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Abstract

Viral encephalopathy and retinopathy (VER),
otherwise known as viral nervous necrosis (VNN),
is a major devastating threat for aquatic animals.
Betanodaviruses have been isolated in at least 70
aquatic animal species in marine and in freshwater
environments throughout the world, with the
notable exception of South America. In this
review, the main features of betanodavirus, includ-
ing its diversity, its distribution and its transmis-
sion modes in fish, are firstly presented. Then, the
existing diagnosis and detection methods, as well
as the different control procedures of this disease,
are reviewed. Finally, the potential of selective
breeding, including both conventional and geno-
mic selection, as an opportunity to obtain resistant
commercial populations, is examined.

Keywords: betanodavirus, disease resistance, genetics,
nervous necrosis virus, selective breeding.

Introduction

Although there is presently no strong evidence high-
lighting a possible raise of fish disease outbreaks due
to climate change, increasing temperatures are

expected to induce the spread of pathogens towards
higher latitudes and to provoke negative impacts on
fish physiology (Cochrane et al. 2009). Among
others, the viral encephalopathy and retinopathy
(VER), otherwise known as viral nervous necrosis
(VNN), is considered one of the most serious viral
threats for almost all marine aquaculture fish species
and requires a special focus due to the fact that out-
breaks mostly happen in warm conditions. This dis-
ease, detected in at least 70 cultured or wild marine
and fresh water species, already caused serious eco-
nomic losses in the aquaculture industry in the past
decades, and we can anticipate larger impacts of this
disease because of global warming.
No simple and effective procedures are available

to treat this disease in fish. It is, therefore, impor-
tant to develop tools and set up new approaches
to limit the occurrence and impacts of VNN epi-
sodes in aquaculture farms.
To stress that need, we present here an exten-

sive review about VNN disease in aquaculture,
including the features of the virus, the available
procedures to control this disease and the poten-
tial of selective breeding and genomic selection
(GS) for resistance to viral diseases, as a prospec-
tive way to prevent VNN disease in fish.

Nervous necrosis virus

The causative agent of VNN, the nervous necrosis
virus (NNV), was classified as a member of the
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Nodaviridae family (Mori et al. 1992), which con-
tains two genera: alphanodavirus and betano-
davirus (Van Regenmortel et al. 2000). The
species of the first genus were originally isolated
from insects (Fig. 1), but appear to infect both
vertebrates and invertebrates, and to cause the
death of insect and mammalian hosts (Adachi
et al. 2008). Betanodaviruses usually affect the
nervous system of marine fish, leading to beha-
vioural abnormalities and extreme high mortalities
(Munday, Kwang & Moody 2002). In mammals,
the pathogenicity of betanodaviruses is poorly
reported, but mice have been demonstrated as
non-susceptible, and human cells as not permeable
to that genus (Adachi et al. 2008). Recently, a
new emerging disease, the white tail disease
(WTD), which affects the giant freshwater prawn
and the whiteleg shrimp Penaeus vannamei, has
been demonstrated to be caused by the Macro-
brachium rosenbergii nodavirus (MrNV). Sequence
analysis of this virus suggests the existence of a
new genus, gammanodavirus, infecting crustaceans
(Qian et al. 2003; Senapin et al. 2012, Fig. 1).

General morphology

Betanodavirus virions were first described as non-
enveloped, spherical in shape and have icosahedral
symmetry, with a diameter around 25 nm and a
capsid formed by 180 copies of a single protein of
42 Kda (Mori et al. 1992). A similar virus of 20–
34 nm in diameter was detected in infected Asian
sea bass Lates calcarifer larvae, striped jack Pseudo-
caranx dentex, turbot Scophthalmus maximus,
European sea bass Dicentrarchus labrax (Glaze-
brook, Heasman & Beer 1990; Yoshikoshi &
Inoue 1990; Bloch, Gravningen & Larsen 1991;
Munday et al. 1992), and many various fish spe-
cies throughout the world were subsequently

recorded to be infected by betanodaviruses (Mun-
day et al. 2002; Shetty et al. 2012).

Molecular structure

Betanodavirus contains a bisegmented genome
composed of two single-stranded, positive-sense
RNA molecules (Mori et al. 1992). The
sequence of RNA1 is about 3.1 kb and includes
an open reading frame (ORF) encoding a RNA-
dependent RNA polymerase (RdRp) of 110 kDa
catalysing the replication of the virus, also
named protein A (Nagai & Nishizawa 1999).
The sequence of RNA2 (1.4 kb) encodes the
capsid protein (37 kDa), which may have a
function in the induction of cell death (Guo
et al. 2003). In addition, during the virus repli-
cation, a subgenomic RNA (RNA3) is synthe-
sized from the 30-terminus of RNA1 (Ball &
Johnson 1999). This RNA3 encodes two other
non-structural proteins, B1 (111 amino acids)
and B2 (75 amino acids). Protein B1 displays
antinecrotic property enhancing the viability of
viral host cell (Sommerset & Nerland 2004).
Protein B2 is an inhibitor of host RNA silencing
in either alphanodavirus or betanodavirus, but
could also promote mitochondrial fragmentation
and cell death induced by hydrogen peroxide
production (Su et al. 2014).

Classification

Betanodavirus was described for the first time
from infected larval stripped jack. The name
striped jack nervous necrosis virus (SJNNV) was
consequently adopted (Mori et al. 1992). Subse-
quently other agents of VNN were isolated from
diseased fish species (Munday et al. 2002). The
first comparative studies between viral strains iso-
lated from different marine fish species were car-
ried out in the middle of the 1990s, where
Nishizawa et al. reported the sequence of SJNNV
and four different fish nodaviruses as well as four
different insect nodaviruses (Nishizawa et al.
1995). From a phylogenetic analysis of the RNA2
T4 variable region, betanodaviruses were classified
into four different species designed as the SJNNV
type, the barfin flounder nervous necrosis virus
(BFNNV) type, the red-spotted grouper nervous
necrosis virus (RGNNV) type and the tiger puffer
nervous necrosis virus (TPNNV) type (Nishizawa
et al. 1997). These species partially correlate withFigure 1 Three genera of Nodaviridae.
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three different serotypes determined from virus
neutralization using polyclonal antibodies (sero-
type A for SJNNV species, B for TPNNV species
and C for BFNNV and RGNNV species) (Mori
et al. 2003). Each species corresponds to different
host fish and different in vitro optimal growth
temperatures (Table 1). RGNNV is the most
popular species because a variety of fish species,
distributed in warm water, are affected (optimal
growth temperature of 25–30 °C) (Asian sea bass,
European sea bass, groupers), whereas BFNNV is
restricted to cold-water (15–20 °C) marine fish
species (Atlantic halibut Hippoglossus hippoglossus,
Atlantic cod Gadus morhua, flounders) and
TPNNV infects a single species (Tiger puffer Tak-
ifugu rubripes) at an intermediate temperature
(20 °C). The SJNNV type was initially known to
affect a few species cultured in Japan at 20–25 °C
(Nishizawa et al. 1995; Iwamoto et al. 2000;
Munday et al. 2002; Toffan et al. 2016). How-
ever, it was also recently described in some fish
species cultured in southern Europe such as Sene-
galese sole Solea senegalensis in Spain, gilthead sea
bream Sparus aurata and European sea bass in the
Iberian Peninsula (Thi�ery et al. 2004; Cutr�ın
et al. 2007). This capacity to infect such warm-
water fish species is probably associated with reas-
sortant RGNNV and SJNNV strains (Iwamoto
et al. 2004; Toffolo et al. 2007; Panzarin et al.
2012; Toffan et al. 2016; see also Phylogenetic
relationships paragraph). Phylogenetic analysis of
betanodaviruses was also performed based on the
T2 region, which covers a larger RNA2 sequence
than T4 (Chi, Shieh & Lin 2003; Johansen et al.
2004). This taxonomy has been used to geneti-
cally characterized new isolates in various fish spe-
cies as well as in different areas (Aspehaug,
Devold & Nylund 1999; Starkey et al. 2000;
Dalla Valle et al. 2001; Skliris et al. 2001; Tan
et al. 2001; Johnson, Sperker & Leggiadro 2002;
Chi et al. 2003; Gagn�e et al. 2004; Johansen
et al. 2004; Sommerset & Nerland 2004; Thi�ery
et al. 2004; Ransangan & Manin 2012; Ven-
dramin et al. 2013). Because NNV is detected in
many new species as well as new regions, descrip-
tion of new isolates and sequences are regularly
published and could lead to evolution in the clas-
sification (Table 1). For example, an additional
genotype including a turbot betanodavirus strain
(TNNV) was described in 2004. This species is
currently awaiting classification (Johansen et al.
2004).

An alternative classification has been proposed
(Thi�ery et al. 2004). However, this numerical
nomenclature (cluster I, II, III and IV), indepen-
dent from the host species origin, is not exten-
sively used because viruses from different clusters
could infect a same host species, for example
European sea bass (Thi�ery, Raymond & Castric
1999a; Thi�ery, Arnauld & Delsert 1999b), and
the classification was not consistent with geo-
graphical areas (Dalla Valle et al. 2001; Thi�ery
et al. 2004; Cutr�ın et al. 2007).

Phylogenetic relationships

Among the different species of betanodaviruses,
amino acid sequences of RdRp protein and capsid
protein share 87–99% and 77–100% of identity,
respectively [82–98% for the complete RNA1
nucleic sequence and 76–99% for the RNA2 seg-
ment (Okinaka & Nakai 2008)]. The topology of
phylogenetic trees based on RNA1 and RNA2 dis-
tinguishes several clades, suggesting a high diver-
sity despite relatively strong purifying selection on
most codons (Panzarin et al. 2012). This impor-
tant variability can be explained by a significant
substitution rate but also by a reassorting process
specific to segmented viruses (Panzarin et al.
2012).

