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Asymptotic measures and links in simplicial complexes

Introduction

Let K be a finite n-dimensional simplicial complex and Sd d (K), d ≥ 0, be its successive barycentric subdivisions, see [START_REF] Munkres | Elements of algebraic topology[END_REF]. We denote by f p (K), p ∈ {0, . . . , n}, the face number of K, that is the number of p-dimensional simplices of K and by q K (T ) = n p=0 f p (K)T p its face polynomial. The asymptotic of f d p (K) = f p (Sd d (K)) has been studied in [START_REF] Brenti | f -vectors of barycentric subdivisions[END_REF] and [START_REF] Delucchi | Face vectors of subdivided simplicial complexes[END_REF], it is equivalent to q p,n f n (K)(n + 1)! d as d grows to +∞, where q p,n > 0. Moreover, it has been proved in [START_REF] Brenti | f -vectors of barycentric subdivisions[END_REF] that the roots of the limit face polynomial q ∞ n (T ) = n p=0 q p,n T p are all simple and real in [-1, 0], and in [START_REF] Delucchi | Face vectors of subdivided simplicial complexes[END_REF] that this polynomial is symmetric with respect to the involution T → -T -1, see Theorem 11. We first observe that this symmetry actually follows from a general symmetry phenomenon obtained by I. G. Macdonald in [START_REF] Macdonald | Polynomials associated with finite cell-complexes[END_REF] which can be formulated as follows, see Theorem 8. We set R K (T ) = T q K (T ) -χ(K)T .

Theorem 1 (Theorem 2.1, [START_REF] Macdonald | Polynomials associated with finite cell-complexes[END_REF]) Let K be a triangulated compact homology n-manifold. Then, R K (-1 -T ) = (-1) n+1 R K (T ).

Recall that a homology n-manifold is a topological space X such that for every x ∈ X, the relative homology H * (X, X \ {x}; Z) is isomorphic to H * (R n , R n \ {0}; Z). Any smooth or topological manifold is thus a homology manifold and Poincaré duality holds true in such compact homology manifolds, see [START_REF] Munkres | Elements of algebraic topology[END_REF].

We also observe the following theorem (see Corollary 9 and Theorem 12), the first part of which is a corollary of Theorem 1 which has been independently (not as a corollary of Theorem 1) observed by T. Akita [START_REF] Akita | A formula for the Euler characteristics of even dimensional triangulated manifolds[END_REF].

Theorem 2 Let K be a compact triangulated homology manifold of even dimension. Then χ(K) = q K (- 1 2 ).

Moreover, t = -1 in odd dimensions and t = -1 together with t = -1 2 in even dimensions are the only complex values t on which q K (T ) equals χ(K) for every compact triangulated homology manifold of the given dimension.

Having spheres in mind for instance, Theorem 1 and Theorem 2 exhibit a striking behavior of simplicial structures compared to cellular structures. In [START_REF] Salepci | Asymptotic topology of random subcomplexes in a finite simplicial complex[END_REF], we also provide a probabilistic proof of the first part of Theorem 2.

The limit face polynomial q ∞ n (T ) remains puzzling, but we have been able to prove the following result, see Proposition 14 and Corollaries 17 and 27.

Let L j (T ) = 1 j! j-1 i=0 (T -i) ∈ R[T ], j ≥ 1,
be the j th Lagrange polynomial and set L 0 = 1.

Theorem 3 Let Λ t = (λ j,i ) be the upper triangular matrix of the vector (T j ) j≥0 in the base (L i ) i≥0 . Then, (q p,n ) 0≤p≤n is the eigenvectors of Λ t associated to the eigenvalue (n + 1)! normalized in such a way that q n,n = 1 and q p,n = 0 if p > n. Moreover for every 0 ≤ p < n,

q p,n = (p 1 ,...,p j )∈Pp,n λ n+1,p j λ p j ,p j-1 . . . λ p 2 ,p 1 (λ n+1,n+1 -λ p j ,p j ) . . . (λ n+1,n+1 -λ p 1 ,p 1 )
,

where P p,n = {(p 1 , . . . , p j ) ∈ N j |j ≥ 1 and p + 1 = p 1 < . . . < p j < n + 1}.

Our main purpose in this paper is to refine this asymptotic study of the face polynomial by introducing a canonical measure on Sd d (K) and study the density of links in Sd d (K) with respect to these measures. For every 0 ≤ p ≤ n, set γ p,K = σ∈K [p] δ σ, where δ σ denotes the Dirac measure on the barycenter σ of σ and K [p] the set of p-dimensional simplices of K. Likewise, for every d ≥ 0, we set

γ d p,K = 1 (n+1)! d γ p,Sd d (K)
, which provides a canonical sequence of Radon measures on the underlying topological space |K|. The latter is also equipped with the measure dvol K = σ∈K [n] (f σ ) * dvol ∆n , where f σ : ∆ n → σ denotes a simplicial isomorphism between the standard n-simplex ∆ n and the simplex σ, and dvol ∆n denotes the Lebesgue measure normalized in such a way that ∆ n has volume 1, see Section 3. We prove the following, see Theorem 19.

