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LARGE TIME BEHAVIOR OF SOLUTIONS OF LOCAL AND
NONLOCAL NONDEGENERATE HAMILTON-JACOBI EQUATIONS

WITH ORNSTEIN-UHLENBECK OPERATOR

THI TUYEN NGUYEN

IRMAR, Université de Rennes 1, France

Abstract. We study the well-posedness of second order Hamilton-Jacobi equations
with an Ornstein-Uhlenbeck operator in RN and RN×[0,+∞). As applications, we solve
the associated ergodic problem associated to the stationary equation and obtain the
large time behavior of the solutions of the evolution equation when it is nondegenerate.
These results are some generalizations of the ones obtained by Fujita, Ishii & Loreti 2006
[19] by considering more general diffusion matrices or nonlocal operators of integro-
differential type and general sublinear Hamiltonians. Our work uses as a key ingredient
the a-priori Lipschitz estimates obtained in Chasseigne, Ley & Nguyen 2017 [10].

1. Introduction

The aims of this work are to study the existence and uniqueness of solutions of the
equations

λuλ −F(x, [uλ]) + 〈b(x), Duλ〉+H(x,Duλ) = f(x), x ∈ RN , λ > 0,(1) 
∂u

∂t
−F(x, [u]) + 〈b(x), Du〉+H(x,Du) = f(x), (x, t) ∈ RN × (0,∞)

u(·, 0) = u0(·) in RN
(2)

and the large time behavior of solution u(x, t) of (2), that is to prove that

u(·, t) + ct→ v(·) locally uniformly in RN as t→∞,(3)

where (c, v) ∈ R× C(RN) is a solution of the associated ergodic problem

c−F(x, [v]) + 〈b(x), Dv〉+H(x,Dv) = f(x) in RN .(4)

Let us describe the main features of (1)-(2). The term 〈b,D〉 is an Ornstein-Uhlenbeck
drift, i.e., there exists α > 0 (the strength of the Ornstein-Uhlenbeck term) such that

〈b(x)− b(y), x− y〉 ≥ α|x− y|2, x, y ∈ RN ,(5)

the Hamiltonian H is continuous and sublinear, i.e., there exists CH > 0 such that

|H(x, p)| ≤ CH(1 + |p|), x, p ∈ RN ,(6)

and the operator F can be either local

F(x, [u]) = tr(A(x)D2u) (classical diffusion)(7)
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where A is a nonnegative symmetric matrix, or nonlocal

F(x, [u]) =

∫
RN
{u(x+ z)− u(x)− 〈Du(x), z〉IB(z)}ν(dz) (integro-differential).(8)

Since we work on an unbounded domain and deal with unbounded solutions, we need
to restrict them in some class

Eµ =

{
g : RN → R : lim

|x|→+∞

g(x)

φµ(x)
= 0

}
,(9)

where we choose

φµ(x) = eµ
√

1+|x|2 , µ > 0.(10)

Henceforth, we work on the datas f, u0 which satisfy

|g(x)− g(y)| ≤ Cg(φµ(x) + φµ(y))|x− y|, g = f or g = u0, x, y ∈ RN .(11)

In the local case, the diffusion A is anisotropic and we assume that A = σσT where
σ ∈ W 1,∞(RN ;MN), i.e,

|σ(x)| ≤ Cσ, |σ(x)− σ(y)| ≤ Lσ|x− y| x, y ∈ RN .(12)

In the nonlocal case, F has the form (8), where ν is a Lévy type measure, which is
regular and nonnegative. In order that (8) is well-defined for our solutions in Eµ,

I(x, ψ,Dψ) :=

∫
RN
{ψ(x+ z)− ψ(x)− 〈Dψ(x), z〉IB(z)}ν(dz)(13)

has to be well-defined for any continuous ψ ∈ Eµ which is C2 in a neighborhood of x,
which leads to assume that There exists a constant C1

ν > 0 such that∫
B

|z|2ν(dz),

∫
Bc
φµ(z)ν(dz) ≤ C1

ν .
(14)

An important example of ν is the tempered β-stable law

ν(dz) =
e−µ|z|

|z|N+β
dz,(15)

where β ∈ (0, 2) is the order of the integro-differential operator. Notice that, in the
bounded framework when µ can be taken equal to 0, up to a normalizing constant,
−I = (−∆)β/2 is the fractional Laplacian of order β, see [16] and [28] and references
therein for further explanations about the integro-differential operator with Ornstein-
Uhlenbeck drift.

Most of the results in this work are based on the Lipschitz estimates on the solutions
of (1) and (2) obtained in [10], i.e.,

|uλ(x)− uλ(y)|, |u(x, t)− u(y, t)| ≤ C(φµ(x) + φµ(y))|x− y|, x, y ∈ RN ,(16)

where C is independent of λ > 0, t ∈ [0, T ), T > 0. The uniformity of these estimates
with respect to λ, t is a crucial point for the applications, i.e., to be able to solve the
ergodic problem (4) and to prove the large time behavior (3). They are established for
both degenerate and nondegenerate equations. Let us recall that equations (1), (2) are
called nondegenerate in [10] when

A(x) ≥ ρId, for some ρ > 0,(17)
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in the local case, which is the classical assumption of ellipticity. In the nonlocal one, we
work with Lévy measures ν satisfying (14) and

There exists β ∈ (0, 2) such that for every a ∈ RN there exist
0 < η < 1 and C2

ν > 0 such that, for all γ > 0,∫
Cη,γ(a)

|z|2ν(dz) ≥ C2
νη

N−1
2 γ2−β,

(18)

where Cη,γ(a) := {z ∈ Bγ : (1− η)|z||a| ≤ |〈a, z〉|}. We say that the nonlocal equation is
nondegenerate when the order β belongs to the interval (1, 2), since in this case, (18) gives
a kind of ellipticity. This assumption, which holds true for the typical example (15), was
introduced in [6] and allows to adapt Ishii-Lions’ method to nonlocal integro-differential
equation. We refer to [10] for details and comments.

As far as the long time behavior is concerned, there have been many results obtained
for second order equations. But most of them are investigated in periodic settings. We
refer to [5, 19, 18, 20, 6, 7, 9, 25, 26] and the references therein. There are few results
in the unbounded settings, essentially the works of Fujita, Ishii & Loreti 2006 [19] and
Ichihara & Sheu 2013 [21]. In both of these works, the authors are concerned with the
local equation with a pure Laplacian diffusion. In particular, in [21], they deal with
quadratic nonlinearity in gradients and use both PDE and probabilistic approach. Since
our work is quite close to the one of [19], let us explain briefly the main differences.
In [19], they consider

∂u

∂t
−∆u+ α〈x,Du〉+H(Du) = f(x), (x, t) ∈ RN × (0,∞),(19)

with the datas f, u0 and the solutions belonging to the class (9) where

φµ(x) = eµ|x|
2

,

and 0 < µ < α, which seems to be the optimal growth condition related to the density of
the invariant measure associated with the Ornstein-Ulhenbeck process. The restriction
on the growth in our case comes from the anisotropy of the diffusion (local case) or
the nonlocal term. We do not know if the growth (10) is optimal. Moreover, in [19],
H is Lipschitz continuous and independent of x, the authors can prove well-posedness
of the equations in this growth class and avoid some technical difficulties. On the
other hand, when considering the uniformly parabolic PDE (19), they can work with
classical solutions thanks to Schauder theory for uniformly parabolic equations (see
Ladyzhenskaya, Solonnikov & Uralseva [24]). The proofs are then less technical.

