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Abstract

This paper is devoted to the the search of robust
solutions in state space graphs when costs de-
pend on scenarios. We first present axiomatic re-
quirements for preference compatibility with the
intuitive idea of robustness. This leads us to pro-
pose the Lorenz dominance rule as a basis for ro-
bustness analysis. Then, after presenting com-
plexity results about the determination of robust
solutions, we propose a new sophistication of A∗

specially designed to determine the set of robust
paths in a state space graph. The behavior of the
algorithm is illustrated on a small example. Fi-
nally, an axiomatic justification of the refinement
of robustness by an OWA criterion is provided.

1 INTRODUCTION

In heuristic search in state space graphs, the value of an
action allowing a transition between two nodes is usually
represented by a scalar cost and the quality of a path by
the sum of the costs of its arcs. In this framework, useful
constructive search algorithms like A∗ and A∗ε (Hart et al.,
1968; Pearl, 1984) have been proposed, performing the im-
plicit enumeration of feasible solutions, directed by a nu-
merical cost function to be minimized. However, in many
practical search problems considered in Artificial Intelli-
gence (e.g. path planning, game search, web search), the
scalar-costs assumption in state space graphs does not fit,
thus inducing additional sources of complexity for prob-
lem solving. For this reason, recent works use alternative
assumptions and consider, for example, the problem of:

• dealing with multiple criteria: this concerns problems
where the value of an action making a transition be-
tween two nodes must be evaluated according to differ-
ent attributes, expressed on non-commensurate scales, non-
necessarily reducible to a single additive cost function. In
such problems, the state space graph representation with a
vector-valued cost function is useful and leads to several

possible extensions of A∗, e.g. MOA∗ to find all the ef-
ficient paths (Stewart and White III, 1991), U∗ to find a
maximal path according to a multiattribute utility function,
ABC∗ to find paths which best satisfies a set of prioritized
soft constraints (Logan and Alechina, 1998).

• dealing with uncertainty:this concerns problems where
the cost of the arcs are ill-known and characterized by
uncertainty distributions. For example, when costs are
time dependent and representable by random variables, the
SDA∗ algorithm is used to determine the preferred paths
according to the stochastic dominance partial order (Well-
man et al., 1995). A sophistication of this algorithm spe-
cially designed to cope with both uncertainty and multiple
criteria is proposed in Wurman and Wellman (1996).

In this paper we consider another variation of the search
problem under uncertainty, that concerns situations where
costs of paths might depend on different possible scenarios
(states of the world) or come from discordant sources of in-
formation. In this context, our aim is to focus on the idea of
robustnessand the search of robust solutions as introduced
in the following example:

Example 1. We want to find the “best” path in the state
space graph pictured on Figure 1 from a source nodea to
a goal nodeγ1 or γ2 in a context where two different sets
of costs must be considered.
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Figure 1: The state-space graph.

This formal problem could be derived from different practi-
cal situations requiring decision making under uncertainty.
For instance, consider an ambulance driver who wants to



Path Nodes Costs
1 (a, b, γ1) (9,9)
2 (a, b, c, γ1) (12,6)
3 (a, b, c, γ2) (10,7)
4 (a, b, d, c, γ1) (10,11)
5 (a, b, d, c, γ2) (8,12)
6 (a, b, d, γ2) (12,11)
7 (a, c, γ1) (13,5)
8 (a, c, γ2) (11,6)
9 (a, d, c, γ1) (6,11)

10 (a, d, c, γ2) (4,12)
11 (a, d, γ2) (5,11)

Table 1: The set of solution-paths.

rush a man from pointa to one of the city hospitals lo-
cated inγ1 and γ2. Assume that two scenarioss1, s2 on
the traffic in the city are considered, leading to a cost vec-
tor of type(c(s1), c(s2)) on each arrow. The problem is
to determine the best destination and the best path. As an
alternative example, consider a planning problem for an
autonomous agent whose current objective is to reach one
of the goal statesγ1 or γ2 from the initial statea. The
cost of each possible action is estimated by two external
sensors located in different places and the agent does not
know which is the most reliable sensor during the decision
period. In both problems, one might be interested in find-
ing a “robust” solution, i.e., a path which remains suitable
whatever scenario (or sensor) is considered. This idea of
robustness is consistent with the view of Kouvelis and Yu
(1997) and Vincke (1999) but differs from the robustness
considered in Aron and Van Hentenryck (2002) concerning
minimal spanning tree problems with imprecise costs. The
major difference is that, in our context, costs are linked to
scenarios, thus making some combinations impossible. For
example, considering Figure 1, the effective cost of path
(a, b, c) cannot be 7, because(a, b) and (b, c) cannot get
simultaneously costs like 5 and 2 (or 3 and 4) respectively.
Considering the graph pictured on Figure 1, the costs vec-
tors of solution-paths are listed in Table 1.

