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Abstract possible extensions of A e.g. MOA: to find all the ef-

ficient paths (Stewart and White Ill, 1991),*Uo find a

This paper is devoted to the the search of robust ~ Maximal path according to a multiattribute utility function,

pend on scenarios. We first present axiomatic re- ~ SOft constraints (Logan and Alechina, 1998).

quirements for preference compatibility with the e dealing with uncertaintythis concerns problems where
intuitive idea of robustness. This leads us to pro-  the cost of the arcs are ill-known and characterized by
pose the Lorenz dominance rule as a basis forro-  uncertainty distributions. For example, when costs are
bustness analysis. Then, after presenting com-  time dependent and representable by random variables, the
plexity results about the determination of robust ~ SDA* algorithm is used to determine the preferred paths
solutions, we propose a new sophistication of A according to the stochastic dominance partial order (Well-
specially designed to determine the set of robust ~ man et al., 1995). A sophistication of this algorithm spe-
paths in a state space graph. The behavior of the  cijally designed to cope with both uncertainty and multiple
algorithm is illustrated on a small example. Fi- criteria is proposed in Wurman and Wellman (1996).

nally, an axiomatic justification of the refinement

of robustness by an OWA criterion is provided. In this paper we consider another variation of the search

problem under uncertainty, that concerns situations where
costs of paths might depend on different possible scenarios
1 INTRODUCTION (states of the world) or come from discordant sources of in-
formation. In this context, our aim is to focus on the idea of
In heuristic search in state space graphs, the value of aer(?bustness&md the search of robust solutions as introduced

action allowing a transition between two nodes is usuall)/n the following example:

represented by a scalar cost and the quality of a path bipxample 1. We want to find the “best” path in the state
the sum of the costs of its arcs. In this framework, usefulSPace graph pictured on Figure 1 from a source nade
constructive search algorithms like'And A® (Hart etal., & goal nodey, or v, in a context where two different sets
1968; Pearl, 1984) have been proposed, performing the inf2f Costs must be considered.

plicit enumeration of feasible solutions, directed by a nu-
merical cost function to be minimized. However, in many
practical search problems considered in Atrtificial Intelli-
gence (e.g. path planning, game search, web search), the
scalar-costs assumption in state space graphs does not fit,
thus inducing additional sources of complexity for prob-
lem solving. For this reason, recent works use alternative
assumptions and consider, for example, the problem of:

e dealing with multiple criteria: this concerns problems
where the value of an action making a transition be-
tween two nodes must be evaluated according to differ-
ent attributes, expressed on non-commensurate scales, non-
necessarily reducible to a single additive cost function. InThis formal problem could be derived from different practi-
such problems, the state space graph representation withcal situations requiring decision making under uncertainty.
vector-valued cost function is useful and leads to severdror instance, consider an ambulance driver who wants to

Figure 1: The state-space graph.



Path Nodes Costs tions (paths 10, 11, 1, 3, 8, 7). These observations show
% EZ 2’ Zl) ) 8’29)6) the inadequacy of standard decision criteria to account for
3 (abe 1;) (10.7) the idea of robustness as introduced above. Thus, the aim
4 (a,b,d,c,v1) (10,11) of the paper is:
5 (a7 ba da c, 72) (8r12) t i t f k f b t d
6 (a.b.d ) (12.11) * to propose an axiomatic framework for robustness and a
7 (a,cm) (13,5) formal definition of robust solutions,
8 (a,c,72) (11,6) o to introduce new algorithms to determine robust solutions
9 (a,d,c,m) (6,11) in state space graphs.
10 (a’7 da [ 72) (4112) . . . .
11 (a,d, ) (5,11) The paper is organized as follows: Section 2 is devoted to
the formal definition of robustness. Section 3 presents com-
Table 1: The set of solution-paths. plexity results concerning the search of robust solutions and

a heuristic search algorithm to find the set of robust paths
in a state space graph. Finally in Section 4, we provide an
rush a man from point: to one of the city hospitals lo- axiomatic justification of the refinement of robustness by

cated invy; and~,. Assume that two scenarias, s, on  an OWA criterion.
the traffic in the city are considered, leading to a cost vec-

tor of type(c(s1),c(s2)) on each arrow. The problemis 2 DEFINING ROBUSTNESS
to determine the best destination and the best path. As an

