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Asymptotic measures and links in simplicial complexes

Nermı̇n Salepcı̇ and Jean-Yves Welschinger

June 6, 2017

Abstract

We introduce canonical measures on a locally finite simplicial complex K and study
their asymptotic behavior under infinitely many barycentric subdivisions. We also com-
pute the face polynomial of the asymptotic link and dual block of a simplex in the dth

barycentric subdivision Sdd(K) of K, d � 0. It is almost everywhere constant. When
K is finite, we study the limit face polynomial of Sdd(K) after F. Brenti-V. Welker and
E. Delucchi-A. Pixton-L. Sabalka.

Keywords : simplicial complex, barycentric subdivisions, face vector, face polynomial,
link of a simplex, dual block, measure.
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1 Introduction

Let K be a finite n-dimensional simplicial complex and Sdd(K), d ≥ 0, be its successive
barycentric subdivisions, see [7]. We denote by fp(K), p ∈ {0, . . . , n}, the face number of K,
that is the number of p-dimensional simplices of K and by qK(T ) =

∑n
p=0 fp(K)T p its face

polynomial. The asymptotic of fdp (K) = fp(Sdd(K)) has been studied in [2] and [3], it is

equivalent to qp,nfn(K)(n + 1)!d as d grows to +∞, where qp,n > 0. Moreover, it has been
proved in [2] that the roots of the limit face polynomial q∞n (T ) =

∑n
p=0 qp,nT

p are all simple
and real in [−1, 0], and in [3] that this polynomial is symmetric with respect to the involution
T → −T − 1, see Theorem 11. We first observe that this symmetry actually follows from a
general symmetry phenomenon obtained by I. G. Macdonald in [6] which can be formulated
as follows, see Theorem 8. We set RK(T ) = TqK(T )− χ(K)T .

Theorem 1 (Theorem 2.1, [6]) Let K be a triangulated compact homology n-manifold.
Then, RK(−1− T ) = (−1)n+1RK(T ).

Recall that a homology n-manifold is a topological space X such that for every x ∈ X,
the relative homology H∗(X,X \ {x};Z) is isomorphic to H∗(Rn,Rn \ {0};Z). Any smooth
or topological manifold is thus a homology manifold and Poincaré duality holds true in such
compact homology manifolds, see [7].

We also observe the following theorem (see Corollary 9 and Theorem 12), the first part
of which is a corollary of Theorem 1 which has been independently (not as a corollary of
Theorem 1) observed by T. Akita [1].

Theorem 2 Let K be a compact triangulated homology manifold of even dimension. Then
χ(K) = qK(−1

2).
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Moreover, t = −1 in odd dimensions and t = −1 together with t = −1
2 in even dimensions

are the only complex values t on which qK(T ) equals χ(K) for every compact triangulated
homology manifold of the given dimension.

Having spheres in mind for instance, Theorem 1 and Theorem 2 exhibit a striking behavior
of simplicial structures compared to cellular structures. In [8], we also provide a probabilistic
proof of the first part of Theorem 2.

The limit face polynomial q∞n (T ) remains puzzling, but we have been able to prove the
following result, see Proposition 14 and Corollaries 17 and 27.

Let Lj(T ) = 1
j!

j−1∏
i=0

(T − i) ∈ R[T ], j ≥ 1, be the jth Lagrange polynomial and set L0 = 1.

Theorem 3 Let Λt = (λj,i) be the upper triangular matrix of the vector (T j)j≥0 in the base
(Li)i≥0. Then, (qp,n)0≤p≤n is the eigenvectors of Λt associated to the eigenvalue (n + 1)!
normalized in such a way that qn,n = 1 and qp,n = 0 if p > n. Moreover for every 0 ≤ p < n,

qp,n =
∑

(p1,...,pj)∈Pp,n

λn+1,pjλpj ,pj−1 . . . λp2,p1
(λn+1,n+1 − λpj ,pj ) . . . (λn+1,n+1 − λp1,p1)

,

where Pp,n = {(p1, . . . , pj) ∈ Nj |j ≥ 1 and p+ 1 = p1 < . . . < pj < n+ 1}.

Our main purpose in this paper is to refine this asymptotic study of the face polynomial
by introducing a canonical measure on Sdd(K) and study the density of links in Sdd(K) with
respect to these measures. For every 0 ≤ p ≤ n, set γp,K =

∑
σ∈K[p] δσ̂, where δσ̂ denotes

the Dirac measure on the barycenter σ̂ of σ and K [p] the set of p-dimensional simplices of K.
Likewise, for every d ≥ 0, we set γdp,K = 1

(n+1)!d
γp,Sdd(K), which provides a canonical sequence

of Radon measures on the underlying topological space |K|. The latter is also equipped
with the measure dvolK =

∑
σ∈K[n](fσ)∗dvol∆n , where fσ : ∆n → σ denotes a simplicial

isomorphism between the standard n-simplex ∆n and the simplex σ, and dvol∆n denotes the
Lebesgue measure normalized in such a way that ∆n has volume 1, see Section 3. We prove
the following, see Theorem 19.

Theorem 4 For every n-dimensional locally finite simplicial complex K and every 0 ≤ p ≤ n,
the measure γdp,K weakly converges to qp,ndvolK as d grows to +∞.