Distribution and transmission

Distribution

Viral encephalopathy and retinopathy is one of
the most widespread viral diseases of marine fish
species cultured worldwide. A large number of
species have been reported to be affected, espe-
cially larval and juvenile stages in which high
mortalities were recorded (Munday et al. 2002;
Shetty et al. 2012). Based on clinical signs, VNN
disease has been documented since 1985 in Japa-
nese parrotfish Oplegnathus fasciatus larvae and
juveniles in Japan, while the pathogen was first
observed in the brain of reared Japanese parrotfish
(Yoshikoshi & Inoue 1990). Three years later, it
was recorded in European sea bass produced in
Martinique (West Indies, France) and French
Mediterranean (Breuil et al. 1991). Since then,
similar clinical signs with encephalitis associated
with picorna-like viral particles were observed in
the Asian sea bass Lates calcarifer cultured in Aus-
tralia (Glazebrook et al. 1990; Munday et al.
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2002), as well as in turbot Scopthalmus maximus
(Bloch et al. 1991), red-spotted grouper Epinepha-
lus akaara (Nishizawa et al. 1995), striped jack
Pseudocaranx dentex (Mori et al. 1992), Japanese
flounder Paralichthys olivaceus (Nishizawa et al.
1995), tiger puffer Takifugu rublipes, kelp grouper
Epinephelus moara (Munday et al. 2002) and bar-
fin flounder Verasper moseri in Japan (Nishizawa
et al. 1995), and recently in golden grey mullet
Liza aurata and leaping mullet Liza saliens in the
Caspian Sea (Zorriehzahra et al. 2016).
Infections caused by NNV have been detected

all around the world, with the notable exception
of South America (Crane & Hyatt 2011; Shetty
et al. 2012). It was the cause of mass mortality in
Atlantic halibut in Norway and Scotland (Grot-
mol et al. 1997; Starkey et al. 2000) and in juve-
nile greasy grouper Epinephelus tauvina in
Singapore (Hegde et al. 2002) and in groupers in
Taiwan (Chi et al. 1997). Betanodaviruses have
been the cause of high economical losses in aqua-
culture industry throughout the Mediterranean
area. Mass mortalities have been repeatedly
recorded since 1991 on larvae and juvenile stages
in European sea bass in France (Breuil et al.
1991) as well as on grow-out size sea bass in
Greece, Italia and Tunisia (Le Breton et al. 1997;
Bovo et al. 1999; Thi�ery et al. 2004; Haddad-
Boubaker et al. 2013). Grey mullet Mugil cepha-
lus, red drum Sciaenops ocellatus and barramundi
cultured in Israel were also reported to be affected
by NNV (Ucko, Colorni & Diamant 2004).
Farmed Senagalese sole Solea senegalensis were
reported as infected by RGNNV and SJNNV in
Spain (Thi�ery et al. 2004; Hodneland et al.
2011). More recently, RGNNV, SJNNV geno-
types and reassortant RGNNV/SJNNV and
SJNNV/RGNNV viruses have been reported to
infect several fish species (European sea bass, sea
bream, Senegalese sole) in Mediterranean Sea
(Toffolo et al. 2007; Olveira et al. 2009; Panzarin
et al. 2012; Haddad-Boubaker et al. 2013; Toffan
et al. 2016). A strain belonging to the RGNNV
species caused mass mortality in white sea bass
Atractoscion nobilis reared in South California in
1999 (Curtis et al. 2001). NNV was also found
in Atlantic cod and haddock Melanogrammus
aeglefinus juvenile stages on the Atlantic coast of
North America (Johnson et al. 2002). Further-
more, betanodaviruses do not only affect reared
fish species, but have also been found in a variety
of wild fish species, as reported in Table 2.T

ab
le

1
C
on
ti
nu

ed

S
p
e
c
ie
s

G
e
n
B
a
n
k

a
c
c
e
ss
io
n
n
o
.

O
p
tim

a
l

te
m
p
e
ra
tu
re

fo
r
re
p
lic
a
tio

n
S
e
ro
ty
p
e

M
a
in

h
o
st
s
e
ff
e
c
te
d

K
e
y
R
e
f.

L
a
te
s
c
a
lc
a
ri
fe
r
e
n
c
e
p
h
a
lit
is

vi
ru
s
–
L
c
E
F

R
N
A
2
(A
F
1
7
5
5
1
6
)

2
5
–3

0
°C

C
B
a
rr
a
m
u
n
d
i
(L
a
te
s
c
a
lc
a
ri
fe
r)

S
kl
ir
is

e
t
a
l.
(2
0
0
1
)

M
a
la
b
a
ri
c
u
s
g
ro
u
p
e
r
n
e
rv
o
u
s

n
e
c
ro
si
s
vi
ru
s
–
M
G
N
N
V

R
N
A
2
(A
F
2
4
5
0
0
3
)

2
5
–3

0
°C

C
M
a
la
b
a
ri
c
u
s
g
ro
u
p
e
r
(E
p
in
e
p
h
e
lu
s

m
a
la
b
a
ri
c
u
s
)

Jo
h
n
so

n
e
t
a
l.
(2
0
0
2
)

S
e
a
b
a
ss

n
e
rv
o
u
s
n
e
c
ro
si
s
vi
ru
s

–
S
B
N
N
V

R
N
A
2
(Y
0
8
7
0
0
)

2
0
–2

5
°C

A
S
e
a
b
a
ss

(D
ic
e
n
tr
a
rc
h
u
s
la
b
ra
x
)

T
h
i� e
ry

e
t
a
l.
(2
0
0
4
)

S
o
le
a
se

n
e
g
a
le
n
si
s
n
e
rv
o
u
s

n
e
c
ro
si
s
vi
ru
s
–
S
S
N
N
V

R
N
A
1
(F
J8

0
3
9
1
1
)

R
N
A
2
(A
J6

9
8
1
1
3
)

2
0
–2

5
°C

A
S
e
n
e
g
a
le
se

so
le

(S
o
le
a
se

n
e
g
a
le
n
si
s
)

P
a
n
za

ri
n
e
t
a
l.
(2
0
1
2
),
T
h
i� e
ry

e
t
a
l.
(2
0
0
4
)

T
u
rb
o
t
n
o
d
a
vi
ru
s
–
T
N
V

R
N
A
2
(A
J6

0
8
2
6
6
)

U
n
d
e
fin

e
d

U
n
d
e
fin

e
d

T
u
rb
o
t
(S
c
o
p
h
th
a
lm

u
s
m
a
xi
m
u
s)

Jo
h
a
n
se

n
e
t
a
l.
(2
0
0
4
)

M
a
c
ro
b
ra
c
h
iu
m

ro
se

n
b
e
rg
ii

n
o
d
a
vi
ru
s
–
M
rN

V

R
N
A
1
(A
Y
2
3
1
4
3
6
)

R
N
A
2
(A
Y
2
3
1
4
3
7
)

2
5
–3

0
°C

U
n
d
e
fin

e
d

G
ia
n
t
fr
e
sh

w
a
te
r
p
ra
w
n
(M

a
c
ro
b
ra
c
h
iu
m

ro
se

n
b
e
rg
ii)

S
e
n
a
p
in

e
t
a
l.
(2
0
1
2
),
B
o
n
a
m
i
&
W
id
a
d
a

(2
0
1
1
),

P
e
n
a
e
u
s
va

n
n
a
m
e
i
n
o
d
a
vi
ru
s
–

P
vN

V

R
N
A
1
(F
J7

5
1
2
2
6
)

R
N
A
2
(F
J7

5
1
2
2
5
)

2
5
–3

0
°C

U
n
d
e
fin

e
d

W
h
ite

le
g
sh

ri
m
p
(L
ito

p
e
n
a
e
u
s
va

n
n
a
m
e
i)

S
e
n
a
p
in

e
t
a
l.
(2
0
1
2
),
T
a
n
g
e
t
a
l.
(2
0
0
7
)

721

Journal of Fish Diseases 2017, 40, 717–742 Q K Doan et al. Viral nervous necrosis in aquaculture

� 2016

John Wiley & Sons Ltd

http://www.ncbi.nlm.nih.gov/nuccore/AF175516
http://www.ncbi.nlm.nih.gov/nuccore/AF245003
http://www.ncbi.nlm.nih.gov/nuccore/Y08700
http://www.ncbi.nlm.nih.gov/nuccore/FJ803911
http://www.ncbi.nlm.nih.gov/nuccore/AJ698113
http://www.ncbi.nlm.nih.gov/nuccore/AJ608266
http://www.ncbi.nlm.nih.gov/nuccore/AY231436
http://www.ncbi.nlm.nih.gov/nuccore/AY231437
http://www.ncbi.nlm.nih.gov/nuccore/FJ751226
http://www.ncbi.nlm.nih.gov/nuccore/FJ751225


T
ab
le

2
F
is
h
sp
ec
ie
s
in
fl
u
en
ce
d
b
y
vi
ra
l
en
ce
p
h
al
op
at
h
y
an
d
re
ti
n
op
at
h
y
(V
E
R
)/
vi
ra
l
n
er
vo
u
s
n
ec
ro
si
s
(V
N
N
)

H
o
st

sp
e
c
ie
s

S
p
e
c
ie
s

K
e
y
re
f.

O
d
e
r

F
a
m
ily

C
o
m
m
o
n
n
a
m
e

L
a
tin

n
a
m
e

M
a
ri
n
e
sp

e
c
ie
s

F
a
rm

e
d
sp

e
c
ie
s

D
e
c
a
p
o
d
a

P
e
n
a
e
id
a
e

W
h
ite

le
g
sh

ri
m
p

L
ip
o
p
e
n
a
e
u
s
va

n
n
a
m
e
i

P
vN

V
T
a
n
g
e
t
a
l.
(2
0
0
7
)

S
c
o
rp
a
e
n
ifo

rm
e
s

S
e
b
a
st
id
a
e

B
la
c
k
ro
c
kfi
sh

S
e
b
a
st
e
s
in
e
rm

is
R
G
N
N
V

G
o
m
e
z
e
t
a
l.
(2
0
0
4
)

O
b
lo
n
g
ro
c
kfi
sh

S
e
b
a
st
e
s
o
b
lo
n
g
u
s

S
p
o
tb
e
lly

ro
c
kfi
sh

S
e
b
a
st
e
s
p
a
c
h
yc

e
p
h
a
lu
s

P
e
m
p
h
e
ri
fo
rm

e
s

L
a
te
o
la
b
ra
c
id
a
e

C
h
in
e
se

se
a
b
a
ss

L
a
te
o
la
b
ra
x
sp

.

