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ABSTRACT. In computational biology, numerous recent studies have been dedicated to the analy-
sis of the chromatin structure within the cell by two-dimensional segmentation methods. Motivated
by this application, we consider the problem of retrieving the diagonal blocks in a matrix of obser-
vations. The theoretical properties of the least squares estimators of both the boundaries and the
number of blocks are investigated. More precisely, the contribution of the paper is to establish the
consistency of these estimators. A surprising consequence of our results is that, contrary to the one-
dimensional case, a penalty is not needed for retrieving the true number of diagonal blocks. Finally,
the results are illustrated on synthetic data.
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1. Introduction

Detecting change points in one-dimensional signals is a very important task that arises in many
applications, ranging from electroencephalography to speech processing and network intrusion
detection (Basseville & Nikiforov, 1993; Brodsky & Darkhovsky, 2000; Tartakovsky et al.,
2014). The aim of such approaches is to split a signal into several homogeneous segments
according to some quantity. A large literature has been dedicated to the change-point detection
issue for one-dimensional data. This problem may also have several applications when dealing
with two-dimensional data.

One of the main situations in which this problem occurs is the detection of chromosomal
regions having close spatial location in the nucleus of a cell. Detecting such regions provides
valuable insight to understand the influence of chromosomal conformation on cell functioning.

More precisely, we will consider the problem of identifying the so-called cis-interactions
between regions of a chromosome. In this context, n locations spatially ordered along a given
chromosome are considered, the goal being to find clusters of adjacent locations that strongly
interact. The elements Yi;j of a data matrix Y will then correspond to the interaction level
between locations i and j of a chromosome, which can be measured using the recently devel-
oped HiC technologies (Dixon et al., 2012). In this application, the signal – and consequently
the data matrix – exhibits a strong structure: one should observe high signal levels within blocks
of locations along the matrix diagonal and a signal that is close to some (low) baseline level
everywhere else.

As shown in Lévy-Leduc et al. (2014), the identification of cis-interactions can be cast
as a segmentation problem, where the goal is to identify diagonal blocks (or regions) with
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homogeneous interaction levels. Thanks to the spatial repartition of these regions along the
diagonal, the two-dimensional segmentation of the data matrix actually boils down to a partic-
ular one-dimensional segmentation. The dynamic programming algorithm originally proposed
by Bellman (1961) is well known to provide the exact solution of the one-dimensional segmen-
tation issue in the least squares sense. Therefore, we benefit from the data structure by avoiding
both the computational burden and the approximation errors that come with heuristic methods
used to solve the complex generic problem of two-dimensional segmentation.

While being able to handle large interaction data matrices from an algorithmic point of
view, model selection (i.e. selecting the number of blocks K) remains an open question when
dealing with such data. This is contrasted with the problem of one-dimensional signal segmen-
tation, for which the properties of the estimators have been largely addressed, for instance, in
Boysen et al. (2009), Lavielle and Moulines (2000), and Yao and Au (1989). In these
approaches, the number of change points is usually performed thanks to a Schwarz-like
penalty �nK where �n is often calibrated on data, as in Lavielle (2005) and Lavielle and
Moulines (2000), or a penalty K.a C b log.n=K// as in Lebarbier (2005) and Massart (2004),
where a and b are data-driven as well.

The goal of the present paper is to prove the consistency of the estimators of both the bound-
aries and the number of blocks obtained by minimizing the (slightly modified) least squares
criterion proposed by Lévy-Leduc et al. (2014). The proof relies on the strong structure of the
data, which is of great help for the model selection issue and for the algorithmic aspects.

More precisely, we will prove that the non-penalized least squares estimators of the number
of blocks are consistent.

The paper is organized as follows: Section 2 introduces the modelling of the data and the
definition of the least squares estimators that will be considered throughout the article. The
theoretical properties of the estimators are derived in Section 3 and illustrated on synthetic data
in Section 4. A discussion is given in Section 5. The technical aspects of the proofs are detailed
in Section 6 and in the supplementary material.

2. Statistical framework

2.1. Modelling

Let us consider Y D .Yi;j /1�i;j�n, a symmetric matrix of random variables. Because of the
symmetry, we shall focus on its upper-triangular part denoted by Y D .Yi;j /1�i�j�n where
the Yi;j will be assumed to be independent and such that

Yi;j D E
�
Yi;j

�
C "i;j D �i;j C "i;j ; 1 � i � j � n: (1)

The "i;j satisfies the following assumption:

A 1. The "i;j is assumed to be centred, i.i.d. and such that there exists a positive constant ˇ
such that for all � 2 R,

E
�
e�"11

�
� eˇ�

2

:

We shall moreover assume that the matrix of means .�i;j /1�i�j�n is block diagonal. More
precisely, let �? D .�?

0
; �?
1
; : : : ; �?

K?
/ be a vector of break fractions such that 0 D �?

0
< �?

