
HAL Id: hal-01533514
https://hal.science/hal-01533514v1

Submitted on 8 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Faster simulation of (Coloured) Petri nets using parallel
computing

Franck Pommereau, Jordan de La Houssaye

To cite this version:
Franck Pommereau, Jordan de La Houssaye. Faster simulation of (Coloured) Petri nets using parallel
computing. 38th International Conference on Application and Theory of Petri Nets and Concurrency
(PETRI NETS 2017), Jun 2017, Zaragoza, Spain. pp.37–56, �10.1007/978-3-319-57861-3_4�. �hal-
01533514�

https://hal.science/hal-01533514v1
https://hal.archives-ouvertes.fr

Faster Simulation of (Coloured) Petri Nets
Using Parallel Computing

Franck Pommereau and Jordan de la Houssaye

ibisc, University of Évry, 23 boulevard de France, 91037 Évry Cedex, France
franck.pommereau@ibisc.univ-evry.fr, jordan.delahoussaye@ibisc.univ-evry.fr

Abstract. Fast simulation, i.e., automatic computation of sequential
runs, is widely used to analyse Petri nets. In particular, it enables for
quantitative statistical analysis by observing large sets of runs. More-
over, fast simulation may be used to actually run a Petri net model as a
(prototype) implementation of a system, in which case such a net would
embed fragments of the code of the system. In both these contexts, being
able to perform faster simulation is highly desirable.
In this paper, we propose a way to accelerate fast simulation by ex-
ploiting parallel computing, targeting both the multi-core cpus available
nowadays in every laptop or workstation, and larger parallel computers
including those with distributed memory (clusters). We design an algo-
rithm to do so and assess in particular its correctness and completeness
through its formal modelling as a Petri net whose state space is analysed.
We also present a benchmark of a prototype implementation that clearly
shows how our algorithm effectively accelerates fast simulation, in partic-
ular in the case of large concurrent coloured Petri nets, which is precisely
the kind of nets that are usually slow to simulate.

Keywords: Petri nets, fast simulation, parallel computing.

1 Introduction

Fast simulation is a widely used technique that consists in computing a run of a
Petri net. Such a run is built automatically, as fast as possible, contrasting with
interactive simulation for which the user is requested to chose the next of every
step in the run. Fast simulation allows the modeller to make direct observations
of the behaviour of a Petri net, just like developers run their programs to observe
them. How fast is fast simulation becomes crucial when one wants to build large
sets of runs on which various properties may be measured in order to perform
quantitative statistical analysis, as done in [4] for example. This is a widely
used technique that nicely complements qualitative analysis through state-space
analysis (in particular, model-checking). Moreover, considering coloured Petri
nets more specifically, one may embed in a Petri net model parts of the functional
fragments of system under design, i.e., the Petri net may be equipped with code
that performs actual computation and is intended to be integrated into the final
system. In such a case, the Petri net is used both for analysis and for simulating

mailto:franck.pommereau@ibisc.univ-evry.fr
mailto:jordan.delahoussaye@ibisc.univ-evry.fr

the non-functional parts of the system that may be complicated to implement
(which is true in particular for distributed system). Such a model may thus be
used as an implementation of the system, or just considered as a prototype that
may be simulated to observe runs or perform tests in the environment where
the system is expected to operate. In such a case also, being able to accelerate
simulation is very interesting.

