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Experimental measurements performed on MgO-based perpendicular magnetic tunnel junctions
show a strong dependence of the stability voltage-field diagrams as a function of the direction of
the magnetic field with respect to the plane of the sample. When the magnetic field is applied in-
plane, systematic nonlinear phase boundaries are observed for various lateral sizes. The simulation
results based on the phenomenological Landau-Lifshitz-Gilbert equation including the in-plane and
out-of-plane spin transfer torques are consistent with the measurements if a second order anisotropy
contribution is considered. Furthermore, performing the stability analysis in linear approximation
allowed us to analytically extract the critical switching voltage at zero temperature in presence of an
in-plane field. This study indicates that in the non-collinear geometry investigations are suitable to
detect the presence of second order term in the anisotropy. Such higher order anisotropy term can
yield an easy-cone anisotropy which reduces the thermal stability factor but allows for faster and
more reproducible spin transfer torque switching due to a reduced stochasticity of the switching.
As a result, the energy per write event decreases much faster than the thermal stability factor as
the second order anisotropy becomes more negative. Easy-cone anisotropy can be useful for fast
switching STT-MRAM provided the thermal stability can be maintained above the required value
for a given memory specification.
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INTRODUCTION

Magnetic tunnel junctions (MTJ) based on perpendic-
ular magnetic anisotropy (PMA) systems are intensively
studied for the development of the next generations of
spin transfer torque magnetic random access memories
(STT-MRAM). The information is stored by the orien-
tation of the magnetization of the free (storage) layer
relatively to that of the reference layer. The readout is
performed by measuring the pillar resistance which varies
depending on the magnetic configuration due to the MTJ
tunnel magnetoresistance. Several key parameters are
of importance. First, stability against disturbances, i.e.
thermal fluctuations and spurious magnetic fields, usu-
ally characterized by the thermal stability factor ∆. Sec-
ond, the critical current for writing Ic0, extrapolated at
1 ns from the variation of Ic versus logarithm of pulse
width measured in the thermally activated regime, and
finally, the corresponding write voltage which directly in-
fluences the write endurance. In the past few years, a lot
of R&D efforts were devoted to material developments
aiming at the control and optimization of the PMA aris-
ing from the magnetic metal/oxide interfaces [1–6] since
the use of materials with strong interfacial perpendicu-
lar anisotropy allows combining good thermal stability
down to quite small lateral sizes (below 30 nm) together
with relatively low Gilbert damping [7, 8]. Out-of-plane
magnetized MgO-based MTJs were identified to be very
promising candidates exhibiting magnetoresistance val-

ues close to or above 200%, which is required to reduce
read access time and read error rates. Writing voltage
of about 0.75 V at 10 ns pulse width allowing to reach
10−6 bit error rate were obtained on 11 nm diameter
MTJ pillars [9]. In STT-MRAM, the reversal between
the two stable states is enabled by spin transfer torque
(STT) [10, 11]. In the macrospin picture of conventional
STT-MRAM, the magnetizations of the free layer and
reference layer are parallel or antiparallel to each other
at equilibrium. This makes the STT switching inher-
ently stochastic since a large enough thermal fluctuation
is required to trigger the magnetization reversal. As a
result, higher voltage or longer write pulses are needed
to reach sufficiently low bit error rates [12]. Reducing the
write current remains one of the most important require-
ment to achieve sub-10 ns and quasi infinitely enduring
STT-MRAM suitable for static random access memory
(SRAM) type applications. Introducing non-collinearity
between the reference layer magnetization and that of the
storage layer is a way to reduce or suppress the stochas-
ticity of the switching. A geometry which received lot
of attention is that of orthogonal polarizer and storage
layer (so-called OST-MRAM) in which sub-ns switching
was demonstrated [13–15]. Recently, it was shown also
that non-collinearity between the free layer and the refer-
ence layer could be induced by introducing an easy-cone
anisotropy in one of the MTJ magnetic electrode, prefer-
ably the storage layer [16–18]. This easy-cone anisotropy
results from higher order anisotropy term which may
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themselves originate from spatial fluctuations of first or-
der anisotropy [19]. This canted equilibrium state is ad-
vantageous for spin torque driven switching since the spin
transfer torque becomes immediately effective at the very
onset of the write current pulse which strongly attenuates
the stochastic character of the switching.

In general, stability field-voltage diagrams are useful
tools to study the mechanisms and the properties of
STT induced magnetization reversal. However, these di-
agrams are usually measured in a collinear geometry, i.e.
with the external magnetic field applied parallel to the
easy-axis of MTJ magnetic layers (free layer and polar-
izer) [20, 21]. Considering the rising interest for non-
collinear geometries, it is also interesting to study these
phase diagrams in such geometry, i.e. in situations where
the field is applied at some angle with respect to the
normal to the layers, introducing thus a non-collinearity
in the static configuration of the storage and polarizer
layers. Non-collinear configurations of magnetic elec-
trodes influences the switching characteristics of the stor-
age layer and therefore the field-voltage phase boundaries
of the stability diagram.

In this study, the voltage-field stability diagrams were
investigated experimentally and by simulations as a func-
tion of the applied field orientation from easy-axis (per-
pendicular to the plane of the layers) to hard-plane (in-
plane). Experimental measurements were performed on
MgO-based magnetic tunnel junctions with various di-
ameters ranging from 50 nm to 150 nm. We found that
the shape of the stability field-voltage diagrams depends
strongly on the direction of the applied field while the
bistable P/AP region preserves its symmetry around the
origin.