When K is finite, Theorem 4 recovers the asymptotic of fdp (K) as d grows to +∞, by
integration of the constant function 1. Recall that the link of a simplex σ in K is by definition
Lk(σ,K) = {τ ∈ K|σ and τ are disjoint and both are faces of a simplex in K}. Likewise, the
block dual to σ is the set D(σ) = {[σ̂0, . . . , σ̂p] ∈ Sd(K)|p ∈ {0, . . . , n} and σ0 = σ}, see [7].
Recall that the simplices of Sd(K) are by definition of the form [σ̂0, . . . , σ̂p], where σ0 < . . . <
σp are simplices of K with < meaning being a proper face. The dual blocks form a partition
of Sd(K), see [7], and the links Lk(σ,K) encodes in a sense the local complexity of K near
σ. We finally prove the following, see Theorem 24 and Theorem 25.

Theorem 5 For every n-dimensional locally finite simplicial complex K and every 0 ≤
p < n, the measure qLk(σ,Sdd(K))(T )dγdp,K(σ) (with value in Rn−p−1[T ]) weakly converges to(∑n−p−1

l=0 qp+l+1,nfp(∆p+l+1)T l
)
dvolK as d grows to +∞.

2



And likewise

Theorem 6 For every n-dimensional locally finite simplicial complex K and every 0 ≤ p ≤ n,

the measure qD(σ)(T )dγdp,K(σ) weakly converges to
∑n−p

l=0

(∑n−p
h=l qp+h,nfp(∆p+h)λh,l

)
T ldvolK

as d grows to +∞.

From these theorems we see that asymptotically, the complexity of the link and the dual
block is almost everywhere constant with respect to dvolK . In [8], we study the asymptotic
topology of a random subcomplex in a finite simplicial complex K and its successive barycen-
tric subdivisions. It turns out that the Betti numbers of such a subcomplex get controlled by
the measures given in Theorem 6.

Acknowledgement : The second author is partially supported by the ANR project
MICROLOCAL (ANR-15CE40-0007-01).

2 The face polynomial of a simplicial complex

2.1 The symmetry property

Let K be a finite n-dimensional simplicial complex. We set RK(T ) = TqK(T ) − χ(K)T ,
where qK(T ) =

∑n
p=0 fp(K)T p and χ(K) is the Euler characteristic of K, so that RK(0) =

RK(−1) = 0.

Example 7 1. If K = ∂∆n+1, then TqK(T ) = (1 + T )n+2 − 1− Tn+2.

2. If K = S0 ∗ . . . ∗ S0 is the nth iterated suspension of the 0-dimensional sphere, then

RK(T ) = TqK(T )− Tχ(K) =

{
(2T + 1)((2T + 1)n − 1) if n is even,

(2T + 1)n+1 − 1 if n is odd.

Recall that if K is a triangulated compact homology n-manifold, its face numbers satisfy
the following Dehn-Sommerville relations ([5], see also for example [4]):

∀ 0 ≤ p ≤ n, fp(K) =
n∑
i=p

(−1)i+n
(
i+ 1

p+ 1

)
fi(K).

The Dehn-Sommerville relations imply that RK(T ) satisfy the following striking symmetry
property observed by I.G. Macdonald [6] which we recall here together with a proof for the
reader’s convenience.

Theorem 8 (Theorem 2.1, [6]) Let K be a triangulated compact homology n-manifold.
Then, RK(−1− T ) = (−1)n+1RK(T ).
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Proof. Observe that

RK(−1− T ) =
n∑
p=0

fp(K)(−1− T )p+1 + χ(K)(1 + T )

=
n∑
p=0

fp(K)(−1)p+1
p+1∑
q=0

(
p+1
q

)
T q + χ(K)(1 + T )

=
n∑
p=0

fp(K)(−1)p+1
p∑
q=0

(
p+1
q+1

)
T q+1 + χ(K)T

=
n∑
q=0

T q+1
n∑
p=q

(
p+1
q+1

)
fp(K)(−1)p+1 + χ(K)T.

Then, the Dehn-Sommerville relations imply

RK(−1− T ) = −
n∑
q=0

T q+1(−1)nfq(K) + χ(K)T

= (−1)n+1RK(T ) + (1 + (−1)n+1)χ(K)T.

Now, if n is even, 1 + (−1)n+1 = 0 while if n is odd, χ(K) = 0 by Poincaré duality with Z/2Z
coefficients, see [7]. In both cases, we get RK(−1− T ) = (−1)n+1RK(T ). �

Corollary 9 Let K be a triangulated compact homology n-manifold.

1. If n is even, then qK(−1
2) = χ(K).

2. If n is odd, the polynomial TqK(T ) is preserved by the involution T → −1− T .

3. If χ(K) ≤ 0, the real roots of RK(T ) = TqK(T )− χ(K)T lie on the interval [−1, 0].

Proof. When n is even, RK has an odd number of real roots, invariant under the involu-
tion T → −1−T whose unique fixed point is −1

2 . Theorem 8 thus implies that RK(−1
2) = 0.

Hence the first part. When n is odd, χ(K) = 0 by Poincaré duality so that RK(T ) = TqK(T )
and the second part. Finally, if χ(K) ≤ 0, the coefficients of the polynomial RK(T ) are all
positive, so that its real roots are all negative. It thus follows from Theorem 8 that they lie
on the interval [−1, 0]. �

Remark 10 The first part of Corollary 9 was independently (not as a corollary of Theorem 8)
observed by T. Akita [1]. In [8], we provide a probabilistic proof of it.

The third part of Corollary 9 always holds true when n is odd, since then χ(K) = 0.

