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Multi-wheat-model ensemble responses to interannual climate variability 1

Keywords: Crop modeling, uncertainty, multi-model ensemble, wheat, AgMIP, climate impacts, 63 temperature, precipitation, interannual variability

We compare 27 wheat models' yield responses to interannual climate variability, analyzed at 81 locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model 82 Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981-83 2010 grain yield, and we evaluate results against the interannual variability of growing season 84 temperature, precipitation, and solar radiation. The amount of information used for calibration 85 has only a minor effect on most models' climate response, and even small multi-model 86 ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield 87 response to climate; however models rarely share the same cluster at all four sites indicating 88 substantial independence. Only a weak relationship (R 2 ≤ 0.24) was found between the models' 89 sensitivities to interannual temperature variability and their response to long-term warming, 90 suggesting that additional processes differentiate climate change impacts from observed climate 91 variability analogs and motivating continuing analysis and model development efforts.

92 93 5 1. Introduction 94 Process-based crop simulation models have become increasingly prominent in the last several 95 decades in climate impact research owing to their utility in understanding interactions among 96 genotype, environment, and management to aid in planning key farm decisions including cultivar 97 selection, sustainable farm management, and economic planning amidst a variable and changing 98 climate (e.g., Ewert et al., 2015). In the coming decades climate change is projected to pose 99 additional and considerable challenges for agriculture and food security around the world (Porter 100 et al., 2014; Rosenzweig et al., 2014). Process-based crop simulation models have the potential 101 to provide useful insight into vulnerability, impacts, and adaptation in the agricultural sector by 102 simulating how cropping systems respond to changing climate, management, and variety choice. 103 Such gains in insight require high-quality models and better understanding of model 104 uncertainties for detailed agricultural assessment (Rötter et al., 2011). Although there have been 105 a large number of studies utilizing crop models to assess climate impacts (Challinor et al., 106 2014a), a lack of consistency has made it very difficult to compare results across regions, crops, 107 models, and climate scenarios (White et al., 2011a). The Agricultural Model Intercomparison 108 and Improvement Project (AgMIP; Rosenzweig et al., 2013; 2015) was launched in 2010 to 109 establish a consistent climate-crop-economics modeling framework for agricultural impacts 110 assessment with an emphasis on multi-model analysis, robust treatment of uncertainty, and 111 model improvement.

A crop model's response to interannual climate variability provides a useful first indicator of 114 model responses to variation in environmental conditions [START_REF] Arnold | Critical evaluation of system analysis in ecosystem 845 management[END_REF]. A 115 simulation model's ability to capture historical grain yield variability has shown it can serve as a reasonable analog for future climate conditions. The purpose of this analysis is to identify have focused on response to increases in average temperature (Asseng et al., 2015), and the 156 models are largely the same as those utilized in phase 1 and analyzed below. The four locations simulated by participating wheat model groups are shown in Table 1, herein 160 referred to as Argentina (AR), Australia (AU), India (IN), and the Netherlands (NL). Each 161 location corresponded to a field trial ranked as either "gold" or "platinum" in AgMIP's field data approaches were discussed by Challinor et al. (2014b), who found no clear relationship between 198 the number of parameters calibrated and the relative error of harvest index or grain yield. They 199 further noted that this was consistent with compensating errors that can be a benefit of multi-200 model ensembles but found no evidence of over-tuning in the AgMIP Wheat Pilot. by Asseng et al. (2013) and is equivalent to the more rare gold or platinum standards set 247 by Kersebaum et al. (2015) and Boote et al. (2015).

observations and yields using the high-information simulations, but noted that both the low-and 250 high-information simulations showed a similar response to changes in mean temperature and 251 CO 2 concentrations. 

254

the processes modeled in each model see supplementary materials of Asseng et al., 2013) 255