In this paper we propose a parallel algorithm to accelerate simulation, de-
signed in such a way that it can be implemented using a wide variety of pro-
gramming languages, and targeting shared memory as well as distributed mem-
ory computer. This makes it suitable for being used on laptops or workstations
equipped with multi-core cpus (that is, all of them nowadays) as well as on
dedicated computers like clusters. The main idea behind this algorithm is to
compute a run of a Petri net from a sequential pseudo-concurrent process (i.e.,
using cooperative multitasking within a single thread of execution) that dele-
gates some computation to external processes through remote procedure calls.
We present our algorithm, called Medusa, and we assess its properties resorting
to formal modelling and analysis, then we present a prototype implementation
and a benchmark of its performances. Doing so we show that Medusa is cor-
rect (it only builds legal runs), complete (it can build any run of the simulated
Petri net), and fair (it has no bias that would favour some runs over others).
The benchmark shows that our choice of a cooperative multitasking algorithm
requesting worker processes (or threads) can be easily and effectively imple-
mented. Moreover, we observe that Medusa’s acceleration grows linearly with
the number of processes, up to some point where it amortises, which depends
on the intrinsic concurrency in the Petri net and on the work load necessary to
compute the successors of a marking through one transition. Consequently, we
can conclude that Medusa is well suited for large and concurrent coloured Petri
nets, which is exactly the case where faster simulation is the most needed.

The next section provides the definition of the Petri nets we use in the rest
of the paper. Then, section 3 presents Medusa algorithm and its formal analysis.
Section 4 describes the prototype implementation and its benchmark, and a
detailed analysis of the results obtained from the latter. The paper ends on a
conclusion with a discussion about related and future works.

2 Petri Nets

To start with, we need to define multisets and various operations between them.

Definition 1. A multiset A over of set X is a function X → N where for every
x ∈ X, A(x) is the number of occurrences of x in A. For A and B two multisets
over X, we define:

– A ≤ B iff A(x) ≤ B(x) for all x ∈ X;

– A + B is the multiset over X such that (A + B)(x)
df
= A(x) + B(x) for all

x ∈ X;

– A − B, defined iff B ≤ A, is the multiset over X such that (A − B)(x)
df
=

A(x)−B(x) for all x ∈ X.

A (coloured) Petri net involves values, variables and expressions. These ob-
jects are defined by a colour domain that provides data values, variables, op-
erators, a syntax for expressions, possibly typing rules, etc. For instance, one
may use integer arithmetic or Boolean logic as colour domains. Usually, more
elaborated colour domains are useful to ease modelling, in particular, one may
consider a functional programming language or the functional fragment (expres-
sions) of an imperative programming language. We consider here an abstract
colour domain with the following pairwise disjoint sets:

– D is the set of data values;
– V is the set of variables;
– E is the set of expressions, involving values, variables and appropriate oper-

ators. Let e ∈ E, we note by vars(e) the set of variables from V involved in e.
Moreover, variables or values may be considered as (simple) expressions, i.e.,
we assume that D ∪ V ⊂ E.

We make no assumption about the typing or syntactical correctness of ex-
pressions; instead, we assume that any expression can be evaluated, possibly to
⊥ /∈ D (undefined). More precisely, a binding is a partial function β : V → D.
Let e ∈ E and β be a binding, we note by β(e) the evaluation of e under β. The
application of a binding to evaluate an expression is naturally extended to sets
and multisets of expressions.

Take for instance β
df
= {x 7→ 0}, we may have distinct evaluations of various

expressions depending on the chosen colour domain:

– in Python, C and JavaScript: β(x+ 1) = 1;
– in Python, β(x + "hello") = ⊥ because of a type exception, in C it is

the address of string "hello", while in JavaScript it is the string "0hello"

because an automatic coercion is performed;
– in Python and JavaScript β(x+y) = ⊥ because of an exception complaining

that y is not defined, and in C also but because of a compilation error.

We can now define a variant of coloured Petri nets that is independent of the
annotation language.

Definition 2. A Petri net is a tuple (S, T, `) where:

– S is the finite set of places;
– T , disjoint from S, is the finite set of transitions;
– ` is a labelling function such that:
• for all s ∈ S, `(s) ⊆ D is the type of s, i.e., the values that s is allowed

to carry as tokens,
• for all t ∈ T , `(t) ∈ E is the guard of t, i.e., a condition for its execution,
• for all (x, y) ∈ (S×T)∪ (T ×S), `(x, y) is a multiset over E and defines

the arc from x towards y.