P
e
rc
ifo

rm
e
s

S
p
a
ri
d
a
e

R
e
d
se

a
b
re
a
m

P
a
g
ru
s
m
a
jo
r

G
ilt
h
e
a
d
se

a
b
re
a
m

S
p
a
ru
s
a
u
ra
ta

S
JN

N
V

C
u
tr�
ın

e
t
a
l.
(2
0
0
7
)

O
p
le
g
n
a
th
id
a
e

Ja
p
a
n
e
se

p
a
rr
o
tfi
sh

(B
a
rr
e
d
kn

ife
ja
w
)

O
p
le
g
n
a
th
u
s
fa
sc

ia
tu
s

S
JN

N
V

Y
o
sh

ik
o
sh

i
&

In
o
u
e
(1
9
9
0
),
N
is
h
iz
a
w
a

e
t
a
l.
(1
9
9
7
)

C
e
n
tr
o
p
o
m
id
a
e

Ja
p
a
n
e
se

se
a
b
a
ss

L
a
te
o
la
b
ra
x
ja
p
o
n
ic
u
s

R
G
N
N
V

M
o
ri
e
t
a
l.
(2
0
0
3
)

S
c
ia
e
n
id
a
e

W
h
ite

se
a
b
a
ss

A
tr
a
c
to
sc

io
n
n
o
b
ili
s

R
G
N
N
V

C
u
rt
is

e
t
a
l.
(2
0
0
1
)

P
e
rc
ic
h
th
yd

a
e

E
u
ro
p
e
a
n
se

a
b
a
ss

D
ic
e
n
tr
a
rc
h
u
s
la
b
ra
x

R
G
N
N
V
/S
JN

N
V

B
re
u
il
e
t
a
l.
(1
9
9
1
),
T
h
i� e
ry

e
t
a
l.
(2
0
0
4
)

S
c
o
m
b
ri
d
a
e

P
a
c
ifi
c
b
lu
e
fin

tu
n
a

T
h
u
n
n
u
s
o
ri
e
n
ta
lis

R
G
N
N
V

S
u
g
a
ya

e
t
a
l.
(2
0
0
9
)

R
a
c
h
yc

e
n
tr
id
a
e

C
o
b
ia

R
a
c
h
yc

e
n
tr
o
n
c
a
n
a
d
u
m

R
G
N
N
V

C
h
i
e
t
a
l.
(2
0
0
3
)

C
a
ra
n
g
id
a
e

Y
e
llo
w
-w

a
x
p
o
m
p
a
n
o

T
ra
c
h
in
o
tu
s
fa
lc
a
tu
s

S
tr
ip
e
d
ja
c
k

P
se

u
d
o
c
a
ra
n
x
d
e
n
te
x

S
JN

N
V
/T
P
N
N
V

M
o
ri
e
t
a
l.
(1
9
9
2
),
N
is
h
iz
a
w
a
e
t
a
l.
(1
9
9
7
)

G
o
ld
e
n
p
o
m
p
a
n
o

T
ra
c
h
in
o
tu
s
b
lo
c
h
ii

R
G
N
N
V

R
a
n
sa

n
g
a
n
e
t
a
l.
(2
0
1
1
)

S
e
rr
a
n
id
a
e

H
u
m
p
b
a
c
k
g
ro
u
p
e
r

C
ro
m
ile
p
te
s
a
lti
ve

lis
R
G
N
N
V

Y
u
a
sa

,
K
o
e
sh

a
ry
a
n
i
&

M
a
h
a
rd
ik
a
(2
0
0
7
)

D
ra
g
o
n
g
ro
u
p
e
r

E
p
in
e
p
h
e
lu
s
la
n
c
e
o
la
tu
s

R
G
N
N
V

L
in

e
t
a
l.
(2
0
0
1
)

R
e
d
-s
p
o
tt
e
d
g
ro
u
p
e
r

E
p
in
e
p
h
a
lu
s
a
ka

a
ra

R
G
N
N
V

N
is
h
iz
a
w
a
e
t
a
l.
(1
9
9
7
)

B
la
c
k-
sp

o
tt
e
d
g
ro
u
p
e
r

E
p
in
e
p
h
e
lu
s
fu
sc

o
g
u
ta
tu
s

R
G
N
N
V

C
h
i
e
t
a
l.
(1
9
9
7
)

S
e
ve

n
b
a
n
d
g
ro
u
p
e
r

E
p
in
e
p
h
e
lu
s
se

p
te
m
fa
sc

ia
tu
s

S
JN

N
V

F
u
ku

d
a
e
t
a
l.
(1
9
9
6
)

G
re
a
sy

g
ro
u
p
e
r

E
p
in
e
p
h
e
lu
s
ta
u
vi
n
a

G
G
N
N
V

H
e
g
d
e
e
t
a
l.
(2
0
0
2
),
T
a
n
e
t
a
l.
(2
0
0
1
)

O
ra
n
g
e
-s
p
o
tt
e
d
g
ro
u
p
e
r

E
p
in
e
p
h
e
lu
s
c
o
io
id
e
s

R
G
N
N
V

C
h
i
e
t
a
l.
(1
9
9
9
),

B
ro
w
n
-s
p
o
tt
e
d
g
ro
u
p
e
r

E
p
in
e
p
h
e
lu
s
m
a
la
b
a
ri
c
u
s

R
G
N
N
V

N
is
h
iz
a
w
a
e
t
a
l.
(1
9
9
7
)

Y
e
llo
w

g
ro
u
p
e
r

E
p
in
e
p
h
e
lu
s
a
w
o
a
ra

R
G
N
N
V

L
a
i
e
t
a
l.
(2
0
0
1
)

K
e
lp

g
ro
u
p
e
r

E
p
in
e
p
h
e
lu
s
m
o
a
ra

U
n
d
e
fin

e
d

M
u
n
d
a
y
e
t
a
l.
(2
0
0
2
),
N
is
h
iz
a
w
a

e
t
a
l.
(1
9
9
7
)

T
e
tr
a
o
d
o
n
tif
o
rm

e
s

T
e
tr
a
o
d
o
n
tid

a
e

T
ig
e
r
p
u
ff
e
r

T
a
ki
fu
g
u
ru
b
ri
p
e
s

T
P
N
N
V

P
le
u
ro
n
e
c
tif
o
rm

e
s

S
o
le
id
a
e

S
e
n
e
g
a
le
se

so
le

S
o
le
a
se

n
e
g
a
le
n
si
s

S
JN

N
V

T
h
i� e
ry

e
t
a
l.
(2
0
0
4
)

P
le
u
ro
n
e
c
tid

a
e

B
a
rfi
n
flo

u
n
d
e
r

V
e
ra
sp

e
r
m
o
se

ri
B
F
N
N
V

N
is
h
iz
a
w
a
e
t
a
l.
(1
9
9
5
)

A
tla

n
tic

h
a
lib

u
t

H
ip
p
o
g
lo
ss
u
s
h
ip
p
o
g
lo
ss
u
s

B
F
N
N
V

G
ro
tm

o
l
e
t
a
l.
(1
9
9
7
)

P
a
ra
lic
h
th
yi
d
a
e

Ja
p
a
n
e
se

flo
u
n
d
e
r

P
a
ra
lic
h
th
ys

o
liv
a
c
e
u
s

S
JN

N
V

N
is
h
iz
a
w
a
e
t
a
l.
(1
9
9
5
)

S
c
o
p
h
th
a
lm

id
a
e

T
u
rb
o
t

S
c
o
p
h
th
a
lm

u
s
m
a
xi
m
u
s

T
N
V

Jo
h
a
n
se

n
e
t
a
l.
(2
0
0
4
)

P
e
rc
ifo

rm
e
s

C
e
n
tr
o
p
o
m
id
a
e

B
a
rr
a
m
u
n
d
i/A

si
a
n
se

a
b
a
ss

L
a
te
s
c
a
lc
a
ri
fe
r

R
G
N
N
V

B
lo
c
h
e
t
a
l.
(1
9
9
1
)

G
a
d
ifo

rm
e
s

G
a
d
id
a
e

P
a
c
ifi
c
c
o
d

G
a
d
u
s
m
a
c
ro
c
e
p
h
a
lu
s

B
F
N
N
V

M
o
ri
e
t
a
l.
(2
0
0
3
)

A
tla

n
tic

c
o
d

G
a
d
u
s
m
o
rh
u
a

B
F
N
N
V

Jo
h
n
so

n
e
t
a
l.
(2
0
0
2
)

H
a
d
d
o
c
k

M
e
la
n
o
g
ra
m
m
u
s
a
e
g
le
fin

u
s

B
F
N
N
V

G
a
g
n
� e
e
t
a
l.
(2
0
0
4
)

722

Journal of Fish Diseases 2017, 40, 717–742 Q K Doan et al. Viral nervous necrosis in aquaculture

� 2016

John Wiley & Sons Ltd



T
ab
le

2
C
on
ti
nu

ed

H
o
st

sp
e
c
ie
s

S
p
e
c
ie
s

K
e
y
re
f.

O
d
e
r

F
a
m
ily

C
o
m
m
o
n
n
a
m
e

L
a
tin

n
a
m
e

W
ild

sp
e
c
ie
s

P
e
rc
ifo

rm
e
s

E
p
ig
o
n
id
a
e

C
a
rd
in
a
l
fis
h

E
p
ig
o
n
u
s
te
le
sc

o
p
u
s

U
n
d
e
fin

e
d

G
ia
c
o
p
e
llo

e
t
a
l.
(2
0
1
3
)

S
e
rr
a
n
id
a
e

W
ild

d
u
sk
y
g
ro
u
p
e
r

E
p
in
e
p
h
e
lu
s
m
a
rg
in
a
tu
s

R
G
N
N
V

V
e
n
d
ra
m
in

e
t
a
l.
(2
0
1
3
)

W
ild

g
o
ld
e
n
g
ro
u
p
e
r

E
p
in
e
p
h
e
lu
s
c
o
st
a
e

S
p
a
ri
d
a
e

B
o
g
u
e

B
o
o
p
s
b
o
o
p
s
(L
.)

R
G
N
N
V

C
iu
lli
e
t
a
l.
(2
0
0
7
)

M
u
g
ili
d
a
e

F
la
th
e
a
d
g
re
y
m
u
lle
t

M
u
g
il
c
e
p
h
a
lu
s
(L
.)