One of our main issues is to prove the existence of unbounded continuous viscosity
solutions for equations (1) and (2), see Theorems 2.1 and 2.2 for nondegenerate equations
and Theorems 2.3 and 2.4 for degenerate equations. The key ingredient is the a priori
Lipschitz estimate (16), which is a natural idea already used in [5, 25]. Let us underline
that, in our case, (16) provides only locally Lipschitz estimates and the solutions are
unbounded in the whole space RN . This leads to additional difficulties comparing to
the classical uniformly continuous or globally Lipschitz case. Moreover, we are able to
deal with Hamiltonians H(x, p) which are merely sublinear. In this situation, we cannot
use directly the classical viscosity solution machinery since comparison principle between
discontinuous viscosity solutions does not necessarily hold without the classical structure
assumptions, see [22, 13, 3] for instance. In general this latter issue is overcome by using
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some global Lipschitz properties. More precisely, when doubling the variables using
viscosity techniques, one has to prove that some quantities H(x, p)−H(y, p) are small
when x close to y. This is possible when p is bounded (due to the Lipschitz continuity
of solutions) and when x, y lie in some bounded subset. In our case, both x, y and p
are unbounded. The first idea is to recover some compactness by taking profit of the
Ornstein-Uhlenbeck operator. From a PDE point of view, the property of the Ornstein-
Uhlenbeck operator translates into a supersolution property for the growth function φµ
(see [10, Lemma 2.1]), that is, there exist C,K > 0 such that

L[φµ](x) := −F(x, [φµ]) + 〈b(x), Dφµ(x)〉 − C|Dφµ(x)| ≥ φµ(x)−K, x ∈ RN .(20)

The second idea, which was already used in [5, 25] for instance, is to use a uniformly
continuous truncation both for the Hamiltonian and the datas f, u0 in such a way that
the Lipschitz estimate (16) for the approximate solutions still hold independently of the
truncations. It is therefore possible to pass to the limit. The uniqueness of solutions of
(1) and (2) is followed by comparison principle which holds when we suppose in addition

|H(x, p)−H(x, q)| ≤ LH |p− q|, for all x, p, q ∈ RN .(21)

For possibly degenerate equations, the results are true under stronger assumptions on
the Hamiltonian, there is a function ω : [0,∞)→ [0,∞) satisfying ω(0) = 0 such that

|H(x, p)−H(y, p)| ≤ ω(|x− y|(1 + |p|)), x, y, p, q ∈ RN ,

|H(x, p)−H(x, q)| ≤ LH |p− q|,
|H(x, 0)| ≤ LH ,

(22)

or 
|H(x, p)−H(y, p)| ≤ ω(|x− y|(1 + |p|)), x, y, p, q ∈ RN ,

|H(x, p)−H(x, q)| ≤ LH |p− q|(1 + |x|),
|H(x, 0)| ≤ LH(1 + |x|).

(23)

The proofs are done based on [19] using (20) as a crucial point. When using (23), we
need an additional condition on the strength α of the Ornstein-Uhlenbeck operator, see
[10, Lemma 2.1]. We will only quote the results (Theorems 2.3 and 2.4) without proofs
since they are closer classical ones in viscosity solutions.

As a by-product of the Lipschitz estimate in space (16), we obtain 1
2
-Hölder estimates

in time for the solutions of the evolution problem (2). This result is well known for
local equations (Barles, Biton & Ley [4, Lemma 2.3]) but does not seem to be written
for nonlocal ones. The result is interesting by itself so we provide a complete proof.

The other main result in our work is to obtain the convergence (3). We first study the
ergodic problem (4) as an application of (16). The idea is classical, see the seminal work
of Lions, Papanicolaou & Varadhan [27]. But in the unbounded setting, the solution
of (4) does not belong to class (9) anymore but to a larger one.. This brings an additional
difficulty in the nonlocal case and we have to modify the proof. The proof of the
convergence theorem is more classical and follows the arguments of [19]. But some
adaptations are needed in presence of a nonlocal operator and due to the fact that we
work with nonsmooth solutions instead of C2-smooth ones.

The paper is organized as follows. In Section 2, we first study the well-posedness of
the equations (1) and (2). At the end of this section we give a precise proof for the
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regularity of solution with respect to time in the nonlocal case. Section 3 is devoted
to the ergodic problem (4) and to the proof of the convergence (3). Some classical and
technical results are collected in Section 4.

Notations. In the whole paper, SN denotes the set of symmetric matrices of size N
equipped with the norm |A| = (

∑
1≤i,j≤N a

2
ij)

1/2, B(x, δ) is the open ball of center x and

radius δ > 0 (written Bδ if x = 0) and Bc(x, δ) = RN \B(x, δ).
Let T ∈ (0,∞), we write QT = RN × (0, T ) and Q = Q∞, we introduce

E+
µ (RN) = {v : RN → R : limsup

|x|→+∞

v(x)

φµ(x)
≤ 0},

E+
µ (QT ) = {v : QT → R : limsup

|x|→+∞
sup

0≤t<T

v(x, t)

φµ(x)
≤ 0},

E−µ := −E+
µ and Eµ := E+

µ ∩ E−µ , where φµ is defined by (10). Notice that v ∈ Eµ(RN) if
and only if for all ε > 0, there exists M(ε) > 0 such that

|v(x)| ≤ εφ(x) +M(ε) for all x ∈ RN .(24)

In the whole article, we deal with viscosity solutions of (1), (2). Classical references
in the local case are [13, 23, 17] and for nonlocal integro-differential equations, we refer
the reader to [8, 1, 10].

Acknowledgements: The author would like to express her gratitude to her advisors
Professor Emmanuel Chasseigne and Professor Olivier Ley for their support during the
preparation of this work. She also thanks the hospitality of INSA-Rennes during her
Ph.D. and the hospitality of University of Tours during several visits. Moreover, this
work was partially supported by the ANR (Agence Nationale de la Recherche) through
HJnet project ANR-12-BS01-0008-01.

2. Well-posedness and regularity of the stationary and evolution
problems

In two first parts of this Section, we build continuous solutions for (1)-(2) when suppos-
ing that the Hamitonian is sublinear, i.e., (6) holds without further assumption, and that
the equation is non-degenerate in the sense explained in the introduction. The proofs in
this case are strongly based on the a priori Lipschitz estimates obtained in [10], which
hold thanks to the nondegeneracy of the equation together with the effect of Ornstein-
Uhlenbeck term. The last part is devoted to build solutions using the classical theory of
viscosity solutions for possible degenerate equations. Some additional assumptions on
H and on the strength of the Ornstein-Uhlenbeck term are then needed (but we do not
use the Lipschitz estimates (16)).

Throughout this Section, we write φ for φµ defined by (10).

2.1. Well-posedness of the stationary problem. We start with a comparison prin-
ciple for solutions of (1) satisfying (16).

Proposition 2.1. Suppose that (5), (21), f ∈ C(RN) and either (12) or (14) hold. Let
u ∈ USC(RN)∩E+

µ (RN) and v ∈ LSC(RN)∩E−µ (RN) be a viscosity sub and supersolution

of (1), respectively. Assume that either u or v satisfies (16). Then u ≤ v in RN .
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Proof of Proposition 2.1. We argue by contradiction assuming that u(z) − v(z) ≥
2η > 0 for some z ∈ RN . We consider

Ψ(x, y) = u(x)− v(y)− |x− y|
2

2ε2
− β(φ(x) + φ(y)),

where ε, β are positive parameters. For small β we have Ψ(z, z) ≥ η. Since u ∈ E+
µ (RN),

v ∈ E−µ (RN), Ψ attains a maximum at (x̄, ȳ) ∈ B(0, Rβ)×B(0, Rβ), where Rβ does not
depend on ε. It follows that u(x)−v(y)−β(φ(x)+φ(y)) is bounded inB(0, Rβ)×B(0, Rβ),
so the following classical properties (see [3]) hold up to some subsequence,

|x̄− ȳ|2

2ε2
→ 0, x̄, ȳ → x̂ ∈ B(0, Rβ) as ε→ 0, β is fixed.(25)

Assuming that v for instance satisfies (16), since Ψ(x̄, x̄) ≤ Ψ(x̄, ȳ), we have

|x̄− ȳ|2

2ε2
≤ v(x̄)− v(ȳ) + β(φ(x̄)− φ(ȳ))

≤ C|x̄− ȳ|(φ(x̄) + φ(ȳ)) + βµ|x̄− ȳ|(φ(x̄) + φ(ȳ)),

using that

|φ(x̄)− φ(ȳ)| ≤ µ(φ(x̄) + φ(ȳ))|x̄− ȳ|.(26)

This implies that pε := x̄−ȳ
ε2

remains bounded when ε→ 0 and, up to some subsequence,
pε → p̂, for some p̂ ∈ RN .