For all x ∈ T ∪P we define •x
df
= {y ∈ P ∪T | `(y, x) 6= ∅} and x•

df
= {y ∈ P ∪T |

`(x, y) 6= ∅}. These notations are naturally extended to sets of nodes.

Then we define the dynamic aspect of Petri nets, i.e., the markings and the
firing of transitions. Note that we also introduce a notion of token flow that will
be needed to define our algorithm.

Definition 3. Let N
df
= (S, T, `) be a Petri net. A marking M of N is a function

on S that maps each place s to a finite multiset over `(s) representing the tokens
held by s. For two markings A and B, we define:

– A ≤ B iff A(s) ≤ B(s) for all s ∈ S;
– A+B is the marking such that (A+B)(s)

df
= A(s) +B(s) for all s ∈ S;

– A−B, defined iff B ≤ A, is the marking such that (A−B)(s)
df
= A(s)−B(s)

for all s ∈ S.

Let t ∈ T be a transition, M a marking and β a binding. The token flow generated
by t and β at M is a pair of markings subM,t,β

df
= {s 7→ β(`(s, t)) | s ∈ S} and

addM,t,β
df
= {s 7→ β(`(t, s)) | s ∈ S}. Then, t is enabled for β at M , which is

noted by M [t, β〉, iff the following conditions hold:

– M has enough tokens, i.e., subM,t,β ≤M ;
– the guard is satisfied, i.e., β(`(t)) is true;
– place types are respected, i.e., addM,t,β is a valid marking of N .

If t ∈ T is enabled for binding β at marking M , then t may fire and yield
a marking M ′ defined by M ′

df
= M − subM,t,β + addM,t,β, which is noted by

M [t, β〉M ′. Finally, we note by [M〉 the set of all the markings reachable from a
marking M through arbitrary sequences of transitions and bindings.

3 Medusa: a Concurrent Simulation Algorithm

In order to distinguish the transitions in a Petri net from the corresponding data
structures used in Medusa algorithm, we call the latter players; by extension,
we shall call player as well the activity that handles this data structure (i.e.,
we may adopt an object-oriented point of view, which fits with our implementa-
tion). Moreover, each player belongs to a team that consists of the other players
with which it is in competition to fire its transitions. More precisely, for every
transition we define a corresponding player to record information about this
transition as follows:

1 struct player :
2 trans : transition # the player’s transition

3 team : set [player] # its team (a set of players)

4 out : set [player] # its output (a set of players)

5 busy : bool # is the player currently working?

6 retry : bool # should the player retry its current work?

Then, for each transition (and the corresponding player), we define its team
as the set of transitions (and players) with which it is in conflict (including the
transition itself), and its output as the set of transition for which it may produce
a token. Formally:

Definition 4. Let N
df
= (S, T, `) be a Petri net, then for all t ∈ T we define

team(t)
df
= (•t)

•
and out(t)

df
= (t•)

•
. Let p be a player, then p.team is the set of

players such that team(p.transition) = {q.transition | q ∈ p.team}, and p.out is
the set of players such that out(p.transition) = {q.transition | q ∈ p.out}.

Finally, a Petri net run is a list r of markings (this may be enriched easily)
whose latest item is noted as r.last, and we use an operation “append m to r” to
add a marking m at the end of r. Moreover, [] represents the empty run.

3.1 Concurrency Model

We consider an interleaving concurrency model in which the simulation engine
is executed on a single computation unit (e.g., one core of one cpu) on which
multiple sequential threads of execution are interleaved. Other computation units
exist and are exploited to execute code through remote procedure calls (rpc).
Moreover, a thread has to explicitly release the control so that another can be
scheduled, that is, we assume so called cooperative multitasking. Consequently,
there is no need for lock primitives to guarantee consistent accesses to data
structures. To express this we use two primitives:

– “call fun(· · ·)” invokes a function fun asynchronously, i.e., its execution starts
in a new thread but it is not scheduled immediately, instead, the caller is
able to continue its own execution. This requires that “fun” returns no value
because the caller has no way to get it;

– “rpc fun(· · ·)” is similar to call but the caller is blocked until the result is re-
turned. Moreover, the execution of fun is performed on another computation
unit so that, while the caller is waiting, another thread can be scheduled and
executed in the simulation.