G
o
ld
e
n
g
re
y
m
u
lle
t

L
iz
a
a
u
ra
ta

R
G
N
N
V

Z
o
rr
ie
h
za

h
ra

e
t
a
l.
(2
0
1
6
)

L
e
a
p
in
g
m
u
lle
t

L
iz
a
sa

lie
n
s

R
e
d
m
u
lle
t

M
u
llu
s
b
a
rb
a
tu
s
b
a
rb
a
tu
s
(L
.)

R
G
N
N
V

C
iu
lli
e
t
a
l.
(2
0
0
7
)

G
o
b
iid

a
e

B
la
c
k
g
o
b
y

G
o
b
iu
s
n
ig
e
r
(L
.)

C
a
ra
n
g
id
a
e

H
o
rs
e
m
a
c
ke

re
l

T
ra
c
h
u
ru
s
tr
a
c
h
u
ru
s

Ja
p
a
n
e
se

sc
a
d

D
e
c
a
p
te
ru
s
m
a
ru
a
d
si

(T
e
m
m
in
c
k
&
S
c
h
le
g
e
l)

R
G
N
N
V

G
o
m
e
z
e
t
a
l.
(2
0
0
4
)

L
e
p
is
o
st
e
ifo

rm
e
s

L
e
p
is
o
st
e
id
a
e

G
a
rp
ik
e
(L
o
n
g
n
o
se

G
a
r)

L
e
p
is
o
st
e
u
s
o
ss
e
u
s

R
G
N
N
V

C
iu
lli
e
t
a
l.
(2
0
0
7
)

P
le
u
ro
n
e
c
tif
o
rm

e
s

P
le
u
ro
n
e
c
tid

a
e

W
ild

w
in
te
r
flo

u
n
d
e
r

P
le
u
ro
n
e
c
te
s
a
m
e
ri
c
a
n
u
s

B
F
N
N
V

G
a
g
n
� e
e
t
a
l.
(2
0
0
4
)

N
o
ta
c
a
n
th
ifo

rm
e
s

N
o
ta
c
a
n
th
id
a
e

S
h
o
rt
fin

sp
in
y
e
e
l

N
o
ta
c
a
n
th
u
s
b
o
n
a
p
a
rt
e

U
n
d
e
fin

e
d

G
ia
c
o
p
e
llo

e
t
a
l.
(2
0
1
3
)

B
e
ry
c
ifo

rm
e
s

T
ra
c
h
ic
h
th
yi
d
a
e

M
e
d
ite

rr
a
n
e
a
n
sl
im

e
h
e
a
d

H
o
p
lo
st
e
th
u
s
m
e
d
ite

rr
a
n
e
u
s

m
e
d
ite

rr
a
n
e
u
s

G
a
d
ifo

rm
e
s

M
a
c
ro
u
ri
d
a
e

G
la
ss
h
e
a
d
g
re
n
a
d
ie
r

H
ym

e
n
o
c
e
p
h
a
lu
s
ita

lic
u
s
(G

ig
lio
li)

G
a
d
id
a
e

W
h
iti
n
g

M
e
rl
a
n
g
i
m
e
rl
a
n
g
u
s
(L
.)

R
G
N
N
V

C
iu
lli
e
t
a
l.
(2
0
0
7
)

M
e
rl
u
c
c
iid

a
e

E
u
ro
p
e
a
n
h
a
ke

M
e
rl
u
c
c
iu
s
m
e
rl
u
c
c
iu
s
(L
.)

C
lu
p
e
ifo

rm
e
s

C
lu
p
e
id
a
e

E
u
ro
p
e
a
n
p
ilc
h
a
rd

S
a
rd
in
a
p
ilc
h
a
rd
u
s
(W

a
lb
a
u
m
)

S
c
o
rp
a
e
n
ifo

rm
e
s

T
ri
g
lid

a
e

G
u
rn
a
rd

C
h
e
lid

o
n
ic
h
th
ys

lu
c
e
rn
a
(L
.)

S
e
b
a
st
id
a
e

M
a
rb
le
d
ro
c
kfi
sh

S
e
b
a
st
is
c
u
s
m
a
rm

o
ra
tu
s
(C

u
vi
e
r)

R
G
N
N
V

G
o
m
e
z
e
t
a
l.
(2
0
0
4
)

T
e
tr
a
o
d
o
n
tif
o
rm

e
s

M
o
n
a
c
a
n
th
id
a
e

T
h
re
a
d
sa

il
fil
e
fis
h

S
te
p
h
a
n
o
le
p
is

c
ir
rh
ife

r
(T
e
m
m
in
c
k

&
S
c
h
le
g
e
l)

B
la
c
k
sc

ra
p
e
r

T
h
a
m
n
a
c
o
n
u
s
m
o
d
e
st
u
s
(G

u
n
th
e
r)

D
e
c
a
p
o
d
a

P
o
rt
u
n
id
a
e

C
h
a
ry
b
d
is

c
ra
b

C
h
a
ry
b
d
is

b
im

a
c
u
la
ta

R
G
N
N
V

G
o
m
e
z
e
t
a
l.
(2
0
0
8
)

P
a
n
d
a
lid

a
e

S
o
u
th
e
rn

h
u
m
p
b
a
c
k
sh

ri
m
p

P
a
n
d
a
lu
s
h
yp

si
n
o
tu
s

M
yt
ilo
id
a

M
yt
ili
d
a
e

M
e
d
ite

rr
a
n
e
a
n
m
u
ss
e
l

M
yt
ilu
s
g
a
llo
p
ro
vi
n
c
ia
lis

F
re
sh

w
a
te
r
sp

e
c
ie
s

F
a
rm

e
d
sp

e
c
ie
s

A
c
ip
e
n
se

ri
fo
rm

e
s

A
c
ip
e
n
se

ri
d
a
e

S
tu
rg
e
o
n

A
c
ip
e
n
se

r
g
u
e
ld
e
n
st
a
e
d
i

S
JN

N
V

A
th
a
n
a
ss
o
p
o
u
lo
u
e
t
a
l.
(2
0
0
4
)

A
n
g
u
ill
ifo

rm
e
s

A
n
g
u
ill
id
a
e

E
u
ro
p
e
a
n
e
e
ls

A
n
g
u
ill
a
a
n
g
u
ill
a

R
G
N
N
V

C
h
i
e
t
a
l.
(2
0
0
3
)

S
ilu
ri
fo
rm

e
s

S
ilu
ri
d
a
e

C
h
in
e
se

c
a
tfi
sh

P
a
ra
si
lu
ru
s
a
so

tu
s

A
u
st
ra
lia
n
c
a
tfi
sh

T
a
n
d
a
n
u
s
ta
n
d
a
n
u
s

U
n
d
e
fin

e
d

S
h
e
tt
y
e
t
a
l.
(2
0
1
2
)

P
e
rc
ifo

rm
e
s

E
le
o
tr
id
a
e

S
le
e
p
y
c
o
d

O
xy
e
le
o
tr
is

lin
e
o
la
tu
s

U
n
d
e
fin

e
d

C
e
n
tr
a
rc
h
id
a
e

L
a
rg
e
m
o
u
th

b
la
c
k
b
a
ss

M
ic
ro
p
te
ru
s
sa

lm
o
id
e
s
(L
a
c
e
p
e
d
e
)

R
G
N
N
V

B
o
vo

e
t
a
l.
(2
0
1
1
)

P
e
rc
id
a
e

P
ik
e
-p
e
rc
h

S
a
n
d
e
r
lu
c
io
p
e
rc
a

C
ic
h
lid

a
e

T
ila
p
ia

O
re
o
c
h
ro
m
is

n
ilo
tic

u
s

R
G
N
N
V

B
ig
a
rr
� e
e
t
a
l.
(2
0
0
9
)

D
e
c
a
p
o
d
a

P
a
la
e
m
o
n
id
a
e

G
ia
n
t
fr
e
sh

w
a
te
r
p
ra
w
n

M
a
c
ro
b
ra
c
h
iu
m

ro
se

n
b
e
rg
ii

M
rN

V
B
o
n
a
m
i
&
W
id
a
d
a
(2
0
1
1
)

723

Journal of Fish Diseases 2017, 40, 717–742 Q K Doan et al. Viral nervous necrosis in aquaculture

� 2016

John Wiley & Sons Ltd



Regarding environment, although NNV is
mostly known for infecting aquatic animals in
marine and brackish water, the reports of freshwa-
ter species infected by NNV have been increasing
(Table 2). NNV infection was observed in fresh-
water eel and catfish aquaculture systems in Tai-
wan (Chi et al. 2003) as well as in other
freshwater species including sturgeon Acipenser
gueldenstaedtii (Athanassopoulou, Billinis & Pra-
pas 2004), tilapia Oreochromis niloticus (Bigarr�e
et al. 2009), largemouth bass Micropterus sal-
moides, pike-perch Sander lucioperca, striped
bass 9 white bass, Morone saxatilis 9 Morone
chrysops (Bovo et al. 2011), guppy Poecilia reticu-
lata (Hegde et al. 2003), Australian catfish Tan-
danus tandanus and sleepy cod Oxyeleotris
lineolatus (Munday et al. 2002). Zebrafish Danio
rerio and goldfish Carassius auratus were also
found to be infected (Binesh 2013). Furthermore,
the freshwater blenny Salaria fluviatili, which is
an endangered species endemic to watersheds of
the Mediterranean Basin, was also reported as
affected by NNV (Vendramin et al. 2012). To
date, the susceptibility of Mandarin fish Siniperca
chuatsi to RGNNV, an important economical spe-
cies in freshwater aquaculture in China, has been
demonstrated (Tu et al. 2016). At present, at least
70 host species belonging to 32 families of 16
orders have been described as carriers of betano-
davirus (Table 2) and this disease is widely
reported all over the world, with the exception of
South America.

Transmission

NNV is characterized by both vertical and hori-
zontal transmissions (Munday et al. 2002; see also
Fig. 2). Vertical transmission was early described
in a number of different fish species where betan-
odaviruses were detected in broodstock gonads or
in early larval stages with typical symptomatic
signs. It can occur from broodstock to larvae
through germplasm, including the eggs or genital
fluids as reported in striped jack, in barfin floun-
der or in European sea bass (Mushiake et al.
1994; Nishizawa, Muroga & Arimoto 1996;
Mori, Mushiake & Arimoto 1998; Dalla Valle
et al. 2000; Watanabe, Nishizawa & Yoshimiru
2000; Breuil et al. 2002).
Horizontal transmission is a very difficult route

to control because betanodavirus can easily spread
during an outbreak via water but also rearingT

ab
le

2
C
on
ti
nu

ed

H
o
st

sp
e
c
ie
s

S
p
e
c
ie
s

K
e
y
re
f.