The first part of Corollary 9 raise the following question: given some dimension n, what are
the universal parameters t such that qK(t) = χ(K) for every compact triangulated homology
n-manifolds? We checked that t = −1 in odd dimensions and t = −1 with t = −1

2 in even
dimensions are the only ones, see Theorem 12.
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2.2 The asymptotic face polynomial

Let f(K) = (f0(K), f1(K), . . . , fn(K)) be the face vector of K, that is the vector formed
by the face numbers of the finite simplicial complex K. Now, for every d > 0, we set
fdp (K) = fp(Sdd(K)), where Sdd(K) denotes the dth barycentric subdivision of K. How does
the face vector change under barycentric subdivisions and what is the asymptotic behavior
of fd(K) = (fd0 (K), fd1 (K) . . . , fdn(K))? These questions have been treated in [2], [3], leading
to the following.

Theorem 11 ([2], [3]) For every 0 ≤ p ≤ n, there exist qp,n > 0 such that for every n-

dimensional finite simplicial complex K, limd→+∞
fdp (K)

(n+1)!dfn(K)
= qp,n.

Moreover, the n + 1 roots of the polynomial Tq∞n (T ) are simple, belong to the interval
[−1, 0] and are symmetric with respect to the involution T ∈ R 7→ −T − 1 ∈ R whenever

n > 0, where q∞n (T ) =
n∑
p=0

qp,nT
p. �

The symmetry property of Tq∞n (T ) follows from Theorem 8 and the first part of Theo-
rem 11, since the Euler characteristic remains unchanged under subdivisions. This symmetry
has been observed in [3] (with a different proof). It implies that q∞n (−1) = 0 and that
q∞n (−1

2) = 0 whenever n is even, as the number of roots of Tq∞n (T ) is then odd and −1
2 is

the unique fixed point of the involution.

Theorem 12 The reals t = −1 if n is odd and t = −1 together with t = −1
2 if n is even are

the only complex values on which the face polynomial qK(T ) =
∑dimK

p=0 fp(K)T p equals χ(K)
for every compact triangulated homology n-manifold K.

Proof. Let us equip the n-dimensional sphere with the triangulation given by the
boundary of the (n + 1)-simplex ∆n+1. Then, for every 0 ≤ p ≤ n, fp(S

n) =
(
n+2
p+1

)
and

qSn(T ) = 1
T

(
(1 + T )n+2 − 1 − Tn+2

)
. Now, the polynomial qSn(T ) − χ(Sn) has only one

real root if n is odd and two real roots if n is even. Indeed, differentiating the polyno-
mial TqSn(T ) − χ(Sn)T once if n is odd and twice if n is even, we get, up to a factor,
(1 + T )n+1 − Tn+1 or respectively (1 + T )n − Tn which vanishes only for t = −1

2 on the real
line. From Rolle’s theorem we deduce that 0 and -1 (respectively 0,−1

2 ,−1) are the only real
roots of TqSn(T )− χ(Sn)T when n is odd (respectively, when n is even).

Finally, if t0 ∈ C is such that qK(t0) = χ(K) for all triangulated manifolds of a given
dimension n, then in particular, RSdd(K)(t0) = 0 for every d > 0. Dividing by fn(K)(n+ 1)!d

and passing to the limit, we deduce that q∞n (t0) = 0. But from Theorem 11 we know that
the roots of Tq∞(T ) are all real, hence the result. �

Let now Λ = (λi,j)i,j≥1 be the infinite lower triangular matrix whose entries λi,j are
the numbers of interior (j − 1)-faces on the subdivided standard simplex Sd(∆i−1) and let
Λn = (λi,j)1≤i,j≤n+1, see Figure 1. The diagonal entries of Λ are given by Lemma 13. We set
as a convention λ0,0 = 1 and λl,0 = 0 whenever l > 0.

Lemma 13 For every 1 ≤ j ≤ i, λi,j =
∑i−1

p=j−1

(
i
p

)
λp,j−1 where

(
i
j

)
denotes the binomial

coefficient. In particular, λi,i = i!.
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1 0
1 2

1 0 0
1 2 0
1 6 6

1 0 0 0
1 2 0 0
1 6 6 0
1 14 36 24

Figure 1: The matrix Λn for n = 1, 2, 3.

Proof. The interior (j−1)-faces of Sd(∆i−1) are cones over the (j−2)-faces of the boundary
of Sd(∆i−1). The latter are interior to some (p−1)-simplex of ∂∆i−1, j−1 ≤ p ≤ i−1. The re-
sult follows from the fact that for every 1 ≤ p ≤ i−1, ∂∆i−1 has

(
i
p

)
many (p−1)-dimensional

faces while each such face contains λp,j−1 many (j − 2)-dimensional faces of Sd(∆i−1) in its
interior. �

The first part of Theorem 11 is basically deduced in [2], [3] from the following observation:
for every n-dimensional finite simplicial complex K, the face vector f(Sd(K)) is deduced from
the face vector f(K) by multiplication on the right by Λn, that is f(Sd(K)) = f(K)Λn, while
the matrix Λn is diagonalizable with eigenvalues given by Lemma 13.

We deduce from [2], [3] that the vector (qp,n)0≤p≤n is the eigenvector of Λtn associated to
the eigenvalue λn+1,n+1 = (n+ 1)! normalized by the relation qn,n = 1. A geometric proof of
this fact will be given in Section 4, see Corollary 27. This observation makes it possible to
compute qp,n in terms of the coefficients λi,j .