Model Version Model description and applications

Web address

APES-ACE * V. 0.9.0.0 (Donatelli et al., 2010;Ewert et al., 2011a) http://www.apesimulator.it/default.aspx APSIM-Nwheats V.1.55 [START_REF] Asseng | Simulated wheat growth affected by rising temperature, increased water deficit and 850 elevated atmospheric CO2[END_REF][START_REF] Asseng | Performance of the APSIM-wheat model in Western Australia[END_REF]Keating et al., 2003) http://www.apsim.info APSIM-wheat V.7.3 (Keating et al., 2003) http://www.apsim.info/Wiki/ AquaCrop * V.3.1+ [START_REF] Steduto | AquaCrop-The FAO Crop Model to 1155 Simulate Yield Response to Water: I. Concepts and Underlying Principles[END_REF] http://www.fao.org/nr/water/aquacrop.ht ml CropSyst V.3.04.08 [START_REF] Stockle | CropSyst, a cropping systems simulation model[END_REF] http://www.bsyse.wsu.edu/CS_Suite/Cr opSyst/index.html DSSAT-CERES-Wheat V.4.0.1.0 (Hoogenboom and White 2003;Jones et al., 2003), [START_REF] Ritchie | CERES-wheat: A user-oriented wheat 1104 yield model[END_REF] http://www.icasa.net/dssat/ DSSAT-CROPSIM-Wheat (Hunt and Pararajasingham 1995;Jones et al., 2003) http://www.icasa.net/dssat/ Ecosys (Grant et al., 2011) https://portal.ales.ualberta.ca/ecosys/ EPIC wheat (Kiniry et al., 1995;[START_REF] Williams | The EPIC crop growth-model[END_REF] http://epicapex.brc.tamus.edu/ Expert-N -CERESwheat ExpertN 3.0.10 Ceres 2.0 (Biernath et al., 2011;Priesack et al., 2006;[START_REF] Ritchie | Genetic diversity in photosynthesis and water-use 1106 efficiency of wheat and wheat relatives[END_REF][START_REF] Stenger | Expert-N A tool for simulating nitrogen 1158 and carbon dynamics in the soil-plant-atmoshpere system[END_REF] http://www.helmholtzmuenchen.de/en/iboe/expertn/ Expert-N -GECROSwheat ExpertN 3.0.10 Biernath et al., 2011;[START_REF] Yin | Crop Systems Dynamics: An Ecophysiological Simulation[END_REF][START_REF] Stenger | Expert-N A tool for simulating nitrogen 1158 and carbon dynamics in the soil-plant-atmoshpere system[END_REF] http://www.helmholtzmuenchen.de/en/iboe/expertn/ Expert-N -SPASSwheat ExpertN 3.0.10 Biernath et al., 2011;Priesack et al., 2006;[START_REF] Stenger | Expert-N A tool for simulating nitrogen 1158 and carbon dynamics in the soil-plant-atmoshpere system[END_REF][START_REF] Wang | SPASS: a generic process-oriented crop model with versatile 1193 windows interfaces[END_REF] http://www.helmholtzmuenchen.de/en/iboe/expertn/ Expert-N -SUCROSwheat ExpertN 3.0.10 Sucros2 (Biernath et al., 2011;Goudriaan and Van Laar 1994;Priesack et al., 2006;[START_REF] Stenger | Expert-N A tool for simulating nitrogen 1158 and carbon dynamics in the soil-plant-atmoshpere system[END_REF] Bondeau et al., 2007;Fader et al., 2010;[START_REF] Waha | Climate-driven simulation of 1185 global crop sowing dates[END_REF] http://www.pikpotsdam.de/research/projects/lpjweb MCWLA-Wheat * V2.0 (Tao et al., 2009a;[START_REF] Tao | Adaptation of maize production to climate change in North China 1167 Plain: Quantify the relative contributions of adaptation options[END_REF]Tao et al., 2009b Discrepancies between various observational sources and the experimental field simulated by the 352 wheat models are large enough to caution against an expectation that the models would 353 reproduce national, regional, or trial-based observational records over the historical period.

(
(

354

These discrepancies are often due to the set up of the simulations from the single field 355 experiment not representing the diversity of soils, management and cultivars which affected the regional and national yield data (but are not documented). Also, yield variability is often driven observational error for rice (Li et al., 2014). The analyses were also conducted using a 70% and 451 90% threshold, with consistent patterns of benefit but the higher thresholds further emphasizing 452 the risks of the worst model being randomly selected. 474 Solar radiation variability is not significantly correlated for the bulk of models.

476

The Australian location is characterized by an even stronger sensitivity to rainfall. This site is 477 also significantly sensitive to solar radiation anomalies, with negative correlations suggesting 478 interdependence as cloudier seasons correspond with wetter conditions. National and regional 

498

were available are also presented (as in Figure 1). While the slopes of these lines support the use of temporal proxies for climate impact analyses, 652 other aspects of the analysis cast serious doubt on the utility of the temporal proxy approach 653 (even when CO 2 is held constant). Firstly, there is a dramatic spread among the 27 wheat models 

663

Together, these low correlations and the weak significance of fitted slopes suggest that the 664 temporal proxy cannot be reliably applied, especially for conditions that are substantially warmer 665 than the calibration period. 