We have found also a quite noticeable difference in the
shape of measured and simulated hard-axis VH diagrams,
H in the hard plane, when considering that the anisotropy
is only of uniaxial form. However, a good agreement
between experiments and simulations is recovered when
a second order anisotropy contribution is introduced in
the model. The signature of this higher order anisotropy
term is not always visible in the collinear geometry but
clearly shows up once the field is applied away from the
normal to the plane of the sample. Such second order
anisotropy contribution is similar to that reported previ-
ously [17, 18, 22–25].

The paper is organized as follows. The first part pro-
vides the description of the samples, protocol of measure-
ment and a summary of the experimental results. The
phenomenological model used for the simulation is in-
troduced in the second part followed by a discussion on
the stability diagrams predicted under different condi-
tions. The analytical model developed for in-plane con-
figuration allows to easily derive the phase boundaries
and confirms the role of the second order contribution
to the anisotropy on the observed shape of the stability
diagrams. The impact of this second order contribution

on the magnetic thermal stability and on the STT effi-
ciency of the magnetization switching is analyzed at the
end from write energy point of view.

EXPERIMENTAL STABILITY DIAGRAMS

Perpendicular MTJ (pMTJ) pillars arrays with nomi-
nal diameters ranging between 50 nm and 150 nm were
fabricated from a MTJ stack grown by DC and RF mag-
netron sputtering on a thermally oxidized Si substrate.
The stack has a bottom reference pMTJ structure with
the polarizer layer fixed by a synthetic antiferromagnet.
The free layer is sandwiched between two MgO layers.
Saturation magnetization of the free layer was measured
to be 1030 kA/m. Current in-plane magnetotransport

FIG. 1. Experimental stability VH diagrams of 80 nm diame-
ter MTJ at room temperature for θH = 0◦, 40◦, 70◦ and 90◦.
Voltage pulse length was 100 ns. The color scale is related to
the resistance of MTJ.

measurements yielded RA=5.7 Ω ·µm2 and TMR=126%.
A second MgO barrier was introduced on top of the stor-
age layer to increase the perpendicular anisotropy of the
free layer. Its resistance-area (RA) product is much lower
than that of the main tunnel barrier. Additional informa-
tion on these samples can be found in Ref. [18]. The pro-
cedure for VH stability diagram measurements is similar
to that described in Ref. [20]. A single pMTJ pillar was
wire bonded and placed in a physical properties measure-
ment system (PPMS) on a sample rotator. In this work,
instead of measuring the device resistance-magnetic field
(R-H) loops at constant writing pulse amplitude, as in
Ref. [20], we measured a device resistance-writing pulse
voltage (R-V) loops at each magnetic field point. Within
each R-V loop, a sequence of writing pulses with con-
tinuously changing amplitude was applied and after each
writing pulse the resistance of the pMTJ pillar was mea-
sured by applying a small bias current (∼1 µA). Consid-
ering the stochasticity of the switching, at each H point,
the measurement of an R-V loop was repeated 30 times
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and then averaged. For a magnetic field applied along
the easy axis, i.e. in the out-of-plane direction, a final di-
agram is constructed from R-V loops at different H field
points, as in FIG. 1 for θH = 0◦. It shows three main
resistance states: high resistance region, where only the
antiparallel (AP) configuration is stable, low resistance
region, with only the parallel (P) state being stable, and
bistable P/AP region with the resistance equal to the half
sum of the resistances in AP and P states for a given H
field point. In case of non-collinear configuration of the
magnetic electrodes, introduced here by the tilted mag-
netic field, high and low resistance values become field-
dependent, so that color gradients representing variable
resistance states appear in all three regions (see, for ex-
ample FIG. 1 θH = 90◦).

Upon varying the orientation of the magnetic field, the
shape of the VH diagram is evolving. For the easy-axis
case (θH = 0◦), the VH stability diagram exhibits the
parallelogram shape already reported in Ref. [26]: two
vertical field-driven phase boundaries corresponding to
the coercive fields (positive and negative) and two paral-
lel voltage-driven phase boundaries with linear voltage-
field variation corresponding to the STT induced mag-
netization switching. When increasing the field angle
with respect to the normal to the layers, the coercive
field decreases up to 45◦ and then increases back for
higher angles. This variation follows the common vari-
ation of the Stoner-Wohlfarth model [27]. However, the
voltage-driven phase boundaries are not following a lin-
ear VH variation, developing a flying seagull shape once
the magnetic field is applied close to the hard-plane and
the switching voltage always increases with increasing ap-
plied in-plane field modulus. Nevertheless, the bistable
region still keeps a rough central symmetry whatever the
magnetic field angle. In FIG. 1, one may note however
a more pronounced resistance variation at large negative
fields than at large positive fields for the measurements
performed with field applied at 70◦ or 90◦. This can be
ascribed to a slight dipolar field exerted by the reference
layer on the storage layer. This dipolar coupling is visible
on the stability diagram measured at 0◦ from the shift of
the bistable region along the field axis (see supplemental
material).

The experimental investigation was carried out system-
atically for pillars with diameters ranging between 50 nm
and 150 nm. The evolution of the stability diagrams with
the orientation of the external field was found to be sim-
ilar to that reported in FIG. 1 whatever the lateral size
and it is qualitatively the same at lower temperatures (at
least for T<190 K). Some shifts of the boundaries are
observed but without changing the shape of the curves.
This behavior seems to be generated by a mechanism in-
dependent of the size of the sample and most probably
intrinsic to the pillar pMTJ stack structure.

In order to obtain a better understanding on the ex-
perimental results, a phenomenological macrospin model

based on the Landau-Lifshitz-Gilbert equation was used.
It is described in the next section.