Proposition 14 Let 0 ≤ p < n and let Pp,n = {(p1, . . . , pj) ∈ Nj |j ≥ 1 and p + 1 = p1 <
. . . < pj < n+ 1}. Then

qp,n =
∑

(p1,...,pj)∈Pp,n

λn+1,pjλpj ,pj−1 . . . λp2,p1
(λn+1,n+1 − λpj ,pj ) . . . (λn+1,n+1 − λp1,p1)

.

Proof. Having in mind that Λn is a lower triangular matrix and by Lemma 13, (n+1)! =
λn+1,n+1. The equation Λtn(qp,n) = (n+ 1)!(qp,n) results in the following system.

For all 0 ≤ p < n,

qp,n =

n−p−1∑
k=0

λn+1−k,p+1qn−k,n
(λn+1,n+1 − λp+1,p+1)

.

The solution of this system is obtained by induction on r = n − p by setting qn,n = 1. The
result follows from the fact that the partitions (p1, . . . , pj) of integers between p+ 1 and n+ 1
such that p + 1 = p1 < . . . < pj < n + 1 are obtained (except the one with single term
p1 = p+1) from those p+1+s = p′1 < . . . < p′j < n+1 for all 1 ≤ s ≤ r by setting p1 = p+1
and pi+1 = p′i for i ∈ {1, . . . , j}. �
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Note that the coefficients λi,j of Λ can be computed. We recall their values obtained in [3]
in the following proposition and suggest an alternative proof.

Proposition 15 (Lemma 6.1, [3]) For every 1 ≤ j ≤ i,

λi,j =

j∑
p=0

(
j

p

)
(−1)j−ppi.

(The left hand side in Lemma 6.1 of [3] should read λi−1,j−1 and our λi,j corresponds to
λi−1,j−1 in [3].)

Let C = (ci,j)i,j≥1 be the infinite strictly lower triangular matrix such that ci,j =
(
i
j

)
for

i > j ≥ 1. Also, for every r ≥ 1, set (I + C)r = (ari,j)i,j≥1.

Lemma 16 For every i ≥ j, ari,j =
(
i
j

)
ri−j.

Proof. We proceed by induction on r. The statement holds true for r = 1. In the case r = 2,
for every i ≥ j,

a2
i,j =

∑
j≤p≤i

(
i
p

)(
p
j

)
= i!

j!(i−j)!

i∑
p=j

(i−j)!
(p−j)!(i−p)!

l=p−j
=

(
i
j

) i−j∑
l=0

(
i−j
l

)
=

(
i
j

)
2i−j .

The last line follows from the Newton binomial theorem. Now, let us suppose that the formula
holds true for r − 1. Then, likewise,

ari,j =
∑

j≤p≤i

(
i
p

)(
p
j

)
(r − 1)p−j

l=p−j
=

(
i
j

) i−j∑
l=0

(
i−j
l

)
(r − 1)l

=
(
i
j

)
ri−j .

�

Proof of Proposition 15. We deduce from Lemma 13 that the pth column of the matrix
Λ is obtained from the (p− 1)th one by multiplication on the left by C, so that it is equal to
Cp−1v where v denotes the first column of Λ with 1 on every entry. Let Cr = (cri,j)i≥1,j≥1,

then from the relation Cr = (I + C − I)r =
r∑
p=0

(
r
p

)
(I + C)p(−1)r−p, we deduce thanks to

Lemma 16 that for all r > 0 and all i ≥ j,

cri,j =
r∑
p=0

(
r
p

)(
i
j

)
pi−j(−1)r−p

=
(
i
j

) r∑
p=0

(
r
p

)
pi−j(−1)r−p

while cri,j = 0 whenever i ≤ j. From the previous observation we now deduce that for all
i ≥ r + 1,
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λi,r+1 =
i−1∑
j=1

(
i
j

) r∑
p=0

(
r
p

)
pi−j(−1)r−p

=
r∑
p=0

(
r
p

)
(−1)r−ppi

i−1∑
j=1

(
i
j

)
p−j

=
r∑
p=0

(
r
p

)
(−1)r−ppi

(
(1 + 1

p)i − 1− p−i
)

=
r∑
p=0

(
r
p

)
(−1)r−p(p+ 1)i −

r∑
p=0

(
r
p

)
(−1)r−ppi.

Now, we set l = p+ 1 and get

λi,r+1 =
r+1∑
l=1

(
r
l−1

)
(−1)r−l+1li −

r∑
p=0

(
r
p

)
(−1)r−ppi

= (r + 1)i −
r∑
p=1

((
r
p−1

)
+
(
r
p

))
(−1)r−ppi

= (r + 1)i −
r∑
p=1

(
r+1
p

)
(−1)r−ppi

=
r+1∑
p=1

(
r+1
p

)
(−1)r−p+1pi.

Hence the result. �

Finally, for every j ≥ 1, let Lj(T ) = 1
j!

j−1∏
i=0

(T − i) ∈ R[T ] be the jth Lagrange polynomial,

so that Lj(p) = 0 if 0 ≤ p < j and Lj(p) =
(
p
j

)
if p ≥ j. We deduce the following interpretation

of the transpose matrix Λt.

Corollary 17 For every j ≥ 1, T j =
∑j

i=1 λj,iLi(T ).

Corollary 17 means that Λt is the matrix of the vectors (T j)j≥0 in the basis (Li)i≥0 of R[T ],
setting T 0 = L0 = 1.