1
<

� � � < �?
K?
D 1. In what follows, the break fractions are fixed quantities: neither their number

nor their positions change when n grows. The parameters �i;j are such that

© 2017 Board of the Foundation of the Scandinavian Journal of Statistics.
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Fig. 1. Left: Example of a matrix .�i;j / with n D 16 and K? D 4. Right: Illustration of the notations
used in the estimation criterion. [Colour figure can be viewed at wileyonlinelibrary.com]

�i;j D �
?
k if .i; j / 2 D?k ; k D 1; : : : ; K

?;

D �?0 if .i; j / 2 E?0 ;
(2)

where the (half) diagonal blocks D?
k

(k D 1; : : : ; K?) are defined as follows:

D?k D ¹.i; j / W t
?
k�1 � i � j � t

?
k � 1º; (3)

where t?
k
D Œn�?

k
� C 1 are thus such that 1 D t?

0
< t?

1
< � � � < t?

K?
D n C 1, Œx� denoting

the integer part of x. They stand for the true block boundaries, and K? corresponds to the
true number of blocks. In (2), E?

0
corresponds to the set of positions lying outside the diagonal

blocks:

E?0 D ¹.i; j / W 1 � i � j � nº \
�
[D?k

�C
; (4)

where AC denotes the complement of set A. An example of such a matrix is displayed in Fig. 1
(left).

The following will also be assumed for the true block sizes:

A2. For all `, one has

0 < �?� D min
k2¹1;:::;K?º

ˇ̌
�?k � �

?
k�1

ˇ̌
� j�?`C1 � �

?
` j � c;

where c 2 .0; 1/ is a known constant.

Moreover, the �?
k

satisfies the following assumption:

A3. �.0/ D min
1�k�K?

ˇ̌
�?
k
� �?

0

ˇ̌
> 0.

2.2. Inference

In this framework, the inference consists in estimating both the number of blocks and the true
break fraction vector �? (or equivalently the true boundary vector t?). One strategy would be

© 2017 Board of the Foundation of the Scandinavian Journal of Statistics.
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to use the following least squares criterion:

btLS
K 2 Argmin

t2A�nn;K

8<:
24 KX
kD1

X
.i;j /2Dk

�
Yi;j � YDk

�235C X
.i;j /2E0

�
Yi;j � YE0

�29=; ; (5)

where YD is the empirical mean of the Yi;j when the indices .i; j / belong to D, Dk and E0
are defined as in (3) and (4) except that t? is replaced by t and K is the considered number of
segments – K? being unknown in practice. Moreover,

A�n
n;K
D ¹t D .t0; : : : ; tK/ W t0 D 1 < t1 < � � � < tK D nC 1

and 81 � k � K; n�n � tk � tk�1 < cnº
(6)

is the set of admissible segmentations, where �n denotes a positive sequence.
However, thanks to (A2), one can derive an unbiased estimator of �?

0
using the upper-right

triangle part of the matrix Y denoted G01 and defined by

G01 D ¹.i; j / W 1 � i � n
0; .n � n0 C 1/ � j � nº with n0 D Œ.1 � c/n� : (7)

Indeed, the intersection between the blocks Dk and G01 will always be empty. Thus, we can
split E?

0
into two disjoint sets G?

00
and G01 (see the right part of Fig. 1) as follows:

E?0 D G
?
00 [G01: (8)

Consequently, we will consider the following slightly modified least squares criterion:

btK 2 Argmint2A�nn;K
QKn .t/; (9)

where

QKn .t/ D

8<:
24 KX
kD1

X
.i;j /2Dk

�
Yi;j � YDk

�235C X
.i;j /2E0

�
Yi;j � YG01

�29=; : (10)

Lastly, we will consider the following estimator of K?:

bK D Argmin1�K�Kmax
QKn

�btK� ; (11)

wherebtK is defined in (9) and Kmax is the maximal number of blocks considered.
Criterion (11) based on (10) has been proposed by Lévy-Leduc et al. (2014). The goal of our

paper is to validate this latter approach theoretically. Note that the main difference between
(5) and (10) is the estimation of �?

0
that is independent from the segmentation, because G01 is

fixed. Hence, �?
0

can be estimated prior to the optimization of the criterion (10). As a conse-
quence, this optimization can be performed by using the dynamic programming algorithm as
explained in Lévy-Leduc et al. (2014).

3. Theoretical results

The goal of this section is to derive the consistency of bK and O�. To prove these results, we shall
need the following assumption on �n:

A4. �n

p
n

.logn/1=4
�!

n!C1
C1 and �n � �

?
� , for large enough n.

Theorem 1. Let Yi;j be defined by (1). Assume that (A1), (A2), (A3) and (A4) hold. Then bK
defined in (11) is such that

© 2017 Board of the Foundation of the Scandinavian Journal of Statistics.
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P

� bK ¤ K?� �! 0; as n!C1: (12)

Remark 3.1. Observe that, contrary to classical statistical frameworks, bK is a consistent
estimator of K? even if it is obtained without any penalization.

