) and the initial weight p(ν | I ). Pictorially, if K 3: p(D| ν , I ) × p(ν | I ) κp(ν | D, I ) (26) the final p is given by the mixture with the weight density p(ν | D, I ) dν ensuing from this modulation. The mathematical expression of the data weight p(D| ν , I ) is typically exponentiated to the number of measurements N from which the data originate; compare with eqs (

k

  , n ∈ {1, . . . , N }, and the prediction of a "new roll" E (N+1) k . The charts also report the Shannon entropies H of the distributions.

Figure 1

 1 Figure 1 Maximum-entropy and exchangeability model, empirical average a 5

  Figure 2 Maximum-entropy and exchangeability model, empirical average a 6 strictly, if N isn't large.3 See Porta Mana (2009) for comparisons under other values of the empirical average and of the number of measurements.
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"But this long run is a misleading guide to current affairs. In the long run we are all dead." (Keynes

§ 3.I, p. 65)

"According to credible traditions it was in the sixteenth century, an age of very intense spiritual emotions, that people gradually ceased trying, as they had been trying all through two thousand years of religious and philosophic speculation, to penetrate into the secrets of Nature, and instead contented themselves, in a way that can only be called superficial, with investigations of its surface. The great Galileo, who is always the first to be mentioned in this connection, did away with the problem, for instance, of the intrinsic reasons why Nature abhors a vacuum, so that it will cause a falling body to enter into and occupy space after space until it finally comes to rest on solid ground, and contented himself with a much more general observation: he simply established the speed at which such a body falls, what course it takes, what time it takes, and what its rate of acceleration is. The Catholic Church made a grave mistake in threatening this man with death and forcing him to recant, instead of exterminating him without more ado."(Musil 1979 vol. 1, ch. 72) 

"Obedience is no longer a virtue."[START_REF] Milani | L'obbedienza non è piú una virtú[END_REF] 

"This is an expression used to hide the absence of any mathematical idea [. . .]. Personally, I never use this expression in front of children."(Girard 2001 p. 446) 
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