We write the viscosity inequalities at (x̄, ȳ) using [13, Theorem 3.2] in the local case
and [8, Corollary 1] in the nonlocal one. In the local case, for every % > 0, there exist
(pε + βDφ(x̄), X) ∈ J̄2,+u(x̄), (pε − βDφ(ȳ), Y ) ∈ J̄2,−v(ȳ) such that(

X O
O −Y

)
≤ A+ %A2, where A =

2

ε2

(
I −I
−I I

)
+ β

(
D2φ(x̄) 0

0 D2φ(ȳ)

)
and %A2 = O(%) (% will be sent to 0 first). It follows

λ(u(x̄)− v(ȳ))− (F(x̄, [u])−F(ȳ, [v])) + 〈b(x̄)− b(ȳ), pε〉(27)

+β〈b(x̄), Dφ(x̄)〉+ β〈b(ȳ), Dφ(ȳ)〉+H(x̄, pε + βDφ(x̄))−H(ȳ, pε − βDφ(ȳ))

≤ f(x̄)− f(ȳ),

where F(x̄, [u]) = tr(A(x̄)X) and F(ȳ, [u]) = tr(A(ȳ)Y ) in the local case and F(x̄, [u]) =
I(x̄, u, pε + βDφ(x̄)) and F(ȳ, [u]) = I(ȳ, u, pε − βDφ(ȳ)) in the nonlocal one.

We estimate the F -terms by using the results of [10] for the test function |x−y|2
2ε2

+
β(φ(x) + φ(y)). When F is the local operator defined by (7), applying [10, Lemma 2.2],
we obtain

tr(A(x̄)X − A(ȳ)Y ) ≤ L2
σ

|x̄− ȳ|2

2ε2
+ βtr(A(x̄)D2φ(x̄)) + βtr(A(ȳ)D2φ(ȳ)) +O(%).

When F is the nonlocal operator defined by (8), applying [10, Proposition 2.1], we get

I(x̄, u, pε + βDφ(x̄))− I(ȳ, v, pε −Dφ(ȳ)) ≤ βI(x̄, φ,Dφ) + βI(ȳ, φ,Dφ).

Therefore, in any case we have

F ≤ βF(x̄, φ) + βF(ȳ, φ) + L2
σ

|x̄− ȳ|2

2ε2
+O(%).(28)
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Since Ψ(x̄, ȳ) ≥ Ψ(z, z) ≥ η, we have u(x̄) − v(ȳ) ≥ η. Using (5), taking into
account (28) and sending %→ 0, inequality (27) leads to

λη − βF(x̄, [φ])− βF(ȳ, [φ])− L2
σ

|x̄− ȳ|2

2ε2
+ α
|x̄− ȳ|2

2ε2
+ β〈b(x̄), Dφ(x̄)〉

+β〈b(ȳ), Dφ(ȳ)〉+H(x̄, pε + βDφ(x̄))−H(ȳ, pε − βDφ(ȳ))

≤ f(x̄)− f(ȳ).

Now sending ε to 0, using (25) and since f ∈ C(RN) we obtain

λη − 2βF(x̂, [φ]) + 2β〈b(x̂), Dφ(x̂)〉+H(x̂, p̂+ βDφ(x̂))−H(x̂, p̂− βDφ(x̂)) ≤ 0.

Since H(x, p) is lipschitz in p uniformly in x, i.e., (21) holds, we get

λη − 2βF(x̂, [φ]) + 2β〈b(x̂), Dφ(x̂)〉 − 2βLH |Dφ(x̂)| ≤ 0.

From (20), there exists a constant K(LH ,F) > 0 such that

−F(x, [φ]) + 〈b(x), Dφ(x)〉 − LH |Dφ(x)| ≥ φ(x)−K ∀x ∈ RN .

Therefore, we have

λη + 2βφ(x̂)− 2βK ≤ 0.

Since φ > 0, sending β to 0, we get a contradiction. �

Theorem 2.1. Suppose that (5), (6) and that f ∈ C(RN) ∩ Eµ(RN) satisfying (11).
Assume either (12)-(17) or (14)-(18) with β ∈ (1, 2) holds. For all λ ∈ (0, 1), there
exists a continuous viscosity solution uλ of (1) such that

uλ ∈ Eµ(RN),(29)

|uλ(x)− uλ(y)| ≤ C(φµ(x) + φµ(y))|x− y|, x, y ∈ RN ,(30)

where C > 0 is a constant independent of λ. In addition, if (21) holds then the solution
is unique in C(RN) ∩ Eµ(RN).

Proof of Theorem 2.1.
1. Construction of a continuous viscosity solution to a truncated equation. In order to
recover the classical framework of viscosity solutions, we first truncate the datas on the
equations.

Recall that φ(x) = eµ
√
|x|2+1 and f ∈ Eµ(RN). By (24), for every m ≥ 1, there exists

C(m) > 0 such that

f(x) ≥ − 1

2m
φ(x)− C(m).

Therefore, there exists Rm > 0 such that

f(x) +
1

m
φ(x) ≥ m, for |x| ≥ Rm.

We then define

fm(x) = min{f(x) +
1

m
φ(x),m}.(31)

7



The function fm is bounded by some constant Cm, still satisfies (11) with the constant
Cf + µ

m
and fm → f locally uniformly in RN . Moreover, fm is Lipschitz continuous in

RN with

|fm(x)− fm(y)| ≤

(
(Cf +

µ

m
) sup
B(0,Rm)

2φ

)
|x− y| =: Lm|x− y|.(32)

Indeed, from (31), if x, y 6∈ B(0, Rm), then fm(x) = fm(y) = m and the property is true.
If x, y ∈ B(0, Rm), it is trivial when fm(x) = m = fm(y). When fm(x) = f(x) + 1

m
φ(x)

and fm(y) = f(y) + 1
m
φ(y), then from (11) and (26), we have

|fm(x)− fm(y)| ≤ |f(x)− f(y)|+ 1

m
|φ(x)− φ(y)|

≤ Cf |x− y|(φ(x) + φ(y)) +
µ

m
|x− y|(φ(x) + φ(y)) ≤ Lm|x− y|.

When fm(x) = f(x) + 1
m
φ(x) whereas fm(y) = m, then by (31), we have

|fm(y)− fm(x)| = |m− f(x)− 1

m
φ(x)| ≤ |f(y) +

1

m
φ(y)− f(x)− 1

m
φ(x)|,

thus, we conclude with the same argument as above.
Let n ≥ 1, we now truncate the Hamiltonian by defining an Hamiltonian Hmn such

that

Hmn(x, p) =

{
Hm(x, p) if |p| ≤ n

Hm(x, n p
|p|) if |p| ≥ n,

with Hm(x, p) =

{
H(x, p) if |x| ≤ m

H(m x
|x| , p) if |x| ≥ m.

(33)

It is easy to verify that Hmn ∈ BUC(RN ×RN) with a modulus of continuity depending
on m,n and satisfies (6) with the same constant CH . Indeed,
• for |p| ≥ n,

|Hmn(x, p)| = |Hm(x, n
p

|p|
)| =

{
H(x, n p

|p|), |x| ≤ m

H(m x
|x| , n

p
|p|), |x| ≥ m

≤ CH(1 + n) ≤ CH(1 + |p|),

• for |p| ≤ n,

|Hmn(x, p)| = |Hm(x, p)| =

{
H(x, p), |x| ≤ m

H(m x
|x| , p), |x| ≥ m

≤ CH(1 + |p|).

Obviously, Hmn converges locally uniformly in RN ×RN to Hm when n→ +∞ and Hm

converges locally uniformly in RN × RN to H when m→ +∞.
We then consider the new equation

λu−F(x, [u]) + 〈b(x), Du〉+Hmn(x,Du) = fm(x) in RN .(34)

Classical strong comparison principle holds for bounded discontinuous viscosity sub
and supersolutions (see Theorem 4.1 in the Appendix). Noticing that u±λ,mn(x) =

±λ−1(Cm +CH) are respectively a super and a subsolution of (34), we obtain by means
of Perron’s method, the existence and uniqueness of a continuous viscosity solution uλ,mn
of (34) such that |λuλ,mn| ≤ C̃m := Cm + CH independent of n. We refer to classical
references [13] for the details.
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2. Convergence of the solution of the approximate equation to a continuous solution
of (1). Recall that Hmn satisfies (6) with constants CH independent of m,n. Moreover,
from (32), we have fm is Lm-lipschitz. Since either (12)-(17) or (14)-(18) with β ∈ (1, 2)
holds, then applying the a priori Lipschitz estimates [10, Theorem 2.1] for bounded
solutions uλ,mn we obtain that uλ,mn is Km−lipschitz continuous, i.e.,

|uλ,mn(x)− uλ,mn(y)| ≤ Km|x− y| for all x, y ∈ RN .(35)

Therefore, the family (uλ,mn)n≥1 is uniformly equicontinuous in RN . By Ascoli Theorem,
it follows that, up to some subsequence,

uλ,mn → uλ,m as n→ +∞ locally uniformly in RN .