Remark 3.2. In theorem 1, the estimator bK is defined as the minimizer of QKn .btK/ wherebtK
is obtained by minimizing QKn .t/ over the set A�n

n;K
. If we are only interested in proving that

P.bK < K?/ ! 0, the minimization can be performed on the set A1=n
n;K

instead of A�n
n;K

, that
is, without any constraint on the minimal distance between two consecutive change points (see
lemma 1 (i) later and lemmas 2, 3 and 4, which are given in Section 6).

Remark 3.3. Theorem 1 is valid under (A2) that implies that the number of observations within
each segment increases linearly with n, because t?

k
D Œn�?

k
� C 1. This assumption could be

alleviated by assuming that �?� is no longer a constant. In that case, we shall need to assume
that �?�n

1=4=.logn/1=8 tends to infinity, as n tends to infinity.

Remark 3.4. The assumption �n � .logn/1=4=
p
n of (A4) can be understood in the light

of lemma 1 (ii) and (17) at the end of the proof of theorem 1. It is required to ensure the
convergence to zero of the exponential inequalities of the random parts given in lemmas 2, 3
and 4.

This assumption is only required for proving that P
� bK > K?

�
tends to zero as n tends to

infinity. As a consequence, when the number of blocks is known (bK D K?), the break fractions
consistency is obtained in our paper when �n D 1=n. Such a choice is impossible in the one-
dimensional segmentation framework of Lavielle and Moulines (2000) because it is required
that n�n ! C1 and �n ! 0, as n tends to infinity, in order to obtain the break fractions
consistency when the number of breaks is known.

Remark 3.5. In practice, c has to be chosen in order to use the top right part of the matrix of
observations to estimate the parameter �?

0
. This choice can come either from a prior biolog-

ical knowledge or from a simple visualization of the data. In the case of the analysis of HiC
data, the size of the interaction diagonal blocks is expected to be small compared with the
size of the chromosome, that is, the size of the data matrix. In this context, c D 3=4 can be
safely chosen, as suggested in Lévy-Leduc et al. (2014). If the value of c is misspecified, the
estimator of �?

0
is biased. The consistency result of theorem 3 still holds if (A3) is replaced by

min
1�k�K?

ˇ̌
�?
k
� E. NYG01/

ˇ̌
> 0.

Sketch of proof of Theorem 1. In order to prove (12), we shall prove that P

� bK < K?
�

and

P

� bK > K?
�

tend to zero as n tends to infinity. Note that

P

� bK < K?
�
�

K?�1X
KD1

P

� bK D K� and P

� bK > K?
�
�

KmaxX
KDK?C1

P

� bK D K� :
Hence, we shall prove that for K < K? and K > K?,

P

� bK D K� �! 0; as n!C1:

Observe that by definition of bK given in (11),

© 2017 Board of the Foundation of the Scandinavian Journal of Statistics.
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P

� bK D K� � P

0@ min
t2A�nn;K

QKn .t/ � min
t2A�n

n;K?

QK
?

n .t/ � 0

1A
� P

 
min

t2A�nn;K
QKn .t/ �Q

K?

n .t?/ � 0

!
;

because, for large enough n,�n � �?� and hence, t? belongs to A�n
n;K?

. Thus, we shall focus on

P

 
min

t2A�nn;K
Jn.t/ � 0

!
;

where

Jn.t/ D
2

n.nC 1/

�
QKn .t/ �Q

K?

n .t?/
�
: (13)

We shall prove in the supplementary material that

Jn.t/ D Bn.t/C Vn.t/CWn.t/CZn.t/; (14)

where Bn, Vn, Wn and Zn are defined by (20), (21), (22), (23) and (24) in Section 6. In (14),
Bn corresponds to the deterministic part, and the other terms correspond to the random part
of Jn.

The remainder of the proof is based on lemma 1, which is proved in Section 6.2 and which
provides a lower bound for the deterministic part of Jn, and on lemmas 2, 3 and 4, given in
Section 6, which provide deviation inequalities for the random terms of Jn.

Lemma 1. Let Bn.t/ be defined by (20) and (21),
then

(i) if K < K?,

min
t2A1=nn;K

Bn.t/ �
�.0/

2

64

�
�?�

�4
;

(ii) if K > K?,

min
t2A�nn;K

Bn.t/ �
�.0/

2

4
�2n;

(iii) if K D K?, for all positive ı,

min°
t2A1=nn;K;kt�t?k1>nı

±Bn.t/ �
�.0/

2

32
min

�
�?�=2; ı

� �
�?�

�3
; (15)

where �?� is defined in (A2), �.0/ is defined in (A3) and A�n
n;K

is defined in (6). A1=n
n;K

is a
particular case with �n D 1=n and��t � t?