140

  differences in model behaviors, data limitations, and areas for continuing research and model 27 wheat modeling groups participated in the first phase of the AgMIP Wheat Model 146 Intercomparison Pilot in order to investigate model performance across a variety of climates, 147 management regimes, and climate change conditions (focusing on response sensitivity to 148 temperature and carbon dioxide). This represented the largest multi-model intercomparison of 149 crop models to date. Major climate change results for grain yields were presented by Asseng et 150 al. (2013), while Martre et al. (2015) compared model performance across output variables 151 against field observations. As those studies thoroughly documented the protocols and 152 participating models of the Wheat Pilot's first phase, here we summarize the major elements 153 with an emphasis on factors affecting interannual grain yield variability as simulated at four sites 154 over the 1981-2010 historical period. Additional work from the Wheat Pilot's second phase 155

347

  and the Netherlands) contain mean and variance of yields that are similar to the simulations, 348 although differences in management and the varieties cultivated also reduce the utility of these 349 records as a basis for truth in the comparison of models. 350 351

357

  by factors other than weather(Ray et al. 2015) and models that are driven by variations in 358 weather only are bound to not reproduce observational records. As noted above, we therefore 359 turn to the High-information ensemble average (dark line in Figure1) as the standard for the 360 individual crop models given its superior performance in producing the full range of field 361 observations(Martre et al., 2015). The ensemble also reduces interannual variability through the 362 averaging of multiple models' potentially uncorrelated anomalies. 363 364 3.2 Effect of calibration on climate sensitivity 365 The Wheat Pilot's protocol for Low-information and High-information experiments provides a 366 useful examination of the ways in which model calibration has the potential to affect the 367 resulting response to climate variability.

Figure 2

 2 illustrates this sensitivity to calibration 368 information via the correlation of each individual model's low-information results with the full 369 ensemble of Low-information simulations (LL), the correlation of each model's Low-370 information result with the full ensemble of High-information simulations (LH), and the 371 correlation of each model's High-information results with the full ensemble of High-information 372 simulations (HH).

Figure 1 :Figure 2 :

 12 Figure 1: Historical period grain yields for a) Argentina, b) Australia, c) India, and d) The Netherlands, including

Figure 3 :

 3 Figure 3: Improvement in correlations with each additional model within a multi-model subset of the full ensemble.

479 491 Figure 4 :

 4914 Figure 4: Box-and-whiskers plots of Pearson's correlation coefficients between the 27 wheat models' 1981-2010

Figure 5 Figure 6 Figure 5 : 581 Figure 6 :

 5655816 Figure5shows each of the 27 wheat models as plotted on a three-dimensional space of

  creating multi-model subsets for new studies, although the construction of 587 subsets based upon model structure and parameter sets (rather than response characteristics) merits further study. Additional work may also explore agro-climatic responses in perturbed 589 physics ensembles as an alternative to multi-model ensembles (PPEs and MMEs, respectively; Relationship between interannual and climatological temperature sensitivities 594 While the above analyses focused on the ways in which simulated grain yields are sensitive to 595 interannual variability in temperature, rainfall, and solar radiation, the temperature sensitivity 596 tests (-3˚C, +3˚C, +6˚C, and +9˚C) isolate the effect of mean changes in temperature. Popular 597 impressions of climate change impacts are often based upon temporal proxies, or the assumption 598 that an x-degree warmer mean climate at a given location would have grain yields similar to the 599 yields observed in that location in past years when an x-degree anomaly occurred. Empirical 600 models based upon historical regressions are often premised on such an assumption, although 601 developed to a greater extent (e.g., Lobell and Burke, 2010). This is indeed a logical hypothesis 602 as one would expect that a crop's response to mean warming would mimic its response to 603 interannual temperature anomalies. Models that are most responsive to interannual temperature 604 variability would therefore be expected to also be the most sensitive to mean temperature consider two models: Model A (which simulates higher yields in warm years and 608 thus whose response is positively correlated with interannual temperatures) and Model B (which 609 simulates lower yields in warm years and thus whose response is negatively correlated with 610 interannual temperatures). A temporal proxy assumption would anticipate that Model A would have more positive simulated yield changes (as a percentage of the historical simulations' yields) 612 than Model B if both were exposed to warmer mean conditions. Likewise, if both models were 613 simulated under cooler mean conditions Model A would have more negative yield changes than 614 Model B. These comparisons between climate variability sensitivities and climate change 615 responses are informative not only for the relationship of a single given model, but the pattern of 616 the full ensemble provides a basis on which to evaluate model consistency and simple statistical 617 models' interannual temperature sensitivity and mean temperature change 620 responses are compared for each of the temperature sensitivity tests and each of the four 621 locations in Figure 7, with each dot representing a single wheat model. A model's position on 622 the x-axis represents the correlation of its interannual yields against growing season temperature 623 anomalies in the 1980-2010 period, and its position on the y-axis represents the percentage 624 change in mean yield (over the 30 growing seasons) for each of the temperature sensitivity tests 625 in comparison to the 1980-2010 mean yield (with CO 2 held at historical concentrations of 360 626 ppm). A linear fit is also drawn for each color-coded sensitivity test (quadratic fits were not 627 substantially better).