Theorem 4 For every n-dimensional locally finite simplicial complex K and every 0 ≤ p ≤ n, the measure γ d p,K weakly converges to q p,n dvol K as d grows to +∞.

When K is finite, Theorem 4 recovers the asymptotic of f d p (K) as d grows to +∞, by integration of the constant function 1. Recall that the link of a simplex σ in K is by definition Lk(σ, K) = {τ ∈ K|σ and τ are disjoint and both are faces of a simplex in K}. Likewise, the block dual to σ is the set D(σ) = {[σ 0 , . . . , σp ] ∈ Sd(K)|p ∈ {0, . . . , n} and σ 0 = σ}, see [START_REF] Munkres | Elements of algebraic topology[END_REF]. Recall that the simplices of Sd(K) are by definition of the form [σ 0 , . . . , σp ], where σ 0 < . . . < σ p are simplices of K with < meaning being a proper face. The dual blocks form a partition of Sd(K), see [START_REF] Munkres | Elements of algebraic topology[END_REF], and the links Lk(σ, K) encodes in a sense the local complexity of K near σ. We finally prove the following, see Theorem 24 and Theorem 25.

Theorem 5 For every n-dimensional locally finite simplicial complex K and every 0 ≤ p < n, the measure q Lk(σ,Sd d (K)) (T )dγ d p,K (σ) (with value in R n-p-1 [T ]) weakly converges to n-p-1 l=0

q p+l+1,n f p (∆ p+l+1 )T l dvol K as d grows to +∞.

And likewise

Theorem 6 For every n-dimensional locally finite simplicial complex K and every 0 ≤ p ≤ n, the measure q D(σ) (T )dγ d p,K (σ) weakly converges to n-p l=0 n-p h=l q p+h,n f p (∆ p+h )λ h,l T l dvol K as d grows to +∞.

From these theorems we see that asymptotically, the complexity of the link and the dual block is almost everywhere constant with respect to dvol K . In [START_REF] Salepci | Asymptotic topology of random subcomplexes in a finite simplicial complex[END_REF], we study the asymptotic topology of a random subcomplex in a finite simplicial complex K and its successive barycentric subdivisions. It turns out that the Betti numbers of such a subcomplex get controlled by the measures given in Theorem 6.
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2 The face polynomial of a simplicial complex

The symmetry property

Let K be a finite n-dimensional simplicial complex. We set R K (T ) = T q K (T ) -χ(K)T , where q K (T ) = n p=0 f p (K)T p and χ(K) is the Euler characteristic of K, so that

R K (0) = R K (-1) = 0. Example 7 1. If K = ∂∆ n+1 , then T q K (T ) = (1 + T ) n+2 -1 -T n+2 .
2. If K = S 0 * . . . * S 0 is the n th iterated suspension of the 0-dimensional sphere, then

R K (T ) = T q K (T ) -T χ(K) = (2T + 1)((2T + 1) n -1) if n is even, (2T + 1) n+1 -1 if n is odd.
Recall that if K is a triangulated compact homology n-manifold, its face numbers satisfy the following Dehn-Sommerville relations ( [START_REF] Klee | A combinatorial analogue of Poincaré's duality theorem[END_REF], see also for example [START_REF] Klain | Dehn-sommerville relations for triangulated manifolds[END_REF]):

∀ 0 ≤ p ≤ n, f p (K) = n i=p (-1) i+n i + 1 p + 1 f i (K).
The Dehn-Sommerville relations imply that R K (T ) satisfy the following striking symmetry property observed by I.G. Macdonald [START_REF] Macdonald | Polynomials associated with finite cell-complexes[END_REF] which we recall here together with a proof for the reader's convenience.

Theorem 8 (Theorem 2.1, [START_REF] Macdonald | Polynomials associated with finite cell-complexes[END_REF]) Let K be a triangulated compact homology n-manifold.

Then, R K (-1 -T ) = (-1) n+1 R K (T ). Proof. Observe that R K (-1 -T ) = n p=0 f p (K)(-1 -T ) p+1 + χ(K)(1 + T ) = n p=0 f p (K)(-1) p+1 p+1 q=0 p+1 q T q + χ(K)(1 + T ) = n p=0 f p (K)(-1) p+1 p q=0 p+1 q+1 T q+1 + χ(K)T = n q=0 T q+1 n p=q p+1 q+1 f p (K)(-1) p+1 + χ(K)T.
Then, the Dehn-Sommerville relations imply

R K (-1 -T ) = - n q=0 T q+1 (-1) n f q (K) + χ(K)T = (-1) n+1 R K (T ) + (1 + (-1) n+1 )χ(K)T. Now, if n is even, 1 + (-1) n+1 = 0 while if n is odd, χ(K) = 0 by Poincaré duality with Z/2Z coefficients, see [7]. In both cases, we get R K (-1 -T ) = (-1) n+1 R K (T ).
Corollary 9 Let K be a triangulated compact homology n-manifold.