��
1
D max
0�k�K?

ˇ̌
tk � t

?
k

ˇ̌
: (16)

© 2017 Board of the Foundation of the Scandinavian Journal of Statistics.
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Thus,

P

 
min

t2A�nn;K
Jn.t/ � 0

!
� P

 
min

t2A�nn;K
ŒBn.t/C Vn.t/CWn.t/CZn.t/� � 0

!
:

The right-hand side of the previous inequality is bounded by

P

 
� min

t2A�nn;K
Vn.t/ � min

t2A�nn;K
Wn.t/ � min

t2A�nn;K
Zn.t/ � min

t2A�nn;K
Bn.t/

!
:

For bounding this term, we shall use lemma 1 (ii).
For K > K?, we obtain

P

 
min

t2A�nn;K
Jn.t/ � 0

!
� P

0@� min
t2A�nn;K

Vn.t/ �
�.0/

2

12
�2n

1A
C P

0@� min
t2A�nn;K

Wn.t/ �
�.0/

2

12
�2n

1AC P

0@� min
t2A�nn;K

Zn.t/ �
�.0/

2

12
�2n

1A :
(17)

By lemmas 2, 3 and 4, we conclude that

P

� bK D K� �!
n!C1

0;

for K > K?. The case K < K? can be proved by following the same lines.

Remark 3.6. We can observe from theorem 1 that adding a penalty term is not neces-
sary for obtaining a consistent estimator of the number of diagonal blocks. This may be
surprising because, in the one-dimensional case, it is proved in theorem 9 of Lavielle and
Moulines (2000) that a penalty term is required. More precisely, the main difference between
our two-dimensional framework and the one-dimensional case is the behaviour of the deter-
ministic part of our criterion Bn: it is lower bounded whatever the value of K (K � K? or
K < K?), as proved in lemma 1. The key point of the proof is that whenK > K?, some entries
of the diagonal blocks will have their mean estimated by YG01 rather than their proper associ-
ated mean that is the empirical mean of the observations lying in the corresponding diagonal
block [Fig. 6 (right panel)].

On the contrary, in the one-dimensional case, a penalty term of the type ˇnK is necessary
to obtain such a lower bound when K � K?. In the case where K < K?, a lower bound
for Bn is obtained without penalization. For further details, see the proof of theorem 9 in
Lavielle and Moulines (2000).

Theorem 2. Assume that the assumptions of theorem 1 hold, and then, for all ı > 0,

P

����t? �btcK���H > nı
�
�!

n!C1
0; (18)

wherebtcK is defined in (9) and (11) and k � kH denotes the Hausdorff distance defined by���t? �btK���
H
D max

	
max

0�k�K?
min

0�`�K

ˇ̌
t?k �bt` ˇ̌ ; max

0�`�K
min

0�k�K?

ˇ̌
t?k �bt` ˇ̌
 :

Observe that (18) can be rewritten as P
����? �b�cK��H > ı

�
�!

n!C1
0, whereb�cK DbtcK=n.

© 2017 Board of the Foundation of the Scandinavian Journal of Statistics.
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Sketch of proof of Theorem 2. Observe that

P

����t? �btcK���H > nı
�
D P

�°���t? �btcK���H > nı
±
\
° bK ¤ K?±�

C P

�°���t? �btcK���H > nı
±
\
° bK D K?±� � P

� bK ¤ K?�C P

�
kbtK? � t?k1 > nı

�
;

where kbtK? � t?k1 is defined in (16) because kbtcK � t?k1 D kbtcK � t?kH when bK D K?. By
theorem 1, proving (18) amounts to proving that

P

�
max

0�k�K?

ˇ̌
t?k �btk ˇ̌ > nı�! 0; as n!C1:

Observe that

P

�
max

1�k�K?

ˇ̌
t?k �btk ˇ̌ > nı� � P

0@ min°
t2A1=n

n;K?
;kt�t?k1>nı

±Jn.t/ � 0
1A :

Using the same arguments as those used in the proof of theorem 1, the proof follows from
the decomposition of Jn given by (14), the lower bound (15) of lemma 1 and the deviation
inequalities for the random terms given by lemmas 2, 3 and 4.

4. Numerical experiments

The goal of this section is to illustrate the theoretical results obtained in Section 3. For an
application of our method to real data, we refer the reader to Lévy-Leduc et al. (2014).

4.1. Simulation framework

We generated Gaussian diagonal block matrices according to model (1) with �?
k
D 1 for the

K? D 5 diagonal blocks and �?
0
D 0 for different values of n .n 2 ¹500; 1500º/. The change-

point locations are
�
�?
0
; : : : ; �?

5

�
D .0; 0:07; 0:2; 0:4; 0:67; 1/; hence, �?� D 0:07. We shall use

different values for the standard deviation � of the "i;j : � 2 ¹1; : : : ; 10º. For each case, 500
matrices were simulated, and the procedure was tested. Examples of such matrices are displayed
in Fig. 2 for different values of � .