Figure 7 :

 7 Figure 7: Comparison between each model's Pearson's correlation coefficient of interannual temperature and grain

654

  Figure 7, R 2 correlations are quite low (between 0 and 0.24), with lowest values in the +9°C

907
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201 202 Table 1 :

 2021 Locations simulated in AgMIP Wheat Pilot (for more details seeMartre et al., 2015) 

	203				
	Parameter	Location			
		Argentina	Australia	India	Netherlands
	Location	Balcarce	Wongan Hills	Delhi	Wageningen
	Latitude	37.75°S	30.89°S	28.38°N	51.97°N
	Longitude	58.30°W	116.72°E	77.12°E	5.63°E

Table 2 :

 2 Crop models included in AgMIP Wheat Pilot (in alphabetical order; for more information and details on

  , for the purposes of this study we utilize the full, 27-model unweighted arithmetic mean 288 ensemble as the basis for comparison of each model's climate response.

	334	site's climate variability response, so we utilize an 80%-exceedance threshold as a practical risk yield across the four locations are clear (as discussed by Asseng et al., 2013, and Martre et al.,
	289 312 335	in simulation design. Results therefore focus on the correlations that would be exceeded by 80% 2015). Simulations exceed national and regional yields in each location, as wheat models often
	267 290 313 336	of the possible combinations for any number of combined models. do not include the effects of pests, diseases, poor crop management due to labor or equipment
	268 291 314 337	change where the sequence of events is more difficult to project than mean conditions), but 2.3 Methods of analysis shortages, waterlogging, and other factors that are common on farms outside of experimental
	269 292 315 338	---sequential simulations are an important developmental priority for more accurate representation 2.3.1. Agro-climatic correlations 2.3.2 Agro-climatic clustering plots. Model results are therefore more representative of yield potential (Evans and Fischer,
	270 293 316 339	; Tao and of extreme events and soil degradation (Basso et al., 2016) and crop rotation effects (Kollas et Zhang 2011) As each of the simulations held management constant throughout the 1981-2010 simulation We employed the k-means clustering technique to form clusters of wheat models that are 1999) than the more complex conditions of a typical farmer's field. The other source of
		MONICA	V.1.0	(Nendel et al., 2011)	http://monica.agrosystem-models.com
	271 294 317 340	O'Leary-model al., 2015). period and soils were re-initialized each year (with the exception of LPJmL, which did not V.7 (Latta and O'Leary 2003; OLeary Primary documentation for V7 (V3 characterized by similar correlations between yield and growing season temperature, variation in the gray lines within Figure 1 comes from the less explored interannual variability of
				and Connor 1996a; b; Oleary et	(O'Leary and Connor 1996a; b), with
	272 295 318 341	al., 1985) reinitialize soil water), interannual yield variability is a result of model responses to climate incremental documentation thereafter. precipitation, and solar radiation (with equal weighting for all). K-means is an iterative process simulated yields, which is the focus of analyses below. Interannual variability is reduced in the
	296 319 342	SALUS 2.2 Performance of Ensemble V.1.0 factors. Chief among these are precipitation, temperature, and solar radiation, which are likely to (Basso et al., 2010; Senthilkumar www.salusmodel.net by which models are regrouped until silhouette values (i.e., similarity between each model and model ensemble, as would be expected from averaging, although noteworthy variations suggest
				et al., 2009)
	297 320	Sirius2010 affect crop growth on a number of time scales. Here we focus on the effects of variability in (Jamieson and Semenov 2000; http://www.rothamsted.ac.uk/mas-the other members of its cluster) are maximized. For each location we examined the results with that there are common behaviors across the crop model responses. Simulated yields (which
				Jamieson et al., 1998; Lawless et	models/sirius.php
	298 321	al., 2005; Semenov and Shewry 2011) mean values over the growing season, using Pearson's correlations against grain yield to three, four, and five clusters and visually selected the number that best captured cohesive
	299 322	SiriusQuality determine key sensitivities within each crop model. Additional variance is likely explained by V.2.0 (Ferrise et al., 2010; He et al., 2011; He et al., 2010; Martre et http://www1.clermont.inra.fr/siriusqualit y groupings in the climate-sensitivity space (this resulted in three clusters in both Argentina and
				al., 2006)
	300 323	STICS climate variables at sub-seasonal time scales (particularly when extreme conditions align with V.1.1 (Brisson et al., 2003; Brisson et al., 1998) http://www6.paca.inra.fr/stics_eng/ India and four clusters in both Australia and the Netherlands). Fewer clusters than this grouped
	301 324	WOFOST * vulnerable phenological stages), which merits further examination in future studies. Correlation V.7.1 (van Diepen et al., 1989; Supit and van Diepen, 1994; Boogard et models with substantially different yield sensitivities to climate variability in the same cluster,
				al., 1998)
	302 325	was chosen as a simple illustration of association between climate and crop model response, while more clusters tended to unnecessarily divide similarly-responsive models. As each model
	303 326	although aspects related to non-linearity and thresholds may not be captured. Future work may belongs to a specific cluster at each location, we utilize the frequency that two models appear in
	304 327	also consider associative metrics such as the probability of detection for extreme events as a way the same clusters across the four sites as a metric of model similarity.
	305 328	of isolating important properties of observations and models (Glotter et al., 2016).
	260 306 329	3. Results and discussion	
	261 284 307 330	carbon dioxide concentrations but with historical temperatures adjusted by -3˚C, +3˚C, +6˚C, and As most studies will not have the luxury of running all 27 wheat models, we investigate the 3.1 Baseline interannual variability
	262 285 308 331	+9˚C every day of the year. As initial soil conditions and crop management (including sowing expected benefit of adding each additional member to a multi-model subset to converge on Figure 1 presents the 1981-2010 yields for the four Wheat Pilot locations from 27 wheat models,
	309 332	date and nitrogen fertilizer application) were kept constant over the 30-year period, these In light of the superior performance of the 27-member ensemble mean in reproducing field behaviors captured by the full 27-model ensemble. Without running the full analysis it is not the full model ensemble, and national and regional yields. These high-information simulation
		possible to know whether the models that are available are among the best or worst for a given results indicate uncertainty across the model ensemble, although common differences in mean