NUMERICAL STABILITY DIAGRAMS

The response of the magnetization of the free layer to
the simultaneous action of the static applied field and
spin transfer torques due to the injection of a voltage
pulse was simulated using the Landau-Lifshitz-Gilbert
equation (LLG) [28, 29] including two additional terms
related to the STT (damping-like and field-like). The
phenomenological equation of the magnetization dynam-
ics is written as:

dm

dt
=− γ (m× µ0Heff) + α

(
m× dm

dt

)
− γa‖V [m× (m× p)] + γa⊥V

2 (m× p) ,

(1)

where m is a unit vector along the free layer magneti-
zation, α is the Gilbert damping constant, γ is the gy-
romagnetic ratio of free electron, µ0 is the vacuum per-
meability, p is a unit vector along the current spin po-
larization. The damping-like STT torque is supposed to

FIG. 2. Geometry of the non-collinear MTJ system. OZ is
along the uniaxial anisotropy axis uK (perpendicular to the
MTJ x-y plane), m – free layer magnetization, θ – angle be-
tween magnetization and z-axis, p – unit vector along current
spin polarization, Hext – external applied field and θH – angle
between applied field and z-axis.

vary linearly with the applied voltage V while the field-
like STT torque has a quadratic voltage dependence in
case of symmetric MTJs. The phenomenological trans-
port parameters a‖ and a⊥ can be evaluated from free-
electron, tight-binding or first principles [30–38] models
of the MTJ. The effective field Heff is derived from the
Gibbs free energy density functional which in macrospin
approximation reads:

E =−K1(uK ·m)2 − µ0MsHext ·m

+
1

2
µ0M

2
s

(
Nxxm

2
x +Nyym

2
y +Nzzm

2
z

)
,

(2)
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where Hext is the external magnetic field, uK is the
magnetocrystalline axis, K1 is the first order uniaxial
anisotropy constant (K1 > 0), Ms is the saturation mag-
netization of free layer and (Nxx, Nyy, Nzz) the diagonal
terms of the demagnetizing tensor assuming the sample
can be approximated with an ellipsoidal shape.

The geometry of the non-collinear pMTJ system is
shown in FIG. 2. The uniaxial anisotropy is directed
along the z-axis uK = (0, 0, 1), the external magnetic
field Hext is in the xz-plane tilted away from z-axis with
the polar angle θH and the current spin polarization

points along the z-axis p = (0, 0, 1).
To compute the numerical VH diagrams, a procedure

similar to the experimental one is followed. The free layer
magnetization is relaxed under a given applied field and
a writing pulse is applied for 100 ns. The state of the
free layer is measured after twice the pulse length. The
amplitude of the voltage is gradually changed in the loop
in the following sequence 0 → Vmax → Vmin → 0. The
LLG solver uses time steps shorter than 2 fs. The average
value of the mz component of magnetization for a given
voltage in the loop is plotted as a point on the diagram.

FIG. 3. Calculated stability diagrams at T=0 K with field applied at 0◦, 40◦, 70◦ and 90◦ away from the z-axis. Simulation
parameters: K1=778 kJ/m3, Ms=106 A/m, Nxx=Nyy=0.04, Nzz=0.92, α=0.01, a‖=16·10−3 T/V, a⊥=10−3 T/V2, a second

order term of the form −K2 cos4 θ in the anisotropy a) K2=0 J/m3, b) K2=-50 kJ/m3, c) K2=-100 kJ/m3 and d) K2=-
150 kJ/m3.

The VH stability diagrams were computed for sev-
eral orientations of the applied field and are shown in
FIG. 3a. For the collinear case (θH = 0◦), the numeri-
cal and experimental diagrams are very similar in shape.
The switching V (H) boundaries are linear and parallel
for the P to AP and AP to P transitions. Varying the po-
lar angle θH gradually changes the shape of the stability
diagrams. The slope of the V (H) switching boundaries
gradually decreases and these boundaries acquire some
curvature. At θH = 90◦ the switching boundaries become
flat over a large range of field around zero field. However,
close to the in-plane saturation field, the switching volt-

age increases sharply.

Changing the amplitude of the anisotropy constant
shifts the phase boundaries but the shape of the diagrams
remains the same. At this point, the numerical investi-
gation is in disagreement with the experimental obser-
vations. Full 3D micromagnetic simulations, not shown
here, were also carried out and the results were similar
to the present macrospin results. Therefore, the shape
of the experimental diagrams could not be explained un-
der the present model assumptions even by taking into
account possible non-uniform magnetization dynamics.

Several recent publications have reported the possible
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presence of an additional second order anisotropy term of
the form −K2 cos2 θ [18, 22] in structures similar to ours.
Under this assumption, the anisotropy contribution to
the free energy density (2) is modified as follows:

Ea = −K1(uK ·m)2 −K2(uK ·m)4. (3)

Uniaxial magnetocrystalline anisotropy in hexagonal
crystal along c-axis, for instance, is usually described as
a power series of sinuses, K̃1 sin2 θ + K̃2 sin4 θ (see Eq.
(1) in Ref. [24]). In our case, as well as in several other
works related to perpendicular anisotropy study in STT-
MRAM [18, 23, 39, 40], it was found to be more conve-
nient to express the anisotropy as cosines series expan-
sion in Eq. (3). Both notations can be mathematically
transformed into one another but the derived constants
differ in magnitudes and/or signs. In the first case (si-
nuses expansion), a continuous increase of −K2/K1 ratio
with K2 < 0 and K1 > 0 will describe emergence of an
easy-cone state from the basal plane with the cone an-
gle shrinking. In contrast, the second notation (cosine
expansion) yields emergence of the easy-cone state from
the film normal with further cone angle increase. The
latter case corresponds to our experimental observations
reported in Ref. [18]: upon decreasing the temperature,
the easy-cone starts developing from the out-of-plane di-
rection which in the second notation (cosines expansion)
gives a continuous increase of K2/K1 ratio versus tem-
perature. On a contrary, the first notation would yield a
discontinuity of this ratio when the magnetization starts
departing from the normal to the plane.