The results that are presented next have been obtained by using the R package HiCseg that
is available on the CRAN. In this package, the values of �n and c are fixed and equal to 2=n
and 3=4, respectively.

4.2. Statistical performance

Performance of the statistical procedure. We first consider the problem of estimating the true
number of blocks K?, and provide some insight about the consistency of our procedure with-
out penalty, outlined in remark 3.1. Boxplots of the estimated number of change points are
displayed in Fig. 3 for n in ¹500; 1500º and for different values of � .

On the one hand, we observe that for high signal-to-noise ratios, the true value of K? is
retrieved by our procedure. On the other hand, when the signal-to-noise ratio becomes very
low,K? is not properly estimated. In this situation,K? is overestimated, which is in accordance
with what occurs in the one-dimensional case where a non-penalized procedure would result in
a systematic overestimation of K?. However, when n increases, the value of � from which this
overestimation occurs is unsurprisingly larger. One way to improve the estimation ofK? would
perhaps be to use a penalized procedure. This will be the subject of a future work (see Section 5
for further details).

© 2017 Board of the Foundation of the Scandinavian Journal of Statistics.
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Fig. 2. Examples of simulated matrices following model (1) with
�
�?0 ; : : : ; �

?
5

�
D

.0; 0:07; 0:2; 0:4; 0:67; 1/ and n D 500 for two values of � : � D 1 (left) and � D 4 (right).

Fig. 3. Top: Boxplots of the estimations ofK? D 5 as a function of the standard deviation � for n D 500
(left) and n D 1500 (right). The dashed line corresponds to the true value of K?. Bottom: Same plots
with the x-axis values restricted to ¹1; : : : ; 5º.

© 2017 Board of the Foundation of the Scandinavian Journal of Statistics.
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Fig. 4. Boxplots of the two parts of the Hausdorff distance: H1 (top) and H2 (bottom) for n D 500 (left)
and n D 1500 (right). For each case, the boxplots are displayed as a function of � .

To illustrate the performance of our procedure in terms of the estimation of change-point
location, Fig. 4 displays the boxplots of the two parts of the Hausdorff distance defined by

���t? �btcK���H1 D max
0�k�K?

min
0�`�cK

ˇ̌
t?k �bt` ˇ̌ ;���t? �btcK���H2 D max

0�`�cK min
0�k�K?

ˇ̌
t?k �bt` ˇ̌ : (19)

We observe from this figure that when K? is overestimated, the true change points are nev-
ertheless recovered well (k � kH1 is close to 0), the other estimated change points being spurious
ones (k � kH2 is large). As proved in theorem 2, this phenomenon is less visible when n becomes
large.

Effect of a poor estimation of �?
0

. We study the behaviour of our segmentation procedure
when �?

0
is poorly estimated that may occur, for instance, when the constant c appearing in (7)

is too small. To this end, we generated data in which the mean of the n0 � n0 top right part of
the observation matrix is modified, where n0 is defined in (2). More precisely, the mean of this
part is equal to �?

0
C !, where ! 2 ¹0:2; 0:4; 0:6; 0:8º. The results are displayed in Fig. 5. We

can see from this figure that when the value of �?
0
C ! is close to the values of the means of

the diagonal blocks, our procedure tends to overestimate K?. This phenomenon is less visible
when n is large (Fig. 6).

© 2017 Board of the Foundation of the Scandinavian Journal of Statistics.
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Fig. 5. Boxplots of bK for � D 1 (top) and � D 4 (bottom) for n D 500 (left) and n D 1500 (right).
For each case, the boxplots are displayed as a function of !. The dashed line corresponds to the true value
ofK?.

5. Discussion

In this paper, we established that the (slightly modified) least squares estimators for the number
of blocks and their boundaries in a block diagonal matrix are consistent. Note that the obtained
results are non-standard in the sense that we proved that penalizing the least squares criterion
is not required to obtain a consistent estimator of the number of diagonal blocks. This has to be
contrasted with the one-dimensional case, where it is well known that a penalization is required
to ensure consistency, see, for instance, Lavielle and Moulines (2000). More precisely, a close
look at the proof of theorem 9 in Lavielle and Moulines (2000) shows that a penalty is required
to discard models such that K > K?. This comes from the fact that in the one-dimensional
setting whenK > K?, the deterministic part Bn of Jn vanishes for all segmentations t satisfying
kt? � tkH1 D 0 (i.e. for all segmentations t nested in the true segmentation t?). This bias
term being null, a penalty term has to be added to the criterion to compensate the stochastic
deviations of the random terms in Jn. In the two-dimensional setting, the deterministic part
Bn does not vanish when K > K? – as proved in lemma 1 – ensuring consistency.