Facing such problems, simple scalarizations of cost-vectors
do not lead to convincing results. For instance, using the
average of the costs yields, among others, path 10 which
is the worst solution if scenarios2 occurs. Performing a
weighted sum of the costs does not solve this problem ei-
ther. Indeed, by geometrical arguments, it can easily be
shown that solutions 1 and 3 cannot be obtained by min-
imizing a weighted sum of costs (they do not belong to
the boundary of the convex hull of the points represent-
ing paths in the criteria space). Finally, focusing only on
the worst cost over the scenarios (minimax criterion) is not
really satisfactory due to overpessimistic evaluation. For
example solution 3 cannot be obtained by the minimax cri-
terion despite its promising costs due to the presence of the
-indeed interesting- solution 1. Note that the dominance
order is not more adequate since it yields too many solu-

tions (paths 10, 11, 1, 3, 8, 7). These observations show
the inadequacy of standard decision criteria to account for
the idea of robustness as introduced above. Thus, the aim
of the paper is:

• to propose an axiomatic framework for robustness and a
formal definition of robust solutions,
• to introduce new algorithms to determine robust solutions
in state space graphs.

The paper is organized as follows: Section 2 is devoted to
the formal definition of robustness. Section 3 presents com-
plexity results concerning the search of robust solutions and
a heuristic search algorithm to find the set of robust paths
in a state space graph. Finally in Section 4, we provide an
axiomatic justification of the refinement of robustness by
an OWA criterion.

2 DEFINING ROBUSTNESS

Considering a finite set of scenariosS = {s1, . . . , sm},
any solution-path can be seen as anact c : S → R+ in the
sense of Savage (1954), characterized by the cost vector
(c(s1), . . . , c(sm)) in Rm

+ whoseith component represents
the cost of the path with respect to scenariosi. Hence,
the comparison of paths reduces to the comparison of their
cost-vectors. In this framework, the following definitions
are useful:

Definition 1. The Weak-Pareto dominance relation (WP-
dominance for short) on cost-vectors ofRm

+ is defined, for
all x, y ∈ Rm

+ by:

x %P y ⇐⇒ [∀i ∈ {1, . . . , m}, xi ≤ yi)]

The Pareto dominance relation (P-dominance for short) on
cost-vectors ofRm

+ is defined as the asymmetric part of%P :

x ÂP y ⇐⇒ [x %P y and not(y %P x)]

Definition 2. Within a setX any elementx is said to be
P-dominatedwheny ÂP x for somey in X, andP-non-
dominatedwhen there is noy in X such thaty ÂP x.

In order to decide whether a path is better than another, we
want to define a transitive preference relation% on cost-
vectors capturing both the aim of cost-minimization and
the idea of robustness. For this reason, the preference rela-
tion is expected to satisfy the following axioms:

P-Monotonicity. For allx, y ∈ Rm
+ , x %P y ⇒ x % y and

x ÂP y ⇒ x Â y,

whereÂ is the strict preference relation defined as the
asymmetric part of%. This natural unanimity principle
says that, if pathx has a lower cost than pathy whatever
the scenario considered, thenx is preferred toy, and this
preference is strict as soon asx 6= y. Then, the idea of
robustness refers to equity in cost distribution among sce-
narios which can be expressed by the following axiom:

Transfer Principle. Let x ∈ Rm
+ such thatxi > xj for



somei, j. Then for all ε such that0 ≤ ε ≤ xi − xj ,
x− εei + εej % x whereei (resp.ej) is the vector whose
ith (resp.jth) component equals 1, all others being null.

This axiom captures the idea of robustness as follows: if
xi > xj for some cost-vectorx ∈ Rm

+ , slightly improv-
ing (here decreasing) componentxi to the detriment ofxj

while preserving the mean of the costs would produce a
better distribution of costs, and consequently a more robust
solution. Hence, path 1 should be at least as good as path
7 in Example 1 because there is an admissible transfer of
size 4 between vectors (13, 5) and (9 , 9). Note that us-
ing a similar transfer of size greater than 8 would increase
inequality in terms of costs. This explains why the trans-
fers must have a sizeε ≤ xi − xj . Such transfers are said
to beadmissiblein the sequel. They are known asPigou-
Dalton transfersin Social Choice Theory, where they are
used to reduce inequality in the income distribution over a
population (see Sen (1997) for a survey).

Since elementary permutations of the vector(x1, . . . , xm)
that just interchange two coordinates can be achieved us-
ing an admissible transfer, and since any permutation of
{1, . . . , n} is the product of such elementary permutations,
the Transfer Principle implies the following axiom:

Symmetry. For all x ∈ Rm
+ , for all permutationsπ of

{1, . . . , m}, (xπ(1), . . . , xπ(m)) ∼ (x1, . . . , xm),

where∼ is the indifference relation defined as the symmet-
ric part of%. This axiom is natural in our context. Since no
information about the likelihood of scenarios is available,
they must be treated equivalently.