By stability ([1, 8, 13]), uλ,m is a continuous viscosity solution of (34) with Hm in place

of Hmn and still satisfies (35) and |λuλ,m| ≤ C̃m.
Similarly Hm (respectively fm) satisfies (6) (respectively (11)) with constants CH

and Cf + µ independent of m ≥ 1. Applying [10, Theorem 2.1] again, we obtain that
uλ,m satisfies (30) with C independent of λ,m. To apply Ascoli Theorem when sending
m→∞, we need some local L∞ bound for uλ,m independent of m. It is the purpose of
the following Lemma.

Lemma 2.1. For every ε ∈ (0, 1), there exists C(ε) > 0 independent of m and λ such
that

|λuλ,m(x)| ≤ εφ(x) + C(ε).(36)

In particular, for all R > 0, there exists a constant CR > 0 independent of m and
λ ∈ (0, 1) such that

|λuλ,m(x)| ≤ CR, for all x ∈ B(0, R).

Proof of Lemma 2.1. Let ε ∈ (0, 1), y ∈ RN such that

uλ,m(y)− εφ(y) = max
RN
{uλ,m(x)− εφ(x)}.

Since uλ,m is a viscosity solution of (34), at the maximum point, we have

λuλ,m(y)−F(y, [εφ]) + 〈b(y), εDφ(y)〉+Hm(y, εDφ(y)) ≤ fm(y).

Recall that Hm satisfies (6) with CH independent of m. Hence using (20), we get

λuλ,m(y) ≤ fm(y)− εφ(y) + εK + CH .(37)

Let m ≥ 2
ε
. Since f ∈ Eµ(RN), by (24), there exists M( ε

2
) > 0 such that

f(y) ≤ ε

2
φ(y) +M(

ε

2
).

Hence, from (37) and by the definition of fm we obtain

λuλ,m(y) ≤ f(y) +
1

m
φ(y)− εφ(y) + εK + CH ≤M(

ε

2
) + εK + CH .

Moreover, since y is a maximum point of uλ,m − εφ, we have, for all λ ∈ (0, 1), and
x ∈ B(0, R), R > 0,

λuλ,m(x) ≤ λεφ(x) + λuλ,m(y)− λεφ(y) ≤ εφ(x) +M(
ε

2
) + εK + CH ≤ CR,

where CR = maxB(0,R){εφ(x) +M( ε
2
) + εK + CH} independent of m and λ.
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The proof for the opposite inequality is the same by considering minRN{uλ,m(x) +
εφ(x)}. �

Now we can apply Ascoli Theorem to get, up to some subsequence, uλ,m → uλ as m→
∞ locally uniformly in RN and uλ is a continuous viscosity solution of (1) satisfying (30).

It remains to prove that uλ ∈ Eµ(RN). By (36), since uλ,m → uλ as m→∞, we get

|λuλ(x)| ≤ εφ(x) + C(ε), for all x ∈ RN .

This holds for any ε > 0, it means that uλ ∈ Eµ(RN).
We conclude to the existence of a continuous solution uλ of (1) belonging to the

class (29)-(30).

3. Uniqueness of the solution of (1) in C(RN)∩Eµ(RN). Under the additional assump-
tion (21), it is a direct consequence of comparison principle (see Proposition 2.1). �

2.2. Well-posedness of the evolution problem. We recall that QT = RN × (0, T )
and Q = Q∞.

Proposition 2.2. Suppose that (5), (21) and either (12) or (14) hold. Let u ∈ USC(QT )∩
E+
µ (QT ) and v ∈ LSC(QT ) ∩ E−µ (QT ) be a viscosity sub and supersolution of (2) with

u(·, 0) = u0(·), f = f1 ∈ C(RN) and v(·, 0) = v0(·), f = f2 ∈ C(RN), respectively. As-
sume either u(·, t) or v(·, t) satisfies (16) and supRN{u0(x)−v0(x)}, |(f1−f2)+|∞ < +∞.
Then, for all (x, t) ∈ QT ,

u(x, t)− v(x, t) ≤ sup
RN
{u0(y)− v0(y)}+ t|(f1 − f2)+|∞.

The proof of this Proposition is a direct adaptation of the one of Proposition 2.1 which
is extended in the parabolic case.

Theorem 2.2. Suppose (5), (6) and that f, u0 ∈ Eµ(RN) ∩ C(RN) satisfy (11) with
constant Cf , C0. Assume either (12)-(17) or (14)-(18) with β ∈ (1, 2) hold. Then, there
exists a continuous viscosity solution u of (2) such that

u ∈ Eµ(Q̄),(38)

|u(x, t)− u(y, t)| ≤ C|x− y|(φ(x) + φ(y)), x, y ∈ RN , t ∈ [0, T ),(39)

where C > 0 is a constant independent of T. In addition, if (21) holds then the solution
is unique in C(Q̄) ∩ Eµ(Q̄).

Proof of Theorem 2.2. We only give a sketch of proof since it is similar with the proof
of Theorem 2.1.

1. Construction of a continuous viscosity solution to a truncated equation. Letm ≥ 1, we
first truncate the initial data as we did for fm in the proof of Theorem 2.1 by considering

u0m(x) = min{u0(x) +
1

m
φ(x),m}.(40)

Since u0 ∈ Eµ(RN), we get

|u0m(x)| ≤ Cm,(41)

|u0m(x)− u0m(y)| ≤ Lm|x− y|.(42)

Moreover, u0m still satisfies (11) with the constant C0+µ and u0m → u0 locally uniformly
in RN .
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We then introduce the truncated evolution problem (2) with Hmn (respectively fm)
defined by (33) (respectively (31)) for m,n ≥ 1 and with the initial data defined by (40).
The classical comparison principle (see Theorem 4.2) holds for bounded discontinuous
viscosity sub and supersolutions of

ut −F(x, [u]) + 〈b(x), Du〉+Hmn(x,Du) = fm(x) in QT ,(43)

with the initial data umn(x, 0) = u0m(x).
Notice that u±mn(x, t) = ±(Cm+(Cm+CH)t) are respectively a super and a subsolution

of (43) satisfying the initial conditions

u−mn(x, 0) = −Cm ≤ u0m(x) ≤ Cm = u+
mn(x, 0).

Then by means of Perron’s method, we obtain the existence and uniqueness of a
bounded continuous viscosity solution umn of (43) such that |umn| ≤ C̃mT independent
of n. We refer to classical references [13] for the details.

2. Convergence of the solution of the truncated equation to a continuous solution of (2).
Recall that Hmn satisfies (6) with constant CH independent of m,n,. Moreover, from
(32) and (42) we have fm and u0m are Lm-lipschitz. Since either (12)-(17) or (14)-(18)
with β ∈ (1, 2) hold, then applying [10, Theorem 3.1] for bounded solution umn, we
obtain that umn is Km-lipschitz continuous, i.e.,

|umn(x, t)− umn(y, t)| ≤ Km|x− y| for all x, y ∈ RN , t ∈ [0, T ),

where Km is independent of T . Therefore, the family (umn)n≥1 is uniformly equicontin-
uous and bounded in Q̄. It follows that, up to some subsequence,

umn → um as n→ +∞ locally uniformly in Q̄.

By stability [1, 8, 13], um is a viscosity solution of (34) with Hm in place of Hmn.
Similarly Hm (respectively fm) satisfies (6) (respectively (11)) with constants CH and

Cf + µ, u0m satisfies (11) with constant C0 + µ independent of m. By applying [10,
Theorem 3.1] again, we obtain that um satisfies (39) with C independent of m and T.

To apply Ascoli Theorem sending m→∞, we need some local bound for um. There-
fore we need to use following Lemma whose proof is omitted here since it is an adaptation
of the one of [19, Theorem 2.2], which is extended in the case of general local diffusion
or nonlocal operator and sublinear Hamiltonian by some routine caculations.