alternative example, consider a planning problem for anconsidering a finite set of scenariés = {s1,...,sm},
autonomous agent whose current objective is to reach ongpy solution-path can be seen asaghc : S — R, in the

of the goal statesy, or 7, from the initial statea. The  sense of Savage (1954), characterized by the cost vector
cost of each possible action is estimated by two externaﬂc(sm ..., c(sm)) in R whosei*" component represents
sensors located in different places and the agent does N@he cost of the path with respect to scenasjo Hence,
know which is the most reliable sensor during the decisionthe comparison of paths reduces to the comparison of their
period. In both problems, one might be interested in find-cost.vectors. In this framework, the following definitions
ing a “robust” solution, i.e., a path which remains suitable e yseful:

hatever scenario (or sensor) is considered. This idea of. . .. . .
W v o ( )i ! 1St efinition 1. The Weak-Pareto dominance relation (WP-

robustness is consistent with the view of Kouvelis and Yd : for short ¢ ¢ is defined. 1
(1997) and Vincke (1999) but differs from the robustness ﬁrglr;agtilgmok:ys. ort) on cost-vectorsRf: is defined, for
’ + .

considered in Aron and Van Hentenryck (2002) concernin
minimal spanning tree problems with imprecise costs. The rZpy <= [Vie{l,...,m},x; <y

major difference is that, in our context, costs are linked t0The pareto dominance relation (P-dominance for short) on

scenarios, thus making some combinations impossible. Fofostvectors R is defined as the asymmetric parto:
example, considering Figure 1, the effective cost of path

(a,b,c) cannot be 7, because, b) and (b, ¢) cannot get
simultaneously costs like 5 and 2 (or 3 and 4) respectivelyDefinition 2. Within a setX any element: is said to be
Considering the graph pictured on Figure 1, the costs vecP-dominatedvheny >p z for somey in X, and P-non-
tors of solution-paths are listed in Table 1. dominatedvhen there is ng in X such thaty > p z.

T >=py < [z 2Zpyand noty Zp z)]

Facing such problems, simple scalarizations of cost-vectort order to decide whether a path is better than another, we
do not lead to convincing results. For instance, using thavant to define a transitive preference relatigron cost-
average of the costs yields, among others, path 10 whicKectors capturing both the aim of cost-minimization and
is the worst solution if scenaris, occurs. Performing a the idea of robustness. For this reason, the preference rela-
weighted sum of the costs does not solve this problem eition is expected to satisfy the following axioms:

ther. Indeed, by geometrical arguments, it can easily bg_\onotonicity. For allz,y € R™, 2 = p y = 2 = y and
shown that solutions 1 and 3 cannot be obtained by ming. ., — ;. « 4, ' ~ -

imizing a weighted sum of costs (they do not belong to . . . ,
the boundary of the convex hull of the points represent-Where ~ 1S the strict preference relatlon. d.efmeq as the
ing paths in the criteria space). Finally, focusing only on2SYMmMetric part ofZ. This natural unanimity principle

the worst cost over the scenarios (minimax criterion) is not2Ys that, if pathr has a lower cost than pathwhatever
really satisfactory due to overpessimistic evaluation. Fotn€ Scenario considered, thers preferred tay, and this
example solution 3 cannot be obtained by the minimax criPréfereénce is strict as soon as# y. Then, the idea of
terion despite its promising costs due to the presence of tHE?PUSINESS refers to equity in cost distribution among sce-
-indeed interesting- solution 1. Note that the dominancd'a"0s which can be expressed by the following axiom:

order is not more adequate since it yields too many solufransfer Principle. Let z € R’* such thatz; > x; for



somei,j. Then for alle such that0 < ¢ < x; — x;,  wherex(;) > z@2) > ... > z(y) represents the compo-
x — ce; + €e; 7 x Wheree; (resp.e;) is the vector whose  nents ofr sorted by decreasing order. Th&* component
i*" (resp.j'") component equals 1, all others being null.  of L(z) is Ly (z) = ¢, (s