Proof. Let i ≥ 1. Then, for every l ≥ i,

l∑
p=0

(
l
p

)
(−1)l−pLi(p) =

l∑
p=i

(
l
p

)
(−1)l−p

(
p
i

)
=

(
l
i

) l∑
p=i

(
l−i
l−p
)
(−1)l−p

= (−1)l−i
(
l
i

) l−i∑
q=0

(
l−i
q

)
(−1)q

= δli,

where δli = 0 if l 6= i and δli = 1 otherwise. This result also holds true for l ∈ {0, . . . , i− 1}.
We deduce that for 0 ≤ l ≤ j,

l∑
p=0

(
l

p

)
(−1)l−p

( j∑
i=0

λj,iLi(p)
)

= λj,l.
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The result now follows from Proposition 15 and the fact that a degree j polynomial is uniquely
determined by its values on the j + 1 integers {0, . . . , j}, since the above linear combinations
for l ∈ {0, . . . , j} define an invertible triangular matrix. �

3 Canonical measures on a simplicial complex

Let us equip the standard n-dimensional simplex ∆n with the Lebesgue measure dvol∆n

inherited by some affine embedding of ∆n in an Euclidian n-dimensional space E in such
a way that the total measure of ∆n is 1. This measure does not depend on the embedding
∆n ↪→ E for two such embeddings differ by an affine isomorphism which has constant Jacobian
1.

Definition 18 For every n-dimensional locally finite simplicial complex K, we denote by
dvolK the measure

∑
σ∈K[n](fσ)∗(dvol∆n) of |K| where K [n] denotes the set of n-dimensional

simplices of K and fσ : ∆n → σ a simplicial isomorphism.

If K is a finite n-dimensional simplicial complex, the total measure of |K| is thus fn(K)
and its (n− 1)-skeleton has vanishing measure. This canonical measure dvolK is Radon with
respect to the topology of |K|.

Now, for every p ∈ {0, . . . , n}, we set γp,K =
∑

σ∈K[p] δσ̂, where δσ̂ denotes the Dirac
measure on the barycenter σ̂ of σ. If K is finite, the total measure

∫
σ∈K[p] 1dγp,K(σ) equals

fp(K). More generally, for every d ≥ 0, we set γdp,K = 1
(n+1)!d

∑
σ∈Sdd(K)[p] δσ̂.

Theorem 19 For every n-dimensional locally finite simplicial complex K and every p ∈
{0, . . . , n}, the measure γdp,K weakly converges to qp,ndvolK as d grows to +∞.

By weak convergence, we mean that for every continuous function ϕ with compact support
in |K|,

∫
K ϕdγ

d
p,K −→

d→+∞
qp,n

∫
K ϕdvolK . In order to prove Theorem 19, we need first the

following lemma.

Lemma 20 Let p ∈ {0, . . . , n}. Then for every l, d ≥ 0,

γl+dp,∆n
=

1

(n+ 1)!l

∑
σ∈Sdl(∆n)[n]

(fσ)∗(γ
d
p,∆n

)− θlp(d),

where fσ : ∆n → σ denotes a simplicial isomorphism and the total measure of θlp(d) converges
to zero as d grows to +∞.

Proof. In a subdivided n-simplex Sdl(∆n), every p-simplex τ is a face of an n-simplex and
the number of such n-simplices is by definition fn−p−1(Lk(τ,Sdl(∆n))). Since Sdl+d(∆n) =
Sdd(Sdl(∆n)), we deduce that for every d ≥ 0,

γl+dp,∆n
= 1

(n+1)!l

∑
σ∈Sdl(∆n)[n](fσ)∗(γ

d
p,∆n

)−
1

(n+1)!l+d

∑
τ∈Sdl(∆n)(n−1)

(
fn−dim τ−1(Lk(τ,Sdl(∆n)))− 1

)∑
α∈Sdd(

◦
τ)[p]

δα̂,

where Sdl(∆n)(n−1) denotes the (n− 1)-skeleton of Sdl(∆n).
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We thus set
θlp(d) = 1

(n+1)!l+d

∑
τ∈Sdl(∆n)(n−1)

(
fn−dim τ−1(Lk(τ,Sdl(∆n)))− 1

)∑
α∈Sdd(

◦
τ)[p]

δα̂.

The total mass of this measure θlp(d) satisfies∫
∆n

1dθlp(d) ≤
(

1
(n+1)!l

supτ
(
fn−dim τ−1(Lk(τ,Sdl(∆n)))− 1

)
×#Sdl(∆n)(n−1)

)
supτ f

d
p (

◦
τ)

(n+1)!d
.

Since dim τ < n, we know from Theorem 11 that
supτ f

d
p (

◦
τ)

(n+1)!d
−→
d→+∞

0. Hence the result. �

Proof of Theorem 19. Let us first assume that K = ∆n and let ϕ ∈ C0(∆n). We set,
for every l, d ≥ 0, Rl,d =

∫
∆n

ϕdγl+dp,∆n
− qp,n

∫
∆n

ϕdvol∆n and deduce from Lemma 20

Rl,d = 1
(n+1)!l

∑
σ∈Sdl(∆n)[n]

( ∫
∆n

f∗σϕdγ
d
p,∆n
− qp,n

∫
∆n

f∗σϕdvol∆n

)
−
∫

∆n
ϕdθlp(d),

since by definition (fσ)∗dvol∆n = (n+ 1)!ldvol∆n |σ. Thus,

Rl,d = 1
(n+1)!l

∑
σ∈Sdl(∆n)[n]

(∫
∆n

(
f∗σϕ− ϕ(σ̂)

)
dγdp,∆n

− qp,n
∫

∆n

(
f∗σϕ− ϕ(σ̂)

)
dvol∆n

)
+
(
fp(Sdd(∆n))

(n+1)!d
− qp,n

)
1

(n+1)!l

∑
σ∈Sdl(∆n)[n] ϕ(σ̂)−

∫
∆n

ϕdθlp(d).