Lemma 2.2. Let T > 0. For all ε ∈ (0, 1), there exists M(ε) > 0 such that

|um(x, t)| ≤ εφ(x) +M(ε)(1 + |x|+ t) for all (x, t) ∈ QT ,(44)

where M(ε) is independent of m and T. In particular, for all R > 0, there exists a
constant CRT > 0 independent of m such that

|um(x, t)| ≤ CRT , for all x ∈ B(0, R), t ∈ [0, T ),

and um ∈ Eµ(QT ).

From Lemma 2.2, the family (um)m≥1 is uniformly equicontinuous and bounded on
compact subsets of QT . By Ascoli Theorem, it follows that, up to some subsequence,
um → uT as m→ +∞ locally uniformly in QT . By stability, uT is a continuous viscosity
solution of (2) in QT . Notice that uT still satisfies (39) with C independent of T and (44).
It is now easy to use a diagonal process to build a solution u of (2) in Q which also
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satisfies (39) and (44). In particular u is in Eµ(QT ) for all T > 0 so is in Eµ(Q). It ends
the proof of existence.

3. Uniqueness of the solution of (2) in the class C(Q)∩Eµ(Q). It is a direct consequence
of the comparison principle (see Proposition 2.2) if we assume in addition (21) holds. �

2.3. Well-posedness of the stationary and evolution equation by using classical
techniques. The following results hold for possibly degenerate stationary and evolution
equation in both local and nonlocal case.

2.3.1. Results for the stationary problem.

Theorem 2.3. Let u ∈ USC(RN)∩E+
µ (RN) and v ∈ LSC(RN)∩E−µ (RN) be a viscosity

sub and supersolution of (1), respectively. Suppose that (5) (11), (22) and either (12)
or (14) hold. Then there is a unique solution uλ ∈ C(RN) ∩ Eµ(RN) of (1).

Corollary 2.1. Under the assumptions of Theorem 2.3 with (22) is replaced by (23).
Then for any α > 2CH , there is a unique solution uλ ∈ C(RN) ∩ Eµ(RN) of (1).

In the above results, we do not assume anymore the equation is nondegenerate but we
need to use stronger assumptions on H, which are the classical assumptions required in
viscosity solutions (see [13, 3] and references therein). The key point of proof is to apply
[10, Lemma 2.1] in order to build a sub and supersolution for (1), and the ideas are
then based on [19], so we omit here. The restrictive on the strength α of the Ornstein-
Uhlenbeck operator in the Corollary is to guarantee that [10, Lemma 2.1] holds when
dealing with (23).

The same results hold true for the evolution equation.

2.3.2. Results for the evolution problem.

Theorem 2.4. Let u ∈ USC(QT )∩ E+
µ (QT ) and v ∈ LSC(QT )∩ E−µ (QT ) be a viscosity

sub and supersolution of (2), respectively. Suppose that (5), (11), (22) and either (12)
or (14) hold. Assume that u(x, 0) ≤ v(x, 0) for all x ∈ RN , then there is a unique
solution u ∈ C(QT ) ∩ Eµ(QT ) of (2).

Corollary 2.2. Under the assumptions of Theorem 2.4 with (23) in place of (22). Then
for any α > 2CH , there is a unique solution u ∈ C(QT ) ∩ Eµ(QT ) of (2).

2.4. Regularity results with respect to time for the evolution problem. The
next lemma gives some time regularity estimates of a solution for which the space regu-
larity is known. This is well known for local equations but does not seem to be written
for nonlocal ones. We provide a general statement and a proof for the nonlocal case by
adaptating the arguments of [4, Lemma 9.1].

Lemma 2.3. Let R > 0, 0 ≤ t0 < T, x0 ∈ RN , set Ωx0,t0,R,T := B(x0, R) × (t0, T ) and
consider a viscosity solution u ∈ C(Ωx0,t0,R+1,T ) ∩ Eµ(Q) of

ut −F(x, [u]) + 〈b(x), Du〉+H(x,Du) = f(x), (x, t) ∈ Ωx0,t0,R+1,T ,(45)

where b,H are continuous and F satisfies either (12) (local case) or (14) (nonlocal case).
If

|u(y, t0)− u(x, t0)| ≤ m(|y − x|) for x, y ∈ B(x0, R + 1),(46)
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for some modulus of continuity m, then there exists a modulus of continuity m̃ depending
only on m, |u|L∞(Ωx0,t0,R+1,T ), b,H, µ and σ or ν such that

|u(x, t)− u(x, t0)| ≤ m̃(|t− t0|) for x ∈ B(x0,
R

2
), t ∈ [t0, T ].(47)

If m(r) = Lr, then m̃(r) = L̃
√
r, where L̃ depends on L, |u|L∞(Ωx0,t0,R+1,T ), b,H, µ and σ

or ν.

Remark 2.1. Notice that in our framework, (46) holds true for m(r) = Lr, see (16).

Proof of Lemma 2.3. We fix η > 0 and we want to find some constants C,K >
0 depending only on m, |u|L∞(Ωx0,t0,R+1,T ), b,H, σ or ν and µ such that, for any x ∈
B(x0, R/2) and every (y, t) ∈ Ωx0,t0,R+1,T , we have

−η − C|y − x|2 −K(t− t0) ≤ u(y, t)− u(x, t0) ≤ η + C|y − x|2 +K(t− t0).(48)

We prove only the second inequality, the first one being proved in a similar way. Let us
fix x ∈ B(x0, R/2) and consider (y, t) as the running variable in the following.

At first, if we choose

C >
8|u|L∞(Ωx0,t0,R+1,T )

R2
,(49)

the desired inequality is fulfilled on (B(x0, R+ 1)\B(x0, R))× [t0, T ] for every η,K > 0.
Indeed, |y − x| > R/2 in this region. Notice that C is chosen independent of x ∈
B(x0, R/2).

Next, we want to ensure that the inequality holds on B(x0, R+1)×{t0}. We argue by
contradiction assuming that there exists η > 0 such that, for every C > 0, there exists
yC ∈ B(x0, R + 1) such that

u(yC , t0)− u(x, t0) > η + C|yC − x|2.(50)

It follows that

|yC − x| ≤

√
2|u|L∞(Ωx0,t0,R+1,T )

C
.

Thus |yC − x| → 0 as C → +∞. Coming back to (50) and using (46), we infer

m(|yC − x|) ≥ u(yC , t0)− u(x, t0) ≥ η.

We obtain a contradiction if C is large enough since the left-hand side tends to 0 as
C → +∞. Notice that the choice of C to obtain the inequality on B(x0, R + 1) × {t0}
depends only on η, |u|L∞(Ωx0,t0,R+1,T ) and m.

Therefore, by choosing C large enough, the desired inequality holds on

((B(x0, R + 1) \B(x0, R))× [t0, T ]) ∪ (B(x0, R + 1)× {t0}).(51)

We then consider

max
Ωx0,t0,R+1,T

{u− χ} where χ(y, t) := u(x, t0) + η + C|y − x|2 +K(t− t0).(52)

If the maximum is nonpositive, then the desired inequality holds. Otherwise, the max-
imum is positive and, from (51), is achieved at an interior point (ȳ, t̄) in Ωx0,t0,R,T . We
can write the viscosity inequality for the subsolution u at this point using the smooth
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test-function χ. Since (ȳ, t̄) is a maximum point of u−χ in B(x0, R)× [t0, T ], we obtain
(see [8, Definition 2])

K −
∫
B

(χ(ȳ + z, t̄)− χ(ȳ, t̄)− 〈Dχ(ȳ, t̄), z〉)ν(dz)(53)

−
∫
Bc

(u(ȳ + z, t̄)− u(ȳ, t̄))ν(dz) + 〈b(ȳ), Dχ(ȳ, t̄)〉+H(ȳ, Dχ(ȳ, t̄)) ≤ f(ȳ).