Note that the transfer principle possibly provides argu-
ments to discriminate between vectors having the same
average-cost but does not apply in the comparison of vec-
tors having different average-costs. However, the possi-
bility of discriminating is improved when combining the
Transfer Principle with P-monotonocity. For example, con-
sider paths 7 and 8 in Table 1 whose cost vectors are(13, 5)
and (11, 6) respectively. Although P-dominance cannot
discriminate between these two vectors, the discrimination
is possible for any preference relation% satisfying both
the Transfer Principle and the P-monotonocity axiom. In-
deed, on the one hand,(11, 6) ÂP (12, 6) and therefore
(11, 6) Â (12, 6) thanks to P-monotonicity; on the other
hand,(12, 6) % (13, 5) thanks to the Transfer Principle ap-
plied to the transfer(13 − 1, 5 + 1) = (12, 6). Hence,
we get: (11, 6) Â (13, 5) by transitivity. In order to bet-
ter characterize those vectors that can be compared using
such combination of the P-monotonicity and the Transfer
Principle we recall the definition of Lorenz vectors and re-
lated concepts (for more details see e.g. Marshall and Olkin
(1979); Shorrocks (1983)):

Definition 3. For all x ∈ Rm
+ , theGeneralized Lorenz Vec-

tor associated tox is the vector:

L(x) = (x(1), x(1) + x(2), . . . , x(1) + x(2) + . . . + x(m))

wherex(1) ≥ x(2) ≥ . . . ≥ x(m) represents the compo-
nents ofx sorted by decreasing order. Thekth component
of L(x) is Lk(x) =

∑k
i=1 x(i).

Definition 4. The Generalized Lorenz dominance relation
(L-dominance for short) onRm

+ is defined by:

∀x, y ∈ Rm
+ , x %L y ⇐⇒ L(x) %P L(y)

The notion of Lorenz dominance was initially introduced
to compare vectors with the same average cost and its link
to the transfer principle was established by Hardy et al.
(1934). The generalized version of L-dominance consid-
ered here is classical (see e.g. Marshall and Olkin (1979))
and allows any pair of vectors inRm

+ to be compared.
Within a setX, any elementx is said to beL-dominated
wheny ÂL x for somey in X, andL-non-dominatedwhen
there is noy in X such thaty ÂL x. In order to estab-
lish the link between Generalized Lorenz dominance and
preferences satisfying combination of P-Monotonocity and
Transfer Principle we recall a result of Chong (1976):

Theorem 1. For any pair of distinct vectorsx, y ∈ Rm
+ , if

x %P y, or if x obtains fromy by a Pigou-Dalton trans-
fer, thenx %L y. Conversely, ifx %L y, then there
exists a sequence of admissible transfers and/or Pareto-
improvements to transformy into x.

This theorem establishes%L as the minimal transitive re-
lation (with respect to set inclusion) satisfying simultane-
ously P-Monotonicity and the Transfer Principle. As a con-
sequence, the subset of L-non-dominated elements appears
as a very natural solution to choice problems with multiple
scenarios, as far as robustness is concerned. For this rea-
son, we investigate in the next section the generation of the
set of L-non-dominated paths in a state space graph.

3 SEARCH FOR ROBUST SOLUTIONS

3.1 COMPUTATIONAL COMPLEXITY

We investigate here the computational complexity of the
search of the set of L-non-dominated solution-paths in a
state space graph. Note first that the L-non-dominated so-
lutions are a subset of the P-non-dominated solutions which
might be very numerous. We wish to evaluate the extend to
which focusing on L-non-dominated solutions (rather than
P-non-dominated solutions) reduces the size of the solution
space. In this respect, the study of the pathological instance
introduced in Hansen (1980) for the multi-objective short-
est path problem is quite significant (one looks for the set
of P-non-dominated paths from a source node to a desti-
nation node, see Figure 2). In that bivalued graph, all the
paths from node 1 to node2p + 1 have the same average-
cost (whose value is(2p − 1)/2) but distinct costs on the
first component (due to the uniqueness of the binary repre-
sentation of an integer). The resulting set of cost-vectors is
{(x, 2p−1−x), x ∈ {0, . . . , 2p−1}}, which contains only



 

 1  3 

4 

5 

 6  2 2p-2 2p 

2p+1 

(1,0) (0,0) (2,0) 

(0,1) (0,2) 

(0,0) 

(0,4) 

(4,0) (0,0) 

(0,2i-1) 

(0,0) (2i-1,0) 

(0,2p-1) 

(0,0) (2p-1,0) 

Figure 2: The pathological instance of Hansen.

P-non-dominated elements by construction. Notice that the
cardinal of this set is exponential in the size of the graph.
However, due to the Transfer Principle, there exists only
two L-non-dominated cost vectors (those minimizing the
difference between their components). Unfortunately, it is
also possible to exhibit pathological instance for our prob-
lem, such as the graph on Figure 3 (where every arc without
cost-vectors is actually valued(0, 0)). Indeed, all the paths
from node 0 to node2p+1 have distinct Lorenz vectors and
are L-non-dominated. The proof is similar to the previous
one. The set of cost vectors associated with the solution-
paths of the graph is{(2x, 3 × 2p − x), x ∈ {0, . . . , 2p −
1}}. Note that the second component is always greater
than the first component forx ∈ {0, . . . , 2p − 1}. Con-
sequently, the corresponding set of Lorenz vectors writes
{(3×2p−x, 3×2p+x), x ∈ {0, . . . , 2p−1}}. All Lorenz
vectors have the same average-cost and distinct values on
the the first component. Moreover, the size of that set is
exponential in the size of the graph. Due to the potentially
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Figure 3: An instance where all paths are L-non-
dominated.

exponential number of L-non-dominated paths, the follow-
ing proposition is immediate:

Proposition 1. The problem of finding L-non-dominated
paths in a graph is, in worst case, intractable, i.e. requires
for some problems a number of operations which grows ex-
ponentially with the size of the problem.

