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La prédiction de la magnétostriction et du comportement magnétique réversible des matériaux ferromagnétiques est un sujet toujours ouvert. Des progrès ont récemment été réalisés dans la description de ces comportements pour les monocristaux. Nous proposons dans ce papier d'étendre cette démarche à la prévision du comportement d'un polycristal ferromagnétique doux texturé. Cette extension suppose une démarche d'homogénéisation magnéto-élastique. Le modèle est ensuite confronté à des résultats expérimentaux obtenus avec un alliage de fer-silicium industriel

Introduction

La prédiction du comportement magnétique des matériaux ferromagnétiques, même dans le cas isotrope, est un sujet de recherches toujours d'actualité [START_REF] Jiles | Introduction to magnetism and magnetic materials[END_REF], A. [START_REF] Hubert | Magnetic domains[END_REF]). Il en va de même pour la magnétostriction. Ce phénomène est intimement lié aux mécanismes d'aimantation à l'échelle microscopique. La complexité et l'anisotropie des phénomènes à cette échelle montrent qu'il est nécessaire d'avoir recours à une description macroscopique et des changements d'échelles lorsqu'il s'agit de rechercher le comportement magnétomécanique à l'échelle d'une structure (machine électrique..). L'objet de ce papier est donc de proposer une approche multiéchelle à fort contenu physique permettant d'obtenir un modèle magnéto-mécanique utilisable à l'échelle macroscopique. Après une brève illustration des phénomènes de couplage magnéto-élastiques, nous proposons une description des mécanismes physiques intervenant lors de l'aimantation d'un corps ferromagnétique. On décrit ensuite le modèle micro-magnéto-mécanique de comportement des monocristaux [START_REF] Buiron | [END_REF](Buiron et al. ( , 2001))). Son extension au polycristal fait appel à des démarches de localisation et d'homogénéisation. Ce travail s'achève par une comparaison du modèle avec quelques résultats expérimentaux.

Couplages magnéto-élastiques -revue des phénomènes

Les comportements magnétique et mécanique des alliages ferromagnétiques industriels sont fortement couplés. Cela signifie que le comportement magnétique ne peut pas être déterminé de façon précise sans prendre en compte les champs mécaniques associés, et, parallèlement, la déformation dépend fortement de l'état magnétique du matériau considéré. Il existe ainsi deux principaux phénomènes associés à ce couplage. La perméabilité d'un matériau 2 ferromagnétique, tout d'abord, est fonction de l'état de contrainte. Par exemple, dans le cas du fer pur soumis à une compression uniaxiale, la perméabilité dans la direction de la compression diminue fortement quand la contrainte augmente. En revanche, une traction modérée améliore la perméabilité [START_REF] Cullity | Introduction to magnetic materials[END_REF]). Par ailleurs une déformation dite déformation de magnétostriction, apparaît spontanément lorsqu'un matériau ferromagnétique est aimanté. On observe également une forte sensibilité de la magnétostriction à l'état de contraintes. Ce couplage peut être mis à profit pour la fabrication d'émetteurs ou de capteurs. Il est également en partie responsable du bruit émis par les machines électriques. L'effet ∆E s'explique par ce même couplage. On se reportera à [START_REF] Bozorth | Ferromagnetism[END_REF] pour de plus amples explications.

Rappel des mécanismes et modélisations à l'échelle du grain

En général, chaque grain d'un matériau ferromagnétique polycristallin est divisé en domaines magnétiques aimantés à saturation, ceci quels que soient le niveau et l'orientation du champ magnétique extérieur. Le vecteur aimantation associé à chacun des domaines est initialement orienté suivant une direction cristallographique privilégiée notée direction de « facile aimantation », <100> pour le fer. Il existe donc au maximum 6 familles de domaines dans un grain pour ce matériau. La structure en domaines évolue avec le champ magnétique suivant deux mécanismes concomitants : le mouvement des parois magnétiques, constituant la frontière entre deux domaines à bas champ, et la rotation de l'aimantation en direction du champ appliqué à plus fort champ. Quand la saturation magnétique est atteinte, chaque grain est composé d'un unique domaine aimanté dans la direction du champ.

La modélisation du comportement magnéto-mécanique d'un polycristal passe par une description des mécanismes à l'échelle du monocristal. Les deux mécanismes à décrire sont la déformation de magnétostriction et l'aimantation.