1. If n is even, then q K (- 1 2 ) = χ(K).

2. If n is odd, the polynomial T q K (T ) is preserved by the involution T → -1 -T .

If

χ(K) ≤ 0, the real roots of R K (T ) = T q K (T ) -χ(K)T lie on the interval [-1, 0].
Proof. When n is even, R K has an odd number of real roots, invariant under the involution T → -1 -T whose unique fixed point is -1 2 . Theorem 8 thus implies that R K (-1 2 ) = 0. Hence the first part. When n is odd, χ(K) = 0 by Poincaré duality so that R K (T ) = T q K (T ) and the second part. Finally, if χ(K) ≤ 0, the coefficients of the polynomial R K (T ) are all positive, so that its real roots are all negative. It thus follows from Theorem 8 that they lie on the interval [-1, 0].

Remark 10

The first part of Corollary 9 was independently (not as a corollary of Theorem 8) observed by T. Akita [START_REF] Akita | A formula for the Euler characteristics of even dimensional triangulated manifolds[END_REF]. In [START_REF] Salepci | Asymptotic topology of random subcomplexes in a finite simplicial complex[END_REF], we provide a probabilistic proof of it.

The third part of Corollary 9 always holds true when n is odd, since then χ(K) = 0.

The first part of Corollary 9 raise the following question: given some dimension n, what are the universal parameters t such that q K (t) = χ(K) for every compact triangulated homology n-manifolds? We checked that t = -1 in odd dimensions and t = -1 with t = -1 2 in even dimensions are the only ones, see Theorem 12.

The asymptotic face polynomial

Let f (K) = (f 0 (K), f 1 (K), . . . , f n (K)) be the face vector of K, that is the vector formed by the face numbers of the finite simplicial complex K. Now, for every d > 0, we set

f d p (K) = f p (Sd d (K))
, where Sd d (K) denotes the d th barycentric subdivision of K. How does the face vector change under barycentric subdivisions and what is the asymptotic behavior of

f d (K) = (f d 0 (K), f d 1 (K) . . . , f d n (K))?
These questions have been treated in [START_REF] Brenti | f -vectors of barycentric subdivisions[END_REF], [START_REF] Delucchi | Face vectors of subdivided simplicial complexes[END_REF], leading to the following.

Theorem 11 ( [START_REF] Brenti | f -vectors of barycentric subdivisions[END_REF], [START_REF] Delucchi | Face vectors of subdivided simplicial complexes[END_REF]) For every 0 ≤ p ≤ n, there exist q p,n > 0 such that for every n-

dimensional finite simplicial complex K, lim d→+∞ f d p (K) (n+1)! d fn(K) = q p,
n . Moreover, the n + 1 roots of the polynomial T q ∞ n (T ) are simple, belong to the interval [-1, 0] and are symmetric with respect to the involution

T ∈ R → -T -1 ∈ R whenever n > 0, where q ∞ n (T ) = n p=0 q p,n T p .
The symmetry property of T q ∞ n (T ) follows from Theorem 8 and the first part of Theorem 11, since the Euler characteristic remains unchanged under subdivisions. This symmetry has been observed in [START_REF] Delucchi | Face vectors of subdivided simplicial complexes[END_REF] (with a different proof). It implies that q ∞ n (-1) = 0 and that q ∞ n (- 1 2 ) = 0 whenever n is even, as the number of roots of T q ∞ n (T ) is then odd and -1 2 is the unique fixed point of the involution.

Theorem 12 The reals t = -1 if n is odd and t = -1 together with t = -1 2 if n is even are the only complex values on which the face polynomial q K (T ) = dim K p=0 f p (K)T p equals χ(K) for every compact triangulated homology n-manifold K.

Proof. Let us equip the n-dimensional sphere with the triangulation given by the boundary of the (n + 1)-simplex ∆ n+1 . Then, for every 0

≤ p ≤ n, f p (S n ) = n+2 p+1 and q S n (T ) = 1 T (1 + T ) n+2 -1 -T n+2
. Now, the polynomial q S n (T ) -χ(S n ) has only one real root if n is odd and two real roots if n is even. Indeed, differentiating the polynomial T q S n (T ) -χ(S n )T once if n is odd and twice if n is even, we get, up to a factor, (1 + T ) n+1 -T n+1 or respectively (1 + T ) n -T n which vanishes only for t = -1 2 on the real line. From Rolle's theorem we deduce that 0 and -1 (respectively 0, -1 2 , -1) are the only real roots of T q S n (T ) -χ(S n )T when n is odd (respectively, when n is even).

Finally, if t 0 ∈ C is such that q K (t 0 ) = χ(K) for all triangulated manifolds of a given dimension n, then in particular, R Sd d (K) (t 0 ) = 0 for every d > 0. Dividing by f n (K)(n + 1)! d and passing to the limit, we deduce that q ∞ n (t 0 ) = 0. But from Theorem 11 we know that the roots of T q ∞ (T ) are all real, hence the result.