This axiom captures the idea of robustness as follows: iDefinition 4. The Generalized Lorenz dominance relation
x; > x; for some cost-vector € R, slightly improv-  (L-dominance for short) oR”" is defined by:

ing (here decreasing) componentto the detriment of;;
while preserving the mean of the costs would produce a
better distribution of costs, and consequently a more robusthe notion of Lorenz dominance was initially introduced
solution. Hence, path 1 should be at least as good as paif compare vectors with the same average cost and its link
7 in Example 1 because there is an admissible transfer @ the transfer principle was established by Hardy et al.
size 4 between vectors (13, 5) and (9, 9). Note that us¢1934). The generalized version of L-dominance consid-
ing a similar transfer of size greater than 8 would increasesred here is classical (see e.g. Marshall and Olkin (1979))
inequality in terms of costs. This explains why the trans-and allows any pair of vectors |]RT to be Compared_
fers must have a size< z; — x;. Such transfers are said Within a setX, any element: is said to bel.-dominated

to beadmissiblein the sequel. They are known B&gJou-  wheny >, = for somey in X, andL-non-dominateavhen
Dalton transfersin Social Choice Theory, where they are there is noy in X such thaty -, z. In order to estab-
used to reduce inequality in the income distribution over gish the link between Generalized Lorenz dominance and
population (see Sen (1997) for a survey). preferences satisfying combination of P-Monotonocity and
Transfer Principle we recall a result of Chong (1976):

Ve,y e R, x 2y <= L(z) Zp L(y)

Since elementary permutations of the vedter, . .., z,,)
that just interchange two coordinates can be achieved usheorem 1. For any pair of distinct vectors, y € R”?, if

ing an admissible transfer, and since any permutation of Zp y, or if  obtains fromy by a Pigou-Dalton trans-
{1,...,n}is the product of such elementary permutations,fer, thenz Z; y. Conversely, itz Zr y, then there
the Transfer Principle implies the following axiom: exists a sequence of admissible transfers and/or Pareto-

Symmetry. For all z € R, for all permutationsr of improvements to transforginto =.

{Loom}py (@ry - Zaimy) ~ (T1500 5 Tm), This theorem establishés;, as the minimal transitive re-
where~ is the indifference relation defined as the symmet-lation (with respect to set inclusion) satisfying simultane-
ric part of-. This axiom is natural in our context. Since no ously P-Monotonicity and the Transfer Principle. As a con-
information about the likelihood of scenarios is available,sequence, the subset of L-non-dominated elements appears
they must be treated equivalently. as a very natural solution to choice problems with multiple
. . . scenarios, as far as robustness is concerned. For this rea-
Note that the transfer principle possibly provides argu- : . . . .
ments to discriminate between vectors having the samgo We Investigate in the next section the generation of the
) ; set of L-non-dominated paths in a state space graph.
average-cost but does not apply in the comparison of vec-
tors having different average-costs. However, the possi-
bility of discriminating is improved when combining the 3 SEARCH FOR ROBUST SOLUTIONS
Transfer Principle with P-monotonocity. For example, con-
sider paths 7 and 8 in Table 1 whose cost vector$laes) 3.1 COMPUTATIONAL COMPLEXITY
and (11,6) respectively. Although P-dominance cannot _ ) ) )
discriminate between these two vectors, the discriminatiorYVe investigate here the computational complexity of the
is possible for any preference relatign satisfying both search of the set of L—non—dommated squtlon—p.aths in a
the Transfer Principle and the P-monotonocity axiom. In-State space graph. Note first that the L-non-dominated so-
deed, on the one handl1,6) =p (12,6) and therefore lutions are asubset of the P-non-dominated solutions which
(11,6) = (12,6) thanks to P-monotonicity; on the other Might be very numerous. We wish to evaluate the extend to
hand,(12, 6) = (13, 5) thanks to the Transfer Principle ap- which focu;mg on L—nqn—dommated solut|.0ns (rather tha_m
plied to the transfe(13 — 1,5 + 1) = (12,6). Hence, P—non—dommated solutions) reduces the size of.the.solutlon
we get: (11,6) = (13,5) by transitivity. In order to bet- SPace. In thls respect, the study of the pat'holc_)glclal instance
ter characterize those vectors that can be compared usidgiroduced in Hansen (1980) for the multi-objective short-
such combination of the P-monotonicity and the Transfe!€St path problem is quite significant (one looks for the set
Principle we recall the definition of Lorenz vectors and re-0f P-non-dominated paths from a source node to a desti-

lated concepts (for more details see e.g. Marshall and Olkiation node, see Figure 2). In that bivalued graph, all the
(1979); Shorrocks (1983)): paths from node 1 to nod® + 1 have the same average-

cost (whose value i§2? — 1)/2) but distinct costs on the
first component (due to the uniqueness of the binary repre-
sentation of an integer). The resulting set of cost-vectors is
L((E) = (1’(1), Ty + T2y, - Ta) + @)+ + x(m)) {(l’, 2;07171,)’ x € {O, . ,2"071}}, which contains only