The framework that we have chosen for proving our results consists in assuming that the
observations are independent and that the size of the observation matrix is large (asymptotic
framework), which is adapted to the analysis of HiC experiments. From a practical point of
view, the independence assumption is not always satisfied, for instance, when the observa-
tion matrix is a correlation or a similarity matrix, see, for example, Dehman et al. (2015) and
Ioanna Delatola et al. (2015). Hence, relaxing the independence assumption to retrieve
diagonal block boundaries in such cases would be a natural extension of this paper.
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Moreover, it could be interesting to see if adding a penalty term to our criterion would
improve the rates of convergence of our estimators or would allow us to alleviate our
assumptions. This will be the subject of a future work.

6. Proofs

6.1. Definition of Bn, Vn, Wn and Zn

We define hereafter Bn, Vn, Wn and Zn that appear in (14) by

Bn.t/ D BDn .t/C B0n.t/; Vn.t/ D V
D
n .t/C V 0n .t/; Wn D W

D
n .t/CW 0

n .t/; (20)

and

BDn .t/ D
2

n.nC 1/

0@ KX
kD1

X
.i;j /2Dk

�
E
�
Yi;j

�
� E

�
YDk

��21A ;
B0n.t/ D

2

n.nC 1/

X
.i;j /2G00

�
E
�
Yi;j

�
� E

�
YG01

��2
;

(21)

VDn .t/ D
2

n.nC 1/

264 K?X
kD1

�P
.i;j /2D?

k
"i;j

�2ˇ̌
D?
k

ˇ̌ �

KX
kD1

�P
.i 0;j 0/2Dk

"i 0;j 0
�2

jDk j

375 ;
V 0n .t/ D

2

n.nC 1/

1

jG01j2

0@ X
.i;j /2G01

"i;j

1A2 �jG00j � jG?00j� ;
(22)

WD
n .t/ D

4

n.nC 1/

24 K?X
kD1

0@ X
.i;j /2D?

k

"i;j

1A�?k � KX
kD1

240@ X
.i 0;j 0/2Dk

"i 0;j 0

1AE
�
YDk

�3535 ;
W 0
n .t/ D

4

n.nC 1/
�?0

0@ X
.i;j /2G?00

"i;j �
X

.i;j /2G00

"i;j

1A ;
(23)

Fig. 6. Left:K < K?. Right:K > K?. [Colour figure can be viewed at wileyonlinelibrary.com]
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Zn.t/D
4

n.nC 1/

1

jG01j

0@ X
.i;j /2G01

"i;j

1A240@ X
.i;j /2G?00

"i;j�
X

.i;j /2G00

"i;j

1A� X
.i;j /2G00

.E
�
Yi;j

�
��?0 /

35 :
(24)

In the equations, G?
00

and G01 are defined in (8) and (7), and G00 has the same definition as
G?
00

except that t? is replaced by t.

6.2. Proof of Lemma 1

We shall first rewrite BDn and B0n defined by (21). Let us first denote by

nk;` D
ˇ̌
Dk \D

?
`

ˇ̌
; (25)

the number of observations that belong to the intersection of the two blocks Dk and D?
`

(with
the convention that D0 D G00 and D?

0
D G?

00
) and

nk D

K?X
`D0

nk;` and n?` D

KX
kD0

nk;`:

Because E
�
YG01

�
D �?

0
, G00 �

�SK?
`D0D`

?
�

and E
�
Yi;j

�
D �?

k
, for all .i; j / 2 D?

k
,

we obtain

B0n.t/ D
2

n.nC 1/

X
.i;j /2G00

�
E
�
Yi;j

�
� �?0

�2
D

2

n.nC 1/

K?X
`D0

X
.i;j /2G00\D

?
`

�
E
�
Yi;j

�
� �?0

�2

D
2

n.nC 1/

K?X
`D0

n0;`
�
�?` � �

?
0

�2
:

(26)

Because jDk j D
PK?

`D0

ˇ̌
Dk \D

?
`

ˇ̌
D
PK?

`D0 nk;` D nk ,

E
�
YDk

�
D

1

nk

X
.i;j /2Dk

E
�
Yi;j

�
D

1

nk

K?X
`D0

X
.i;j /2Dk\D

?
`

E
�
Yi;j

�
D

1

nk

K?X
`D0

�?`nk;`;

(27)

where we use for all k 2 ¹1; : : : ; Kº, Dk �
�SK?