O
d
e
r

F
a
m
ily

C
o
m
m
o
n
n
a
m
e

L
a
tin

n
a
m
e

O
rn
a
m
e
n
ta
l/

m
o
d
e
l
fis
h

sp
e
c
ie
s

C
yp

ri
n
o
d
o
n
tif
o
rm

e
s

P
o
e
c
ili
id
a
e

G
u
p
p
y

P
o
e
c
ili
a
re
tic

u
la
ta

R
G
N
N
V

H
e
g
d
e
e
t
a
l.
(2
0
0
3
)

C
yp

ri
n
ifo

rm
e
s

C
yp

ri
n
id
a
e

Z
e
b
ra
fis
h

D
a
n
io

re
ri
o

R
G
N
N
V

L
u
e
t
a
l.
(2
0
0
8
)

G
o
ld
fis
h

C
a
ra
ss
iu
s
a
u
ra
tu
s

R
G
N
N
V

B
in
e
sh

(2
0
1
3
)

P
e
rc
ifo

rm
e
s

B
le
n
n
iid

a
e

F
re
sh

w
a
te
r
b
le
n
n
y

S
a
la
ri
a
flu

vi
a
til
i

R
G
N
N
V

V
e
n
d
ra
m
in

e
t
a
l.
(2
0
1
2
)

B
e
lo
n
ifo

rm
e
s

A
d
ri
a
n
ic
h
th
yi
d
a
e

M
e
d
a
ka

O
ry
zi
a
s
la
tip

e
s

R
G
N
N
V

F
u
ru
sa

w
a
,
O
ki
n
a
ka

&
N
a
ka

i
(2
0
0
6
)

724

Journal of Fish Diseases 2017, 40, 717–742 Q K Doan et al. Viral nervous necrosis in aquaculture

� 2016

John Wiley & Sons Ltd



equipment (Mori et al. 1998; Watanabe et al.
1998). Horizontal transmission has been experi-
mentally demonstrated by several routes: contact
between healthy fish and diseased larvae (Arimoto
et al. 1993), bathing fish in water containing
betanodavirus-infected tissue homogenates (Ari-
moto et al. 1993; Tanaka, Aoki & Nakai 1998;
Grotmoll, Berghl & Totland 1999), contamina-
tion using strains isolated from symptomatic fish
(Koch postulate) (Thi�ery et al. 1997; Peducasse
et al. 1999) or contact of healthy fish with asymp-
tomatic carriers (Skliris & Richards 1999; Breuil
et al. 2002).
Once in the aquatic environment, betanodavirus

can persist without host for a long time and can
be spread widely by tide, aquatic transport means
or migration of the wild hosts (Gomez et al.
2004, 2008; Giacopello et al. 2013). As NNV
was reported in sand worms belonging to the fam-
ily Nereidae (Liu et al. 2006a) but also in crabs
and mussels (Gomez et al. 2008), several studies
are carried out to clarify the existence of non-fish
carriers or vectors of NNV such as raw fish (trash
fish), brine shrimp Artemia salina and mollusks
used as feed for marine culture (Gomez et al.
2010; Costa & Thompson 2016). Commercial
trade of aquatic animals should also be regarded

as an important potential source of virus diffusion
(Gomez et al. 2006).

Diagnosis/detection

First diagnostic approaches

In the early 1990s, the structure of NNV was
already clearly known, but virus isolation using
cell lines was not successful. Therefore, the
method of VNN diagnostic relied on the observa-
tion of characteristic clinical signs. VNN is char-
acterized by typical behavioural abnormalities
(erratic swimming patterns such as spiralling or
whirling, lying down at the tank bottom, rapid
swimming, darker coloration) associated with an
impairment of the nervous system (Fig. 3) (Yoshi-
koshi & Inoue 1990; Breuil et al. 1991; Chi et al.
1997). Gross pathology examination frequently
reveals a hyperinflation of the swim bladder and
haemorrhages on the brain tissue. The most com-
mon microscopical findings consist of vacuolation
and necrosis of nervous cells of the spinal cord,
brain and/or retina, particularly in larvae and
juveniles stages. The infection is rarely accompa-
nied by inflammatory processes. In the presence
of these typical signs, diagnosis must be confirmed

Figure 2 The different transmission routes of betanodaviruses and possible prevention modes. Blue discontinuous arrows represent

vertical transmission routes; green arrows represent horizontal transmission routes; orange crosses display possible actions of genet-

ics (by improving for fish natural barriers to infections or resistance/tolerance – see section ‘Selective breeding to nervous necrosis

virus (NNV) resistance: prospective procedure’); host represents either larvae/juvenile/grow-out size or broodstock; the possible

prevention modes are as follows: a: vaccination; b: serological diagnostic (ELISA) to screen and eliminate seropositive individuals;

c: direct diagnostic (RT-qPCR) to screen and eliminate positive individuals or germplasm; d: ozone/UV/bleach water treatments;

e: strict control of feed input to avoid NNV infected trash fish; f: unique equipment kit for each tank/pond/cage and adapted

decontamination of equipment after use; g: biosecurity measures during all production cycles; h: ozone treatment of artemia

before feeding.
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by a laboratory test. Electronic microscopy allowed
observation of virus particles free or membrane
bound by endoplasmic reticulum in cells collected
from infected organs (brain, retina) and revealed
icosahedral, non-enveloped viruses with a commonly
reported diameter of 20–34 nm (Glazebrook et al.
1990; Yoshikoshi & Inoue 1990; Bloch et al. 1991;
Breuil et al. 1991; Mori et al. 1992; Grotmol et al.
1997). Over two decades, the reference method to
detect betanodavirus was isolation in permissive cell
culture (striped snakehead cells SSN-1 or E11) fol-
lowed by immunological (indirect fluorescent anti-
body test – IFAT, immunohistochemistry, enzyme-
linked immunosorbent assay – ELISA; Nu~nez-Ortiz
et al. 2015) or molecular identification (RT-PCR,
nested RT-PCR, real-time RT-PCR). However, cell
culture is time-consuming and requires a great expe-
rience, and some NNV strains are not always easy to
detect because of a poor cultivability and/or the
absence of induction of clear cytopathic effects. This
is why molecular methods, particularly real-time
RT-PCR, have been increasingly used (Munday
et al. 2002; Shetty et al. 2012).

Direct molecular methods

Numerous RT-PCR protocols have been described
for the detection of VNN (Table 3). The first
RT-PCR published designed a set of primers (F2/
R3) directed against 430 bp from the T4 variable
region of the RNA2 segment of a SJNNV strain
isolated from striped jack (Nishizawa, Nakail &
Muroga 1994). Later on, the same region was
amplified from other isolates, such as red-spotted
grouper (Nishizawa et al. 1995). This test, recom-
mended by the World Organization for Animal
Health (OIE) until 2006, was extensively used for
routine diagnostic and genotyping of betano-
davirus and led to the current classification (Nishi-
zawa et al. 1995, 1997). However, the sensitivity
of this method is limited not only by a low viral
load but also by the genetic diversity of the T4
region that leads to mismatches between the F2/
R3 primers and their targets (Nishizawa et al.
1996; Thi�ery et al. 1997; Dalla Valle et al. 2001).
In some cases, it has been illustrated that betano-
davirus in brain could be detected by

(a)

(c) (d) (e)

(b)

Figure 3 (a–c) Typical clinical signs observed during experimental nervous necrosis virus (NNV) infection in European sea bass

(arrows show impacted fish). (d, e) Positive immunofluorescence antibody test signal (in green) obtained for betanodaviruses on

SSN1 cell line. Source: Anses, Ploufragan-Plouzan�e Laboratory, Viral diseases of fish Unit.
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immunohistochemistry, whereas the same samples
were negative by RT-PCR (Thi�ery et al. 1997). In
addition, low or false-positive and also false-nega-
tive results were reported in different fish species
like striped jack, barfin flounder, European sea
bass, shi drum Umbrina cirrosa and gilthead sea
bream (Nishizawa et al. 1996; Mori et al. 1998;
Thi�ery et al. 1999a,b; Dalla Valle et al. 2000;

Watanabe et al. 2000). To improve the perfor-
mance of this test and take into account genetic
diversity reported in newly available sequences,
further generations of tests were developed. Pri-
mers specific to more conserved region of the
RNA2 or allowing to discriminate Mediterranean
and Atlantic viral strains were published as well as
nested-PCR approaches allowing to improve the

Table 3 Primers/probes sets used for betanodavirus detection by RT-PCR

Primer/Probe Target

GenBank accession

numbera Sequence 50 – 30 Position Key Ref.

VNNV1

VNNV2

VNNV3

VNNV4

RNA2 AB056572 ACACTGGAGTTTGAAATTCA

GTCTTGTTGAAGTTGTCCCA

ATTGTGCCCCGCAAACAC

GACACGTTGACCACATCAGT

343–362
953–934
366–383
620–601

Dalla Valle et al.

(2000)

AH95-F1

AH95-R1

RNA2 AJ245641 AGTGCTGTGTCGCTGGAGTG

CGCCCTGTGTGAATGTTTTG

577–596
917–898

Grotmoll & Totlandl

(2000)

F2

R3

RNA2 AB056572 CGTGTCAGTCATGTGTCGCT

CGAGTCAACACGGGTGAAGA

592–611
1017–998

Nishizawa et al.

(1994)

F’2

R’3

RNA2 Y08700 GTTCCCTGTACAACGATTCC

GGATTTGACGGGGCTGCTCA

677–693
970–951

Thi�ery et al. (1999a,b)

Q-CP-1

Q-CP-2

RNA2 D38636 CAACTGACAACGATCACACCTTC

CAATCGAACACTCCAGCGACA

234–256
463–443

Dalla Valle et al.