Definition 3. For all z € R™?, theGeneralized Lorenz Vec-
tor associated ta is the vector:



question:Is there a subset’ C Asuchthad _, s(a) =
Yaca—a $(a)?

That problem is proved NP-complete (see e.g. Garey and
Johnson (1979)). One constructs -in polynomial time- a
graph as indicated on Figure 4 (where every arc without
cost-vectors is actually value@, 0)). Deciding whether
there exists a path from nodeo node2p + 1 such that its

Figure 2: The pathological instance of Hansen.

; acas(@) X ,cas(a)
P-non-dominated elements by construction. Notice that th¥€ctor-cost L-dominates the vecioreca S2) Zacasle))
cardinal of this set is exponential in the size of the graph@Mounts to solve the partition problem. -

However, due to the Transfer Principle, there exists only

two L-non-dominated cost vectors (those minimizing the
difference between their components). Unfortunately, it is @
also possible to exhibit pathological instance for our prob-
lem, such as the graph on Figure 3 (where every arc without
cost-vectors is actually valu€d, 0)). Indeed, all the paths
from node 0 to nodep+ 1 have distinct Lorenz vectors and
are L-non-dominated. The proof is similar to the previous Figure 4: Reduction from partition prob|em_

one. The set of cost vectors associated with the solution-

paths of the graph i§(2z,3 x 2P — z), z € {0,...,2P —

1}}. Note that the second component is always greateB.2 ALGORITHM

than the first component far € {0,...,2? — 1}. Con-

sequently, the corresponding set of Lorenz vectors write®ue to the existence of multiple scenarios, the search of
{(3x2P—x,3x2°+x), z € {0,...,2°—1}}. AllLorenz @ robust solution can be seen as a particular specification
vectors have the same average-cost and distinct values @k & multi-objective path problems (the objectives corre-
the the first component. Moreover, the size of that set igponding to the different scenarios). Several variations

exponential in the size of the graph. Due to the potentiallyof A* have been studied to generate the P-non-dominated
solution-paths in multi-objective problems, see e.g. Stewart

(0.s(20)) (0.5(a0)

@ ©D ©2) @ 02" and White 11l (1991); Dasgupta et al. (1996a). As the set

B of L-non-dominated solution-paths is included in the set of
(0271 ‘2& @0 P-non-dominated solution-paths, we can use a sophistica-
@ tion of these algorithms that exploits the exact nature of

L-dominance (using the idea of approximation of a prefer-
Figure 3: An instance where all paths are L-non-€nce relation suggested in Perny and Spanjaard (2002)).

dominated. Let us briefly recall some essential features of multi-
objective A'. In a graph valued by cost-vectors, there pos-
exponential number of L-non-dominated paths, the follow-sibly exists several P-non-dominated paths to reach a given
ing proposition is immediate: node. Hence, at each node one stores @&etG(n) of
Proposition 1. The problem of finding L-non-dominated COSt-vectorg(n) corresponding to P-non-dominated paths
paths in a graph is, in worst case, intractable, i.e. requires&TVing in n. Moreover, a node: may be on the path of

for some problems a number of operations which grows exM°re than one P-non-dominated solutions. Consequently, a
ponentially with the size of the problem. setH (n) of heuristic cost-vectors(n) is assigned to each

noden. Finally, at each node, asetF'(n) of evaluation
In other respects, one may be interested in the complexityectors f(n) is computed from all possible combinations
of deciding whether there exists a path whose cost distributg(n) + h(n) : g(n) € G(n), h(n) € H(n)}.

tion L-dominates a given cost-vector. The following result The aigorithm we propose to compute robust solution-paths
establishes that this decision problem cannot be solved ifgjies on this general pattern. Before presenting our search
polynomial time unlesg” = N P: algorithm itself, we establish two preliminary results on
Proposition 2. Deciding whether there exists a path whosewhich our pruning rule and our priority rule are grounded:
cost distribution L-dominates a given cost-vector is an NP'Proposition 3. Foranyz, v,

o zeRY, x>y andy ~p
complete decision problem.