Let now Λ = (λ i,j ) i,j≥1 be the infinite lower triangular matrix whose entries λ i,j are the numbers of interior (j -1)-faces on the subdivided standard simplex Sd(∆ i-1 ) and let Λ n = (λ i,j ) 1≤i,j≤n+1 , see Figure 1. The diagonal entries of Λ are given by Lemma 13. We set as a convention λ 0,0 = 1 and λ l,0 = 0 whenever l > 0.

Lemma 13 For every 1 ≤ j ≤ i, λ i,j = i-1 p=j-1 i p λ p,j-1 where i j denotes the binomial coefficient. In particular, λ i,i = i!. Proof. The interior (j -1)-faces of Sd(∆ i-1 ) are cones over the (j -2)-faces of the boundary of Sd(∆ i-1 ). The latter are interior to some (p-1)-simplex of ∂∆ i-1 , j -1 ≤ p ≤ i-1. The result follows from the fact that for every 1 ≤ p ≤ i -1, ∂∆ i-1 has i p many (p -1)-dimensional faces while each such face contains λ p,j-1 many (j -2)-dimensional faces of Sd(∆ i-1 ) in its interior.

The first part of Theorem 11 is basically deduced in [START_REF] Brenti | f -vectors of barycentric subdivisions[END_REF], [START_REF] Delucchi | Face vectors of subdivided simplicial complexes[END_REF] from the following observation: for every n-dimensional finite simplicial complex K, the face vector f (Sd(K)) is deduced from the face vector f (K) by multiplication on the right by Λ n , that is f (Sd(K)) = f (K)Λ n , while the matrix Λ n is diagonalizable with eigenvalues given by Lemma 13.

We deduce from [START_REF] Brenti | f -vectors of barycentric subdivisions[END_REF], [START_REF] Delucchi | Face vectors of subdivided simplicial complexes[END_REF] that the vector (q p,n ) 0≤p≤n is the eigenvector of Λ t n associated to the eigenvalue λ n+1,n+1 = (n + 1)! normalized by the relation q n,n = 1. A geometric proof of this fact will be given in Section 4, see Corollary 27. This observation makes it possible to compute q p,n in terms of the coefficients λ i,j .

Proposition 14 Let 0 ≤ p < n and let P p,n = {(p 1 , . . . , p j ) ∈ N j |j ≥ 1 and p + 1 = p 1 < . . . < p j < n + 1}. Then

q p,n = (p 1 ,...,p j )∈Pp,n λ n+1,p j λ p j ,p j-1 . . . λ p 2 ,p 1 (λ n+1,n+1 -λ p j ,p j ) . . . (λ n+1,n+1 -λ p 1 ,p 1 )
.

Proof. Having in mind that Λ n is a lower triangular matrix and by Lemma 13, (n + 1)! = λ n+1,n+1 . The equation Λ t n (q p,n ) = (n + 1)!(q p,n ) results in the following system. For all 0 ≤ p < n,

q p,n = n-p-1 k=0 λ n+1-k,p+1 q n-k,n (λ n+1,n+1 -λ p+1,p+1
) .

The solution of this system is obtained by induction on r = n -p by setting q n,n = 1. The result follows from the fact that the partitions (p 1 , . . . , p j ) of integers between p + 1 and n + 1 such that p + 1 = p 1 < . . . < p j < n + 1 are obtained (except the one with single term p 1 = p + 1) from those p + 1 + s = p 1 < . . . < p j < n + 1 for all 1 ≤ s ≤ r by setting p 1 = p + 1 and p i+1 = p i for i ∈ {1, . . . , j}.

Note that the coefficients λ i,j of Λ can be computed. We recall their values obtained in [START_REF] Delucchi | Face vectors of subdivided simplicial complexes[END_REF] in the following proposition and suggest an alternative proof.

Proposition 15 (Lemma 6.1, [START_REF] Delucchi | Face vectors of subdivided simplicial complexes[END_REF]) For every 1 ≤ j ≤ i, λ i,j = j p=0 j p (-1) j-p p i .

(The left hand side in Lemma 6.1 of [START_REF] Delucchi | Face vectors of subdivided simplicial complexes[END_REF] should read λ i-1,j-1 and our λ i,j corresponds to λ i-1,j-1 in [START_REF] Delucchi | Face vectors of subdivided simplicial complexes[END_REF].) Let C = (c i,j ) i,j≥1 be the infinite strictly lower triangular matrix such that c i,j = i j for i > j ≥ 1. Also, for every r ≥ 1, set (I + C) r = (a r i,j ) i,j≥1 .