Based on this modified model, FIG. 3(b,c,d) summa-
rize the VH stability diagrams computed with three dif-
ferent values of K2. In the collinear case θH = 0◦, the
shape of the diagrams is unchanged. Only the size of the
bistable region shrunk. Almost parallel linear switching
boundaries are observed as in the case K2 = 0. How-
ever, once the symmetry is broken by the field direction,
several changes arise. Assuming a stronger second or-
der contribution (i.e. increasing |K2|), we find a better
correlation with the experimental diagrams.

This systematic numerical study points out the im-
portance of the second order anisotropy term and shows
that the collinear configuration alone does not allow to
identify its role. In contrast, investigating the switching
behavior in non-collinear configuration allows elucidating
the presence and role of higher anisotropy terms.

Due to this second order term, when the condition
K1 − µ0(Nzz − Nxx)M2

s /2 + 2K2 < 0 is fulfilled, the
magnetization of the magnetic layer is no longer along
the normal to the layers at zero field, but rather lies on
an easy-cone surface [22]. Both values of K2 considered
in FIG. 3b,c are not sufficiently negative to allow the
onset of the easy-cone state since the K2 threshold is -
112.7 kJ/m3. Nevertheless, close to the threshold for the
onset of the easy-cone regime, the shape of the diagrams
for θH = 90◦ is significantly affected by the presence of

the second order anisotropy term. Therefore, to obtain
the “seagull” shape of the VH stability diagram, it is not
necessary to be in an established easy-cone regime.

The presence of a second-order anisotropy also explains
the difference in slopes dV/dH of the critical lines at
positive and negative fields at intermediate angles of ap-
plication of the field (see the diagram at e.g. 40◦ in
FIG. 1). If one considers the energy surface defined by
the anisotropy and the z-component of the applied field,
the application of the field in the positive direction yields
a reduction in the easy-cone opening angle. In contrast,
if the field is applied in the negative direction, this results
in an increase in the easy-cone opening angle. In the for-
mer case, the critical voltage for magnetization switching
tends to increase whereas in the latter one, it tends to
decrease thus explaining the asymmetry seen in FIG. 1 at
40◦. Conversely in the AP state, the situation is reversed
so that the slope dV/dH is larger at positive fields than
at negative fields.

At high fields near the saturation, there is an unstable
region in which thermal fluctuations may affect the shape
of the stability diagram. To check the impact of the
thermal fluctuations, at finite temperature, a fluctuating
term corresponding to a Gaussian distributed thermal
field HTR was added to the total effective field Heff in
LLG equation (1). This fluctuating field has the following
properties [41]:

〈HTR(t)〉 =0,

〈HTR(t)HTR(t′)〉 =
2αkBT

γµ0MsΩ
δ(t− t′),

(4)

where kB is Boltzmann constant and Ω is the sample vol-
ume. The time integration is based on the Heun predictor
corrector scheme [42] using a time step lower than 2 fs.
The stability diagrams were recomputed with tempera-

FIG. 4. Numerical stability diagrams at 300 K with K2=-
150 kJ/m3, Ω=1.96·103 nm3, a‖=6·10−3 T/V using 100
events per point. Other parameters are the same as in FIG. 3.

ture, each point being the average of 100 events. The
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updated diagrams are plotted in FIG. 4 for a constant
value of K2=-150 kJ/m3. One might notice that the tem-
perature leads to smoother boundaries on the diagram at
high fields, the similarity with the experimental diagrams
is improved and the increase of threshold voltage with ap-
plied field remains in the case θH = 90◦. Again, we find
that the non-collinear geometry is required to reveal the
influence of the second order anisotropy term.

Regardless of its origin [19], this second order
anisotropy contribution has a significant impact on the
static and dynamic properties of the magnetic layer and
should be considered in the optimization of the pillar
stack composition and nanofabrication.

ANALYTICAL SOLUTION FOR IN-PLANE
FIELD CONFIGURATION

The extreme case where the magnetic field is applied
in the plane of the free layer θH = 90◦ is very interest-
ing since the signature of the second order contribution
to the anisotropy is most evident in this case. Finding
an analytical expression for the critical V (H) switching
boundary would allow a straightforward characterization
of the sample. Thus we have developed hereafter an ana-
lytical approach to predict the behavior of the magnetic
free layer with a given set of material parameters when
the field is applied in the x-y plane.

The approach comprises two steps. First, the equilib-
rium angle θ0(Hx) between the magnetization of the free
layer and the normal to the layers plane is found for a
given value of the in-plane magnetic field Hx with no ap-
plied voltage. Second, the LLG equation with spin torque
terms Eq. (1) is linearized near that initial equilibrium
angle θ0(Hx) and the stability conditions are derived fol-
lowing a similar procedure to that reported in Ref. [26].