Zl=x>1 2
Proof. We reduce the partition problem to our problem. Proof. By definitiony = p 2 —> y >, 2. Sincer =, y

instance: Finite setA = {a1,...,q,} and a sizes(a) € = we getz >, z by transitivity. O
Z* for eacha € A.



Proposition 4. A cost-vector(zy,...,z,,) L-dominates
any cost-vectofyi, . .., ym,) such thaty " | y; > m.x().

Proof. Assume that: (i) >, yu) > m.zy and
(i) Ik < m st S8 yu < Sb, (). We know that
yay > z(1y thanks to(i). Due to(ii), 3j € {1,...,k}
s.t.yi) < x;) < (1) and thereforgy;,) < z(;) (because
Y(k) < y(j)) Then, we haV@i-C:l T(4) < kx(l) which
implies (4i7) Eley(,-) < k.x(yy by (i4). Moreover, we
have(iv) Y2, v < (m — k)ym). Sinceyw) <y
< (1) we have(m — k)yau) < (m — k)z (1) and therefore
we get(v) >,y < (m — k)z(yy by (iv). Finally
we get:>" | y; < m.xz 1y by (ii7) and(v) which yields a
contradiction. O

non-dominated solution-patle. all open labels are ei-
ther P-dominated by another label on the same node or L-
dominated by a solution-path already detected.

Pruning: the Bellman principle does not hold for L-
dominancei.e. a L-non-dominated path could contain a
L-dominated subpath. For example, assume that two sub-
pathsP; and P, of costs(3,2) and(1,4) lead to the same
node. Itis easy to see th& ~; P,. However, if we ex-
tend both subpaths by the same subp@jtof cost(3, 1),
thenP, U P; > P; U P3. That is why, we must be very
careful in pruning L-dominated subpaths during the search.
Consequently, we use the two following pruning rules, that
we apply at the beginning of each iteration:

- we prune any subpath whose value of the evaluation func-
tion is L-dominated by (or equal to) an already detected

Here are the main features of our algorithm, where we exsolution-path;

pand labels rather than nodes:

- we prune any subpath P-dominated by (or equal to) an-
other subpath at the same node, as it is usual in multiobjec-

Output: we determine the set of L-non-dominated pathstive heuristic search.
from the source node to a goal node. If several paths have

the same L-non-dominated Lorenz vector, we detect onlysuch subpaths cannot lead to new L-non-dominated cost
one path among them. vectors at a goal node. Indeed, as soon as we assume

there exists a strictly positive lower bound on each cost, a
path is P-dominated by any of its subpaths. Consequently,
. . by Proposition 3, if a subpath is L-dominated by an al-

a P-non-dominated path fro:nto a goal nade, there exists ready detected solution-path, any extension will be also L-
h(n) € H(n) such that(n) Zp c. dominated by the same solution-path. Similarly, if a sub-
Priority: the search is totally ordered by a lexicographic path is P-dominated by another subpath at the same node,
order on evaluation vector§n) defined at each open node any extension will be also P-dominated (thus L-dominated)
n. This evaluation functiory(n) is obtained in two steps. by the corresponding extension of the P-dominating sub-
We first computeF'(n), the set of all costs vectors of type path. For the convenience of the reader, we give now a
g(n) 4+ h(n) whereg(n) is the cost-vector of any P-non- detailed example to illustrate the behavior of the algorithm.
dominated subpath arriving inandh(n) is the cost of any
vector in the heuristic sé(n). Then, f(n) is defined as
the best element of the séf.(z),z € F(n)} using the
following lexicographic order:

Li(z) < Li(y)

Heuristics: like in MOA*, we use an admissible sBt(n)
of vector-valued heuristic costs, i.e. for any cost-veetoir

Example 2. Consider the graph of Figure 1. The arc
costs are shown beside each arc. The heuristic set at a
node n is defined by the P-non-dominated cost vectors
of the arcs with tails at node.. Obviously, such vec-
tors under-estimate the remaining costs to reach a goal
node, thus leading to an admissible heuristic. For in-