The goal is to achieve speedup by allowing this sequential engine to be executed
in parallel with the remote procedures it calls. In the implementation, a limited
pool of worker processes will be used to execute the rpc calls, which means that
not all those calls can be executed in parallel but some are sequentialised. But
this has no consequence on the definition of the algorithm.

3.2 Medusa Algorithm

Figure 1 shows Medusa algorithm. The entry point is function startup that creates
a new run and launches in parallel one instance of procedure work for each player.
Players are marked as busy and they all share the same run just created.

The main procedure is thus work. Line 9, it computes the token flows available
from the current marking by calling remote procedure getflows. Note that this

1 def startup (players) :
2 run ← []
3 for player in players :
4 player .busy ← True
5 call work(player, run)
6

7 def work (player, run) :
8 player . retry ← False
9 flows ← {f in rpc getflows(player .trans, run. last) | f.sub ≤ run.last}

10 if player . retry and flows = ∅ :
11 call work(player, run)
12 elif flows = ∅ :
13 player .busy ← False
14 else :
15 choose flow in flows
16 append run.last − flow.sub + flow.add to run
17 player .busy ← False
18 for other in player .team ∪ player.out :
19 if not other.busy :
20 other.busy ← True
21 call work(other, run)
22 elif other.busy and other in player.out :
23 other. retry ← True

Fig. 1. Medusa algorithm, where remote procedure getflows(t,m) returns the set of
token flows for a transition t at a marking m.

call is initiated using the latest marking in the run, and it may take some time
during which other instances of work will be scheduled. When flows are returned
and this instance of work is scheduled again, they are filtered by keeping only
those that are applicable to the current latest marking. This may not be the same
marking as when getflows has been called if another work instance from the same
team has fired its transition (thus removing tokens). Line 10, if the player has
been told to retry and found no usable flow, work is called again. Otherwise,
line 12, if there is no usable flow then the player becomes idle. Finally, line 14,
the player has a usable flow and fires its transition by computing a new marking
that is added to the run. Then it is marked idle (line 17) and it has to inform
all the player in its team or in its output that their input markings has been
changed: in the team we have removed tokens, in the output, we have added
tokens. If such a player is not busy, it is put to work (lines 20–21), otherwise, if
this is a player in the output, it is told to retry because it is waiting for getflows
and will retrieve an outdated result since we just added tokens to its input
places. Retry is actually attempted (line 13) only is no valid flow is available,
this is necessary to avoid a deadlock, but not mandatory since there are already
usable flows. Remember that we assume cooperative multitasking, so when an
instance of work finds another player to be busy, then the work instance for this
latter player must by paused because of the call to getflows.

3.3 Formal Analysis

To assess Medusa’s expected properties, we have conducted two actions. On the
one hand, during our benchmark presented below, every run computed has been
checked to be a correct run of the executed Petri net. On the other hand, we
have built a formal model of Medusa using the abcd specification language [15]
and analysed its state space, which is reported now. We have not enough room
to present the model (available here [16]) but we describe it here in terms of
its Petri net semantics, that we call the model-net to distinguish it from the
simulated-net for which it computes a run:

– a place holds the players structures, initially at the state they have at the
end of startup, plus a field state to record which step of work this player is
currently handling. So, simulating call work(player, run) just requires to put
player.state at the appropriate value;

– instead of the whole computed run, only run.last is stored, into a dedicated
place, because it is the only marking we need and because this allows one to
keep a finite state space (provided that the simulated-net itself has a finitely
many markings);

– one transition models the beginning of work, picking a player, updating it
and putting in another place the flows obtained from getflows (this piece of
code is named rpc). These flows will be retrieved by one of the following
transitions;

– a second transitions models the end of line 9 that filters the flows and the
execution of line 11 (code piece retry);

– a third transition models also the end of line 9, but now together with line 13
(code piece idle);

– finally, a fourth transition models the end of line 9 together with lines 15–23
(code piece fire).

