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25-Gb/s Transmission Over 2.5-km SSMF by
Silicon MRR Enhanced 1.55m IlI-V/SOI DML

Valentina Cristofori, Francesco Da Ros, Oskars Ozolins, Mohamed E. Chaibi, Laurent Bramerie, Yunhong Ding,
Xiaodan Pang, Alexandre Shen, Antonin Gallet, Guang-Hua Duan, Karim Hassan, Ségolene Olivier,
Sergei Popov, Gunnar Jacobsen, Leif K. Oxenlgwe, Christophe Peucheret

Abstract—The use of a micro-ring resonator (MRR) to enhance beyond10 Gb/s [3], [4]. However, the major challenges to the
the modulation extinction ratio and dispersion tolerance of a deployment of DMLs are the low modulation extinction ratio
directly modulated laser (DML) is experimentally investigated (ER) and the frequency chirp induced by the direct modulation

with a bit rate of 25 Gb/s as proposed for the next generation fthe | t which d the di ion tol
data center communications. The investigated system combines a0l the laser current, which decreases the dispersion tolerance.

11-GHz 1.55-um directly modulated hybrid 11I-V/SOI DFB laser A potential solution to the latter consists in operating in the
realized by bonding 1lI-V materials (InGaAlAs) on a silicon- O-band (300 nm). However, the higher fiber loss decreases
on-insulator (SOI) wafer and a silicon MRR also fabricated on the power budget of the system. Operation in the C-band
SOIl. Such a transmitter enables error-free transmission (BER: (1550 nm), instead, would be highly desirable.

107?) at 25 Gb/s data rate over2.5-km SSMF without dispersion Lo

compensation nor forward error correction (FEC). As both laser To overcome these Chz.’:lllenges and thus allow operation in the

and MRR are fabricated on the SOI platform, they could be C-band, several techniques have been proposed and success-

combined into a single device with enhanced performance, thus fully demonstrated, such as the use of passive filtering for

providing a cost-effective transmitter for short reach applications.  chirp management[5] or simply ER and dispersion tolerance
enhancement by either a delay interferomeler [6] or by a

Index Terms—Photonic integrated circuits, Resonators filters, micro-ring resonator (MRR) [7]=[10]. An advantage of using

Optical transmitters. MRRs as notch filters for ER enhancement is that they can

be fabricated on the silicon on insulator (SOI) platform in a
l. INTRODUCTION compact way. Furthermore, it has already been demonstrated

that, by using the drop port of the MRR, the laser emission

T HE_ traffic in d_ata cen_ters has been steadily growi_ng Wavelength and the MRR resonance can be locked in an
fulfill the ever increasing c_ustomer demand and this h%?fective way [11]. Additionally, thanks to the progress in
pushgd research towards _fmdmg energy- and Cos_t'eﬁethKf’egration of IlI-V materials on the SOI platforrn [12], it has
solutions capable of reaching modulayo_n speeds higher tr}?ébn recently shown that hybrid DFB lasers can be integrated
the current standard ab Gb/s. Transmission &5 Gb/s over on the same chip with a silicon MRR, resulting in a significant

standard single mode_ fiber (SSMF) has been proposed as ri‘r?fﬁrovement of the DMLs performance [10]. The combination
target to be included in the IEEE 802.3 standard [1]. Furthe(;f hybrid 11I-V lasers on SOI and MRR is, therefore, a

more, physical space n data centers bgmg_ a scarce reso%? mising technique for the cost-effective implementation of
the focus has been directed towards finding integrated pact transmitters for short reach applications

compact solutions that could still satisfy the energy and cost, "¢ letter, we report on an all-on-silicon transmitter

requirements. In this pers_pective, directly m_odulated Iase(g erating at the target bit rate @ Gb/s. This is achieved
EEMLS) ha:j\i? geen recognized as good candidates to addrB %ombining a directly modulating I1I-V/Si hybrid DFB laser
ese needs12]. and an optimized silicon MRR filter. Error-free (BER10~?)