This is also the lexicographic order used to rank the oper?Lgnce’ tze set é)énr;?gr:tl'acse?gpgde;ég%ﬁ?’tfe’ GS)o}.rce
nodes by decreasing order of priority according to their [, 9, L(f)lp P u

evaluation vectorf(n). The choice of that priority rule is |t§ t?lc;digr,e\ggflr:cgt olf (tigfrecssct)-r\]/deiﬁtortc?i;f:za\t/aria;)%('[{] )e
motivated by two remarks: p g Ifi

evaluation function ang is a pointer to the previous node
- a heuristic consideration: the early detection of aalong the path. The trace of the algorithm is indicated on
minimax-optimal solution-pathpotentially speeds up the Table 2, with the following conventions: * pinpoints the
search by providing the best bound to prune paths accorghruned labels whereag pinpoints the L-non-dominated
ing to Proposition 4. solution-paths. The pruning rules speed up the explo-

- a prudence consideration: at the goal nodes, such a priofation of the state space graph, as shown hereafter. At it-

ity rule guarantees to expand only labels corresponding t§ration 3, labelld, (6, 6), (10, 17)]q is pruned since6, 6)
L-non-dominated solution-paths. is P-dominated by(2,6) (three solutions-paths avoided).

At iteration 6, label[vyy, (12,6), (12, 18)]. is pruned since
its evaluation is L-dominated b9, 18). At iteration 7,
labels [c, (10,4), (11,17)], and [c, (3,10), (11,17)]4 are

INote that the greatest component of a cost vector is the firsPruned since their evaluations are L-dominated by, 17)
component of the corresponding Lorenz vector. (four solution-paths avoided). At iteration 8, there is no

L(z) =ex L(y) — Jk {

Stopping condition: the algorithm is kept running un-
til there is no remaining subpath able to reach a new L



iteration| open labels expanded label For the sake of convenience, we now usimstead o=’ to
L a,(0,0), (5,8)] a,(0,0), (5,8)] denote the preference relation among Lorenz vectors. As
2 b7 ( )7 (67 12)](1 b7 (57 3)7 (67 12)]“ H H T H
c (10 4), (11,17)]a we intend the preference relation to refine L-dominance,
d,(2,6), (10, 13)] we need the following axiom:
3 27 (éo ))’(1%)115])]& " [71,(9,9), (9, 18)]s Strict L-Monotonicity. L(z) =p L(y) = = > y.
71,(9,9),(9,18)] Then we introduce three axioms that can be seen as coun-
- ((% 2)) ((11% 112))}]1)* terparts of von Neumann and Morgenstern (1947) axioms
) ) ) b
7 e (10,4, AL, 17, [@.(2,6), (10, 13)] adapted for Lorenz vectors.
d,(2,6),(10,13)]a Complete weak-order. - is reflexive, transitive and com-
¢ (9,5), (10,17)], plete.
5 ¢, (10,4), (11,17)]a [c, (9,5), (10,17)]s o
¢ (9,5), (10,17)]s Continuity. Let L, M, N € L(X) suchthatl. = M > N.
¢, (3,10), (11,17)]4 There existsy, 3 €]0, 1[ such that:
Y2, (5,11), (11,16)]4
6 ¢,(10,4), 1L, 10)]a, | 7 D72, (10,7), (10, 17)]. al+(1—a)N = M- BL+(1-B)N
7(?275 (1))17)(%11?6])] Independence. Let L, M, N belong toL(X). Then, for
V2, ) ) ) d .
. (12,6), (12, 18)].* all o €0, 11
72, (10,7), (10,17)]e L>M= oL+ (1-—a)N>aM+(1—a)N
7 ¢, (10,4), (11,17)].* [z, (5,11),(11,16) 4 o o .
¢, (3,10), (11,17)]4* It is important to observe that this independence axiom
Y2, (5,11), (11, 16)]4 is a weakening of the usual independence axiomXgn
8 0 stop obtained by restriction to comonotonic vectors, where

andy in X are said to beeomonotonidf z; > z; and
y; < y; fornoi,j € {1,...,m}. Indeed, for any pair
x,y of comonotonic vectors, there exists a permutation