`D0D`
?
�

. Thus,
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X
.i;j /2Dk

�
E
�
Yi;j

�
� E

�
YDk

��2
D

1

n2
k

X
.i;j /2Dk

0@nkE �Yi;j � � K?X
`0D0

�?`0nk;`0

1A2

D
1

n2
k

K?X
`D0

X
.i;j /2Dk\D

?
`

0@nkE �Yi;j � � K?X
`0D0

�?`0nk;`0

1A2D 1

n2
k

K?X
`D0

nk;`

24 K?X
`0D0

nk;`0
�
�?` � �

?
`0

�352

D
1

n2
k

K?X
`D0

K?X
`1D0

K?X
`2D0

nk;`nk;`1nk;`2
�
�?` � �

?
`1

� �
�?` � �

?
`2

�

D
1

n2
k

K?X
`D0

K?X
`1D0

nk;`nk;`1
�
�?` � �

?
`1

� K?X
`2D0

nk;`2
�
�?` � �

?
`2

�

D
1

nk

K?X
`D0

K?X
`1D0

nk;`nk;`1

�
�?`
2
� �?`1�

?
`

�
�
1

n2
k

K?X
`2D0

nk;`2�
?
`2

K?X
`D0

K?X
`1D0

nk;`nk;`1
�
�?` � �

?
`1

�
„ ƒ‚ …

D0

D
1

nk

K?X
`D0

K?X
`1D0

nk;`nk;`1

�
�?`
2
� �?`1�

?
`

�
D

1

2nk

K?X
`D0

K?X
`0D0

nk;`nk;`0
�
�?` � �

?
`0

�2
:

Hence,

BDn .t/ D
1

n.nC 1/

KX
kD1

1

nk

K?X
`D0

K?X
`0D0

nk;`nk;`0
�
�?` � �

?
`0

�2
: (28)

Case K < K? and t 2 A1=n
n;K

. Observe that Bn.t/ � BDn .t/.
Because K < K?, tK � t?K D t?

K?
� t?
K
� n�?� . Hence, ¹k; tk � t?k � n�?�=2º ¤ ;. Let

` D min¹k; tk � t?k � �
?
�=2º, then ` � 1 and

t`�1 � t
?
` � n�

?
�=2 � t

?
` C n�

?
�=2 � t`:

By definition of �?� ,

n`;` D jD` \D
?
` j � min¹.t?` � t`�1/.t

?
` � t`�1 C 1/=2; .t

?
` � t

?
`�1/.t

?
` � t

?
`�1 C 1/=2º

�
�
n�?�

�2
=8;

s

(29)

and

n`;0 � min¹.t` � t?` /.t
?
` � t`�1/; .t

?
`C1 � t

?
` /.t

?
` � t

?
`�1/º �

�
n�?�

�2
=4: (30)

Thus, using (29) and (30), we obtain

Bn.t/ �
1

n.nC 1/n`

h
n`;`n`;0

�
�?0 � �

?
`

�2i
�

�.0/
2

n.nC 1/n`

�
n�?�

�4
32

�

�
�?�

�4
�.0/

2

64
:

Because n` � n.nC 1/=2.
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Fig. 7. K D K? and kt� t?k1 <
n�?�
2

. Left: t?
k�1 < tk�1 < t

?
k
< tk . Right: tk�1 < t?k�1 < t

?
k
< tk .

[Colour figure can be viewed at wileyonlinelibrary.com]

Case K > K? and t 2 A�n
n;K

. We have

Bn.t/ � B0n.t/ �
2

n.nC 1/
n0;k

�
�?k � �

?
0

�2
�

2

n.nC 1/
n0;k �

.0/2

for any k 2 ¹0; : : : ; K?º. Because t 2 A�n
n;K

, there exists ` 2 ¹1; : : : ; K � 1º such that for all
k 2 ¹0; : : : ; K?ºˇ̌

t?k � t`
ˇ̌
>
n�n

2
;

(otherwise, it will imply that K � K?). Moreover, let us choose k such that t?
k�1
C n�n=2 <

t` < t
?
k
� n�n=2 then

n0;k �
�
t` � t

?
k�1

� �
t?k � t`

�
�

�
n�n

2

�2
:

This leads to

Bn.t/ �
1

4
�.0/

2
�2n:

Case K D K? and t 2 A1=n
n;K

; kt � t?k1 > nı. We have

Bn.t/ �
1

n.nC 1/

1

n`
n`;`0n`;0.�

?
0 � �

?
`0/
2 (31)

for every ` 2 ¹1; : : : ; Kº and every `0 2 ¹1; : : : ; K?º. Then, we shall consider two cases: (i)
kt � t?k1 <

n�?�
2

and (ii) kt � t?k1 �
n�?�
2

.

(i) kt � t?k1 <
n�?�
2

.
We shall assume that tk � t?k D kt � t?k1 > 0.
There are two possible configurations (Fig. 7). If t?

k�1
< tk�1 < t

?
k
< tk , then, by definition

of �?� , we obtain
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Fig. 8. K D K? and kt� t?k1 �
n�?�
2

. Left: tk < t?k < t
?
kC1 < tkC1. Right: tk < t?k < tkC1 < t

?
kC1.