In spherical coordinates, for a continuous thin filmN =
(0, 0, 1). Assuming θH = 90◦ and considering only the
damping-like term due to the out-of-plane polarizer p =
(0, 0, 1), the LLG equation Eq. (1) reads:

θ̇ =
γ

1 + α2

(
Hx (α cos θ cosϕ− sinϕ)

− sin θ

(
α cos θ

2(K + 2K2 cos2 θ)

µ0Ms
+
a‖

µ0
V

))
,

ϕ̇ =− 1

sin θ

γ

1 + α2

(
Hx (cos θ cosϕ+ α sinϕ)

− sin θ

(
cos θ

2(K + 2K2 cos2 θ)

µ0Ms
− α

a‖

µ0
V

))
,

(5)

where K = K1 − µ0M
2
s /2 is an effective uniaxial

anisotropy constant and Hx is the x-component of the
external field vector Hext = (Hx, 0, 0).

At equilibrium, the time derivative of the polar angle
θ vanishes and thus the left part of the first equation in
Eq. (5) has to be zero. Without applied voltage, since
the field is supposed to be along the x-axis, the azimuthal
angle ϕ0 = 0◦ and the problem is reduced to the following
cubic equation:

2K sin θ0 + 4K2(sin θ0 − sin3 θ0)− µ0HxMs = 0. (6)

The equation has three solutions for sin θ0 but only one is
suitable and has a real value. The equilibrium polar angle
θ0 is thus uniquely determined. There are two regimes
depending on the strength of the K2 constant with re-
spect to the effective K and the solution is expressed as
follows:

a) if 2K +K2 < 0:

sin θ0(Hx) = 2

√
1− κ

3
cos

(
arccos ξ

3

)
, (7)

b) if 2K +K2 > 0:

sin θ0(Hx) = 2

√
1− κ

3
sin

(
arcsin ξ

3

)
, (8)

where κ = K/(2|K2|), EH = µ0HxMs and

ξ = − 27EH

8K2 [3(1− κ)]
3/2

. (9)

In the limit case of zero applied field, the equilibrium
polar angle θ0 is given by:

sin θ0(0) =

{√
1− κ, K + 2K2 < 0

0, K + 2K2 > 0
(10)

One might note that the above case a) corresponds to
the situation of the existence of an easy-cone state as
recently reported in Ref. [43] while the case b) is the
common perpendicular state (“up” or “down”).

The relations given by Eqs. (7) and (8) are used to
find the equilibrium value mx = sin θ0 upon varying the
Hx field. The corresponding magnetization curves are
plotted in FIG. 5 for several values of K2.

Once the equilibrium magnetization is found without
any applied voltage and fixed in-plane field, one might
proceed to the linearization of the system of equations (5)
with the following substitution of variables: θ → θ0 + δθ,
ϕ→ ϕ0 +δϕ and keeping just the first order terms in the
developments. The polar angle θ0 is an equilibrium angle
given by Eqs. (7) or (8) depending on the K2 constant
value while the azimuthal angle ϕ0 is found from the first
equation in (5) if θ̇ = 0 under applied voltage. In case of
small deviations of ϕ0 angle cosϕ0 ≈ 1 and:

sinϕ0 = −
a‖

µ0Hx
V sin θ0. (11)
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FIG. 5. Dependence of equilibrium mx = sin θ0 versus Hx

for different values of K2 according to Eq. (7) and Eq. (8).
Colored circles are results issued from the LLG integration
for the same parameters.

This expression imposes a restriction on some parame-
ters of the system such that the following condition is
satisfied: ∣∣∣∣ a‖

µ0Hx
V sin θ0

∣∣∣∣� 1. (12)

This restriction is intrinsically valid for weak K2 case
for any value of the Hx. In contrast, it fails for very
small Hx (<1 mT, planar saturation field ∼300 mT) and
small voltages in the case for the strong K2 since there is
no any static equilibrium in such condition as previously
reported by Jang et al. [43] for Hx = 0. Using (7) and
(8) we can express this condition in the limit Hx → 0:

a‖V � lim
Hx→0

µ0Hx

sin θ0(Hx)
=

=


−4(K + 2K2)

Ms
, K + 2K2 < 0

2(K + 2K2)

Ms
, K + 2K2 > 0

(13)

Relation given by Eq. (13) is valid above and below the
threshold but not in the vicinity of K + 2K2 = 0 (i.e.
crossover from easy axis to easy-cone). The lineariza-
tion of the system of equations (5) around the existing
equilibrium state at some field Hx and applied voltage V
allows to deduce the following set of two equations:

δ̇θ =A0 +A1δϕ+A2δθ,

˙δϕ =B0 +B1δϕ+B2δθ,
(14)

where the coefficients Ai, Bi are given in the Appendix.
The solution δθ(t) and δϕ(t) of this system of equations
contains an exponential time dependence such that:

δθ(t), δϕ(t) ∼

exp

[
1

2

(
A2 +B1 ±

√
(A2 −B1)2 − 4A1B2

)
t

]
,

(15)

where
√

(A2 −B1)2 − 4A1B2 is a term always imaginary,
so that the critical line (between increasing and decreas-
ing solutions) is derived from the expression A2 +B1 = 0:

2a‖Vcr cos θ0 + αµ0Hx

×
(

sin θ0 +
1

sin θ0

)√
1−

(
a‖Vcr

µ0Hx
sin θ0

)2

+
2α

Ms
((K +K2) cos 2θ0 +K2 cos 4θ0) = 0,

(16)

where Vcr is a critical voltage. It is important to note
that this critical voltage corresponds to the voltage at
which the solution of the LLG equation becomes unsta-
ble indicating that the magnetization starts entering into
a precession regime. But this does not mean it is going
to switch to the opposite hemisphere and therefore this
critical voltage is not the switching voltage. The lat-
ter can have slightly larger values than Vcr. In the case
a‖Vcr � (K + 2K2)/Ms and according to Eqs. (12) and
(13), expression (16) can be simplified allowing to express
Vcr as:

2a‖Vcr cos θ0 + αµ0Hx

(
sin θ0 +

1

sin θ0

)
+

2α

Ms
((K +K2) cos 2θ0 +K2 cos 4θ0) = 0,

(17)

Relation given by Eq. (16) is the major result of our an-
alytical model since it provides the dependence of the
critical voltage on the applied field for any set of mate-
rial parameters. In FIG. 6, the critical voltage given by
Eq. (16) is plotted (black dotted-line) for different values
of the anisotropy constant K2. The analytical results
are superposed on the numerical diagrams obtained from
the time integration of the full LLG equation (1) with the
same parameters. One can note a very good agreement
between the analytical model and the numerical model.

FIG. 7(a) shows critical voltage Vcr as extracted from
Eq. (16). For a better visualization, only one quadrant of
the full VH diagram is shown for weak K2 and negative
field and strong K2 and positive field respectively. The
critical lines are evolving progressively with the K2 vari-
ation, the biggest change is expected close to the thresh-
old.

ENERGETIC EFFICIENCY OF THE
MAGNETIZATION SWITCHING

One important parameter for the application is the
estimation of the critical current with no applied field.
This is straightforward for our analytical model. Using
Eqs. (10) and (17) we can find a critical voltage in the
limit of zero field:

Vcr,0 =


2α

a‖Ms
(K + 2K2), K + 2K2 > 0

0, K + 2K2 < 0
. (18)
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FIG. 6. Comparison of analytical result (black dotted line)
with result of numerical simulations. T=0 K, K1=778 kJ/m3,
K=150 kJ/m3, α=0.01, Ms=106 A/m, Nxx=Nyy=0, Nzz=1,
a‖=16·10−3 T/V, a⊥=0, K2,cr=-75 kJ/m3.

The first expression is similar to the result obtained re-
cently (see Eq. (19) in Ref. [26]) if K2 = 0 and for this
case the critical voltage coincides with the switching volt-
age at zero field Vsw,0. In the easy-cone regime, Vcr,0

equals to zero since once the voltage is applied the mag-
netization precesses around the easy-cone [43]. For this
very symmetric configuration it is possible to estimate
the switching voltage using the approach from Ref. [24]
and the Vsw,0 reads as following:

Vsw,0 =
α

a‖Ms

√
(2K)3

27|K2|
. (19)

The variation of the critical voltage given by Eq. (17) ver-
sus K2 value is plotted in FIG. 7(b). If K+2K2 > 0, the
presence of K2 allows reducing linearly this critical volt-
age Vcr,0 upon reinforcing the second order anisotropy,
the smallest value being reached close to the easy-axis to
easy-cone transition given by K + 2K2 = 0. Once the
easy-cone anisotropy starts increasing, the critical volt-
age increases also. In the case of strong K2 and in the
limit of very small applied field, one might notice that the
analytical lines become shorter and the numerical values
are not following anymore the analytical prediction. This
discrepancy is due to the fact that before the switching in
a very symmetric geometry, the magnetization oscillates
on the easy-cone as predicted by [43]. This is an illustra-
tion of the difference between Vcr and switching voltage
Vsw mentioned earlier and pointed out in FIG. 7(b) by
the dotted black line (see details in supplemental ma-
terial). Nevertheless, as an intermediate conclusion for
practical application one can state that a way to reduce
the write power consumption is to design the MTJ stack
to be close to the condition K+2K2 = 0. However other
parameters must be taken into account as explained in
the following.

- 0 . 3 - 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 30 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7

- 1 4 0 - 1 2 0 - 1 0 0 - 8 0 - 6 0 - 4 0 - 2 0 00 . 0 0

0 . 0 4

0 . 0 8

0 . 1 2

0 . 1 6

0 . 2 0b )

K 2

 0  J / m 3

- 7 0  k J / m 3  - 8 0  k J / m 3

K + 2 K 2  >  0 K + 2 K 2  <  0

   - 1 5 0  k J / m 3  

 

V cr (
V)

µ0 H  ( T )

K 2

a )

 

 

V cr (
V)

K 2  ( k J / m 3 )

K + 2 K 2  >  0K + 2 K 2  <  0

      µ0 H   ( T )
  0 . 0 0 1
  0 . 0 0 5
  0 . 0 1 0

FIG. 7. (a) Critical voltage dependence versus in-plane ap-
plied field for several values ofK2 varying by step of 10 kJ/m3.
Parameters are the same as in FIG. 6. (b) Critical voltage
dependence versus K2 for several values of in-plane applied
field. The colored curves are given by relation (17). The
black curve for µ0H=1 mT ends up at the limit defined by
expression (12). The circles and triangles are the numerical
values from full LLG integration for different in-plane fields.
The dotted line shows the switching voltage Vsw,0 from the
expression (19).