(2005)

P1

P2

Probe

RNA2 AJ245641 GGTATGTCGAGAATCGCCC

TAACCACCGCCCGTGTT

TTATCCCAGCTGGCACCGGCb

141–159
351–335
183–202

Grove et al. (2006)

qR2TF

qR2TR

R2probe2

RNA2 LcNNV09_07 c CTTCCTGCCTGATCCAACTG

GTTCTGCTTTCCCACCATTTG

CAACGACTGCACCACGAGTTGb

378–397
470–451
448–428

Hick & Whittington

(2010)

RNA2 FOR RNA2

REV probe

RNA2 DQ864760 CAACTGACARCGAHCACAC

CCCACCAYTTGGCVAC

TYCARGCRACTCGTGGTGCVGb

392–410
460–445
422–442

Panzarin et al. (2010)

Nod1f

Nod1r

RNA2 EF617335; AY744705;

AF175511; AB056572;

AJ608266; D38637;

D38635

TTCCAGCGATACGCTGTTGA

CACCGCCCGTGTTTGC

AAATTCAGCCAATGTGCb

322–341d

376–391d

356–372d

Hodneland et al.

(2011)

Nod2f

Nod2r

RNA2 EF617335; AY744705;

AF 175511; AB056572;

AJ608266; D38637;

D38635

CTGGGACACGCTGCTAGAATC

TGGTCGTTGTCAGTTGGATCA

AAATTCAGCCAATGTGCb

301–321d

414–434d

356–372d

Hodneland et al.

(2011)

RG-RNA2-F2:

RG- RNA2-R2:

RNA2 D38636 CGTCCGCTGTCCATTGACTA

CTGCAGGTGTGCCAGCATT

624–643
723–705

Lopez-Jimena et al.

(2011)

oPVP111

oPVP88

RNA2 AF245003; AF245004;

AF281657; AF499774;

AJ245641; AJ608266;

D30814; U39876;

EF433468; AY549548;

EU236149

TCCTGCCTGAYCCAACTGAC

TGGTCATCMACGATACGCAC

381–400e

1058–1039e
Bigarr�e et al. (2010)

Q-RdRP-1

Q-RdRP-2

RNA1 D38636 GTGTCCGGAGAGGTTAAGGATG

CTTGAATTGATCAACGGTGAACA

589–610
861–839

Dalla Valle et al.

(2005)

RG-RNA1-F:

RG-RNA1-R:

RNA1 AY369136 GGCTCAGATCTGGTAATGTTTCAA

CAAAGCCAAGGGAAGAAGCA

2144– 2167

2206–2187
Lopez-Jimena et al.

(2011)

oPVP154

oPVP155

Taqman-Probe

RNA1 AJ401165; EF617335;

EU826137; AB025018;

AB056571; AF319555;

GQ402010; GQ402012;

AY690597

TCCAAGCCGGTCCTAGTCAA

CACGAACGTKCGCATCTCGT

CGATCGATCAGCACCTSGTCa

2717–2736f

2884–2865f
Baud et al. (2015)

aSequences from which the primers or probes have been designed; bLabel position on probes; cThe design of primers and probe was achieved on an

isolate obtained from a infected barramundi sampled but not reported in GenBank (Hick & Whittington 2010); dThe position of the primers and

probe is based on SJNNV genome (AB056572); eThe position of the primers and probe is based on BFNNV genome (AY549548); fThe position of

the primers and probe is based on BFNNV genome (AJ401165).
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sensitivity by at least 100 times (Thi�ery et al.
1999a,b; Dalla Valle et al. 2000). More recently,
Bigarr�e and colleagues designed a new set of pri-
mers in a highly conserved region (680 bp)
named T6 in RNA2, which perfectly matches
with a wide range of published sequences and
detects at least three of the five described species
namely RGNNV, SJNNV and BFNNV (Bigarr�e
et al. 2010).
Since 2005, numerous real-time RT-PCR assays

were developed to regularly adapt the primer sets
and probes to newly published sequences (Dalla
Valle et al. 2005; Fenner et al. 2006a; Hick &
Whittington 2010; Panzarin et al. 2010; Hod-
neland et al. 2011; Baud et al. 2015). These real-
time RT-PCR assays, targeting RNA1 or RNA2,
are now currently used for the diagnosis of betan-
odavirus because they are less time-consuming
than classical approaches and significantly decrease
cross-contamination occurring during post-ampli-
fication procedures (Hick & Whittington 2010;
Hodneland et al. 2011). Recently, a one-step gen-
eric TaqMan� method targeting sequences found
in a vast majority of known viral genotypes was
validated and efficiently used to detect NNV in
different geographical regions and host species
(Panzarin et al. 2010; Baud et al. 2015), and an
optimized loop-mediated isothermal amplification
has been developed to detect NNV in Epinephelus
septemfasciatus (Hwang et al. 2016). This last
method showed improved sensitivity compared
with PCR.
Detection of different NNV species coexisting

in the same host is still complex and may require
a combination of approaches (Lopez-Jimena et al.
2010). An ubiquitous assay detecting all species
would be desirable, but because of the high
genetic diversity of betanodavirus, selection of
specific and wide spectrum primers allowing the
detection of all possible variants still remains a big
challenge (Hodneland et al. 2011).

Indirect serological methods

Serological investigations have been developed for
several viral fish diseases, but only few of them are
used for routine surveillance, despite the fact that
diseases survivors often become latent carriers with
significant antibody response. The major reasons
for this are poor knowledge on the kinetics of the
antibody response in fish at various water temper-
atures and lack of validation data. Nevertheless,

several ELISA or serum neutralization tests
described and improved over time proved their
efficiency to detect antibodies specific to VNN
(Watanabe et al. 1998; Huang et al. 2001; Fenner
et al. 2006b; Scapigliati et al. 2010; Choi et al.
2014; Jaramillo et al. 2016b). For ELISA tests,
the determination of the cut-off point is critical to
make the distinction between virus free status and
viral infection. These indirect methods are rou-
tinely used by several fish farms to regularly screen
breeders. They have the advantage to be no-lethal
and safe for fish and allow a regular screening of
the VNN serological status of a population at an
individual level (Breuil & Romestand 1999;
Watanabe et al. 2000; Breuil et al. 2002; Nu~nez-
Ortiz et al. 2015; Jaramillo et al. 2016a).

Control procedures

There are no simple and effective procedures to
treat the viral disease in fish once established.
Therefore, efforts were concentrated on the means
and tools to prevent entry, diffusion and persis-
tence of the virus, mostly strict hygiene, vaccina-
tion and eradication of infected populations
(Gomez-Casado, Estepa & Coll 2011; Shetty
et al. 2012).
In hatcheries, an important route of virus entry

is infected asymptomatic breeders (Mushiake et al.
1994; Watanabe et al. 1998). Although ozonation
can seemingly prevent NNV transmission from
infected broodstock, it is not fully efficient
because betanodavirus is not only present on the
surface of the eggs but also inside the eggs, and
can also penetrate the egg via spermatozoa (Kuo
et al. 2012). A positive point is that vertical trans-
mission can be controlled effectively in hatcheries
by combining detection via serological tests
(ELISA) to detect anti-VNN specific antibodies
(in the blood serum of broodstock) or/and sensi-
tive RT-PCR assays to recognize viral RNA (in
the eggs or genital fluids), combined with the
elimination of positive individuals (Mushiake
et al. 1994; Breuil & Romestand 1999; Watanabe
et al. 2000; Breuil et al. 2002; Hodneland et al.
2011). Ozonation and ultraviolet light are also
used to clean fertilized eggs and control water
quality during rearing larval and juvenile stages.
Even if treatment of larvae requires complicated
procedures, these treatments appear effective to
prevent horizontal transmission (Arimoto et al.
1996; Watanabe et al. 1998; Grotmoll &
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Totlandl 2000). Although betanodaviruses can be
prevented effectively in hatchery by the manage-
ment of betanodavirus-free broodstock and disin-
fecting the hatchery water, the fish can be infected
by betanodaviruses from the environment when
they are cultured at grow-out stages.
Vaccination has been considered as an effective

procedure for controlling VNN disease. A number
of vaccines made with inactivated NNV, virus-like
particles (VLPs), recombinant C protein and syn-
thetic peptides from the C protein have been
tested (Gomez-Casado et al. 2011). Recombinant
betanodavirus coat proteins expressed in Escheri-
chia coli was firstly proposed in different fish spe-
cies like sevenband grouper Epinephelus
septemfasciatus and humpback grouper Cromileptes
altivelis (Tanaka et al. 2001; Yuasa et al. 2002),
turbot and Atlantic halibut (H�usgarð et al. 2001;
Sommerset et al. 2005). More recent construc-
tions combined to artermia or Vibrio anguillarum
induced significant levels of protection in larvae of
orange-spotted grouper Epinephelus coioides (Lin
et al. 2007; Chen et al. 2011), and enhanced
virus-neutralizing antibody response was observed
after immunization at grow-out stages with
recombinant C protein (Sommerset et al. 2005).
Virus-like particles have also been developed to
create a more effective procedure to control VNN
disease (Liu et al. 2006b; Thi�ery et al. 2006). To
date, the efficiency of the pFNCPE42-DNA vac-
cine, which has been developed using the capsid
protein gene of an Indian isolate of fish nodavirus,
has been illustrated in Asian sea bass with a high
relative percentage survival of 77.33% (Vimal
et al. 2016). All these types of vaccines are usually
applied by injection method. Consequently, they
are only really effective on grow-out size fish or to
prevent vertical transmission in breeding, while
the VNN disease often occurs in early larval and
juvenile stages at which the size of fish is too small
to allow vaccination by injection (Sommerset
et al. 2005; Kai & Chi 2008; Brudeseth et al.
2013). A water-delivery strategy (immersion)
could represent a more interesting way of control
(Kai & Chi 2008) but still needs to be improved.
The viral diversity of betanodavirus with at least

four different species described is another chal-
lenge to overcome for which DNA vaccines have
numerous advantages compared with traditional
antigen vaccines (Gomez-Casado et al. 2011).
However, no licence has been delivered to date
for potential applications in commercial fish farms

in some areas such as Europe (Gomez-Casado
et al. 2011; Brudeseth et al. 2013). The vaccine
application is usually expensive in fish and the
protection generated often lasts for in short time
because of the low immune reactivity in early
stages of life (Sommerset et al. 2005). For these
disadvantages, although a variety of vaccinations
for NNV have been experienced (Table 4), only
one inactivated RGNNV vaccine against NNV of
sevenband grouper was commercialized in Japan
(Brudeseth et al. 2013). Nevertheless, work in
progress to better understand the immune mecha-
nisms involved during NNV infection (Carballo
et al. 2016; Costa & Thompson 2016; Wu et al.
2016) will likely result in the near future in the
improvement in the prophylactic strategies, like
the use of preventive administration of interferons
at the larval stage (Kuo et al. 2016) or of ribavirin
as antiviral agent (Huang et al. 2016).