In other respects, one may be interested in the complexity
of deciding whether there exists a path whose cost distribu-
tion L-dominates a given cost-vector. The following result
establishes that this decision problem cannot be solved in
polynomial time unlessP = NP :

Proposition 2. Deciding whether there exists a path whose
cost distribution L-dominates a given cost-vector is an NP-
complete decision problem.

Proof. We reduce the partition problem to our problem.

instance: Finite setA = {a1, . . . , ap} and a sizes(a) ∈
Z+ for eacha ∈ A.

question:Is there a subsetA′ ⊆ A such that
∑

a∈A′ s(a) =∑
a∈A−A′ s(a)?

That problem is proved NP-complete (see e.g. Garey and
Johnson (1979)). One constructs -in polynomial time- a
graph as indicated on Figure 4 (where every arc without
cost-vectors is actually valued(0, 0)). Deciding whether
there exists a path from node1 to node2p + 1 such that its

vector-cost L-dominates the vector(
∑

a∈A s(a)

2 ,
∑

a∈A s(a)

2 )
amounts to solve the partition problem. 2
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3.2 ALGORITHM

Due to the existence of multiple scenarios, the search of
a robust solution can be seen as a particular specification
of a multi-objective path problems (the objectives corre-
sponding to the different scenarios). Several variations
of A∗ have been studied to generate the P-non-dominated
solution-paths in multi-objective problems, see e.g. Stewart
and White III (1991); Dasgupta et al. (1996a). As the set
of L-non-dominated solution-paths is included in the set of
P-non-dominated solution-paths, we can use a sophistica-
tion of these algorithms that exploits the exact nature of
L-dominance (using the idea of approximation of a prefer-
ence relation suggested in Perny and Spanjaard (2002)).

Let us briefly recall some essential features of multi-
objective A∗. In a graph valued by cost-vectors, there pos-
sibly exists several P-non-dominated paths to reach a given
node. Hence, at each noden, one stores aset G(n) of
cost-vectorsg(n) corresponding to P-non-dominated paths
arriving in n. Moreover, a noden may be on the path of
more than one P-non-dominated solutions. Consequently, a
setH(n) of heuristic cost-vectorsh(n) is assigned to each
noden. Finally, at each noden, a setF (n) of evaluation
vectorsf(n) is computed from all possible combinations
{g(n) + h(n) : g(n) ∈ G(n), h(n) ∈ H(n)}.
The algorithm we propose to compute robust solution-paths
relies on this general pattern. Before presenting our search
algorithm itself, we establish two preliminary results on
which our pruning rule and our priority rule are grounded:

Proposition 3. For anyx, y, z ∈ Rm
+ , [x ÂL y and y ÂP

z] =⇒ x ÂL z

Proof. By definitiony ÂP z =⇒ y ÂL z. Sincex ÂL y
we getx ÂL z by transitivity. 2



Proposition 4. A cost-vector(x1, . . . , xm) L-dominates
any cost-vector(y1, . . . , ym) such that

∑m
i=1 yi > m.x(1).

Proof. Assume that: (i)
∑m

i=1 y(i) > m.x(1) and

(ii) ∃k ≤ m s.t.
∑k

i=1 y(i) <
∑k

i=1 x(i). We know that
y(1) > x(1) thanks to(i). Due to(ii), ∃j ∈ {1, . . . , k}
s.t. y(j) < x(j) ≤ x(1) and thereforey(k) < x(1) (because

y(k) ≤ y(j)). Then, we have
∑k

i=1 x(i) ≤ k.x(1) which

implies (iii)
∑k

i=1 y(i) < k.x(1) by (ii). Moreover, we
have(iv)

∑m
i=k+1 y(i) ≤ (m − k)y(k). Sincey(k) ≤ y(j)

< x(1) we have(m− k)y(k) < (m− k)x(1) and therefore
we get(v)

∑m
i=k+1 y(i) < (m − k)x(1) by (iv). Finally

we get:
∑m

i=1 yi < m.x(1) by (iii) and(v) which yields a
contradiction. 2

Here are the main features of our algorithm, where we ex-
pand labels rather than nodes:

Output: we determine the set of L-non-dominated paths
from the source node to a goal node. If several paths have
the same L-non-dominated Lorenz vector, we detect only
one path among them.

Heuristics: like in MOA∗, we use an admissible setH(n)
of vector-valued heuristic costs, i.e. for any cost-vectorc of
a P-non-dominated path fromn to a goal node, there exists
h(n) ∈ H(n) such thath(n) %P c.

Priority: the search is totally ordered by a lexicographic
order on evaluation vectorsf(n) defined at each open node
n. This evaluation functionf(n) is obtained in two steps.
We first computeF (n), the set of all costs vectors of type
g(n) + h(n) whereg(n) is the cost-vector of any P-non-
dominated subpath arriving inn andh(n) is the cost of any
vector in the heuristic setH(n). Then,f(n) is defined as
the best element of the set{L(x), x ∈ F (n)} using the
following lexicographic order:

L(x) Âlex L(y) ⇐⇒ ∃k
{ ∀i < k : Li(x) = Li(y)

Lk(x) < Lk(y)

This is also the lexicographic order used to rank the open
nodes by decreasing order of priority according to their
evaluation vectorf(n). The choice of that priority rule is
motivated by two remarks:

- a heuristic consideration: the early detection of a
minimax-optimal solution-path1 potentially speeds up the
search by providing the best bound to prune paths accord-
ing to Proposition 4.