Lemma 16 For every i ≥ j, a r i,j = i j r i-j . Proof. We proceed by induction on r. The statement holds true for r = 1. In the case r = 2, for every i ≥ j, a 2 i,j

= j≤p≤i i p p j = i! j!(i-j)! i p=j (i-j)! (p-j)!(i-p)! l=p-j = i j i-j l=0 i-j l = i j 2 i-j .
The last line follows from the Newton binomial theorem. Now, let us suppose that the formula holds true for r -1. Then, likewise,

a r i,j = j≤p≤i i p p j (r -1) p-j l=p-j = i j i-j l=0 i-j l (r -1) l = i j r i-j .
Proof of Proposition 15. We deduce from Lemma 13 that the p th column of the matrix Λ is obtained from the (p -1) th one by multiplication on the left by C, so that it is equal to C p-1 v where v denotes the first column of Λ with 1 on every entry. Let C r = (c r i,j ) i≥1,j≥1 , then from the relation C r = (I + C -I) r = r p=0 r p (I + C) p (-1) r-p , we deduce thanks to Lemma 16 that for all r > 0 and all i ≥ j, c r i,j = r p=0 r p i j p i-j (-1) r-p = i j r p=0 r p p i-j (-1) r-p while c r i,j = 0 whenever i ≤ j. From the previous observation we now deduce that for all i ≥ r + 1, (T -i) ∈ R[T ] be the j th Lagrange polynomial, so that L j (p) = 0 if 0 ≤ p < j and L j (p) = p j if p ≥ j. We deduce the following interpretation of the transpose matrix Λ t .

Corollary 17 For every j ≥ 1, T j = j i=1 λ j,i L i (T ). Corollary 17 means that Λ t is the matrix of the vectors (T j ) j≥0 in the basis

(L i ) i≥0 of R[T ], setting T 0 = L 0 = 1.
Proof. Let i ≥ 1. Then, for every l ≥ i,

l p=0 l p (-1) l-p L i (p) = l p=i l p (-1) l-p p i = l i l p=i l-i l-p (-1) l-p = (-1) l-i l i l-i q=0 l-i q (-1) q = δ li ,
where δ li = 0 if l = i and δ li = 1 otherwise. This result also holds true for l ∈ {0, . . . , i -1}. We deduce that for 0 ≤ l ≤ j,

l p=0 l p (-1) l-p j i=0 λ j,i L i (p) = λ j,l .
The result now follows from Proposition 15 and the fact that a degree j polynomial is uniquely determined by its values on the j + 1 integers {0, . . . , j}, since the above linear combinations for l ∈ {0, . . . , j} define an invertible triangular matrix.

3 Canonical measures on a simplicial complex

Let us equip the standard n-dimensional simplex ∆ n with the Lebesgue measure dvol ∆n inherited by some affine embedding of ∆ n in an Euclidian n-dimensional space E in such a way that the total measure of ∆ n is 1. This measure does not depend on the embedding ∆ n → E for two such embeddings differ by an affine isomorphism which has constant Jacobian 1.

Definition 18 For every n-dimensional locally finite simplicial complex K, we denote by dvol K the measure σ∈K [n] (f σ ) * (dvol ∆n ) of |K| where K [n] denotes the set of n-dimensional simplices of K and f σ : ∆ n → σ a simplicial isomorphism.

If K is a finite n-dimensional simplicial complex, the total measure of |K| is thus f n (K) and its (n -1)-skeleton has vanishing measure. This canonical measure dvol K is Radon with respect to the topology of |K|. Now, for every p ∈ {0, . . . , n}, we set γ p,K = σ∈K [p] δ σ, where δ σ denotes the Dirac measure on the barycenter σ of σ. If K is finite, the total measure σ∈K [p] 1dγ p,K (σ) equals f p (K). More generally, for every d ≥ 0, we set γ d p,K =

1 (n+1)! d σ∈Sd d (K) [p] δ σ.
Theorem 19 For every n-dimensional locally finite simplicial complex K and every p ∈ {0, . . . , n}, the measure γ d p,K weakly converges to q p,n dvol K as d grows to +∞. By weak convergence, we mean that for every continuous function ϕ with compact support in |K|, K ϕdγ d p,K -→ d→+∞ q p,n K ϕdvol K . In order to prove Theorem 19, we need first the following lemma.

Lemma 20 Let p ∈ {0, . . . , n}. Then for every l, d ≥ 0,

γ l+d p,∆n = 1 (n + 1)! l σ∈Sd l (∆n) [n] (f σ ) * (γ d p,∆n ) -θ l p (d),
where f σ : ∆ n → σ denotes a simplicial isomorphism and the total measure of θ l p (d) converges to zero as d grows to +∞.

Proof. In a subdivided n-simplex Sd l (∆ n ), every p-simplex τ is a face of an n-simplex and the number of such n-simplices is by definition

f n-p-1 (Lk(τ, Sd l (∆ n ))). Since Sd l+d (∆ n ) = Sd d (Sd l (∆ n ))
, we deduce that for every d ≥ 0,

γ l+d p,∆n = 1 (n+1)! l σ∈Sd l (∆n) [n] (f σ ) * (γ d p,∆n )- 1 (n+1)! l+d τ ∈Sd l (∆n) (n-1) f n-dim τ -1 (Lk(τ, Sd l (∆ n ))) -1 α∈Sd d ( • τ ) [p] δ α, where Sd l (∆ n ) (n-1) denotes the (n -1)-skeleton of Sd l (∆ n ). We thus set θ l p (d) = 1 (n+1)! l+d τ ∈Sd l (∆n) (n-1) f n-dim τ -1 (Lk(τ, Sd l (∆ n ))) -1 α∈Sd d ( • τ ) [p] δ α.
The total mass of this measure θ l p (d) satisfies