more label and the algorithm stops. In all, the prun- of {1,....m} such thatv (1) > zx2) = ... = Tn(m)
ing rules enable here to break the exploration of severfd yx(1) = ¥r(z) = ... = Yr(m)- Consequently,
L-dominated solution-paths (over eight) before they reach(cx + (1 — a)y) = aL(z) + (1 — a)L(y). Hence,
a goal node. In other respects, note that the expansiofor all comonotonic vectors, y,z € X, if z - y =
of labels rather than nodes allows the expansion of la-& + (1 — @)z = ay + (1 — a)z thenL(z) > L(y) —
bels [c, (10,4), (11,17)], and [c, (3,10), (11,17)]4 to be  aL(z) + (1 —a)L(z) = aL(y) + (1 — a)L(z). Observ-
avoided. ing that for any tripleL, M, N of Lorenz vectors, there
existsz, y, z, three comonotonic vectors iX such that
L = L(z),M = L(y) and N = L(z), we deduce that
4 REFINING ROBUSTNESS usual independence oxi implies independence ai(X).

As shown in Subsection 3.1, the set of L-non- domlnatecI\IOte that weakening the usual independence is necessary
n our framework due to its incompatibility with the Strict
solutions is a subset of P-non-dominated solutions but i

might contain an important number of elements. For this -monotonicity axiom, as shown by the following:
reason, we would like to refine the notion of robust solutlonEX""mpIe 3. Let us consider: = (24,24), y = (22,26)
by proposing a criterion allowing to discriminate between@nd z = (26,22). Due to Strict L-monotonicity: =Y
the L-non-dominated solutions. We propose here an axHence usual independence would im{#y, 23) = 3 +
iomatic result concerning the numerical representation ob? ~ 3y + 32 = (24,24) which is in contradiction with
a preference weak-order on X = R consistent with (24, 24) (25 23).

L-dominance.

Table 2: Trace of the algorithm.

The conflict here can be explained as follows: on the
The first axiom requires that the only relevant informationone hand, the cost-dispersion of vect@b, 23) resulting

to discriminate between solutions is the corresponding gerfrom the combination ofc and z is greater than that of
eralized Lorenz vector: x = (24,24); on the other hand, the cost dispersion of
vector (24, 24) resulting from the combination of and z

is smaller than that of = (22,26). This situation cannot
We may define a preference relatighamong Lorenz vec-  occur whenz, y and = are pairwise comonotonic, which
tors of L(X) = {v € R} : 3z € R}, v = L(z)} by  explains the very idea of our independence axiom.
setting, for anyL, M, € L(X)

Neutrality. Forallz,yin X, L(z) = L(y) = = ~ y.

Actually, a similar idea was already present in Dual Choice

, L(z) = LandL(y) = M Theory under Risk (see Yaari (1987)) in the form of the
LT M < 3uye X’{ cry Dual independance axiomThe link with Yaari's theory

~



under Risk is natural here since Lorenz vectors can be seen p(L(z)) = >, (2¢(4;) — o(li—1) — ©(lix1)) Li(z)

as counterparts of cumulative distribution functions in de-and@(&) —olli)

cision under risk.

Before introducing our representation theorem, we need t

show thatZ(X) with the usual convex combination in vec-
tor spaces is mixture se{Herstein and Milnor, 1953):

Definition 5. A mixture set is a seM and a functionf
that assigns an elemeffifo, z,y) = ax + (1 — a)y in M
to eacha in [0, 1] and each ordered paifz, y) in M x M
such that:

M1. 1z + Oy = =,

M2.az+ (1 — )y = (1 — ay) + az,

M3. a[fz + (1= Byl + (1 —a)y = (af)z + (1 - af)y,
forall z,y in M anda, 8in [0,1].

We have:

Lemma 1. L(X) is a mixture set with respect to the usua
convex combination in vector spaces.

Proof. We first establish thatL + (1 — o) M belongs
to L(X). Consider two vectors andy in X such that
L = L(z) andM = L(y). Itis easy to check thatL
+ (1 —a)M = L(az + (1 — a)y) and thereforexL +
(1 — a)M € L(X). Then, M1 and M2 being straightfor-
ward, we only prove M3a[SL + (1 — 8)M]+ (1 —a)M
=afLl+aM—afM+M-aM = afL+(1—af)M. O

A linear function on a mixture set is defined as follows:

Definition 6. ¢ : M — Rislinear if p(az + (1 — a)y)
ap(z) + (1 —a)p(y) forall « € [0,1] andz, y € M.

o(liz1) > @(liy1) — @(£;) >0 forall 7

groof. By Neutrality,z =7 y iff L(z) 2 L(y) and there-

fore assuming a complete weak-orderXramounts to as-
suming a complete weak-order dr{X). Using the clas-
sical result of Herstein and Milnor (1953) on mixture sets
and Lemma 1, the following two statements are equivalent:

- Complete weak-order, Continuity and Independence hold;
- there is a linear functiow on L(X) that preserves-: for

all L, M € L(X), L = Miff (L) < p(M).