Instances of these transitions for the different players are interleaved when the
model-net is executed, which models cooperative multitasking.

We have computed the state space of this model-net when its fires the tran-
sitions of simulated-nets like those depicted in figure 2. In figure 3, we show
the resulting marking graph for simulated-net (3). Slightly larger nets have been
analysed as well, with the same results as presented below, but the state space
of the model becomes quickly intractable for nets with more that 4-5 transitions.
However, the nets depicted in figure 2 have been carefully chosen to focus on the
analysed aspects: correctness, completeness, deadlocks, progression, and fairness.

To check these properties, we consider the marking graph Gm of the model-
net in which: every node is replaced by the marking of the simulated-net that
is stored in run.last in this state of the model-net; every edge that corresponds
to the fire piece of code is labelled by the transition that is fired (i.e., on black
edges in figure 3, the gray parts of the labels are removed); other edges (the gray
ones) are labelled by τ . Then, let Gm/τ be Gm in which all the τ transitions

have been collapsed (i.e., whenever x
τ−−−−−−−−→ y we merge nodes x and y and remove

the resulting τ -labelled side-loop). We have checked that for each simulated-net,

(1)

•

t1t0

(2)

•

t1 t2t0

(3)

•

t0

t1 (4)

•

t0 t1t2

Fig. 2. Examples of simulated-nets used to analyse the model of Medusa. From the left
to the right, these simulated-nets yield model-nets with state spaces with respectively
18, 135, 8, and 126 states. The state space for net (3) is depicted in figure 3.

0

1

2

3

4

5

6

7
t0.

rpc

t0.fi
re

t1 .retry

t 1
.r

pc

t 0
.fi

re
t 0
.r
pct

1 .retry

t0 .fire

t1 .rpc

t1 .firet 0
.re

tr
y t

0 .rpc
t1 .fire

t1 .rpc

t 0
.r

et
ry

t1.
fire

Fig. 3. The state space of the model-net for simulated-net (3) from figure 2 where the
initial state is 0. Edges are labelled with the player’s transition for which procedure
work is active followed by the name of the code piece that is executed. Gray arcs are
those whose label is replaced by τ to check weak bisimilarity.

its marking graph Gs and Gm/τ are isomorphic, from which we have that the
model-net and the simulated-net are weak bisimilar [5]. Consequently, we obtain:

– correctness: every run constructed by the model-net is a valid run of the
simulated-net;

– completeness: for every run of the simulated-net, there is an execution of the
model-net that constructs this run;

– deadlocks equivalence: the simulated-net and the model-nets have exactly
the same deadlocks, if any, i.e., every deadlock in one net corresponds to a
deadlock in the other net with the same marking of the simulated-net;

– progression: we have checked that there is no loop with only τ edges in
Gm, which means that the model-net cannot progress unboundedly without
executing an instance of the fire piece of code;

– fairness equivalence: a fair (resp. unfair) run of the simulated-net can be
constructed only by a fair (resp. unfair) run of the model-net because both
nets have bisimilar executions and the model-net has to progress. So consid-
ering for example Gm for simulated-net (3) that is shown in figure 3, a fair
execution of Medusa cannot always favour loops like 0↔ 1 where transition
t1 is completely excluded, or 1→ 4→ 3→ 2→ 1 where transition t1 is con-

sidered but never allowed to fire. We will discuss fairness from a quantitative
point of view in the next section.