From practical point of view one parameter of impor-
tance often considered as the figure of merit in STT-
MRAM is the ratio between the thermal stability and
the switching current. This ratio is plotted in FIG. 8a
as predicted analytically from Eq. (17) in the case of an
infinite voltage pulse (DC). We supposed that the MTJ
has a TMR of 100% varying between 5 kΩ and 2.5 kΩ
and the temperature was set at 300 K. The analytical
model predicts a large increase of the ratio in the vicin-
ity of the K2 threshold. However, the numerical results
extracted from the full LLG integration at 300 K and
averaged over 500 measurements show a peak less pro-
nounced in FIG. 8b. Moreover upon reducing the pulse
duration the maximum of the curve is disappearing, the
curve becomes flatter and a change of regime is observed
for pulses below 10 ns.
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     5  n s
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FIG. 8. (a) Energy barrier over switching current calculated
from analytics in the limit of small in-plane applied field at
0 K and static DC voltage for variable K2. (b) The same ratio
estimated numerically at 300 K for different pulse durations,
no applied field and averaged upon 500 events. Parameters
are the same as in FIG. 6 and the free layer has a volume
Ω=1.96·103 nm3.

The explanation of this behavior is related to the
switching distribution evolution with the K2 strength.
Upon reinforcing K2, the switching voltage distribu-
tions progressively move towards smaller values and their
width becomes narrower as depicted in FIG. 9. In the
inset of FIG. 9, the switching voltage variation with the
pulse duration is shown. As one can see, there are two
regimes: above 30 ns, the voltage is almost constant while
a sharp increase is observed for very short pulses below
5 ns.

The pulse duration for STT memory application such
as embedded-FLASH replacement is in the range of 10 ns.
Taking as a reference this pulse duration, the switching
voltage dependence on K2 for two different temperatures
300 K and 30 K is represented in FIG. 10. In the easy-axis
regime, the thermal fluctuations are mandatory for the
initiation of the magnetization switching. Thus the two
curves are clearly separated. In contrast, in the easy-cone

0 . 0 0 . 1 0 . 2 0 . 3 0 . 40

5 0

1 0 0

1 5 0

2 0 0

2 5 0

 

 

N

V o l t a g e  ( V )

0 2 5 5 0 7 5 1 0 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

K 2  ( k J / m 3 )
      0
   - 3 7
   - 7 5
 - 1 1 3
 - 1 4 0

 

 

V sw
 (V

)

p u l s e  d u r a t i o n  ( n s )

FIG. 9. Number of switching operations versus voltage pulse
amplitude after 500 loops at T=300 K for a pulse length of
10 ns for different values of K2. Inset: dependence of switch-
ing voltage versus writing pulse duration for the same K2

values.

regime, the switching voltage is independent of temper-
ature. In addition, due to the intrinsic tilt of the magne-
tization, the two curves are superposed.

- 1 4 0 - 1 2 0 - 1 0 0 - 8 0 - 6 0 - 4 0 - 2 0 00 . 0

0 . 1

0 . 2

0 . 3 K + 2 K 2 > 0K + 2 K 2 < 0

 3 0 0 K
   3 0 K

 

 

V sw
 (V

)

K 2   ( k J / m 3 )

FIG. 10. Switching voltage versus K2 for T=300 K and
T=30 K for a pulse duration of 10 ns, the vertical bars are the
width of the voltage distribution, Parameters are the same as
in FIG. 8b.

The easy-cone state is thus favorable for memory ap-
plications since the writing stochasticity is considerably
reduced. However, the K2 affects not only the switch-
ing voltage but also the energy barrier as given by the
following relation:

EB

Ω
=


K2

4|K2|
, K + 2K2 < 0

K + 2K2, K + 2K2 > 0

. (20)

The energy barrier over kBT is shown in FIG. 11a
by the grey line. The stability factor is continuously
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decreasing upon reinforcing K2. At the onset of the
easy-cone regime (K + 2K2 = 0), the stability factor
∆ = EB/(kBT ) has decreased already by 50% with re-
spect to the situation K2 = 0. This might be seen as
a detrimental factor for memory application. Neverthe-
less, the energy consumption of the memory (left axis
FIG. 11a) is also continuously decreasing approaching
tens of fJ for 5 ns pulses.

0

3 0

6 0

9 0

1 2 0

1 5 0

- 1 4 0 - 1 2 0 - 1 0 0 - 8 0 - 6 0 - 4 0 - 2 0 00

4

8

1 2

1 6

K + 2 K 2 > 0K + 2 K 2 < 0
 

∆

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
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  t p u l s e  ( n s )
     5
   1 0
   3 0
 1 0 0

E wr
  (p

J)

b )

 

 

E B / 
E wr

  (×
10

-6 )

K 2   ( k J / m 3 )

 t p u l s e   ( n s )
     5
   1 0
   3 0
 1 0 0

a )

FIG. 11. (a) Dependence of ∆ (T=300 K) and writing energy
on the constant K2 for several pulse durations. (b) Ratio
EB/Ewr for different pulse durations. Parameters are the
same as in FIG. 6.

The ratio EB/Ewr is reported in FIG. 11b. This ra-
tio can be considered as another figure of merit since it
characterizes the tradeoff between thermal stability of the
storage layer magnetization and the energy to switch it,
which depends of the write current but also on the pulse
duration. FIG. 11b shows a significant increase of this
ratio for short pulse duration for increasingly large nega-
tive K2 values. This increase is observed over the whole
range of K2 values. In the easy-cone regime, this is again
due to the reduced stochasticity of the switching due to
the pre-existing initial angle between the storage layer
magnetization and the spin current polarization which
allows to trigger the switching immediately after the on-

set of the write pulse. But even in the easy axis regime,
when K + 2K2 > 0, the presence of the second order
anisotropy has a beneficial influence. This is due to the
flatter shape of the energy potential around the direction
normal to the plane of the layer. Because of this flatter
shape, weaker thermal fluctuations can produce larger
angle fluctuations of the storage layer magnetization thus
reducing the incubation time preceding the storage layer
magnetization reversal.