Modélisation de la magnétostriction

Considérons un domaine magnétique α. Son aimantation Mα peut s'écrire dans le repère cristallographique selon (1), les γ i étant les cosinus directeurs de l'aimantation dans ce repère. La déformation de magnétostriction d'une famille de domaines ε α µ s'écrit alors dans ce repère selon (2), λ 100 et λ 111 étant les deux constantes de magnétostriction du monocristal. Elles correspondent aux déformations à saturation mesurées suivant les directions <100> et <111>.

Mα = M s r γ = M s t γ 1 , γ 2 , γ 3 [ ] (1) 
ε α µ = λ 100 γ 1 2 - 1 3       λ 111 γ 1 γ 2 λ 111 γ 1 γ 3 λ 111 γ 1 γ 2 λ 100 γ 2 2 - 1 3       λ 111 γ 2 γ 3 λ 111 γ 1 γ 3 λ 111 γ 2 γ 3 λ 100 γ 3 2 - 1 3                        
(2)

Modélisation mécanique

Dans le cas des matériaux du génie électrique, l'amplitude de la déformation de magnétostriction est de l'ordre de 10 -5 . Les incompatibilités associées restent alors dans le domaine élastique et une simple description de l'état mécanique dans le cadre de l'élasticité linéaire suffit. Contraintes σ g et déformations élastiques ε g e sont liées par la loi de Hooke (3).
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C I est le tenseur d'élasticité du grain à symétrie cubique et dont les termes sont supposés indépendants du niveau de champ.

σ g = C I ε g e (3)

Modélisation magnétique

La modélisation magnétique utilisée a été proposée par [START_REF] Buiron | [END_REF]Buiron et al. ( ),(2001)). Elle étend le modèle des phases de Néel (1944). Les variables d'état sont écrites à l'échelle du grain. On distingue alors deux variables pour chaque domaine α :

• la fraction volumique f α de la famille de domaines α.

• l'angle de désorientation θ α entre l'axe de facile aimantation de la famille considérée et le vecteur aimantation de la famille de domaines α ; cette variable intervient dans le mécanisme de rotation. Nous supposons ici que le vecteur aimantation r M α reste en première approximation dans le plan défini par la direction de facile aimantation initiale et le vecteur champ magnétique.

Le calcul des variables d'état est réalisé via une double démarche de minimisation énergétique et d'application d'une expression explicite. L'énergie potentielle est écrite à l'échelle du domaine α selon (4) :

W α = W mag α + W an α + W σ α (4) 
• W mag α est l'énergie magnétostatique, tendant à créer une aimantation dans la direction du champ magnétique (5).

r H g est le champ magnétique moyen dans le grain.

W mag α = -µ 0 r H g . r M α (5) 
• W an α est l'énergie d'anisotropie magnétocristalline, tendant à empêcher l'aimantation de s'écarter de la direction de facile aimantation. Elle s'exprime suivant (6) dans le cas d'un matériau à symétrie cubique où K 1 et K 2 sont les constantes d'anisotropie du monocristal.

W an α = K 1 γ 1 2 γ 2 2 + γ 1 2 γ 3 2 +γ 2 2 γ 3 2 ( ) + K 2 γ 1 2 γ 2 2 γ 3 2 ( ) (6) 
• W σ α est l'énergie magnétoélastique décrivant le couplage magnétomécanique fonction du produit entre la déformation libre et l'état de contraintes à l'échelle du grain, soit :

W σ α = -σ g : ε α µ (7)
Le calcul des variables d'état θ α s'effectue par minimisation de l'énergie potentielle W α (8). Les variables d'état f α sont obtenues à l'aide de la relation explicite (9) proposée par Buiron et al. (2001) où A s est le seul paramètre d'ajustement du modèle microscopique. Une fois les 12 variables d'état calculées, on obtient par simple moyenne volumique (notée <..>) l'aimantation r M g et la déformation de magnétostriction ε g µ dans le grain (10) et (11).