4 Towards an Efficient Implementation

We have made a prototype implementation of Medusa using snakes [14] for the
Petri net aspects and gevent [2] for the cooperative multitasking aspects. The
simulator consists of one main process that executes Medusa and a bunch of
worker processes to which computation tasks are delegated through rpc. The
implementation of Medusa itself is in Python and is very close to the pseudo-
code presented above, the implementation of call and rpc on the top of gevent
requires less than 100 additional lines of code. All this code is available in [16].

We have exercised this prototype on a choice of parametrised models depicted
in figure 4. Each model is designed as a reversible net so that we can run arbi-
trary long simulations without encountering a deadlock. Models StarFlower and
HyperLoops have both conflicts and concurrency, while Cycle has no conflict and
its concurrency is limited to the number of tokens, finally, Parallel has no con-
flicts but maximal concurrency. Each model has also a parameter chroma ≥ 0
that allows to simulate the effect of having coloured Petri nets for which fir-
ing transitions takes more time: each transition is equipped with a guard that
is always true but spends chroma/10 seconds using the cpu intensively. To do
so it computes the bzip2 compression of the sha512 hash of a random value,
and repeatedly on the result. This loop involves two cpu-intensive algorithms
and using a random seed plus a strong cryptographic hash ensure that we avoid
potential effects of the computer’s caches.

We have built more than 700 instances of these models with various parame-
ters and ran about 22k simulations of these instances that we have split into five
classes according to their number of transitions, as shown in figure 5. Note that
we have also ran simulations for much larger nets with up to 115k transitions but
there are too few to present smooth results, however, they are so far consistent
with what we present here. These simulations allowed to observe various aspects:

– how adding more worker processes speeds-up the simulation;
– how the simulation speed is influenced by the amount of computation re-

quired to fire transitions as captured by parameter chroma;
– how Medusa behaves when the number of transitions grows;
– how theoretical“fairness equivalence”can be observed on an implementation.

This benchmark have been run on a computer equipped with two 64 bits
Intel R Xeon R hexacore cpus at 2.67GHz, sharing 44Gb of ram, which allows
to run up to 12 processes independently so we have limited our benchmark
to 10 worker processes in order to leave enough cpu for Medusa main process
and the operating system. On the software side, we have used Debian 8.6 with
Linux kernel 4.4.19, Python 2.7.9, gevent 1.1.2 (for cooperative multitasking) [2],
gipc 0.6.0 (simplified ipc for gevent) [8], psutil 4.3.1 (measure the cpu and
memory usage of processes) [17], and snakes 0.9.21 [14].

(1)

•

•

•

(2) •

•

(3)

•

•

•

•

(4)
•

•
•

•
•

•
•

•
•

•

Fig. 4. Instances of the models used for the benchmark. (1) StarFlower(depth =
2,num = 3) is organised as a series of concentric connected rings of places and tran-
sitions, where depth is the number of rings and num is the number of pairs of places
and transitions on a ring. (2) HyperLoop(dim = 2,width = 2) is organised as an
hyper-cube of dimension dim where width is the number of transitions on one edge.
(3) Cycle(length = 10, tokens = 4) is organised as a loop, where length is the number
of transitions and tokens the number of tokens. (4) Parallel(length = 10) is organised
as a series of independent side-loops, where length is the number of transitions.

Fig. 5. Distribution of the simulated instances by size (number of transitions).

4.1 Performance Analysis

Let us first remark that the time necessary to build a set of players from a Petri
net is always negligible and thus not analysed here. Moreover, by design, Medusa
cannot accelerate the simulation of Petri nets that have no concurrency at all
because it can only parallelise the firing of concurrent transitions.

That said, figure 6 shows how many transitions per second Medusa can fire,
with respect to the number of worker processes and to the size of the nets, for
chroma ∈ {0, 1}, decomposed by model. We observe in general a linear speedup
until 5 or 6 processes, where it starts to amortise. For uncoloured models, firing
rate is better for smaller nets and it decreases with the size of the nets. For
coloured models, rates are of course much lower because every transition firing
takes 0.1 second, but larger nets globally have better rates. Moreover, for models
with more concurrency between transitions (i.e., larger models or those with less
conflicts) Medusa scales better with the number of processes. See in particular
the curves for the coloured instances of Parallel.