- a prudence consideration: at the goal nodes, such a prior-
ity rule guarantees to expand only labels corresponding to
L-non-dominated solution-paths.

Stopping condition: the algorithm is kept running un-
til there is no remaining subpath able to reach a new L-

1Note that the greatest component of a cost vector is the first
component of the corresponding Lorenz vector.

non-dominated solution-path,i.e. all open labels are ei-
ther P-dominated by another label on the same node or L-
dominated by a solution-path already detected.

Pruning: the Bellman principle does not hold for L-
dominancei.e. a L-non-dominated path could contain a
L-dominated subpath. For example, assume that two sub-
pathsP1 andP2 of costs(3, 2) and(1, 4) lead to the same
node. It is easy to see thatP1 ÂL P2. However, if we ex-
tend both subpaths by the same subpathP3 of cost(3, 1),
thenP2 ∪ P3 ÂL P1 ∪ P3. That is why, we must be very
careful in pruning L-dominated subpaths during the search.
Consequently, we use the two following pruning rules, that
we apply at the beginning of each iteration:

- we prune any subpath whose value of the evaluation func-
tion is L-dominated by (or equal to) an already detected
solution-path;
- we prune any subpath P-dominated by (or equal to) an-
other subpath at the same node, as it is usual in multiobjec-
tive heuristic search.

Such subpaths cannot lead to new L-non-dominated cost
vectors at a goal node. Indeed, as soon as we assume
there exists a strictly positive lower bound on each cost, a
path is P-dominated by any of its subpaths. Consequently,
by Proposition 3, if a subpath is L-dominated by an al-
ready detected solution-path, any extension will be also L-
dominated by the same solution-path. Similarly, if a sub-
path is P-dominated by another subpath at the same node,
any extension will be also P-dominated (thus L-dominated)
by the corresponding extension of the P-dominating sub-
path. For the convenience of the reader, we give now a
detailed example to illustrate the behavior of the algorithm.

Example 2. Consider the graph of Figure 1. The arc
costs are shown beside each arc. The heuristic set at a
node n is defined by the P-non-dominated cost vectors
of the arcs with tails at noden. Obviously, such vec-
tors under-estimate the remaining costs to reach a goal
node, thus leading to an admissible heuristic. For in-
stance, the set of heuristics at nodea is {(5, 3), (2, 6)}.
Let [n, g, L(f)]p denote a label of a path from the source
to noden, whereg is the cost-vector of that path,L(f)
is the Lorenz vector corresponding to the valuef of the
evaluation function andp is a pointer to the previous node
along the path. The trace of the algorithm is indicated on
Table 2, with the following conventions: * pinpoints the
pruned labels whereasÂ pinpoints the L-non-dominated
solution-paths. The pruning rules speed up the explo-
ration of the state space graph, as shown hereafter. At it-
eration 3, label[d, (6, 6), (10, 17)]d is pruned since(6, 6)
is P-dominated by(2, 6) (three solutions-paths avoided).
At iteration 6, label[γ1, (12, 6), (12, 18)]c is pruned since
its evaluation is L-dominated by(9, 18). At iteration 7,
labels [c, (10, 4), (11, 17)]a and [c, (3, 10), (11, 17)]d are
pruned since their evaluations are L-dominated by(10, 17)
(four solution-paths avoided). At iteration 8, there is no



iteration open labels expanded label
1 [a, (0, 0), (5, 8)] [a, (0, 0), (5, 8)]
2 [b, (5, 3), (6, 12)]a

[c, (10, 4), (11, 17)]a
[d, (2, 6), (10, 13)]a

[b, (5, 3), (6, 12)]a

3 [c, (10, 4), (11, 17)]a
[d, (2, 6), (10, 13)]a
[γ1, (9, 9), (9, 18)]b
[c, (9, 5), (10, 17)]b
[d, (6, 6), (10, 17)]b*

Â [γ1, (9, 9), (9, 18)]b

4 [c, (10, 4), (11, 17)]a
[d, (2, 6), (10, 13)]a
[c, (9, 5), (10, 17)]b

[d, (2, 6), (10, 13)]a

5 [c, (10, 4), (11, 17)]a
[c, (9, 5), (10, 17)]b
[c, (3, 10), (11, 17)]d
[γ2, (5, 11), (11, 16)]d

[c, (9, 5), (10, 17)]b

6 [c, (10, 4), (11, 17)]a,
[c, (3, 10), (11, 17)]d
[γ2, (5, 11), (11, 16)]d
[γ1, (12, 6), (12, 18)]c*
[γ2, (10, 7), (10, 17)]c

Â [γ2, (10, 7), (10, 17)]c

7 [c, (10, 4), (11, 17)]a*
[c, (3, 10), (11, 17)]d*
[γ2, (5, 11), (11, 16)]d

Â [γ2, (5, 11), (11, 16)]d

8 ∅ stop

Table 2: Trace of the algorithm.

more label and the algorithm stops. In all, the prun-
ing rules enable here to break the exploration of seven
L-dominated solution-paths (over eight) before they reach
a goal node. In other respects, note that the expansion
of labels rather than nodes allows the expansion of la-
bels [c, (10, 4), (11, 17)]a and [c, (3, 10), (11, 17)]d to be
avoided.