For every vector(z) of L(X) \ {{o} we have2L;(z) —
Li1(z) — Lit1(x) = 2y —xy1) = 0fori=1,....m
with the conventionz,,,1 = 0. Henced ", (L;(z) —

Lia(2) = Liga (7)) = 300, @) - 250 Ti41) = L)
Then the coefficientSL;(x)—L; _1(x)—Lit1(x))/x ) are

| Positive and add-up to 1. By the-linearity of ¢, p({o) =

0 and for every vectod.(x) of L(X) \ {{o} we deduce
thanks to Equation Ip(L(x)/z (1)) = (31" [(2Li(x)—

Li—1(z)=Lit1(2) /x@)l) =320 [(2Li(2) = Lima (2) -

Li1(@))/zyle(ls) = 1/z) 325, (2Li(2) — Li—1(z) —

Liy1(x))p(¢;).  Then multiplication by x(;) yields
e(L(z)) = X% (2Li(x) — Li—1(x) — Liyi(x))p(£:)

=2 (20(6:) = (lim1) = (lit1)) Li().

Moreover, Strict L-monotonicity implies thap(¢;) >

(p(giJrl) + @(6171) Since£i+1 + ;1 =1 2¢;, and@(£i+1)

> p(¢;) sincel; >, £; 1. Conversely, ifp(¢;) — o (4;—1)

> o(lir1) — p(l;) > 0foralli € {1,...,m}, then Strict
L-Monotonicity clearly holds. This concludes the proof.

The linear functionp on L(X) can also be written directly

Note that here, since the mixture operation coincides withy, x as follows:

the usual convex combination in vector spacess auto-
matically m-linear: p(3>_1" ciz;) = > v ap(a;) with
a; € [0,1] for all ¢ (proof by recursion).

Moreover, note thatthe sét;, = (1,2,...,i—1,4,...,4) :
i =1,...,m} is a generator set fak(X) (every element
can be seen as a combination of those vectors(df)).
Indeed, by setting, = (0, ...,0) and?,,+; = ¢,,, we can
writee; = 2¢; — ¢;_1 — ¢;1 foralliin {1,...,m}, where

e; is the vector whosé!” component equals 1, all others

being null. Consequently, every vectbrof L(X) can be
written:

L= S Lo = S0 L2 — oy —tiy)
=>",(2L; — Li—1 — Lit1)t;

)

with the conventior.o = 0 andL,, 1 = L,,. We can now
establish our representation theorem:

Theorem 2. A preference relatiory; satisfies Neutral-

ity, Strict L-monotonicity, Complete weak-order, Continuity ¢(L(p))

and Independence iff there is a linear functipron L(X)
suchthatr - y <= ¢(L(x)) < ¢(L(y)) where:

p(r) =200 (p(l) — p(lio1))z ()

for all 2 in X. We recognize an Ordered Weighted Average
(OWA, Yager, 1998) with strictly decreasing and strictly
positive weightau; = ¢(¢;) — ¢(£;—1). This is consistent
with a result in Ogryczak (2000), where it is shown that
any solution minimizing an ordered weighted average with
strictly decreasing and strictly positive weights is L-non-
dominated.

Now we have a criterionp evaluating the cost of any
Lorenz-vectorL(x), we want to determine the optimal so-
lution paths according t@. Actually, the algorithm intro-
duced in Section 3 can easily be modified so as to determine
solution-paths minimizing. It is sufficient to modify our
priority rule by settingf(n) arg minge p(n) (L(x))

for any open node:. Efficiency can be improved by a
slight modification of our pruning rule. We have to prune
any subpath having a cost-vectorsuch thatp(L(x)) >

for some solution-path already detected.

Example 4. Consider the graph of Figure 1 and assume
that the decision criterionp(.) is such thaty(¢y) = 0,
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