Selective breeding to NNV resistance:

prospective procedure

While selective breeding programmes have been
mostly targeting productivity traits like growth
and carcass quality (Gjedrem & Thodesen 2005),
disease resistance remains a major goal for breed-
ing programmes, as mortality caused by diseases is
a major threat to aquaculture. Selecting fish with
increased resistance to specific diseases seem to be
feasible for most diseases (reviewed by Gjedrem
2015). Moreover, it provides cumulative and per-
manent improvement in resistance over genera-
tions at the population level, thus providing
unique benefits when compared to other methods.
Due to its cost however, the selective breeding
strategy towards resistant cultured fish is particu-
larly interesting when other prevention methods
are inefficient. The use of resistant populations
would not only reduce outbreaks, but also lower
the cost of fish production (Ødeg�ard et al. 2011;
Y�a~nez, Houston & Newman 2014a).

Disease resistance heritability in fish

Improving a trait by artificial selection basically
requires sufficient genetic variation for this trait in
the population. Genetic variation in disease resis-
tance has been observed for many diseases, and
most likely variation can be observed for all dis-
eases (Bishop & Woolliams 2014). While heri-
tability for resistance to viral diseases has been
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estimated in many species, it remains that most
studies have been conducted in salmonids.
The heritability of resistance to viral diseases

has been shown to be moderate to high in fish
(Table 5). In the first place, resistance to VHS
virus (VHSV) was found highly heritable

(h² = 0.57–0.63) in rainbow trout (Oncorhynchus
mykiss) when assessed by mortality (Dorson et al.
1995; Henryon et al. 2005), while it was little
heritable (h2 = 0.11 � 0.10 and 0.13) when resis-
tance was assessed as the time until death follow-
ing challenge (Henryon et al. 2002, 2005).

Table 4 The different types of nervous necrosis virus (NNV) vaccine tested in fish

Type of vaccinations Species Method Results/RPS Key Ref.

Inactivated vaccines

BEI-inactivated HGNNV vaccine

Formalin-inactivated vaccines

Orange-spotted grouper

Epinephelus coioides (early

larval stage-40 dph with average

body weight (BW) of 0.2 g and

TBL of 2.4 cm)

Immersion RPS = 79%

(BEI-inactivated

NNV vaccines)

39% (Formalin-

inactivated NNV

vaccines)

Kai & Chi (2008)

Formalin-inactivated vaccine

(RGNNV)

Sevenband grouper Epinephelus

septemfasciatus (juvenile-

25.4 g)

Injection 60% in fish groups

immunized

with 107.5 TCID50

per fish or higher

doses.

Yamashita et al.

(2009)

BEI-inactivated HGNNV vaccine Adult Orange-spotted grouper

Epinephelus coioides (mean

body weight of 1.35 kg)

Injection High efficiency Kai et al. (2010)

Formalin-inactivated vaccine

(RGNNV type)

Brown-marbled grouper

Epinephelus fuscogutattus (5 g)

Injection 86–100% Pakingking et al.

(2010)

Recombinant vaccines

Recombinant capsid protein

vaccine (Artemia-encapsulated

recombinant Escherichia coli

expressing the NNV capsid

protein gene)

Orange-spotted grouper

Epinephelus coioides (Larvae-

35 dph)

Oral 64.5%. Lin et al. (2007)

Recombinant capsid protein

(Vibrio anguillarum-based

oral vaccine)

Orange-spotted grouper

Epinephelus coioides (fry)

Oral 78.3% Chen et al. (2011)

Recombinant capsid protein

(rT2 vaccine)

Turbot Scophthalmus maximus

[weighing from 1 to 3 g (mean

1.8 g)]

Injection 82% H�usgarð et al. (2001)

Recombinant capsid protein

vaccine (recAHNV-C) &

vaccine plasmid (called

pAHNV-C)

Turbot Scophthalmus maximus

(Juvenile-mean weight 2.2 g)

Injection 50% in fish

groups immunized

with recAHNV-C

(10 mg) + pAHNV-C

(5 mg)

57% in fish groups

immunized with

recAHNV-C (10 mg)

Sommerset et al.

(2005)

Recombinant protein vaccine-E.

coli BL21 (DE3)

Sevenband grouper Epinephelus

septemfasciatus (28 g)

Injection 88% in fish groups

immunized with 103.4

TCID50 per fish

Tanaka et al. (2001)

Virus-like particles (VLPs)

vaccines

VLPs of GNNV Dragon grouper Epinephelus

lanceolatus (20 g)

Malabar grouper Epinephelus

malabaricus (20 g)

Injection Significant efficiency Liu et al. (2006b)

VLPs

MGNNV VLPs (trial 1)

SB2 VLPs (trial 2)

European sea bass Dicentrarchus

larbrax

66 g

22 g

Injection 71.7–89.4%
27.4–88.9%

Thi�ery et al. (2006)

DNA vaccines

pFNCPE42-DNA vaccine Asian sea bass Lates calcarifier

(juvenile stage)

Injection 77.33% Vimal et al. (2016)
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Moderate-to-high heritabilities have been esti-
mated for infectious salmon anaemia virus (ISAV),
ranging from 0.13 to 0.26 on the observable scale
and from 0.19 to 0.40 on the liability scale
(Gjøen et al. 1997; Ødeg�ard et al. 2007a; Olesen,
Hung & Ødeg�ard 2007; Kjøglum et al. 2008;
Gjerde et al. 2009), while the heritability of infec-
tious pancreatic necrosis virus (IPNV) resistance
was also found to be moderate to high, ranging
between 0.16 and 0.55 (Guy et al. 2006, 2009;
Wetten et al. 2007; Kjøglum et al. 2008). Other
viral diseases in fish also show moderate-to-high
heritability, such as resistance to salmon pan-
creases disease virus (SPDV) in Atlantic salmon
(Salmo salar) with a liability scale estimate of

0.21 � 0.05 (Norris, Foyle & Ratcliff 2008), and
koi herpesvirus (KHV) resistance
(h² = 0.79 � 0.14) in common carp (Cyprinus
carpio) (Ødeg�ard et al. 2010a).
To date, a high heritability for NNV has been

demonstrated, but only in Atlantic cod (Ødeg�ard,
Sommer & Præbel 2010b; Bangera et al. 2011,
2013). Ødeg�ard et al. (2010b) compared the
NNV resistance of three different groups of Atlan-
tic cod including Norwegian coastal cod (CC),
Northeast Atlantic cod (NEAC) and their F1
crossbreds. They showed that the highest survival
was observed in CC (56%), followed by crosses
(31%), whereas the survival rate of NEAC was
only 10%. The estimated heritability for NNV

Table 5 Recent heritability estimates of resistance to viral diseases in farmed fish species

Pathogen Species (host)

Heritability: h2 (�SE)

Notes Key ref.Binary traits Time until death

Viral Nervous

Necrosis

Viruses

Atlantic cod

(Gadus morhua)

h2 = 0.75 (�0.11) Threshold model

(on the underlying

scale)

Ødeg�ard et al. (2010b)

h2 = 0.68 (�0.14) Threshold model

(on the underlying

scale)

Bangera et al. (2011)

h2 = 0.91 CURE model Bangera et al. (2013)

VHS virus Rainbow trout

(Oncorhynchus

mykiss)

h2 = 0.63 (�0.26) Linear model (angular

transformation)

Dorson et al. (1995)

h2 = 0.13 On the logarithmic-

time scale

Henryon et al. (2002)

h2 = 0.57 h2 = 0.11 (�0.10) Survival, liability scale Henryon et al. (2005)

Infectious

salmon

anaemia

virus

Atlantic salmon

(Salmo salar)

h2 = 0.13 (�0.03)

(O.S.)

h2 = 0.19 (U.S.)

Linear model

(Observable scale)/On

the underlying liability

scale

Gjøen et al. (1997)

h2 = 0.24 (�0.03) Threshold model using

cross-sectional data

Olesen et al. (2007)

h2 = 0.318(�0.022) Threshold model

(on the underlying scale)

Ødeg�ard et al. (2007a)

h2 = 0.319(�0.022) Threshold model (on the

underlying scale)

Ødeg�ard et al. (2007b)

h2 = 0.37 On the underlying

liability scale

Kjøglum et al. (2008)

h2 = 0.40 (�0.04) On the underlying

liability scale

Gjerde et al. (2009)

Infectious

pancreatic

necrosis

virus

Atlantic salmon

(Salmo salar)

h2 = 0.43 h2 = 0.16 Transformed to the

liability scale/Observed

Guy et al. (2006)

h2 = 0.31 Linear model (Observable

scale)

Wetten et al. (2007)

h2 = 0.55 On the underlying liability

scale

Kjøglum et al. (2008)

h2 = 0.38 (�0.017) On the underlying

liability scale

Guy et al. (2009)

Salmon

pancreases

disease

virus

Atlantic salmon

(Salmo salar)

h2 = 0.21 (�0.005) Transformed to the liability

scale/Linear model

(Observable scale)

Norris et al. (2008)

Koi

herpesvirus

Common carp

(Cyprinus carpio)

h2 = 0.79 (�0.14) On the underlying

liability scale

Ødeg�ard et al. (2010a)
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resistance was high on the observed scale
(0.43 � 0.07) and very high on the underlying
scale (0.75 � 0.11) (Ødeg�ard et al. 2010b).
Besides that, a high heritability for NNV resis-
tance was also recorded (0.68 � 0.14) by Bangera
et al. (2011) who later on reported an extremely
high heritability (0.91 using a cure model) for
NNV resistance in the same species (Bangera et al.
2013). In addition, the genetic correlation
between resistance to NNV and to a bacterial dis-
ease (vibriosis) was shown not to significantly dif-
fer from zero (Bangera et al. 2011). This lack of
correlation is similar to other studies in salmonids
which estimated the genetic correlation between
resistance against ISAV and furunculosis (Gjøen
et al. 1997; Ødeg�ard et al. 2007b; Kjøglum et al.
2008) or VHSV and enteric red-mouth disease as
well as rainbow trout fry syndrome (Henryon
et al. 2005).
The heritability of resistance to viral disease is

moderate to high in almost existing studies, indi-
cating viral disease resistance can be improved sig-
nificantly based on selective breeding in farmed
fish – and the prospects for NNV resistance are
especially good, due to the high to very high heri-
tability estimate (only in Atlantic cod for the
moment).