http://www.wofost.wur.nl 256 257 The 1981-2010 historical simulations that form the bulk of these analyses also served as the 258 historical basis for climate change simulations conducted by each wheat-modeling group. The 259 same model configurations were therefore forced by the same climate time series and baseline 263 simulations allow for a comparison between model responses to interannual climate variability and to mean climate changes. The re-initialization of soil conditions each year reduces the carry-265 over effects of multi-year droughts, which reduces overall interannual variability. This is 266 common in agricultural modeling applications (particularly those that examine future climate 273 Martre et al. (2014) compared grain yield, protein content concentration, and in-season and end-274 of-season variables within the 27 wheat model simulations against observations at each of the 275 four pilot locations. Although some models had the closest match to specific observations, 276 across all observed variables the 27-model unweighted arithmetic ensemble mean performed 277 best, in line with earlier findings based on smaller model ensembles even when used to 278 reproduce interannual yield statistics (Palosuo

et al., 2011;[START_REF] Rötter | Simulation of spring 1125 barley yield in different climatic zones of Northern and Central Europe: A comparison of 1126 nine crop growth models[END_REF]

. Thus, while each 279 wheat model has its own biases and accuracies, the errors across models tended to compensate 280 and the resulting ensemble had additional value (see also

Challinor et al., 2014b)

. The superior 281 performance of the ensemble also reflected that wheat models have evolved with enough 282 independence in approaches to achieve a random distribution of biases for most variables rather 283 than leading to the emergence of common biases. 286 observations across the four sites (and the lack of long-term historical yield observations at each location)343 examine a single field) are characterized by greater interannual variance compared to the 344 national and regional level observations, likely because heterogeneities in soils, climate, 345 cultivars, and management reduces extreme year anomalies when aggregated to scales that may 346 exceed those of a given extreme event (Ewert et al., 2011b). Only variety trials (in Argentina

  3 Benefit of multi-model ensemble 426The 27-model community approach of the AgMIP Wheat Pilot is not possible in the vast

	427 450	
	428	majority of crop model applications. Instead, what is needed is prior information that aids in the
	429	construction of a practical subset of models with a high likelihood of representing the larger
	430	ensemble. Beginning on the left-hand side of Figure 3 (representing the use of a randomly
		selected single model), the plotted value represents the Pearson's correlation (against the full
	443	
	444	
	445	Efforts to include a second and third model therefore provide substantial benefit to climate
		variability simulations; however, investment in including additional models has a diminishing

431

High-information ensemble) that would be exceeded by 80% of the individual models. This 432 value is highest for Argentina (where 80% of the models exceed r = 0.50) and lowest for India (r 433 = 0.28). Introducing a second model results in (27*26)/2=351 possible combinations, but 80% 434 of them have a correlation of at least r = 0.71 in Argentina and r = 0.53 in India. Across the four 435 sites, the benefit of adding a second model to a climate variability analysis is therefore an 436 increase of +0.23 in its likely correlation with the full ensemble, with gains highest in Australia 437 (+0.33) and lowest in the Netherlands (+0.13). Adding a third model also substantially increases 438 the 80%-likely correlation, although the average increase is reduced (+0.11). The additions of a 439 fourth and fifth model (increasing correlations by an average of 0.06 and 0.04, respectively) to 440 the subset are also beneficial and lead to very high correlations, but the increases begin to be 441 small in comparison to the effort likely required to calibrate an additional model (and collaborate 442 with an additional modeling group) for the effort.