W α (θ α ) = min(W α ) (8) f α = exp -A s .W α ( ) exp -A s .W α ( ) α =1 6 ∑ (9) 4 r M g = < r M α > = f α . r M α ( ) α =1 6 ∑ (10) ε g µ = < ε α µ > = f α .ε α µ ( ) α =1 6 ∑ (11)
On trouvera dans les références [START_REF] Buiron | [END_REF]Buiron et al. ( , 2001) ) et [START_REF] Daniel | EMMC'6)[END_REF] des comparaisons entre résultats expérimentaux [START_REF] Webster | Proc. R. Soc. Lond[END_REF]) et prévisions de ce modèle pour un monocristal de fer pur. On observe un très bon accord aussi bien en ce qui concerne la magnétostriction que la courbe d'aimantation anhystérétique, les constantes matériaux employées étant issues de Mc Clintock et al. (1966) pour l'élasticité et Bozorth (1951) 

localisation des champs mécanique et magnétique

La localisation mécanique consiste à postuler une fonction g telle que:

σ g = g Σ, r H ext ( ) (12) 
On détermine cette fonction à partir d'une approche auto-cohérente. Chaque grain est considéré comme une inclusion dans un milieu homogène équivalent au polycristal. On se 5 ramène à un problème d'Eshelby [START_REF] Eshelby | [END_REF]). Le tenseur d'Eshelby S E est calculé à partir des fonctions de Green. Il permet de lier la déformation libre de magnétostriction à la déformation élastique de l'inclusion (13). Le tenseur d'élasticité du milieu équivalent est la solution de l'équation autocohérente (14). On définit également le tenseur d'influence de Hill (15) et les opérateurs de localisation des déformations ( 16) et des contraintes (17). On calcule ensuite la contrainte par grains comme la somme de la contrainte macroscopique localisée avec la contrainte d'incompatibilité de magnétostriction (18). Il s'agit d'une relation autocohérente puisque la déformation de magnétostriction dépend de la contrainte.

ε

I = S E : ε g µ (13) C AC = C I : (C I + C * ) -1 : ( C AC + C * ) (14) 
C * = C AC : (S E -1 -I)

(15) A = (C I + C * ) -1 : (C AC + C * ) , B = C I : A : C AC -1
(16),( 17)

σ g = B: Σ + C I : S E -I ( ) : ε g µ (18) 
La localisation magnétique consiste à calculer la fonction h telle que :

r H g = h Σ, r H ext ( ) (19) 
En électromagnétisme, on lui préfère la relation (20) utilisant la notion de champ démagnétisant r Des essais ont été entrepris pour un alliage de fer-silicium livré sous forme de tôle de 0,5mm d'épaisseur. Les essais mécaniques consistent en des tractions uniaxiales sur des éprouvettes prélevées tous les 10° dans le plan de tôle. On accède ainsi aux modules d'Young et coefficients de Poisson. Des mesures magnétiques anhystérétiques ont également été réalisées pour obtenir des courbes d'aimantation et de magnétostriction longitudinale (parallèle au champ appliqué), corrigée de l'effet de forme (Hubert et al. (2002)). La figure 2 permet de comparer les différents résultats expérimentaux aux résultats du modèle. Le fichier d'orientations cristallographiques a été obtenu par EBSD ; il est constitué de 500 grains. Le modèle donne des 6 résultats particulièrement satisfaisants en ce qui concerne l'élasticité anisotrope. Les tendances et anisotropie du comportement magnétique anhystérétique sont bien reproduites. Le niveau d'aimantation prévu par le modèle est cependant surestimé. La prévision de la magnétostriction est cohérente en ce qui concerne les niveaux atteints et l'allure générale, mais l'anisotropie est insuffisamment décrite. La prise en compte d'un effet magnétique de surface permet d'inverser les tendances [START_REF] Daniel | EMMC'6)[END_REF]). 

H g = r H ext + r H d (20) r H d = N c ( r M M - r M g ) , N c = (3 + 2χ m ) -1 ( 

  FIG. 1. Schéma multiéchelle employé.

r

  H d . Dans le cas d'un matériau isotrope linéaire, la relation (21) permet de relier le champ démagnétisant à l'écart entre l'aimantation du grain r M g et l'aimantation moyenne macroscopique r M M , la relation (22) établie par une approche autocohérente (Buiron (2000)) reliant le facteur démagnétisant N c à la susceptibilité χ m du matériau. Nous choisissons d'étendre cette expression à la situation anisotrope et non linéaire présente.

FIG. 2 .

 2 FIG. 2. Comparaisons modèle / expérience : (a) élasticité (modèle : traits pleins) ; aimantation (b) et magnétostriction longitudinale (c) anhystérétiques.

expérimentaux et prévisions du modèle
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