As a result, second order anisotropy term appears to
be quite beneficial for fast STT-MRAM even in the easy-
axis regime as long as the thermal stability of the storage
layer magnetization can be maintained sufficiently large
to cope with the memory retention specification.

CONCLUSIONS

We performed a systematic experimental investigation
of MTJ in non-collinear geometry. The experimental
voltage-field stability diagrams exhibit a strong depen-
dence on the direction of the external field with respect to
the normal to the layers. By employing numerical mod-
elling based on the LLG integration, we showed that an
additional second order uniaxial anisotropy term of the
form −K2 cos4 θ should be taken into account to explain
the experimental observations. Despite the fact that the
application of non-zero in-plane magnetic field Hx in-
troduces an initial non-collinearity, we have not found
any noticeable decrease of the threshold current with in-
creasing of |Hx|. This is mainly due to the fact that
the non-collinearity has two opposite impacts. On one
hand, it helps the initiation of the STT driven dynam-
ics. On the other hand, it decreases the efficiency of the
STT torque absorption since the precession orbit axis
becomes tilted with respect to the polarizer due to the
influence of the non-zero in-plane field Hx. This conclu-
sion is fully confirmed by macrospin simulations. Fur-
thermore, an analytical model for a critical line Vcr(H)
in field-in-plane geometry was developed by linearization
of the LLG equation allowing to straightforwardly char-
acterize the free layer state. For memory applications
the second order anisotropy appears to be an interesting
parameter to control and adjust, since it allows to write
with lower energy and less stochastically while preserving
a reasonable thermal stability.
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EXCALYB.
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APPENDIX

Coefficients of linearized LLG system of equations:

A0 =
γ

µ0(1 + α2)

(
µ0Hx (α cos θ0 cosϕ0 − sinϕ0)

− sin θ0
2α cos θ0

Ms

(
K + 2K2 cos2 θ0

)
+ a‖V )

) (21)

A1 = − γHx

1 + α2
(α cos θ0 sinϕ0 + cosϕ0) (22)

A2 = − γ

µ0(1 + α2)

(
αµ0Hx sin θ0 cosϕ0 +

2α

Ms

×
(
(K +K2) cos 2θ0 +K2 cos 4θ0

)
+ a‖V cos θ0

) (23)

B0 =− γ

µ0(1 + α2)

(
−2 cos θ0

Ms

(
K + 2K2 cos2 θ0

)
+
µ0Hx

sin θ0
(cos θ0 cosϕ0 + α sinϕ0) + αa‖V

) (24)

B1 = − γHx

(1 + α2) sin θ0
(α cosϕ0 − cos θ0 sinϕ0) (25)

B2 =
γ

µ0(1 + α2)

(
−2 sin θ0

Ms

(
K + 6K2 cos2 θ0

)
+
µ0Hx

sin2 θ0

(cosϕ0 + α cos θ0 sinϕ0)

) (26)
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[15] C. Papusoi, B. Delaët, B. Rodmacq, D. Houssameddine,
J.-P. Michel, U. Ebels, R. C. Sousa, L. Buda-Prejbeanu,
and B. Dieny, Applied Physics Letters 95, 072506 (2009).

[16] N. N. Mojumder and K. Roy, IEEE Transactions on Elec-
tron Devices 59, 3054 (2012).

[17] D. Apalkov, “Method and system for providing magnetic
tunneling junction elements having a biaxial anisotropy,”
(2013), US Patent 8374048.

[18] A. A. Timopheev, R. Sousa, M. Chshiev, H. T. Nguyen,
and B. Dieny, Scientific Reports 6, 26877 (2016).

[19] B. Dieny and A. Vedyayev, Europhys. Lett. 25, 723
(1994).

[20] A. A. Timopheev, R. Sousa, M. Chshiev, L. D. Buda-
Prejbeanu, and B. Dieny, Phys. Rev. B 92, 104430
(2015).

[21] L. Cuchet, B. Rodmacq, S. Auffret, R. C. Sousa, I. L.
Prejbeanu, and B. Dieny, Scientific Reports 6, 21246
(2016).

[22] J. M. Shaw, H. T. Nembach, M. Weiler, T. J. Silva,
M. Schoen, J. Z. Sun, and D. C. Worledge, IEEE Mag-
netics Letters 6, 1 (2015).

[23] J. Z. Sun, Phys. Rev. B 91, 174429 (2015).
[24] R. Matsumoto, H. Arai, S. Yuasa, and H. Imamura,

Applied Physics Express 8, 063007 (2015).
[25] M. Lavanant, S. P. Watelot, A. Kent, and S. Mangin,

JMMM (2016), in press.
[26] K. Bernert, V. Sluka, C. Fowley, J. Lindner, J. Fassben-

der, and A. M. Deac, Phys. Rev. B 89, 134415 (2014).
[27] S. Yan, Z. Sun, and Y. B. Bazaliy, Phys. Rev. B 88,

054408 (2013).
[28] L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjet. 8, 153

(1935).
[29] T. L. Gilbert, IEEE Transactions on Magnetics 40, 3443

(2004).
[30] S.-C. Oh, S.-Y. Park, A. Manchon, M. Chshiev, J.-H.

Han, H.-W. Lee, J.-E. Lee, K.-T. Nam, Y. Jo, Y.-C.
Kong, B. Dieny, and K.-J. Lee, Nat Phys 5, 898 (2009).



12

[31] M. Chshiev, A. Manchon, A. Kalitsov, N. Ryzhanova,
A. Vedyayev, N. Strelkov, W. H. Butler, and B. Dieny,
Phys. Rev. B 92, 104422 (2015).
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