4 REFINING ROBUSTNESS

As shown in Subsection 3.1, the set of L-non-dominated
solutions is a subset of P-non-dominated solutions but it
might contain an important number of elements. For this
reason, we would like to refine the notion of robust solution
by proposing a criterion allowing to discriminate between
the L-non-dominated solutions. We propose here an ax-
iomatic result concerning the numerical representation of
a preference weak-order% on X = Rm

+ consistent with
L-dominance.

The first axiom requires that the only relevant information
to discriminate between solutions is the corresponding gen-
eralized Lorenz vector:

Neutrality. For allx, y in X, L(x) = L(y) ⇒ x ∼ y.

We may define a preference relation%′ among Lorenz vec-
tors of L(X) = {v ∈ Rm

+ : ∃x ∈ Rm
+ , v = L(x)} by

setting, for anyL,M,∈ L(X)

L %′ M ⇔ ∃x, y ∈ X,

{
L(x) = L andL(y) = M
x % y

For the sake of convenience, we now use% instead of%′ to
denote the preference relation among Lorenz vectors. As
we intend the preference relation to refine L-dominance,
we need the following axiom:

Strict L-Monotonicity. L(x) ÂP L(y) ⇒ x Â y.

Then we introduce three axioms that can be seen as coun-
terparts of von Neumann and Morgenstern (1947) axioms
adapted for Lorenz vectors.

Complete weak-order.% is reflexive, transitive and com-
plete.

Continuity. Let L,M,N ∈ L(X) such thatL ÂM Â N .
There existsα, β ∈]0, 1[ such that:

αL + (1− α)N Â M Â βL + (1− β)N

Independence. Let L,M, N belong toL(X). Then, for
all α ∈]0, 1[:

L Â M =⇒ αL + (1− α)N Â αM + (1− α)N

It is important to observe that this independence axiom
is a weakening of the usual independence axiom onX,
obtained by restriction to comonotonic vectors, wherex
and y in X are said to becomonotonicif xi > xj and
yi < yj for no i, j ∈ {1, . . . , m}. Indeed, for any pair
x, y of comonotonic vectors, there exists a permutationπ
of {1, . . . , m} such thatxπ(1) ≥ xπ(2) ≥ . . . ≥ xπ(m)

and yπ(1) ≥ yπ(2) ≥ . . . ≥ yπ(m). Consequently,
L(αx + (1 − α)y) = αL(x) + (1 − α)L(y). Hence,
for all comonotonic vectorsx, y, z ∈ X, if x Â y =⇒
αx + (1 − α)z Â αy + (1 − α)z thenL(x) Â L(y) =⇒
αL(x) + (1 − α)L(z) Â αL(y) + (1 − α)L(z). Observ-
ing that for any tripleL,M, N of Lorenz vectors, there
existsx, y, z, three comonotonic vectors inX such that
L = L(x),M = L(y) andN = L(z), we deduce that
usual independence onX implies independence onL(X).

Note that weakening the usual independence is necessary
in our framework due to its incompatibility with the Strict
L-monotonicity axiom, as shown by the following:

Example 3. Let us considerx = (24, 24), y = (22, 26)
and z = (26, 22). Due to Strict L-monotonicityx Â y.
Hence, usual independence would imply(25, 23) = 1

2x +
1
2z Â 1

2y + 1
2z = (24, 24) which is in contradiction with

(24, 24) ÂL (25, 23).

The conflict here can be explained as follows: on the
one hand, the cost-dispersion of vector(25, 23) resulting
from the combination ofx and z is greater than that of
x = (24, 24); on the other hand, the cost dispersion of
vector(24, 24) resulting from the combination ofy andz
is smaller than that ofy = (22, 26). This situation cannot
occur whenx, y andz are pairwise comonotonic, which
explains the very idea of our independence axiom.

Actually, a similar idea was already present in Dual Choice
Theory under Risk (see Yaari (1987)) in the form of the
Dual independance axiom. The link with Yaari’s theory



under Risk is natural here since Lorenz vectors can be seen
as counterparts of cumulative distribution functions in de-
cision under risk.

Before introducing our representation theorem, we need to
show thatL(X) with the usual convex combination in vec-
tor spaces is amixture set(Herstein and Milnor, 1953):

Definition 5. A mixture set is a setM and a functionf
that assigns an elementf(α, x, y) = αx + (1− α)y inM
to eachα in [0, 1] and each ordered pair(x, y) inM×M
such that:

M1. 1x + 0y = x,
M2. αx + (1− α)y = (1− αy) + αx,
M3. α[βx + (1− β)y] + (1− α)y = (αβ)x + (1− αβ)y,

for all x, y in M andα, β in [0, 1].

We have:

Lemma 1. L(X) is a mixture set with respect to the usual
convex combination in vector spaces.