∆n 1dθ l p (d) ≤ 1 (n+1)! l sup τ f n-dim τ -1 (Lk(τ, Sd l (∆ n ))) -1 × #Sd l (∆ n ) (n-1) sup τ f d p ( • τ ) (n+1)! d .
Since dim τ < n, we know from Theorem 11 that

sup τ f d p ( • τ ) (n+1)! d -→ d→+∞ 0. Hence the result.
Proof of Theorem 19. Let us first assume that K = ∆ n and let ϕ ∈ C 0 (∆ n ). We set, for every l, d ≥ 0, R l,d = ∆n ϕdγ l+d p,∆n -q p,n ∆n ϕdvol ∆n and deduce from Lemma 20

R l,d = 1 (n+1)! l σ∈Sd l (∆n) [n] ∆n f * σ ϕdγ d p,∆n -q p,n ∆n f * σ ϕdvol ∆n -∆n ϕdθ l p (d), since by definition (f σ ) * dvol ∆n = (n + 1)! l dvol ∆n | σ . Thus, R l,d = 1 (n+1)! l σ∈Sd l (∆n) [n] ∆n f * σ ϕ -ϕ(σ) dγ d p,∆n -q p,n ∆n f * σ ϕ -ϕ(σ) dvol ∆n + fp(Sd d (∆n)) (n+1)! d -q p,n 1 (n+1)! l σ∈Sd l (∆n) [n] ϕ(σ) -∆n ϕdθ l p (d). Now, since ϕ is continuous, sup σ∈Sd l (∆n) [n] (sup σ |ϕ -ϕ(σ)|) converges to 0 as l grows to +∞, while 1 (n+1)! l | σ∈Sd l (∆n) [n] ϕ(σ)| remains bounded by sup ∆n |ϕ|. Likewise by Theo- rem 11, f d p (∆n) 
(n+1)! d converges to q p,n as d grows to +∞, while by Lemma 20, ∆n 1dθ l p (d) converges to 0. By letting d grow to +∞ and then l grow to +∞, we deduce that R l,d can be as small as we want for l, d large enough. This proves the result for K = ∆ n . Now, if K is a locally finite n-dimensional simplicial complex, we deduce the result by summing over all n-dimensional simplices of K, since from Theorem 11, the measure of the (n -1)-skeleton of K with respect to γ d p,K converges to 0 as d grows to +∞.

Note that by integration of the constant function 1, Theorem 19 implies that for a finite simplicial complex K,

f d p (K) (n+1)! d -→ d→+∞ q p,
n , recovering the first part of Theorem 11. Also, since q n,n = 1, it implies that γ d n,K -→ d→+∞ dvol K . This actually quickly follows from Riemann integration, since for every ϕ ∈ C 0 (∆ n ),

∆n ϕdvol ∆n = lim d→+∞ 1 (n+1)! d
σ∈Sd d (∆n) [n] ϕ(σ)

= lim d→+∞ ∆n ϕdγ d n,∆n .

Let us give another point of view of this fact. For every σ ∈ Sd(∆ n ) [n] , let us choose once for all a simplicial isomorphism f σ : ∆ n → σ. Let us then consider the product space Ω = M ap(N * , Sd(∆ n ) [n] ) = (Sd(∆ n ) [n] ) N * of countably many copies of Sd(∆ n ) [n] and equip it with the product measure ω, where each copy of Sd(∆ n ) [n] is equipped with the counting measure 1 (n+1)! σ∈Sd(∆n) [n] δ σ . It is a Radon measure with respect to the product topology on Ω. We then set

Φ : Ω × ∆ n → ∆ n ((σ i ) i∈N * , x) → lim d→+∞ f σ 1 • . . . • f σ d (x).
Theorem 21 The map Φ is well defined, continuous, surjective and contracts the second factor ∆ n . Moreover, dvol ∆n = Φ * (ω × dvol ∆n ) = Φ * (ω × δ ∆n ) = lim d→+∞ γ d n,∆n . (This result may be compared to the general Borel isomorphism theorem.)

For every d ≥ 1, let us set

Φ d : Ω × ∆ n → ∆ n ((σ i ) i∈N * , x) → f σ 1 • . . . • f σ d (x).
Proof. For every (σ i ) i∈N * ∈ Ω, the sequence of compact subsets Im(f σ 1 • . . . • f σ d ) decreases as d grows to +∞. These subsets are n-simplices of the barycentric subdivision Sd d (∆ n ) so that their diameters converge to zero. We deduce the first part of Theorem 21. Since Φ contracts the second factor and is measurable, the push forward Φ * (ω × µ) does not depend on the probability measure µ on ∆ n . In particular, Φ * (ω × dvol ∆n ) = Φ * (ω × δ ∆n ). Now, we have by definition