Now, since ϕ is continuous, supσ∈Sdl(∆n)[n](supσ |ϕ − ϕ(σ̂)|) converges to 0 as l grows

to +∞, while 1
(n+1)!l

|
∑

σ∈Sdl(∆n)[n] ϕ(σ̂)| remains bounded by sup∆n
|ϕ|. Likewise by Theo-

rem 11,
fdp (∆n)

(n+1)!d
converges to qp,n as d grows to +∞, while by Lemma 20,

∫
∆n

1dθlp(d) converges

to 0. By letting d grow to +∞ and then l grow to +∞, we deduce that Rl,d can be as small
as we want for l, d large enough. This proves the result for K = ∆n.

Now, if K is a locally finite n-dimensional simplicial complex, we deduce the result by
summing over all n-dimensional simplices of K, since from Theorem 11, the measure of the
(n− 1)-skeleton of K with respect to γdp,K converges to 0 as d grows to +∞. �

Note that by integration of the constant function 1, Theorem 19 implies that for a finite

simplicial complex K,
fdp (K)

(n+1)!d
−→
d→+∞

qp,n, recovering the first part of Theorem 11. Also,

since qn,n = 1, it implies that γdn,K −→
d→+∞

dvolK . This actually quickly follows from Riemann

integration, since for every ϕ ∈ C0(∆n),∫
∆n

ϕdvol∆n = limd→+∞
1

(n+1)!d

∑
σ∈Sdd(∆n)[n]

ϕ(σ̂)

= limd→+∞
∫

∆n
ϕdγdn,∆n

.

Let us give another point of view of this fact. For every σ ∈ Sd(∆n)[n], let us choose
once for all a simplicial isomorphism fσ : ∆n → σ. Let us then consider the product space
Ω = Map(N∗,Sd(∆n)[n]) = (Sd(∆n)[n])N

∗
of countably many copies of Sd(∆n)[n] and equip

it with the product measure ω, where each copy of Sd(∆n)[n] is equipped with the counting
measure 1

(n+1)!

∑
σ∈Sd(∆n)[n] δσ. It is a Radon measure with respect to the product topology

on Ω. We then set

Φ : Ω×∆n → ∆n

((σi)i∈N∗ , x) 7→ limd→+∞ fσ1 ◦ . . . ◦ fσd(x).
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Theorem 21 The map Φ is well defined, continuous, surjective and contracts the second
factor ∆n. Moreover, dvol∆n = Φ∗(ω × dvol∆n) = Φ∗(ω × δ∆̂n

) = limd→+∞ γ
d
n,∆n

.

(This result may be compared to the general Borel isomorphism theorem.)
For every d ≥ 1, let us set

Φd : Ω×∆n → ∆n

((σi)i∈N∗ , x) 7→ fσ1 ◦ . . . ◦ fσd(x).

Proof. For every (σi)i∈N∗ ∈ Ω, the sequence of compact subsets Im(fσ1 ◦ . . . ◦ fσd)
decreases as d grows to +∞. These subsets are n-simplices of the barycentric subdivision
Sdd(∆n) so that their diameters converge to zero. We deduce the first part of Theorem 21.
Since Φ contracts the second factor and is measurable, the push forward Φ∗(ω × µ) does not
depend on the probability measure µ on ∆n. In particular, Φ∗(ω × dvol∆n) = Φ∗(ω × δ∆̂n

).

Now, we have by definition (Φd)∗(ω × dvol∆n) = 1
(n+1)!d

∑
τ∈Sdd(∆n)(fτ )∗(dvol∆n), where

fτ is the corresponding simplicial isomorphism fσ1 ◦ . . . ◦ fσd between ∆n and τ, so that
(Φd) ∗ (ω × dvol∆n) = dvol∆n for every d since (fτ )∗(dvol∆n) = (n + 1)!ddvol∆n |τ . Likewise,
(Φd)∗(ω × δ∆̂n

) = 1
(n+1)!d

∑
τ∈Sdd(∆n)(fτ )∗(δ∆̂n

) = γdn,∆n
by definition. Since the sequence

(Φd)d∈N∗ of continuous maps converge pointwise to Φ, we deduce from Lebesgue’s dominated
convergence theorem that for every probability measure µ on ∆n, the sequence (Φd)∗(ω × µ)
weakly converges to Φ∗(ω × µ). �

Recall that by definition, the Dirac measure δ∆̂n
in Theorem 21 coincides with the measure

γn,∆n . For p < n, we get

Theorem 22 For every p ∈ {0, . . . , n},

fp(∆n)dvol∆n = Φ∗(ω × γp,∆n) = lim
d→+∞

fn−p−1

(
Lk(σ, Sdd(∆n))

)
dγdp,∆n

(σ).

Recall that fp(∆n) =
(
n+1
p+1

)
and that by definition f−1(Lk(σ, Sdd(∆n))) = 1.