[Colour figure can be viewed at wileyonlinelibrary.com]

nk;kD
.t?
k
� tk�1/.t

?
k
� tk�1 C 1/

2
�

0B@
�n�?�‚ …„ ƒ

.t?k � t
?
k�1/�

�kt�t?k1‚ …„ ƒ
.tk�1 � t

?
k�1/

1CA.t?k � tk�1C1/
2

�
.n�?� /

2

8
:

(32)

Otherwise, if tk�1 < t?k�1 < t
?
k
< tk , we obtain

nk;k D
.t?
k
� t?
k�1

/.t?
k
� t?
k�1
C 1/

2
�
.n�?� /

2

2
�
.n�?� /

2

8
: (33)

Then, by using the aforementioned decomposition of .t?
k
� tk�1/, we obtain

nk;0 � .t
?
k � tk�1/.tk � t

?
k /;

�

0BB@.t?k � t?k�1/„ ƒ‚ …
�n�?�

� .tk�1 � t
?
k�1/„ ƒ‚ …

�kt�t?k1

1CCA .tk � t?k /„ ƒ‚ …
Dkt�t?k1

�
�?�
2
n2ı:

(34)

By choosing .` D k; `0 D k/ in (31), and by using (32), (33) and (34), we obtain

Bn.t/ �
1

n.nC 1/

1

nk

.n�?� /
2

8

�?�
2
n2ı�.0/

2
�
.�?� /

3

32
ı�.0/

2
:

(ii) kt � t?k1 �
n�?�
2

.

Because K D K?, there exists k such that t?
k
� tk � n

�?�
2

and tkC1 � t?k � n
�?�
2

(otherwise,
this would imply that K > K?). As shown previously, there are two possible cases, either
tk < t

?
k
< t?

kC1
< tkC1 or tk < t?k < tkC1 < t

?
kC1

(Fig. 8).
If tk < t?k < t

?
kC1

< tkC1, we obtain, by definition of �?� ,

nkC1;kC1 D
.t?
kC1
� t?
k
/.t?
kC1
� t?
k
C 1/

2
�
.n�?� /

2

2
(35)

and
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nkC1;0 � .t
?
kC1 � t

?
k /.t

?
k � tk/ � .n�

?
� /
.n�?� /

2
: (36)

If tk < t?k < tkC1 < t
?
kC1

, we obtain

nkC1;kC1 D
.tkC1 � t

?
k
/.tkC1 � t

?
k
C 1/

2
�
1

2

�
n�?�
2

�2
(37)

and

nkC1;0 � .tkC1 � t
?
k /.t

?
k � tk/ �

�
.n�?� /

2

�2
: (38)

By choosing .` D `0 D k C 1/ in (31), and by using (35), (36), (37) and (38), we obtain

Bn.t/ �
.�?� /

4

32
�.0/

2
:

6.3. Deviation inequalities

Lemma 2. For all ˛ > 0,

P

 
� min

t2A1=nn;K
Vn.t/ � ˛

!
� n.nC 1/e�

n.nC1/˛
16Kˇ C 2e�

jG01j˛

8ˇ ;

where Vn is defined by (20) and (22) and A1=n
n;K

is defined in (6) with �n D 1=n. Moreover, if
˛ D ˛n is such that ˛nn2= log.n/!1 and ˛njG0;1j ! 1, as n tends to infinity, then

P

 
� min

t2A1=nn;K
Vn.t/ � ˛n

!
! 0; as n!C1:

The proof is given in the supplementary material.

Lemma 3. Let Wn be defined by (20) and (23), then there exists C1 > 0 such that for all ˛ > 0

P

 
� min

t2A1=nn;K
Wn.t/ � ˛

!
� C1n

4Kmax exp

"
�

˛2n.nC 1/

128 ˇ .K C 1/2 .K? C 1/2 �
2

#
;

where � D sup
k¤`

ˇ̌
�?
k
� �?

`

ˇ̌
and A1=n

n;K
is defined in (6) with �n D 1=n. Moreover, if ˛ D ˛n is

such that ˛2nn
2= log.n/!1, as n tends to infinity, then

P

 
� min

t2A1=nn;K
Wn.t/ � ˛n

!
! 0; as n!1:

The proof is given in the supplementary material.

Lemma 4. For all ˛ > 0 and 	 > 0,

P

 
� min

t2A1=nn;K
Zn.t/ � ˛

!
� 2e�

jG01j�
2

4ˇ C 2C1n
4Kmaxe

�
˛2n.nC1/

512�2ˇ C 2e
�
jG01j˛

2n2

32 N�2ˇ ;

where Zn is defined by (24), A1=n
n;K

is defined in (6) with �n D 1=n and � D sup
k¤`

ˇ̌
�?
k
� �?

`

ˇ̌
.
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Moreover, if ˛ D ˛n is such that ˛2nn
2= log.n/!1 and ˛2nn

2jG0;1j ! 1, as n tends to infinity,
then

P

 
� min

t2A1=nn;K
Zn.t/ � ˛n

!
! 0; as n!1:

The proof is given in the supplementary material.
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