DMLs are, in fact, considered as promising alternatives Hrect detection of on-off keying (OOK) signals after transmis-

external modulation for short reach applications due to th%fon over2.5 km of SSMF is demonstrated without need for

lower cost and power consumption. High-speed DMLs ha\fﬁspersion compensation nor forward error correction (FEC).

already been demonstrated, showing their capability to operate
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Fig. 1. Hybrid I1I-V/SOI DFB laser structure. MRR power coupling coefficient 2

Fig. 3. Relative OMA as a function of MRR power coupling coedfit

x2 and peak-to-peak adiabatic chirp of the DML: negative values show the
improvement provided by the MRR. The calculations have been performed
here witha = 2, but since the peak-to-peak adiabatic chirp depends on the
productask., the actual value of the linewidth enhancement factor does not
significantly impact the results.

power
s

power

drop
H Q OMA
through

i@d G — time generated, and its frequency chirp was modeled according to
laser MRR [13]
a [dP(t
Fig. 2. MRR optimization procedure based on comparison ofQMA at Av = 4— [% + kP (t)} ) (1)
the DML output (OMAry) to the OMA after filtering at the through port of T t

cheRF';/'E?Wé??(ﬁj’g?irfgrc%'fefﬁirggtrg?_'ues of peak-to-peak adiabatic chirp andy p e\ s the linewidth enhancement factor of the laser,

its adiabatic chirp coefficient, anB (¢) is the emitted power.

A 2-dB extinction ratio is a typical value for a DML operated
this etching step, the remaining silicon layer has a thicknegs high bias currents in order to benefit from the enhanced
of 220 nm. For the passive circuitry, additional etching stepgandwidth of the laser and reduced impact of relaxation
are applied to form the strip waveguides and other elemegscillations, which are damped for high laser driving currents.
such as the vertical output coupler. A silica layer is depositedggme typical results of the optimization process are repre-
and a chemical-mechanical polishing is applied in order tnted in Fig[I3, where the relative OMA, defined as the ratio
planarize the surface of the SOI wafer. In paralleR"alnP o the OMA at the DML output to the OMA after filtering, i.e.
wafer containing multiple quantum well layers is_ grown angly log (OMAT,/OMA,) according to the notations of Figl 2,
bonded onto the SOI wafer. After wafer bonding and InR5s calculated as a function of MRR power coupling coeffi-
substrate removal, a combination of wet and dry etching d$ent ~2 and peak-to-peak adiabatic chitp. OMAT, /4. In
used to etch through the InGaAlAs contact layer and thgder to account for signal distortion due to filtering, the OMA
InP p-doped waveguide cladding layer. The active waveguigieeya|uated in a conservative way by considering the height of
is then encapsulated with benzocyclobutene (DVS-BCB). A rectangle of width /2R,, whereR, is the bit rate, that fits
Ti/Pt/Au alloy is used for metallization of both p- and n- typ&yithin the filtered eye diagram. It can be seen in Fig. 3 that,
contacts. Finally, the fabricated laser is ready for wafer levgj, 5 given adiabatic chirp value, the OMA can be improved
probe testing using the vertical grating coupler as access {RJer 3 wide range of MRR power coupling coefficient values.

the optical probe. The peak-to-peak adiabatic chirp measured when modulating
) ) ) the hybrid DFB laser a5 Gb/s is approximatelyi3 GHz,
B. Sllicon Micro-ring Resonator resulting in an optimum value af? of approximatelyo.4. This

The MRR parameters were optimized numerically, as ilaalue is therefore the target for the power coupling coefficient
lustrated in Fig[R. The optimization target was to maximizehen designing the MRR. These optimal MRR parameters are
the optical modulation amplitude (OMA) of 25-Gb/s signal translated into physical dimensions for the fabrication of the
affected by transient and adiabatic chirp after filtering it witMRR by modeling it through the coupled mode thedry![14].
the in-to-through transfer function of a MRR having a freethe desired FSR of00 GHz is obtained by choosing a ring
spectral range (FSR) dfd0 GHz. The FSR value was choserdiameter of120 um.
to potentially allow for simultaneous filtering of multiple FSR-The MRR fabrication started from an SOI wafer with a top
spaced WDM channel in & x 25 Gb/s laser array. For silicon thickness o250 nm over a3-pm buried silicon dioxide
a given silicon waveguide structure (hence group indgkx layer. Electron-beam (EB) lithography and inductively coupled
and fabrication technology (hence loss value, taken here egplasma reactive ion etching were used to define the micro-ring
to 1 dB/cm), the only free parameter is the power couplingtructure shown in Fidgl4 (a). Note that the use of EB lithogra-
coefficientx? between the ring and the straight waveguidephy is not strictly necessary for the dimensions of the device;
taken equal at the through and drop ports. An ideal non-retudeep-UV lithography could also be employed facilitating the
to-zero (NRZ) OOK signal with extinction ratio & dB was fabrication of the device in a standard CMOS process. Plasma-
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Fig. 7. Optical spectra of the DFB laser modulated2&atGb/s with and
without the MRR filtering. The measured MRR transfer function is also
represented by the dashed line.
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and 140 mA.