We estimate the terms in the inequality using thatDχ(y, t) = 2C(y−x), D2χ(y, t) = 2CI
and |ȳ − x| ≤ 2R. We have

|〈b(ȳ), Dχ(ȳ, t̄)〉+H(ȳ, Dχ(ȳ, t̄))− f(ȳ)|
≤ max

y∈B(x0,R)
{|b(y)||Dχ|L∞(Ωx0,t0,R,T

) + |f(y)|+ max
|ξ|≤|Dχ|L∞(Ωx0,t0,R,T

)

|H(y, ξ)|}

≤ max
y∈B(x0,R)

{4CR|b(y)|+ |f(y)|+ max
|ξ|≤4CR

|H(y, ξ)|},

and, using (14),∣∣∣∣∫
B

(χ(ȳ + z, t̄)− χ(ȳ, t̄)− 〈Dχ(ȳ, t̄), z〉)ν(dz)

∣∣∣∣ =

∣∣∣∣12
∫
B

∫ 1

0

〈D2χ(ȳ+θz, t̄)z, z〉dθν(dz)

∣∣∣∣
≤ 1

2
|D2χ|L∞(Ωx0,t0,R,T

)

∫
B

|z|2ν(dz) ≤ CC1
ν .

Since u ∈ Eµ(Q) ⊂ Eµ(QT ), by (24) for ε = 1, we have

|u(y, t)| ≤ φµ(y) +M(1) = φµ(y) +MT for all y ∈ B(x0, R), t ∈ [t0, T ]

for some constant MT depending on T. It follows, using (14) again,∣∣∣∣∫
Bc

(u(ȳ + z, t̄)− u(ȳ, t̄))ν(dz)

∣∣∣∣ ≤ ∫
Bc

(φµ(ȳ + z) + φµ(ȳ) + 2MT )ν(dz)

≤ 2( max
B(x0,R)

φµ +MT )C1
ν .

It follows that, if K > 0 is chosen such that

K > max
y∈B(x0,R)

{
4CR|b(y)|+ |f(y)|+ max

|ξ|≤4CR
|H(y, ξ)|+ (C + 2MT + 2φµ(y))C1

ν

}
,(54)

then χ is a strict supersolution of (45) in Ωx0,t0,R,T and (53) does not hold. Therefore, (52)
is nonpositive and the desired inequality holds. Notice that K depends on x0, t0, R, T,
the datas and η,m, |u|L∞(Ωx0,t0,R+1,T ) through the constant C.

By (48), we obtain that for every η > 0,

|u(x, t)− u(x, t0)| ≤ η +K(η)(t− t0) for every x ∈ B(x0,
R

2
), t ∈ [t0, T ],(55)

where we emphasize the dependence of K with respect to η. It is standard that by
optimizing this estimate with respect to η we obtain a modulus of continuity, but let us do
it for the sake of clarity. In order to solve η = K(η)|t− t0|, we define g : (0,∞)→ (0,∞)
as the inverse function of s 7→ s/K(s). Notice that since η 7→ K(η) can be chosen as
continuous, decreasing and such that K(η)→∞ as η → 0, the function g is continuous
on (0,+∞), increasing and such that g(0+) = 0 (in other words, g is a modulus of
continuity).
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Now, choosing the specific value of η := g(|t− t0|) yields

|u(x, t)− u(x, t0)| ≤ 2g(|t− t0|) for every x ∈ B(x0,
R

2
), t ∈ [t0, T ],

and this yields (47) with m̃ := 2g which is also modulus of continuity.
Now, assume that m(r) = Lr. Looking at the above proof, we notice on the one side

that, since

|u(x, t0)− u(y, t0)| ≤ L|x− y| ≤ η +
L2

4η
|x− y|2,

the desired inequality (48) holds on B(x0, R+ 1)×{t0} if C ≥ L2

4η
. Therefore (48) holds

providing C satisfies the latter inequality and (49). On the other side, we see that

|Dχ(ȳ, t̄)| ≤ |Du|L∞(Ωx0,t0,R+1,T ) ≤ L

coming back to (54), we see that it is enough to choose K such that

K > A1C + A2 + 2MTC
1
ν ,

where A1, A2 depends only on the datas, x0, R and L. Choosing C and K as above, (55)
then reads, for every η > 0 and x ∈ B(x0,

R
2

), t ∈ [t0, T ],

|u(x, t)− u(x, t0)| ≤ η +

(
A1(

8|u|L∞(Ωx0,t0,R+1,T )

R2
+
L2

4η
) + A2 + 2MTC

1
ν

)
|t− t0|.

Minimizing the right-hand side with respect to η > 0, we get the conclusion. �

3. Application to ergodic problem and long time behavior of solutions

In this Section we will use some uniform estimates (16) obtained by [10] to solve (4)
and then study the convergence (3). The idea comes back to the seminal work of
Lions-Papanicolau-Varadhan [27]. Let uλ be a solution of (1) satisfying (16) with con-
stant independent of λ, we consider wλ(x) = uλ(x) − uλ(0) and aim at sending λ to 0.
The family (wλ)λ∈(0,1) still satisfies (16). It is locally bounded since, by (16), we have
|wλ(x)| ≤ C(φµ(x) + φµ(0))|x| so, in this unbounded case, wλ does not belong anymore
to Eµ(RN) but to a slightly bigger class. We therefore need to take a safety margin for
the growth condition in the nonlocal case.

This create an additional difficulty in the nonlocal case. More precisely, from now on,
we fix µ > µ > 0 and we assume that

the measure ν in (13) satisfies (14) with µ.(56)

Notice that the nonlocal operator I given by (13) is well-defined for all function in Eγ,
γ ≤ µ.

3.1. Application to ergodic problem.

Theorem 3.1. Under the assumptions of Theorem 2.1 (assuming in addition (56) in
the nonlocal case), there exists a solution (c, v) ∈ R× C(RN) of (4) such that

v ∈
⋂

µ<γ<µ

Eγ(RN).(57)
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Proof of Theorem 3.1. Let uλ ∈ C(RN)∩Eµ(RN), λ ∈ (0, 1), be a solution of (1) given
by Theorem 2.1. Define wλ, zλ ∈ C(RN) by wλ(x) := uλ(x)−uλ(0) and zλ(x) := λuλ(x),
respectively. Then in view of (30) and Lemma 2.1, there are constant C,C(1) > 0
independent of λ such that, for all x, y ∈ RN ,

|zλ(0)| ≤ φµ(0) + C(1),

|zλ(x)− zλ(0)| = |λuλ(x)− λuλ(0)| ≤ C|x|(φµ(x) + φµ(0)),

|wλ(x)| ≤ C|x|(φµ(x) + φµ(0)),(58)

|wλ(x)− wλ(y)| ≤ C|x− y|(φµ(x) + φµ(y)).

Therefore, {wλ}λ∈(0,1) is a uniformly bounded and equi-continuous family on any balls
of RN . By Ascoli’s theorem, up to subsequences, we obtain

zλ → c, wλ → v, locally uniformly in RN as λ→ 0,

for some c ∈ R and v ∈ C(RN). By the stability of viscosity solutions (see [1, 8, 13]),
we find that v satisfies (4) in the viscosity sense. Let µ < γ < µ. Since

lim
|x|→∞

|x|φµ(x)

φγ(x)
= 0,

we see from (58) that v ∈ Eγ(RN). �

To prove the uniqueness of the ergodic constant and the solution up to additive con-
stants in (4), we need to linearize the equation in order to apply the strong maximum
principle. To do that, we need to assume that (21) and (22) hold.

Theorem 3.2. Under the assumptions of Theorem 2.1 (assuming in addition (56) in the
nonlocal case), let (c, v1), (d, v2) ∈ R× (C(RN)∩Eγ(RN)) with µ < γ < µ be respectively
a subsolution and a supersolution of (4).
(i) If (21) holds, then c ≤ d;
(ii) If (22) holds and c = d, then there is a constant C ∈ R such that v1−v2 = C in RN .

Proof of Theorem 3.2.
(i) We argue by contradiction assuming that c > d and choose ε > 0 small enough so
that

2εKγ < c− d,
where K = Kγ appearing in (20). Since (c, v1), (d, v2) are sub- and supersolutions of
(4), we can easily verify that ṽ1(x, t) = v1(x)− εφγ(x) + ct is viscosity subsolution of

vt −F(x, [v]) + 〈b(x), Dv(x, t)〉+H(x,Dv(x, t)) = f1(x) in QT = RN × (0, T )

and ṽ2(x, t) = v2(x) + εφγ(x) + dt is viscosity supersolution of

vt −F(x, [v]) + 〈b(x), Dv(x, t)〉+H(x,Dv(x, t)) = f2(x) in QT ,

where f1(x) = f(x)− εφγ(x) + εKγ, f2(x) = f(x) + εφγ(x)− εKγ. Since (21) holds, we
can apply Proposition 2.2 for ṽ1 and ṽ2 to obtain that, for all (x, t) ∈ QT ,

v1(x)− v2(x)− 2εφγ(x) + (c− d)t ≤ sup
RN
{v1(y)− v2(y)− 2εφγ(y)}+ t|(2εKγ − 2εφγ)

+|∞.