(Φ d ) * (ω × dvol ∆n ) = 1 (n+1)! d τ ∈Sd d (∆n) (f τ ) * (dvol ∆n ), where f τ is the corresponding simplicial isomorphism f σ 1 • . . . • f σ d between ∆ n and τ, so that (Φ d ) * (ω × dvol ∆n ) = dvol ∆n for every d since (f τ ) * (dvol ∆n ) = (n + 1)! d dvol ∆n | τ . Likewise, (Φ d ) * (ω × δ ∆n ) = 1 (n+1)! d τ ∈Sd d (∆n) (f τ ) * (δ ∆n ) = γ d
n,∆n by definition. Since the sequence (Φ d ) d∈N * of continuous maps converge pointwise to Φ, we deduce from Lebesgue's dominated convergence theorem that for every probability measure µ on ∆ n , the sequence (Φ d ) * (ω × µ) weakly converges to Φ * (ω × µ).

Recall that by definition, the Dirac measure δ ∆n in Theorem 21 coincides with the measure γ n,∆n . For p < n, we get Theorem 22 For every p ∈ {0, . . . , n},

f p (∆ n )dvol ∆n = Φ * (ω × γ p,∆n ) = lim d→+∞ f n-p-1 Lk(σ, Sd d (∆ n )) dγ d p,∆n (σ). 
Recall that f p (∆ n ) = n+1 p+1 and that by definition f -1 (Lk(σ, Sd d (∆ n ))) = 1. Proof. From Theorem 21, Φ contracts the second factor. Since the mass of γ p,∆n equals f p (∆ n ) by definition, we deduce the first equality. Now, as in the proof of Theorem 21, we deduce from Lebesgue's dominated convergence theorem that the sequence (Φ d ) * (ω × γ p,∆n ) weakly converges to Φ * (ω ×γ p,∆n ). It remains thus to compute (Φ d ) * (ω ×γ p,∆n ). By definition

(Φ d ) * (ω × γ p,∆n ) = 1 (n+1)! d τ ∈Sd d (∆n) [n] (f τ ) * (γ p,∆n ), where f τ is the corresponding simplicial isomorphism f σ 1 • . . . • f σ d between ∆ n
and τ . In this sum, we see that each p-simplex of Sd d (∆ n ) receives as many Dirac measures as the number of n-simplices adjacent to it. The number of n-simplices adjacent to σ ∈ Sd d (∆ n ) [p] is by definition f n-p-1 (Lk(σ, Sd d (∆ n ))). We deduce

(Φ d ) * (ω × γ p,∆n ) = 1 (n+1)! d σ∈Sd d (∆n) [p] f n-p-1 Lk(σ, Sd d (∆ n )) δ σ = f n-p-1 Lk(σ, Sd d (∆ n )) dγ d p,∆n (σ) 
.

Sd d (K) [p+l+1] uniformly converges to zero on this compact subset as d grows to +∞. Thus, the suppremum of (ϕ 1 -ϕ 2 ) converges to zero as d grows +∞. On the other hand, the total mass of γ l remains bounded, since

I l 1γ l = Sd d (K) [p+l+1] (p 2 ) * (dγ l ) = f p (∆ p+l+1 ) K γ d p+l+1,K
and the latter is bounded from Theorem 19. The result follows by definition of q Lk(σ,Sd d (K)) (T ).

Note that the (n-1)-skeleton of K has vanishing measure with respect to dvol K while for every σ ∈ Sd d (K) [p] interior to an n-simplex, its link is a homology (n-p-1)-sphere (Theorem 63.2 of [START_REF] Munkres | Elements of algebraic topology[END_REF]). After evaluation at T = -1 and integration of the constant function 1, Theorem 24 thus provides the following asymptotic Dehn-Sommerville relations: n l=p q l,n l + 1 p + 1 (-1) n+l = q p,n . Now, recall that the dual block D(σ) of a simplex σ ∈ K is the union of all open simplices [σ 0 . . . , σp ] of Sd(K) such that σ 0 = σ, see [START_REF] Munkres | Elements of algebraic topology[END_REF]. The closure D(σ) of D(σ) is called closed block dual to σ and following [START_REF] Munkres | Elements of algebraic topology[END_REF] we set Ḋ(σ) = D(σ) \ D(σ). Then, we get the following.

Theorem 25 For every n-dimensional locally finite simplicial complex K and every 0 ≤ p ≤ n, the measure q D(σ) (T )dγ d p,K (σ) weakly converges to n-p l=0 n-p h=l q p+h,n f p (∆ p+h )λ h,l T l dvol K as d grows to +∞.

Proof. By definition, the dual block D(σ) has only one face in dimension 0, namely σ, so that for the coefficient l = 0, the result follows from Theorem 19. Let us now assume that 0 < l ≤ n -p and choose ϕ ∈ C 0 c (|K|). We set J l = {(σ, θ) ∈ Sd d (K) [p] × Sd d+1 (K) [l-1] |θ ∈ Ḋ(σ)}.