IV. DYNAMIC CHARACTERIZATION

The dynamic characterization setup is shown in Eig. 6. The
Frequency (GHz) hybrid 111-V/Si DFB laser was biased aB8 mA and directly
; 7
Fig. 5. (a) Optical spectra of the hybrid DFB laser for different bias currengdeIated aes Gl?/s with a2*-1 non-return-to-zero (NRZ) .
and (b) the corresponding small-signal amplitude modulation responses. Pseudo-random binary sequence (PRBS) generated by a bit
pattern generator with a peak-to-peak voltages dfV. After

) - direct modulation, the optical signal was coupled to the silicon
enhanced chemical vapor deposition (PECVD) was then Us@gr for ER enhancement through optical filtering. The laser

to deposit a silica cladding top layer. The rib waveguidgias current was adjusted to match the MRR resonance for
has a depth ofl60 nm and its width is450 nm. The gap gyppression of the low-frequency content of the modulated
width between the straight waveguide and the ring waveguiggtical spectrum, as shown in Fig. 7. Thermal tuning of the
is 300 nm, corresponding to an estmated power cOUP“rIQRR with heaters could lead to the same result [11]. After ER
coefficient s? = 0.45. A microscope picture of the devicegnhancement by the MRR, the optical signal was transmitted
is shown in FigL# (b). Apodized grating couplefs [15] argyer up t02.5 km of SSMF and received by a standard pre-
implemented at the in, through and drop ports to couple lighpjified receiver connected to an error analyzer for bit-error-
in and out of the MRR and the in-to-through total insertiop,tjo (BER) measurements and to a sampling oscilloscope for
loss of the MRR away from resonancedgiB. A significant eye diagram monitoring.
part of the loss could be avoided by integrating the MRR withihe recorded eye diagrams are shown in Flg. 8. Considering
the laser. The main loss contribution is indeed due to the 10§%t the back-to-back (B2B) scenario, it is possible to observe
in the grating couplers estimated to be approximately 4 d, the modulation ER is enhanced by the suppression of the
per coupler. The measured MRR Q-factosis x 10°. signal ‘0’ level by the MRR. The ‘0’ level decreases getting
closer to the yellow dashed line showing the oscilloscope
lIl. HYBRID DFB LASER STATIC CHARACTERIZATION ground level. This corresponds to an enhanced eye opening
First a static characterization of the laser is performed aadd an improvement in the ER fro.8 dB to 6.8 dB.
the optical spectra of the hybrid DFB and its small-sign&urthermore, considering eye diagrams after transmission, it
frequency responses for different bias currents betd®enA is clear how the MRR filtering also enhances the signal
and 140 mA are measured and shown in Fig. 5 (a) and (bjlispersion tolerance. In fact, even if the dispersion effects
respectively. From the spectra in Figl 5 (a), a side modee visible in all the eye diagrams, for the MRR filtered
suppression ratio abové0 dB is estimated, showing goodsignal the eye remains open for a transmission distance up
single mode performance. Tt2dB modulation bandwidth to 2.5 km. Without MRR filtering, instead, the eye is almost
is extracted from theS,; curves in Fig[h (b) and measured taclosed already after transmission ovierkm of SSMF and
be approximatelyl1 GHz for bias currents betweer80 mA becomes completely closed aftekm.
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2.5km DFB laser, which, through reflections, creates feedback into
the laser cavity. This problem will clearly be solved by the

wio MRR integration of the DFB laser and MRR in a single device.

A transmitter for short reach application based on a hybrid

Fig. 8. Eye diagrams of th@5 Gb/s signal for back-to-back and after I1I-V/SOI DFB DML operating at25 Gb/s was demonstrated

transmission ovet, 2_and2.5 |_<m of SSMF _with and without MRR filtering. by enhancing the DML modulation ER and dispersion toler-

The yellow dashed line highlights the oscilloscope ground level. ance through offset filtering using a silicon MRR. Error-free
transmission (BER 10~?) over 2.5-km SSMF was achieved

V. CONCLUSION

2{s = A 2 2 2 2 a2 without the use of electronic equalization techniques, FEC
3 " or dispersion compensation. As both DFB laser and MRR
= AR have been fabricated on the SOI platform, combining the two
4 a % devices can provide a compact all-silicon transmitter suitable
T s . ¥ for data center applications.
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