Taking x as close as we want to where the sup is achieved, this implies that

(c− d)t ≤ 2εKγt, for all t > 0,
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which is a contradiction. Thus c ≤ d.

(ii) For the proof of the second statement, we use the following Lemma, the proof of
which is classical and given in the Appendix:

Lemma 3.1. Under the assumptions of Theorem 3.2 (ii), the function ω = v1 − v2 is a
continuous viscosity subsolution of

−F(x, [ω]) + 〈b(x), Dω(x)〉 − LH |Dω| = 0.(59)

Now let ε > 0. Since ω = v1 − v2 ∈ Eγ(RN), ω − εφγ attains a maximum at some
xε ∈ RN . From Lemma 3.1, using εφγ as a test function for w we have

−F(xε, [εφγ]) + 〈b(xε), Dεφγ(xε)〉 − LH |Dεφγ(xε)| ≤ 0.(60)

Recall from (20) that there is a constant Kγ > 0 such that

−F(x, [φγ]) + 〈b(x), Dφγ(x)〉 − LH |Dφγ(x)| ≥ φγ(x)−Kγ for x ∈ RN .

Therefore, there is a constant Rγ > 0 independent of ε such that, for x ∈ RN\B(0, Rγ),

−F(x, [εφγ]) + 〈b(x), Dεφγ(x)〉 − LH |Dεφγ(x)| ≥ ε(φγ(x)−Kγ) > 0.(61)

From (60) and (61) we deduce that ω−εφγ can only attain a maximum at xε ∈ B(0, Rγ).
Then we argue as [19, Theorem 4.5] based on the strong maximum principle (see [2, 14]
in the local case and [12, 11] in the nonlocal one) to get that ω is constant in RN . �

3.2. Application to long time behavior of solutions. We study the long time
behavior of solutions of (2) in the non-degenerate case.

Theorem 3.3. Let µ > 0. Suppose (5), (6), (22) and that f, u0 ∈ Eµ(RN) ∩ C(RN)
satisfying (11). Assume either (12)-(17) (local case) or (14)-(18)-(56) with β ∈ (1, 2)
and µ > µ (nonlocal case). Let u ∈ Eµ(Q) ∩ C(Q) be the unique solution of (2) and
(c, v) ∈ R × (C(RN) ∩ Eγ(RN)) a solution of (4) for some µ < γ ≤ µ. Then there is a
constant a ∈ R such that

lim
t→∞

max
B(0,R)

|u(x, t)− (ct+ v(x) + a)| = 0 for all R > 0.(62)

Notice that, under our assumptions, Theorems 2.1, 2.2, 3.1 and 3.2 hold.
Before giving the proof, let us state some preliminaries. The key ingredient is the

Lipschitz estimates (16) obtained in [10]. Then, the proof of Theorem 3.3 is quite close
to the one of [19, Theorem 5.1]. We follow its lines but there are changes, first because
the equation may be nonlocal, and second because we do not work with C2-smooth
solutions.

At first, up to replace f(x) by f(x) − c (which still satisfies (11)) and the solution
u(x, t) by u(x, t)− ct, we may assume, without loss of generality, that c = 0.

In what follows we introduce the function

w(x, t) = u(x, t)− v(x) on Q.(63)

Since c = 0, v is a viscosity solution of

−F(x, [v]) + 〈b(x), Dv(x)〉+H(x,Dv(x)) = f(x) in RN(64)

and u is the viscosity solution of

ut −F(x, [u]) + 〈b(x), Du(x, t)〉+H(x,Du(x, t)) = f(x) in Q,
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then, by Lemma 3.1 (actually we use the parabolic version of this Lemma, which is
obtained by straightforward adaptations in its proof), w is a viscosity subsolution of

P [w](x, t) := wt −F(x, [w]) + 〈b(x), Dw〉 − LH |Dw| = 0 in Q.(65)

Thanks to (20) (with γ instead of µ), there exists K = K(γ, LH) such that

−F(x, [φγ]) + 〈b(x), Dφγ(x)〉 − LH |Dφγ(x)| ≥ φγ(x)−K in RN .

Therefore

ϕ(x, t) := (φγ(x)−K)e−t(66)

is a smooth supersolution of

P [ϕ](x, t) ≥ 0 in Q.(67)

We divide the proof of Theorem 3.3 into several lemmas. The following lemma gives
some boundedness of w with respect to t (recall that c = 0).

Lemma 3.2. Under the assumptions of Theorem 3.3, for every 0 < ε < 1, there exists
C(ε) > 0 such that

|w(x, t)| ≤ εφγ(x) + C(ε), (x, t) ∈ Q.(68)

We refer to [19, Lemma 5.3] for the proof of this lemma.

Lemma 3.3. Under the assumptions of Theorem 3.3, for every R > 0, there exists
LR > 0 (independent of t) such that

|u(x, t)− u(x, s)| ≤ LR
√
|t− s| for all x ∈ B(0, R), t, s ∈ [0,+∞).(69)

Proof of Lemma 3.3. It is a direct consequence of Lemma 2.3. Indeed, take x0 =
0, t0 = 0 and Ω0,0,2R+1,T = B(0, 2R + 1) × (0, T ) in Lemma 2.3. By Lemma 3.2,
|u|L∞(Ω0,0,2R+1,T ) depends only on R (but not on T ). Notice also that MT which appears
in the proof of Lemma 2.3 can be chosen idependent of T thanks to Lemma 3.2. The
conclusion follows. Indeed, Lemma 3.2 implies the following time-independent bound
|u(x, t)| ≤ |v(x)|+ εφγ(x) + C(ε). �

Lemma 3.4. Under the assumptions of Theorem 3.3, the sets {u(·, t) : t ≥ 0} and
{u(·, ·+ t) : t ≥ 0} are precompact in C(RN) and C(Q), respectively.

Proof of Lemma 3.4. The proof is a straightforward consequence of the boundedness
and equicontinuity of both families on bounded subsets of RN . These properties follow
from Theorem 2.2 and Lemmas 3.2 and 3.3. �

We introduce the half-relaxed limits (see [13, 8])

u(x) = lim sup∗
t→∞

u(x, t), u(x) = lim inf∗
t→∞

u(x, t).

Lemma 3.5. Under the assumptions of Theorem 3.3, there exist a solution v ∈ C(RN)∩
Eγ(RN) of (64) satisfying (16) and C,C ∈ R such that

u+ C = u+ C = v.(70)
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Proof of Lemma 3.5. By Theorem 2.2 and Lemma 3.2, we obtain easily that u and
u are well-defined, belong to Eγ(RN), satisfy the Lipschitz estimates (16). By classical
stability results ([13, 8]), u is a viscosity subsolution and u a viscosity supersolution
of (64). By Theorem 3.1 (under our assumptions which leads to c = 0), there exists a
solution (0, v) of (4). The existence of C,C such that (70) holds follows directly from
Theorem 3.2 (ii). �

Now, we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. To prove the convergence (62), in view of Lemma 3.4, it is
sufficient to prove that C = C in Lemma 3.5. Since u ≥ u, we have C ≤ C and it
remains to establish C ≥ C.

We claim that there exists u∞ ≥ u in the ω-limit set

Ω(u) = {ω ∈ C(Q) : there exits tj → +∞ such that u(·, ·+ tj)→ ω in C(Q)}

such that

u∞(0, 1) = u(0).(71)

Indeed, by (16) for u, we have

u(x) = lim inf
t→+∞

u(x, t),(72)

hence, there exists tj → +∞ such that u(0, tj) → u(0). Therefore, using Lemma 3.4
again, there exists a subsequence (still denoted (tj)) and u∞ ∈ C(Q) such that u(·, · +
tj − 1) → u∞ in C(Q). It is clear that u ≤ u∞ ∈ Ω(u) and, since u(0, 1 + tj − 1) =
u(0, tj)→ u(0), we get (71) and the claim is proved.