446

return. These results suggest a benefit at smaller subsets to account for interannual climate variability than the 5-to 10-member subsets that AgMIP crop model pilots identified as 448 beneficial by comparing multi-model convergence against the 13.5% error that is common in 449 field observations for wheat

(Asseng et al., 2013) 

and maize

(Bassu et al., 2014) 

or the 15%

  are favorable for irrigated wheat growth. Cool seasons here are favorable for wheat 501 production, and solar radiation correlations are not significant. National level correlations with 502 the Delhi weather series are understandably weaker for all variables, as heterogeneous climate Wheat at the Netherlands site follows a different agro-climatic pattern from that at the other three

	503	
	504	across India's wheat-growing regions reduces the prominence of anomalies and results in
	505	insignificant correlations in all but average temperature.
	506	

Dashed lines indicate thresholds for correlations that are 499 significant at the 90 th percentile (t-test).

that 507 sites. Warm seasons are positively correlated with yields in the bulk of models, suggesting a 508 growing degree day limitation. Simulations and observations also suggest a radiation limitation 509 at this high latitude, with sunnier seasons (and the associated temperature and rainfall patterns) 510 favoring higher yields. The field site is notably different from the regional and national level 511 observations in that the aggregated observations are either not correlated with temperature or 512 suggest that yields favor cooler temperatures. The models also indicate stronger yields in wet 513 years, while observations indicate better production during drier seasons. This likely comes 514

from the fact that local and regional management of shallow groundwater tables in this region 515 helps control against water stress but this management is not considered in the models at the test 516 site. Contrary to the models' perception of drought, elevated regional yields are recorded in dry 517 seasons as higher solar radiation and groundwater provisions increase yield potential

(Asseng et 518 al., 2000)

.

Conclusions and next steps 732

  This is not the case as nearly all temperature sensitivity test lines fall below the origin with increasing distance as temperatures rise, suggesting that additional factors impart a mean grain 672 yield reduction above what would be expected from examining the impacts of historical 673 temperature variability. Several potential explanations for these differences merit further study.Interdependence of climate variables would somewhat explain the deviations of the wheat 680 models around the least-squares fitted lines in Figure7as the interannual correlation would not 681 be solely a temperature sensitivity. This factor cannot explain the extent of these deviations, 682 however, nor is this explanation sufficient to explain the offset at the origin.Analysis of the 27 models participating in the AgMIP Wheat Model Intercomparison Pilot interactions between variables and non-linear responses that may not be 785 present in the historical period datasets to which models are fit. Further work is needed to 786 elucidate additional physiological factors that differentiate the effects of a warm season from 787 those of a warmer climate(Porter and Semenov et al., 2005).Bassu et al., 2014; rice, Li et al., 2014; and sugarcane, Singels et al., 2013) as 793 well as pilots planned for millet and sorghum, potato, canola, and grasslands. AgMIP'sPirttioja et al., 2015) provide additional fora in which to compare climate sensitivities across 798 multiple locations and crop models, assuming that observational yield data also are available for 799 those points or aggregated grid cells. This study's yield response analyses are currently being 800 applied to GGCMI's historical period intercomparison, helping to determine the causes for 801 differences in interannual yield variation for more than a dozen models with global coverage of 802 multiple crops (Elliott et al., 2015). Wheat model development would benefit from a future 803 intercomparison centered upon a region where long-term variety trials overlap with similar 804 detailed field experiments so that calibration and the response to interannual climate variability 805 may be more comprehensively evaluated. Of particular interest would be the way in which interannual yield observations affect calibration and the resulting climate variability and climate Results from this study underscore the need for model intercomparison results to avoid 810 anonymity in order to enable careful analysis of structural and parameter differences that cause 811 differences in yield response. Current and future phases of the AgMIP Wheat intercomparisons 812 no longer hold the models anonymous, and evaluation of the mechanisms driving different 813 climate responses is a crucial line of continuing inquiry (as was performed for the AgMIP Rice 814 Pilot; Li et al., 2015). Through these activities the efforts of the AgMIP Wheat Pilot will better 815 accomplish integrated assessments of climate impact on the agricultural sector. DOI 10.1016/j.eja.2011.04.001. Bondeau, A., P.C. Smith, S. Zaehle, S. Schaphoff, W. Lucht, W. Cramer, and D. Gerten, 2007: 894 Modelling the role of agriculture for the 20th century global terrestrial carbon balance. 1998: User's guide for the WOFOST 7.1 crop growth simulation model and WOFOST 898 control center 1.5. Winand Staring Centre, Wageningen, The Netherlands, 144pp. Boote, K.J., C.H. Porter, J.W. Jones, P.J. Thorburn, K.C. Kersebaum, G. Hoogenboom, J.W. White, and J.L. Hatfield, 2015: Sentinel Site Data for Model Improvement -Definition 901 and Characterization. In: Hatfield, J.L., Fleisher, D. (Eds.), Improving Modeling Tools to 902 Assess Climate Change Effects on Crop Response, Advances in Agricultural Systems Brisson, N., C. Gary, E. Justes, R. Roche, B. Mary, D. Ripoche, D. Zimmer, J. Sierra, P.