Proof. From Theorem 21, Φ contracts the second factor. Since the mass of γp,∆n equals
fp(∆n) by definition, we deduce the first equality. Now, as in the proof of Theorem 21, we
deduce from Lebesgue’s dominated convergence theorem that the sequence (Φd)∗(ω × γp,∆n)
weakly converges to Φ∗(ω×γp,∆n). It remains thus to compute (Φd)∗(ω×γp,∆n). By definition
(Φd)∗(ω×γp,∆n) = 1

(n+1)!d

∑
τ∈Sdd(∆n)[n](fτ )∗(γp,∆n), where fτ is the corresponding simplicial

isomorphism fσ1 ◦ . . . ◦ fσd between ∆n and τ . In this sum, we see that each p-simplex of
Sdd(∆n) receives as many Dirac measures as the number of n-simplices adjacent to it. The
number of n-simplices adjacent to σ ∈ Sdd(∆n)[p] is by definition fn−p−1(Lk(σ, Sdd(∆n))).
We deduce

(Φd)∗(ω × γp,∆n) = 1
(n+1)!d

∑
σ∈Sdd(∆n)[p]

fn−p−1

(
Lk(σ, Sdd(∆n))

)
δσ̂

= fn−p−1

(
Lk(σ, Sdd(∆n))

)
dγdp,∆n

(σ).

�
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Corollary 23 For every n-dimensional locally finite simplicial complex K and every p ∈
{0, . . . , n}, the measure fn−p−1

(
Lk(σ, Sdd(K))

)
dγdp,K(σ) weakly converges to fp(∆n)dvolK as

d grows to +∞.

Proof. By definition

γdp,K =
∑

σ∈K[n]

γdp,σ −
∑

τ∈K(n−1)

(fn−dim τ−1(Lk(τ,K))− 1)

(
(dim τ + 1)!

(n+ 1)!

)d
γdp,τ

since for every τ ∈ K(n−1) and every σ ∈ K [n] such that τ < σ, γdp,σ|τ =
(

(dim τ+1)!
(n+1)!

)d
γdp,τ

by definition and τ is a face of exactly fn−dim τ−1(Lk(τ,K)) such σ′s. The result thus follows
from Theorem 19 and Theorem 22. �

4 Limit density of links in a simplicial complex

Corollary 23 computes the limit density as d grows to +∞ of the top face numbers of the
links of p-dimensional simplices in Sdd(K), p ∈ {0, . . . , n}. We are going now to extend this
result to all the face numbers of these links.

Theorem 24 For every n-dimensional locally finite simplicial complex K and every 0 ≤
p < n, the measure qLk(σ,Sdd(K))(T )dγdp,K(σ) (with value in Rn−p−1[T ]) weakly converges to(∑n−p−1

l=0 qp+l+1,nfp(∆p+l+1)T l
)
dvolK as d grows to +∞.

Proof. Let ϕ ∈ C0
c (|K|) be a continuous function with compact support on |K|. For every

0 ≤ l ≤ n− p− 1, let us introduce the set

Il = {(σ, τ) ∈ Sdd(K)[p] × Sdd(K)[p+l+1]|σ < τ}. (1)

It is equipped with the projection p1 : (σ, τ) ∈ Il 7→ σ ∈ Sdd(K)[p] and p2 : (σ, τ) ∈ Il 7→ τ ∈
Sdd(K)[p+l+1]. We observe that for every σ ∈ Sdd(K)[p], #p−1

1 (σ) = fl(Lk(σ, Sdd(K))) while
for every τ ∈ Sdd(K)[p+l+1], p−1

2 (τ) is in bijection with τ [p] (given by p1). Let us set

ϕ1 : (σ, τ) ∈ Il 7→ ϕ(σ̂) ∈ R; ϕ2 : (σ, τ) ∈ Il 7→ ϕ(τ̂) ∈ R; γl =
1

(n+ 1)!d

∑
(σ,τ)∈Il

δ(σ,τ). (2)

Then, we deduce∫
K ϕfl

(
Lk(σ, Sdd(K))

)
dγdp,K(σ) =

∫
Il ϕ1dγl

=
∫
Il ϕ2dγl +

∫
Il(ϕ1 − ϕ2)dγl

=
∫

Sdd(K)[p+l+1](p2)∗(ϕ2dγl) +
∫
Il(ϕ1 − ϕ2)dγl

=
∫
K ϕfp(τ)dγdp+l+1,K(τ) +

∫
Il(ϕ1 − ϕ2)dγl

From Theorem 19, the first term
∫
K ϕfp(τ)dγdp+l+1,K(τ) in the right hand side converges

to qp+l+1,nfp(∆p+l+1)
∫
K ϕdvolK as d grows to +∞ while the second term

∫
Il(ϕ1 − ϕ2)dγl

converges to zero. Indeed, ϕ is continuous with compact support and the diameter of τ ∈
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Sdd(K)[p+l+1] uniformly converges to zero on this compact subset as d grows to +∞. Thus,
the suppremum of (ϕ1 − ϕ2) converges to zero as d grows +∞. On the other hand, the total
mass of γl remains bounded, since∫

Il
1γl =

∫
Sdd(K)[p+l+1]

(p2)∗(dγl) = fp(∆p+l+1)

∫
K
γdp+l+1,K

and the latter is bounded from Theorem 19. The result follows by definition of qLk(σ,Sdd(K))(T ).
�
Note that the (n−1)-skeleton of K has vanishing measure with respect to dvolK while for every
σ ∈ Sdd(K)[p] interior to an n-simplex, its link is a homology (n−p−1)-sphere (Theorem 63.2
of [7]). After evaluation at T = −1 and integration of the constant function 1, Theorem 24
thus provides the following asymptotic Dehn-Sommerville relations:

n∑
l=p

ql,n

(
l + 1

p+ 1

)
(−1)n+l = qp,n.