Now, we prove that there is a sequence sj → +∞ such that

u(·, sj)→ u in C(RN) as j →∞.(73)

From the previous claim, the function ζ ∈ C(Q) defined by ζ(x, t) = u(x) − u∞(x, t)
attains a maximum over Q at the point (0, 1). Moreover, u is a viscosity solution (so
subsolution) of (64) and, by stability, u∞ is a viscosity solution (so supersolution) of (2).
Thanks to Lemma 3.1, we get ζ is a viscosity subsolution of (65). By applying the strong
maximum principle to ζ (adaptating the proof of Theorem 3.2 to the case of parabolic
equations), we find that ζ is constant in Q. Since ζ(0, 1) = 0, we obtain u(x) = u∞(x, t)
for all (x, t) ∈ Q. But, by the definition of Ω(u), there is a sequence sj → +∞ such that
u(·, ·+ sj)→ u∞ in C(Q). This shows (73).

For j ∈ N and ε > 0, define

wj(x, t) := u(x, t+ sj)− v(x) + C = w(x, t+ sj) + C = u(x, t+ sj)− u(x),

where sj is defined in (73) and we used (63) and (70) for the last two equalities. By
Lemma 3.2,

wj(x, 0) = w(x, sj) + C ≤ ε

2
φγ(x) + C(

ε

2
) + C,

hence there exists R = Rε > 0 large enough such that

wj(x, 0) ≤ ε(φγ(x)−K) = εϕ(x, 0) for x ∈ RN \B(0, Rε),
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where ϕ is defined in (66). For x in the compact subset B(0, Rε), up to fix j big enough,
by (73), we infer

wj(x, 0) = u(x, sj)− u(x) ≤ ε ≤ εϕ(x, 0) + (K + 1)ε.

Therefore

wj(x, 0) ≤ εϕ(x, 0) + (K + 1)ε for x ∈ RN .

Since wj ∈ Eγ(Q) is a subsolution and εϕ ∈ Eγ(Q) is a supersolution of (65) in QT for
any T > 0, by the comparison principle of Proposition 2.2 in Eγ(QT ), we obtain

wj(x, t)− εϕ(x, t) ≤ sup
RN
{wj(·, 0)− εϕ(·, 0)} ≤ (K + 1)ε for (x, t) ∈ QT .

Since this bound does not depend on T > 0, the previous inequality holds in Q and it
follows that

u(x, t+ sj) ≤ v(x)− C + ε(φγ(x)−K)e−t + (K + 1)ε

and therefore, using Lemma 3.5,

lim sup∗
t→∞

u(x, t+ sj) = u(x) = v(x)− C ≤ v(x)− C + (K + 1)ε.

Sending ε to 0, we get the desired inequality C ≥ C. It ends the proof. �

4. Appendix

Theorem 4.1. Let u ∈ USC(RN) and v ∈ LSC(RN) be bounded viscosity sub and
supersolution of (34), respectively. Assume that f ∈ BUC(RN), H ∈ BUC(RN ×
RN), (5) and either (12) or (14) hold. Then u ≤ v in RN .

Theorem 4.2. Let u ∈ USC(QT ) and v ∈ LSC(QT ) be bounded viscosity sub and
supersolution of (43), respectively. Assume that f ∈ BUC(RN), H ∈ BUC(RN ×
RN), (5), either (12) or (14) hold and u(x, 0) ≤ v(x, 0), x ∈ RN . Then u ≤ v in QT .

The proofs of these two above Theorems are classical and easily adapted by [19] in
the bounded case using H ∈ BUC(RN × RN) and f ∈ BUC(RN).

Proof of Lemma 3.1 . Since the proof is classical, we only give it in the nonlocal case.
The local one is the same, for this case, one can see for instance [15, Lemma 2.2].

We divide the proof in several steps.

Step 1. Viscosity inequalities for v1 and v2. Let ϕ ∈ C2(RN) and x̄ ∈ RN be a local
maximum point of ω − ϕ. We can assume that this maximum is strict in the same ball

B(x̄, R) for some R > 0. Let Θ(x, y) = ϕ(x) + |x−y|2
ε2

and consider

Mε := max
x,y∈B(x̄,R)

{v1(x)− v2(y)−Θ(x, y)}.

This maximum is achieved at a point (xε, yε) and, since the maximum is strict, we
know [3] that

xε, yε → x̄, |xε−yε|2
ε2

→ 0 as ε→ 0
Mε = v1(xε)− v2(yε)−Θ(xε, yε)→ v1(x̄)− v2(x̄)− ϕ(x̄) = ω(x̄)− ϕ(x̄).

(74)

Setting pε = 2xε−yε
ε2

, we have

DxΘ(xε, yε) = pε +Dϕ(xε), DyΘ(xε, yε) = −pε.(75)
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Applying [8, Corollary 1], we write the viscosity inequalities for v1 and v2 at (xε, yε)

−(I(xε, v1, DxΘ)− I(yε, v2,−DyΘ)) + 〈b(xε), DxΘ〉 − 〈b(yε),−DyΘ〉(76)

+H(xε, DxΘ)−H(yε,−DyΘ)

≤ f(xε)− f(yε).

Step 2. Estimate of T := I(xε, v1, DxΘ)− I(yε, v2,−DyΘ). For each δ > 0, we have

T = I[Bδ](xε,Θ, DxΘ) + I[Bδ](xε, v1, DxΘ)

−I[Bδ](yε,Θ,−DyΘ)− I[Bδ](yε, v2,−DyΘ).

From (75), we first estimate

T1 := I[Bδ](xε,Θ, DxΘ)− I[Bδ](yε,Θ,−DyΘ)(77)

=

∫
Bδ

{ϕ(xε + z)− ϕ(xε) +
|x− y + z|2 − |x− y − z|2

ε2
− 〈Dϕ(xε), z〉}ν(dz)

= I[Bδ](xε, ϕ,Dϕ) +
1

ε2
oδ(1).

On the other hand, at the maximum point (xε, yε) we have

v1(xε + z)− v2(yε + z)− (v1(xε)− v2(yε)) ≤ ϕ(xε + z)− ϕ(xε),

for each z ∈ B. Hence, for each 0 < δ < κ < 1, using this inequality we obtain

T2 := I[Bδ](xε, v1, DxΘ)− I[Bδ](yε, v2,−DyΘ) ≤ Jκ + I[Bκ \Bδ](xε, ϕ,Dϕ),(78)

where

Jκ =

∫
Bcκ

{v1(xε + z)− v2(yε + z)− (v1(xε)− v2(yε))− 〈Dϕ(xε), z〉IB(z)}ν(dz).

Therefore from (77) and (78), we conclude that for all 0 < δ < κ < 1

T = T1 + T2 ≤ Jκ + I[Bκ](xε, ϕ,Dϕ) +
1

ε2
oδ(1).(79)

Since v1, v2 ∈ Eγ(RN), there exists C > 0 such that |vi(x)| ≤ Cφγ(x), ∀i = 1, 2,
x ∈ RN . Let γ < µ, thanks to (56) we have

∫
Bc
φγ(z)ν(dz) < +∞. Hence, applying

Dominated convergence Theorem and using (74), we get, for each κ > 0 fixed,

lim sup
ε→0

Jκ ≤ I[Bc
κ](x̄, ω,Dϕ).

Therefore, letting δ → and then ε→ 0 in (79), using (74) we obtain

lim sup
ε→0

T ≤ I(x̄, ω,Dϕ).(80)

Step 3. Estimate of B := 〈b(xε), DxΘ〉 − 〈b(yε),−DyΘ〉. From (5) and (75) we have

B = 〈b(xε), pε +Dϕ(xε)〉 − 〈b(yε), pε〉 ≥ 2α
|xε − yε|2

ε2
+ 〈b(xε), Dϕ(xε)〉.(81)

Step 4. Estimate of H := H(xε, DxΘ)−H(yε,−DyΘ). From (22) and (75) we have

H ≥ −LH |Dϕ(xε)| − LH |xε − yε| − 2LH
|xε − yε|2

ε2
.(82)

Step 5. Estimate of F := f(yε)− f(xε). Since f ∈ C(RN), hence we have

21



F ≤ oε(1).(83)

Step 6. Conclusion. Combining (80), (81), (82), (83) to (76) and sending ε → 0, we

obtain

−F(x̄, [ω]) + 〈b(x̄), Dϕ(x̄)〉 − LH |Dϕ(x̄)| ≤ 0,

which means exactly that ω is a subsolution of (59). �
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doctorat, Université de Rennes 1, 2016.
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