	695 807	temperatures alone. Interactions with other variables can also compound yield losses. Chief
	696 808	among these are increases in water stress during critical growth stages, as warmer temperatures change sensitivities.
	674 697 809	lead to increased vapor pressure deficit and higher potential evapotranspiration (although
	675 698 743 765 788	accumulated water requirements may be partially counter-balanced by a shorter growing calibration are amplified when a single-year's calibration is used for multiple seasons. It is The wheat models demonstrate several common patterns of climate variability response at each
	676 699 744 766 789	A first candidate factor is that this simple temporal proxy based solely on temperature lends itself season). Non-linear effects could be identified if particular years in the sensitivity tests therefore useful to take advantage of the tendency of multi-model ensemble statistics to reduce tested location. In some cases there is a fundamental disagreement between models about
	677 700 722 745 767 790	to biases as a result of interdependence of climate variables (Sheehy et al., 2006). For example, experienced much larger losses than the average year (compared to the historical climate). prolonged warming maturation is accelerated and yields may be reduced as a result of lower net overall errors beyond the calibration period. whether grain yield responds positively or negatively to a given anomaly, although Follow-on phases of the AgMIP Wheat Pilot are focusing on more sites and experiments
	678 701 723 746 791 903	temperature anomalies may correlate with yield losses only because they coincide with dry Thresholds and plant stresses at critical growth stages can also lead to complete loss of grain radiation interception. There is also an increased chance that warm temperatures will negatively interdependence of climate variables (e.g., wet and cool years vs. hot and dry years) muddles the designed to better distinguish between heat waves and warmer mean climate conditions. The
	702 724 747 904	seasons, which would suggest that a rainfall-based empirical model would be more appropriate. yields, as is clear in the number of models reporting 100% grain yield loss under the highest affect key phenological stages and/or interact with precipitation or solar radiation to create The AgMIP Wheat Pilot offers a far larger multi-model sample than would be expected in the analyses presented here would also be of interest for other completed AgMIP Crop Model Pilots Modeling. ASA, CSSA, and SSSA, Madison, WI, USA.
	703 725 748 905	temperature conditions (Figure 7). evaporative demand that the plants cannot meet. These alterations to phenological development applications for which each of the participating models was designed; however several of the doi:10.2134/advagricsystmodel7.2014.0019
	704 726 816	and/or heat and water stresses can have cascading effects on plant growth throughout the season interannual response results help guide the formation of practical subsets and application
	705 727	A third factor relates to different responses of grain yield to temperature variability and change with net yield reductions on average compared to the historical temperature variability. The
	683 706 728	during different parts of the crop growing season or during different parts of the year. This is models respond to high temperatures according to a large variety of parameterizations (Alderman
	684 707 729 888	probably particularly relevant for crops with a long growing period such as winter wheat in the et al., 2013), with responses to extreme heat an area in particular need of development (Lobell et Agricultural Systems 76: 817-839. doi: 10.1016/S0308-521X(02)00111-
	685 708 730	A second factor is the non-linearity in grain yield responses as mean climate change pushes Netherlands. An example of this is winter wheat in Denmark, where Kristensen et al. (2011) al., 2012). 7|10.1016/S0308-521X(02)00111-7.
	686 709 731	systems beyond critical thresholds and tipping points, some of which may not have been present found a positive response of yield to increased temperature at low temperatures during winter,
	in the historical conditions. Within each temperature sensitivity test there are 30 years of climate variability including warm seasons with extreme events that are amplified by an but a highly negative response during summer. Also Liu et al. (2013) found differential effects of warming on winter wheat yield in the North China Plain depending on whether the warming 4. 733 687 688 710 711 755 will reproduce the interannual behavior of the full 27-model ensemble, with a diminishing 756
	689 712 734 757 779	increasing mean temperature and which may have a disproportionate impact on the mean yield mainly affected winter or summer conditions. The effects of warming for crops that have long reveals substantial differences in the ways that models respond to interannual variations in benefit to efforts that utilize additional models beyond that. This information is directly relevant
	666	
	690 713 735 758 780	shift. In combination, the mean warming and interannual extremes can produce conditions growing seasons with large seasonal differences may therefore be obscured by positive effects rainfall, temperature, and solar radiation at four diverse locations. These differences provide to the design of new studies looking to take advantage of multi-model ensemble statistics despite
	667	
	691 714 736 759 781	never experienced during the 1981-2010 period. In many cases this leads to a non-linear impact of warming in some parts of the growing season and negative ones in other parts of the growth useful context to differences in the abilities of the same models to reproduce detailed field resource constraints, including AgMIP efforts to form crop modeling tools that may link with The effects of interannual temperature variability and mean climate warming were shown to be
	668	Secondly, a temporal proxy would predict that models with no sensitivity to interannual
	692 715 737 760 782	on grain yields beyond a simple extrapolation of interannual proxies (Porter and Semenov, period. observations (Martre et al., 2015) and climate change responses (Asseng et al., 2013, 2015). The global agricultural monitoring and outlooks on a sub-seasonal to seasonal scale (Singh et al., only weakly related among the 27 wheat models, indicating that a temporal proxy for climate
		temperature variability would have no response to climate change (as represented by the
	693 738	1995). For example, Lobell et al. (2012) found an acceleration of leaf senescence in Indian large differences apparent in interannual climate sensitivity suggest that multiple years of 2012; Vitart et al., 2012). Use of an ensemble also highlights the sensitivity of simulated yields change is likely oversimplified. State-of-the-art empirical models use far more than interannual
	694	wheat during extreme heat events beyond what would have been expected from average consistent field trials are desirable to enable proper initialization of field conditions, and field