Genetic selection to viral disease resistance in
fish

Following promising heritability estimates, experi-
mental selective breeding for disease resistance has
been undertaken and shown to be an effective
solution to prevent the outbreak of viral diseases
in farmed fish. In the end of the 1980s, selective
breeding for resistance to VHSV in rainbow trout
was successfully tried in France, resulting in an
improved resistance in the second generation, with
0–10% mortality, compared with 70–90% in the
control group (Dorson et al. 1995). In Denmark,
relatively VHSV-resistant broodstock were selected
from a challenge test and used to produce first-
and second-generation gynogenetic offspring
(Bishop & Woolliams 2014). Salmon commercial
breeding programmes have included resistance to
furunculosis, ISAV and IPNV since 1993 in Nor-
way (Gjøen et al. 1997; Moen et al. 2009; Y�a~nez
et al. 2014a,b). The effective of selective breeding
for IPNV resistance in Atlantic salmon was illus-
trated by Storset et al. (2007), where the fish
belonging to low- and high-resistant families were

challenged in both fresh water and sea water and
obtaining significant differences in mortalities,
which ranged from 29 to 32% in high resistance
families to 66–79% in low resistance families in
both fresh water and sea water.

Quantitative trait loci mapping for resistance to viral
diseases. Identifying portions of the genome
called quantitative trait loci (QTLs) linked to the
disease resistance phenotype is expected to speed
up the selection process using marker-assisted
selection (MAS; Massault et al. 2008; Bishop &
Woolliams 2014).
Most of the QTLs identified for resistance to

viral diseases in cultured fish have been identified
in Salmonids, the most successful example being
the IPNV resistance QTL. Three highly significant
QTLs were first identified using microsatellite and
AFLP markers in a backcross of rainbow trout
strains showing high and low resistance to IPNV,
each explaining 13–15% of the phenotypic vari-
ance of the total phenotypic variance (Ozaki et al.
2001, 2007). For IPNV resistance in Atlantic sal-
mon, even more significant QTLs have been iden-
tified (Houston et al. 2008, 2010; Moen et al.
2009; Gheyas et al. 2010), leading to a break-
through with respect to the implementation of
QTL in salmon breeding. A first QTL, producing
a 75% difference in IPNV mortality between the
alternative homozygotes, was mapped to linkage
group 21 (LG21) (Houston et al. 2008). The
same QTL was independently reported in 2009 in
Norwegian population, where it explained 29% of
the phenotypic variance (Moen et al. 2009).
Gheyas et al. (2010) confirmed the resistance
effect of the QTL from LG21 at the fry stage in
fresh water, with a QTL heritability of
0.45 � 0.07 on the liability scale and
0.25 � 0.05 on the observed scale. In one family,
100% of the offspring homozygous for the suscep-
tible QTL alleles died, whereas 100% of the off-
spring homozygous for the resistant QTL alleles
survived (Gheyas et al. 2010).
QTLs for resistance to other viral diseases in

Salmonids include QTLs for IHNV resistance
(Palti, Parsons & Thorgaard 1999; Palti et al.
2001; Miller et al. 2004; Rodriguez et al. 2004;
Barroso et al. 2008), ISAV resistance (Moen et al.
2004, 2007), VHSV resistance (Verrier et al.
2013) and salmonid alphavirus (SAV) resistance
(Gonen et al. 2015). Like for IPNV, the IHNV
QTLs explained a high part of the phenotypic
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variance (up to 32.5% according to Barroso et al.
2008), while it was more limited for the ISAV
QTL (6% of the phenotypic variance, Moen et al.
2007). In both cases, a significant association with
MHC alleles was later demonstrated (Palti et al.
2001; Miller et al. 2004 for IHNV; Kjøglum
et al. 2006 for ISAV).
About NNV resistance, five genomewide signifi-

cant QTLs, explaining 68% of the phenotypic
variance for resistance, detected based on 161
microsatellite markers in Atlantic cod (Baranski
et al. 2010), a very high amount, which can be
paralleled to the very high heritability of NNV
resistance reported earlier. A later analysis with a
12K SNP array confirmed both the high propor-
tion of variance explained by genomic markers,
and the location of three of these QTLs (Yu et al.
2014). The latest QTLs related to NNV resistance
identified based on 146 microsatellite markers in
Asian sea bass. In that study, Liu et al. (2016)
detected multiple QTLs for NNV resistance and
survival time. However, a few proportion of the
phenotypic variation were explained by those
QTLs (2.2–4.1% for resistance and 2.2–3.3% for
survival time).
Taken altogether, this information about the

QTLs for resistance to viral diseases in fish is very
promising for increasing the rate of resistance
through selective breeding, especially as in many
cases QTLs seem to be of large effect, which gives
good prospects to improve genetic resistance in a
relatively short term, by direct MAS or by intro-
gression of QTLs from different populations
(Bishop & Woolliams 2014). This possibility may
especially develop as SNP markers become more
and more available and affordable, due to their
abundance and to fast technological developments,
making both detection and selection of QTLs
more economically realistic.

MAS and GS for viral disease in fish. Breeding-
resistant fish based on survivors of challenge trials,
although sometimes done, is generally undesirable
due to the risk of vertical transmission of the
pathogen. The usual way to overcome this limita-
tion in conventional breeding is to perform sib
selection. In sib selection, breeding candidates are
kept in a pathogen-free environment and selected
using family-wise estimated breeding values
obtained from the survival of fish from the same
families challenged with the disease. Another pos-
sible way to select resistant fish without exposing

them to the pathogen is the identification of rele-
vant QTL and the application of molecular mark-
ers for MAS, or the direct use of genotype data to
perform GS. With both methods, fish are selected
based only on their genotype, either at specific
QTL-linked markers in the case of MAS, or at
many markers, which may not all be linked to the
resistance in the case of GS. This allows to avoid
any contact between the breeding candidate and
the pathogen. In terms of efficiency, the advantage
of MAS compared with conventional selection is
expected to be largest when the trait under selec-
tion has a low heritability – which is not generally
the case for viral disease resistance in fish – or
when the trait is not measured on the breeding
candidates – which conversely is typically the case
for disease resistance (Gjedrem 2015). With simu-
lated traits and populations, the accuracy of selec-
tion was improved significantly using MAS,
compared with non-MAS in selective breeding in
aquaculture (Sonesson 2007). Practical application
of MAS in aquaculture breeding has been imple-
mented for IPNV resistance Atlantic salmon in
both Norwegian (Moen et al. 2009) and Scottish
populations (Houston et al. 2010). Still, the limi-
tation of MAS is that it requires prior knowledge
of alleles that are associated with the traits of
interest, which moreover have to be validated in
the specific populations or even families under
selection. Furthermore, MAS exploits only a lim-
ited part of the genetic differences between indi-
viduals, as it does not exploit the polygenic
background variation, which may account for a
large part of the genetic variance (Meuwissen,
Hayes & Goddard 2016).
An alternative approach for more polygenic

traits is GS. In this approach, genetic markers are
used to cover the whole genome so that all QTLs,
even non-statistically significant, are in linkage dis-
equilibrium (LD) with at least one marker and
selection is based on genetic values predicted from
all the markers (Meuwissen, Hayes & Goddard
2001; Goddard & Hayes 2007; Meuwissen et al.
2016). The availability of high-density SNP arrays
in livestock and now increasingly in aquaculture
species is making both GS and genomewide asso-
ciation studies (GWAS) feasible. GWAS
approaches allow studies of the genetic architec-
ture of quantitative traits, while GS will improve
the accuracy of selection in breeding programmes
(Houston et al. 2014). In terms of present realiza-
tion of these approaches, GWAS showed highly
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significant association of several SNPs with resis-
tance to IPNV, as well as population-level LD in
salmon commercial populations (Houston et al.
2012). The implementation of such approaches is
dependent on the development of SNP genotyp-
ing arrays, which for the time being have mostly
been developed in salmonids, like a 130 K array
for farmed and wild Atlantic salmon in Scotland
(Houston et al. 2014), 160 K SNP markers were
validated based on 200 K SNPs applied to differ-
ent wild and farmed populations of Atlantic sal-
mon (Europe population, North America
population and Chile population) (Y�a~nez et al.
2014b), and a 57 K SNP chip which is now avail-
able for rainbow trout (Palti et al. 2014). A 12 K
SNP array has been also developed in Atlantic
cod, containing markers distributed across all 23
chromosomes (Yu et al. 2014). It was already used
in a GWAS analysis for NNV resistance which
revealed 29 genomewide significant SNPs for bin-
ary survival and 36 genome-wide significant SNPs
for number of days fish survived, as well as high
genomic heritabilities of 0.49 and 0.81 for the
same traits, respectively (Bangera, Baranski & Lien
2014). Identification of SNPs is being performed
in other species for which NNV resistance is a key
issue, such as European sea bass (Tine et al. 2014;
Palaiokostas et al. 2015) or Asian sea bass (Wang
et al. 2015), which is promising for the develop-
ment of GWAS or GS for NNV resistance in
those species.

Conclusion

Viral encephalopathy and retinopathy is wide-
spread all over the world except in South America.
While many of the main marine species in aqua-
culture are affected by this disease, no simple and
effective procedures are available to treat it. Even
though VNN can be prevented in hatcheries based
on efficient diagnostic methods to monitor the
breeders and biosecurity measures during hatchery
rearing, this disease still occurs on grow-out sites.
Vaccination may be an efficient way to prevent
disease occurrence, but because of the specific
drawbacks of present vaccination methods and the
difficulty to efficiently protect early larval stages,
this tool is not fully effective in the case of VNN.
Selective breeding has been demonstrated as an
effective solution to select resistant aquaculture
populations for several diseases, and new geno-
mics-based methods allow to foresee even higher

efficiency of selective breeding for disease resis-
tance in the near future. However, to reach the
expectations of a practical GS, more genetic
resources and more advanced studies are required
for the vast majority of aquaculture species
affected by NNV.
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