Proof. We first establish thatαL + (1 − α)M belongs
to L(X). Consider two vectorsx and y in X such that
L = L(x) andM = L(y). It is easy to check thatαL
+ (1 − α)M = L(αx + (1 − α)y) and thereforeαL +
(1 − α)M ∈ L(X). Then, M1 and M2 being straightfor-
ward, we only prove M3:α[βL + (1− β)M ] + (1−α)M
= αβL+αM−αβM +M−αM = αβL+(1−αβ)M . 2

A linear function on a mixture set is defined as follows:

Definition 6. ϕ : M→ R is linear if ϕ(αx+(1−α)y) =
αϕ(x) + (1− α)ϕ(y) for all α ∈ [0, 1] andx, y ∈M .

Note that here, since the mixture operation coincides with
the usual convex combination in vector spaces,ϕ is auto-
maticallym-linear: ϕ(

∑m
i=1 αixi) =

∑m
i=1 αiϕ(xi) with

αi ∈ [0, 1] for all i (proof by recursion).

Moreover, note that the set{`i = (1, 2, . . . , i−1, i, . . . , i) :
i = 1, . . . , m} is a generator set forL(X) (every element
can be seen as a combination of those vectors ofL(X)).
Indeed, by setting̀0 = (0, . . . , 0) and`m+1 = `m, we can
write ei = 2`i − `i−1 − `i+1 for all i in {1, . . . ,m}, where
ei is the vector whoseith component equals 1, all others
being null. Consequently, every vectorL of L(X) can be
written:

L =
∑m

i=1 Liei =
∑m

i=1 Li(2`i − `i−1 − `i+1)
=

∑m
i=1(2Li − Li−1 − Li+1)`i

(1)

with the conventionL0 = 0 andLm+1 = Lm. We can now
establish our representation theorem:

Theorem 2. A preference relation% satisfies Neutral-
ity, Strict L-monotonicity, Complete weak-order, Continuity
and Independence iff there is a linear functionϕ on L(X)
such thatx % y ⇐⇒ ϕ(L(x)) ≤ ϕ(L(y)) where:

ϕ(L(x)) =
∑m

i=1(2ϕ(`i)− ϕ(`i−1)− ϕ(`i+1))Li(x)

andϕ(`i)− ϕ(`i−1) > ϕ(`i+1)− ϕ(`i) > 0 for all i

Proof. By Neutrality,x % y iff L(x) % L(y) and there-
fore assuming a complete weak-order onX amounts to as-
suming a complete weak-order onL(X). Using the clas-
sical result of Herstein and Milnor (1953) on mixture sets
and Lemma 1, the following two statements are equivalent:

- Complete weak-order, Continuity and Independence hold;

- there is a linear functionϕ onL(X) that preservesÂ: for
all L,M ∈ L(X), L Â M iff ϕ(L) < ϕ(M).

For every vectorL(x) of L(X) \ {`0} we have2Li(x) −
Li−1(x)− Li+1(x) = x(i) − x(i+1) ≥ 0 for i = 1, . . . ,m
with the conventionxm+1 = 0. Hence

∑m
i=1(Li(x) −

Li−1(x) − Li+1(x)) =
∑m

i=1 x(i) -
∑m

i=1 x(i+1) = x(1).
Then the coefficients(Li(x)−Li−1(x)−Li+1(x))/x(1) are
positive and add-up to 1. By them-linearity ofϕ, ϕ(`0) =
0 and for every vectorL(x) of L(X) \ {`0} we deduce
thanks to Equation 1:ϕ(L(x)/x(1)) = ϕ(

∑m
i=1 [(2Li(x)−

Li−1(x)−Li+1(x))/x(1)]`i) =
∑m

i=1[(2Li(x)−Li−1(x)−
Li+1(x))/x(1)]ϕ(`i) = 1/x(1)

∑m
i=1(2Li(x)−Li−1(x)−

Li+1(x))ϕ(`i). Then multiplication by x(1) yields
ϕ(L(x)) =

∑m
i=1(2Li(x) − Li−1(x) − Li+1(x))ϕ(`i)

=
∑m

i=1(2ϕ(`i)− ϕ(`i−1)− ϕ(`i+1))Li(x).

Moreover, Strict L-monotonicity implies that2ϕ(`i) >
ϕ(`i+1) + ϕ(`i−1) since`i+1 + `i−1 ÂL 2`i, andϕ(`i+1)
> ϕ(`i) since`i ÂL `i+1. Conversely, ifϕ(`i) − ϕ(`i−1)
> ϕ(`i+1) − ϕ(`i) > 0 for all i ∈ {1, . . . , m}, then Strict
L-Monotonicity clearly holds. This concludes the proof.2

The linear functionϕ onL(X) can also be written directly
onX as follows:

ϕ(x) =
∑m

i=1(ϕ(`i)− ϕ(`i−1))x(i)

for all x in X. We recognize an Ordered Weighted Average
(OWA, Yager, 1998) with strictly decreasing and strictly
positive weightswi = ϕ(`i) − ϕ(`i−1). This is consistent
with a result in Ogryczak (2000), where it is shown that
any solution minimizing an ordered weighted average with
strictly decreasing and strictly positive weights is L-non-
dominated.