Let p 1 : (σ, θ) ∈ J l → σ ∈ Sd d (K) [p] . Then, for every σ ∈ Sd d (K) [p] , #p -1 1 (σ) = f l (D(σ)), since p -1 1 (σ) is in bijection with Ḋ(σ) and by taking the cone over σ we get an isomorphism τ ∈ Ḋ(σ) → σ * τ ∈ D(σ)\ σ where * denotes the join operation. (Recall that if τ = [e 0 , . . . , e k ] the join σ * τ is [σ, e 0 , . . . , e k ].)

Likewise by definition, every simplex θ ∈ Ḋ(σ) [l-1] reads θ = [τ 0 , . . . , τl-1 ] where σ < τ 0 < . . . < τ l-1 are simplices of Sd d (K) (see Theorem 64.1 of [START_REF] Munkres | Elements of algebraic topology[END_REF]). We deduce a map where I h is the set defined in (1). We then set p 2 : (σ, τ ) ∈ n-p-1 h=l-1 I h → τ ∈ Sd d (K)\Sd d (K) (p+l-1) . As in the proof of Theorem 24, for every τ ∈ Sd d (K) \ Sd d (K) (p+l-1) , p -1 2 (τ ) is in bijection with τ [p] and π -1 (σ, τ ) with the set of interior (l -1)-dimensional simplices of Sd(Lk(σ, τ )), so that #π -1 ((σ, τ )) = λ h+1,l if dim τ = p+h+1. Let us set φ1 : (σ, τ ) ∈ J l → ϕ(σ) ∈ R and γl = 1 (n+1)! d (σ,θ)∈J l δ (σ,θ) . Then, we deduce
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  [τ 0 , . . . , τl-1 ]) → (σ, τ l-1 )

Corollary 23 For every n-dimensional locally finite simplicial complex K and every p ∈ {0, . . . , n}, the measure f n-p-1 Lk(σ, Sd d (K)) dγ d p,K (σ) weakly converges to f p (∆ n )dvol K as d grows to +∞.

Proof. By definition

since for every τ ∈ K (n-1) and every σ ∈ K

by definition and τ is a face of exactly f n-dim τ -1 (Lk(τ, K)) such σ s. The result thus follows from Theorem 19 and Theorem 22.

4 Limit density of links in a simplicial complex

Corollary 23 computes the limit density as d grows to +∞ of the top face numbers of the links of p-dimensional simplices in Sd d (K), p ∈ {0, . . . , n}. We are going now to extend this result to all the face numbers of these links.

Theorem 24 For every n-dimensional locally finite simplicial complex K and every 0 ≤ p < n, the measure q Lk(σ,Sd

q p+l+1,n f p (∆ p+l+1 )T l dvol K as d grows to +∞.

Proof. Let ϕ ∈ C 0 c (|K|) be a continuous function with compact support on |K|. For every 0 ≤ l ≤ n -p -1, let us introduce the set

It is equipped with the projection p 1 : (σ, τ ) ∈ I l → σ ∈ Sd d (K) [p] and p 2 : (σ, τ ) ∈ I l → τ ∈ Sd d (K) [p+l+1] . We observe that for every σ ∈ Sd d (K) [p] , #p -1

2 (τ ) is in bijection with τ [p] (given by p 1 ). Let us set

Then, we deduce

From Theorem 19, the first term K ϕf p (τ )dγ d p+l+1,K (τ ) in the right hand side converges to q p+l+1,n f p (∆ p+l+1 ) K ϕdvol K as d grows to +∞ while the second term I l (ϕ 1 -ϕ 2 )dγ l converges to zero. Indeed, ϕ is continuous with compact support and the diameter of τ ∈

h=l-1 λ h+1,l I h ϕ 1 dγ h by pushing forward φ1 dγ l onto n-p-1 h=l-1 I h with π, where ϕ 1 and γ h are defined by [START_REF] Brenti | f -vectors of barycentric subdivisions[END_REF]. Now, we have established in the proof of Theorem 24 that as d grows to +∞, I h ϕ 1 dγ h converges to f p (∆ p+h+1 )q p+h+1 K ϕdvol K . We deduce that f l (D(σ))dγ d p,K (σ) weakly converges to n-p h=l λ h,l f p (∆ p+h )q p+h,n dvol K . Hence the result.

Remark 26 In [START_REF] Salepci | Asymptotic topology of random subcomplexes in a finite simplicial complex[END_REF], we study the expected topology of a random subcomplex in a finite simplicial complex K and its barycentric subdivisions. The Betti numbers of such a subcomplex turn out to be asymptotically controlled by the measure given by Theorem 25.

Let us now finally observe that Theorem 25 provides a geometric proof of the following (compare Theorem A of [START_REF] Delucchi | Face vectors of subdivided simplicial complexes[END_REF]).

Corollary 27 The vector (q p,n ) 0≤p≤n is the eigenvector of Λ t n associated to the eigenvalue (n + 1)!, normalized by the relation q n,n = 1.

Proof. By Theorem 64.1 of [START_REF] Munkres | Elements of algebraic topology[END_REF], we know that the dual blocks of a complex K are disjoint and that their union is |K|. We deduce that for every d ∈ N * , 1 (n + 1)! d q Sd d+1 (∆n) (T ) =