669

temperature sensitivity tests), and therefore all linear fits should intersect at the origin of the 670 axes. 679 749 protocols. Although calibration information has been shown to reduce errors in mean yields and 750 details in crop growth

(Asseng et al., 2013)

, the results presented here suggest that interannual 751 yield variability for most models is not strongly affected by the availability of more detailed field 752 observations (e.g., evapotranspiration, biomass, leaf-area index, plant available soil moisture) for 753 calibration. This is encouraging as high-information field trials are much less common. Adding 754 a second (and third) wheat model dramatically increases the likelihood that the simulated results 768 picture. Even when two models respond in a very similar manner at one location, differences in 769 calibration method and quality, parameters, model structure, and environmental conditions can 770 lead to strong deviations in model response at other sites. These results therefore suggest that 771 there are still strong differences in wheat models' climate sensitivities, and that further work is 772 needed to create models that are truly applicable across a wide range of current and future 773 conditions. The analysis presented here focuses on mean growing season climate anomalies at 774 four locations; however consideration of intra-seasonal variability and extremes (e.g., heat 775 waves, dry spells, frosts, floods, waterlogging, monsoon dynamics) require further study. 776 Comparing multi-model simulation experiments against long-term field trials (e.g., Dobermann 777 et al.

, 2000) 

would also be desirable in order to provide true observations upon which to evaluate 778 simulated outputs (rather than assuming the value of the ensemble average as done here). 783 temperature for climate impacts projection, however these findings underscore the importance of considering complex 792 (e.g., for maize, 794 Coordinated Climate-Crop Modeling Project (C3MP; Ruane et al., 2014; McDermid et al., 2015) 795 and Global Gridded Crop Model Intercomparison (GGCMI; Rosenzweig et al., 2014; Elliott et 796 al., 2015), as well as the impact response surface studies conducted in FACCE MACSUR 797 (889 Biernath, C., S. Gayler, S. Bittner, C. Klein, P. Hogy, A. Fangmeier, and E. Priesack, 2011: 890 Evaluating the ability of four crop models to predict different environmental impacts on 891 spring wheat grown in open-top chambers. European Journal of Agronomy 35: 71-82.
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Analysis byAsseng et al. (2013) revealed a considerable reduction of biases between field

http://www.fasset.dk GLAM-wheat * V.2 (Challinor et al., 2004; Li et al., http://see-web-

information calibration simulations.

(c) India; and (d) The Netherlands. The correlation between the Low-information model runs and the Low-

information ensemble mean (LL) is displayed in light gray, the correlation between the Low-Information model runs

and the High-information ensemble mean (LH) is displayed in dark gray, and the correlation between the High-

information model runs and the High-information ensemble mean (HH) is displayed in black.

locations in each country (see Table1) after calibration with High information, and all possible combinations of N

models were tested.
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Simulated yields at the Indian site are significantly correlated with precipitation despite irrigation warming is the extent of within-season climate variability. In the historical record extremely 718 warm seasons tend to be only marginally warm on the average day but feature a substantial heat 719 wave (or several), which has a fundamentally different effect on plant function from that of a 720 season where a slight warming is relentless (even if the average temperature is the same). With experiments during extreme conditions would benefit the calibration of crop models for both 740 mean yields and interannual variability. Such long-term agricultural research datasets are rare, 741 unfortunately, so in typical applications such as those done here it is likely that any biases in to interannual climate variability as common features rise above the ensemble's diminished noise 762 more easily than the individual models' larger noise.