Now we have a criterionϕ evaluating the cost of any
Lorenz-vectorL(x), we want to determine the optimal so-
lution paths according toϕ. Actually, the algorithm intro-
duced in Section 3 can easily be modified so as to determine
solution-paths minimizingϕ. It is sufficient to modify our
priority rule by settingf(n) = arg minx∈F (n) ϕ(L(x))
for any open noden. Efficiency can be improved by a
slight modification of our pruning rule. We have to prune
any subpath having a cost-vectorx such thatϕ(L(x)) >
ϕ(L(p)) for some solution-pathp already detected.

Example 4. Consider the graph of Figure 1 and assume
that the decision criterionϕ(.) is such thatϕ(`0) = 0,



ϕ(`1) = 0.9 and ϕ(`2) = 1 (so that the weightswi =
ϕ(`i) − ϕ(`i−1) add up to 1). It is easy to check that
the labels are expanded in the lexicographic order used in
the priority rule introduced in Section 3. Therefore, the
trace of the algorithm is similar to the one given in Table
2 until iteration 3. At this stage the solution-path 1 is de-
tected with a Lorenz vector(9, 18) such thatϕ(9, 18) =
9(2ϕ(`1)− ϕ(`2)) + 18(ϕ(`2)− ϕ(`1)) = 9. All the other
open labels having a value greater than 9, the algorithm
stops. This solution can be seen as pessimistic since fo-
cused on the worst case. Note that decreasing the strictly
positive differencew1 − w2 = 2ϕ(`1)− ϕ(`2) would pro-
duce a less pessimistic solution path among Lorenz optima.

5 CONCLUSION

We have introduced a formal model for robustness allow-
ing to reflect various behavior patterns towards robustness,
depending on the choice of parametersϕ(`i)’s. It should
be useful to investigate elicitation methods to construct
these parameters. In this respect, transposition of elicita-
tion methods used for assessing utility functions deserves
investigation. Another important issue might be to inves-
tigate the extension of our work when additional infor-
mation about the likelihood of scenarios is present. As-
sume for instance that the probabilitypi of each scenario is
known, the comparison of two cost-vectors might be per-
formed using second order stochastic dominance, which
can be defined from Lorenz dominance using probabilis-
tic cumulative distribution functions as suggested in Moyes
(1999). Finally, notice that the idea of robust solution and
the use of L-dominance is worth studying in other contexts
in Artificial Intelligence like planning, valued constraint-
satisfaction problems and game search (Dasgupta et al.,
1996b), but also in combinatorial problems studied in Op-
erations Research (see e.g. the concept of equitable solu-
tions in Ogryczak (2000)).
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ties. Cambridge University Press.

P. E. Hart, N. J. Nilsson, and B. Raphael (1968). A formal
basis for the heuristic determination of minimum cost paths.
IEEE Trans. Syst. and Cyb.SSC-4 (2):100–107.

I. Herstein and J. Milnor (1953). An axiomatic approach to
measurable utility.Econometrica21:291–297.

P. Kouvelis and G. Yu (1997).Robust discrete optimization and
its applications. Kluwer Academic Publisher.

B. Logan and N. Alechina (1998). A∗ with bounded costs. In
Proceedings of the Fifteenth National Conference on Artifi-
cial Intelligence, AAAI-98. AAAI Press/MIT Press.

W. Marshall and I. Olkin (1979).Inequalities: Theory of Ma-
jorization and its Applications. London: Academic Press.

P. Moyes (1999).Handbook of Income Inequality Measure-
ment, Kluwer Academic Publishers, chap. 6.

W. Ogryczak (2000). Inequality measures and equitable ap-
proaches to location problems.European Journal of Opera-
tional Research122:374–391.

J. Pearl (1984).Heuristics. Intelligent Search Strategies for
Computer Problem Solving. Addison Wesley.

P. Perny and O. Spanjaard (2002). Preference-based search in
state space graphs. InProceedings of the Eighteenth Na-
tional Conference on Artificial Intelligence, AAAI-02. 751–
756.

L. J. Savage (1954).The Foundations of Statistics. J. Wiley
and Sons, New-York.

A. Sen (1997).On economic inequality. Clarendon Press, ex-
panded edition ed.

A. Shorrocks (1983). Ranking income distributions.Econom-
ica 50:3–17.

B. S. Stewart and C. C. White III (1991). Multiobjective
A∗. Journal of the Association for Computing Machinery
38(4):775–814.

P. Vincke (1999). Robust solutions and methods in decision-
aid. Journal of Multicriteria Decision Analysis8:181–187.

J. von Neumann and O. Morgenstern (1947).Theory of games
and economic behavior. 2nd Ed. Princeton University Press.

M. Wellman, K. Larson, M. Ford, and P. Wurman (1995). Path
planning under time-dependent uncertainty. InProceedings
of the Eleventh Conference on Uncertainty in Artificial In-
telligence. 532–539.

P. Wurman and M. Wellman (1996). Optimal factory schedul-
ing using stochastic dominance A∗. In Proceedings of the
Twelfth Conference on Uncertainty in Artificial Intelligence.
554–563.

M. Yaari (1987). The dual theory of choice under risk.Econo-
metrica55:95–115.

R. Yager (1998). On ordered weighted averaging aggregation
operators in multicriteria decision making. InIEEE Trans.
Systems, Man and Cybern.. vol. 18, 183–190.