Now, recall that the dual block D(σ) of a simplex σ ∈ K is the union of all open simplices
[σ̂0 . . . , σ̂p] of Sd(K) such that σ0 = σ, see [7]. The closure D(σ) of D(σ) is called closed block
dual to σ and following [7] we set Ḋ(σ) = D(σ) \D(σ). Then, we get the following.

Theorem 25 For every n-dimensional locally finite simplicial complex K and every 0 ≤ p ≤
n, the measure qD(σ)(T )dγdp,K(σ) weakly converges to

∑n−p
l=0

(∑n−p
h=l qp+h,nfp(∆p+h)λh,l

)
T ldvolK

as d grows to +∞.

Proof. By definition, the dual block D(σ) has only one face in dimension 0, namely σ̂,
so that for the coefficient l = 0, the result follows from Theorem 19. Let us now assume that
0 < l ≤ n− p and choose ϕ ∈ C0

c (|K|). We set

Jl = {(σ, θ) ∈ Sdd(K)[p] × Sdd+1(K)[l−1]|θ ∈ Ḋ(σ)}.

Let p1 : (σ, θ) ∈ Jl 7→ σ ∈ Sdd(K)[p]. Then, for every σ ∈ Sdd(K)[p], #p−1
1 (σ) = fl(D(σ)),

since p−1
1 (σ) is in bijection with Ḋ(σ) and by taking the cone over σ̂ we get an isomorphism

τ ∈ Ḋ(σ) 7→ σ̂∗τ ∈ D(σ)\σ̂ where ∗ denotes the join operation. (Recall that if τ = [e0, . . . , ek]
the join σ̂ ∗ τ is [σ̂, e0, . . . , ek].)

Likewise by definition, every simplex θ ∈ Ḋ(σ)[l−1] reads θ = [τ̂0, . . . , τ̂l−1] where σ < τ0 <
. . . < τl−1 are simplices of Sdd(K) (see Theorem 64.1 of [7]). We deduce a map

π : Jl →
n−p−1⊔
h=l−1

Ih

(σ, [τ̂0, . . . , τ̂l−1]) 7→ (σ, τl−1)

where Ih is the set defined in (1).
We then set p2 : (σ, τ) ∈

⊔n−p−1
h=l−1 Ih 7→ τ ∈ Sdd(K)\Sdd(K)(p+l−1). As in the proof of The-

orem 24, for every τ ∈ Sdd(K) \ Sdd(K)(p+l−1), p−1
2 (τ) is in bijection with τ [p] and π−1(σ, τ)

with the set of interior (l − 1)-dimensional simplices of Sd(Lk(σ, τ)), so that #π−1((σ, τ)) =
λh+1,l if dim τ = p+h+1. Let us set ϕ̃1 : (σ, τ) ∈ Jl 7→ ϕ(σ̂) ∈ R and γ̃l = 1

(n+1)!d

∑
(σ,θ)∈Jl δ(σ,θ).

Then, we deduce
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∫
K ϕfl(D(σ))dγdp,K(σ) =

∫
Jl ϕ̃1dγ̃l

=
∑n−p−1

h=l−1 λh+1,l

∫
Ih ϕ1dγh

by pushing forward ϕ̃1dγ̃l onto
⊔n−p−1
h=l−1 Ih with π, where ϕ1 and γh are defined by (2).

Now, we have established in the proof of Theorem 24 that as d grows to +∞,
∫
Ih ϕ1dγh

converges to fp(∆p+h+1)qp+h+1

∫
K ϕdvolK . We deduce that fl(D(σ))dγdp,K(σ) weakly con-

verges to
(∑n−p

h=l λh,lfp(∆p+h)qp+h,n

)
dvolK . Hence the result. �

Remark 26 In [8], we study the expected topology of a random subcomplex in a finite sim-
plicial complex K and its barycentric subdivisions. The Betti numbers of such a subcomplex
turn out to be asymptotically controlled by the measure given by Theorem 25.

Let us now finally observe that Theorem 25 provides a geometric proof of the following
(compare Theorem A of [3]).

Corollary 27 The vector (qp,n)0≤p≤n is the eigenvector of Λtn associated to the eigenvalue
(n+ 1)!, normalized by the relation qn,n = 1.

Proof. By Theorem 64.1 of [7], we know that the dual blocks of a complex K are disjoint
and that their union is |K|. We deduce that for every d ∈ N∗,

1

(n+ 1)!d
qSdd+1(∆n)(T ) =

n∑
p=0

∫
∆n

qD(σ)(T )dγdp,∆n
(σ).

By letting d grow to +∞, we now deduce from Theorem 25, applied to K = ∆n and after
integration of 1, that

(n+ 1)!
n∑
p=0

qp,nT
p =

n∑
p=0

(
n−p∑
l=0

T l
n∑

h=p+l

qh,nfp(∆h)λh−p,l

)

=
n∑
l=0

T l

(
n∑
h=l

qh,n
h−l∑
p=0

fp(∆h)λh−p,l

)

Now,
h−l∑
p=0

fp(∆h)λh−p,l =
h∑
p=l

(
h+1
p

)
λp,l = λh+1,l+1 from Lemma 13. Hence, for every

p ∈ {0, . . . , n}, (n+ 1)!qp,n =
n∑
h=l

qh,nλh+1,l+1. �
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