We explain these observations by the overhead introduced by Medusa that is
more important in the uncoloured case than in the coloured case where most of
the time is spent computing token flows. This is not surprising that an algorithm
that is designed to parallelise computation tasks is more efficient when these
tasks take more time. Furthermore, having more concurrent nets yields more
such tasks so it allows to better use worker processes that are always fed with
token flows to compute, in such a way that we maximise parallel efficiency.

To confirm this, we have programmed a very simple sequential simulator
directly based on snakes that repeatedly chooses and fires a transition (see its
pseudo-code in figure 7). We have exercised this simulator on the same instances
and compared it with Medusa (using 6 to 10 worker processes).

The results are provided in figure 8. We can observe that snakes simulation
is better than Medusa for uncoloured nets (except on model Cycle), but that
Medusa is much faster than snakes for coloured nets. In the former case, this is
explained again by the additional cost of ipc and the relatively bigger complexity
of Medusa algorithm, which cannot be compensated by parallel computation
because token flows require very little computation time. In the latter case,
parallel computation becomes effective and Medusa is actually able to compute in
parallel the token flows for several transitions, which is the most clearly observed
in the case of Parallel.

Another confirmation that worker processes are efficiently exploited can be
obtained by decomposing the time spent in ipc into three classes: (1) wait-
ing: when Medusa is waiting for a worker process to be available, during which
another task in Medusa may be active (for instance to fire a transition); (2) com-
munication: the time spent in sending a request from Medusa to a worker process,
or in receiving the answer; (3) computation: the time spent by the worker process
to compute the token flows, during which Medusa may be busy handling other
players. This is shown in figure 9 where we observe that waiting time is largely
dominant when there is not enough worker processes, but quickly decreases with
the number of processes. Moreover, communication time is always negligible and

Fig. 6. Firing rates with respect to the number of worker processes, for chroma = 0
(top) and chroma = 1 (bottom). Higher is better.

not visible in this graph. Note also that we obtain identical plots if we separate
cases by chroma or net sizes. This waiting time that never disappears shows
that Medusa is always fast compared to the worker processes. So, the fact that
firing rates do not grow linearly after some point does not come from the over-
head of the parallel processing, but it must come from the insufficient intrinsic
concurrency in the simulated nets, which does not occur with Parallel.

This is also illustrated on figure 10 where we focus on coloured instances of
model Cycle: in this model, the number of tokens is exactly the maximum num-
ber of transitions that may fire concurrently (but if several tokens are located
in the same place, concurrency is lower because Medusa does not consider auto-
concurrency). In figure 10 we clearly observe that Medusa has exactly the same
performance than the snakes-based simulator when only one token is avail-

1 def simul (net) :
2 deadlock ← False
3 while not deadlock : # simulate until a deadlock is found

4 deadlock ← True # assume the current marking is a deadlock

5 for trans in shuffle (net. transitions) : # try to fire each transition

6 flows ← getflows(trans, net.marking)
7 if flows 6= ∅ : # choose one flow and fire

8 choose flow in flows
9 net.marking ← net.marking − flow.sub + flow.add

10 deadlock ← False # actually we did not reach a deadlock

11 break # quit for loop ⇒ restart while loop

Fig. 7. The simple snakes-based simulator used for comparison with Medusa.

Fig. 8. Compared mean firing rates of snakes and Medusa (for 6–10 processes), by
models, and for chroma = 0 (left) and chroma = 1 (right). Higher is better.

Fig. 9. Decomposition of the time spent in ipcs with respect to the number of worker
processes.

Fig. 10. Mean firing rates of snakes and Medusa (for 6–10 processes) on the Cycle
model for chroma = 1 with respect to the number of tokens.

Fig. 11. Mean firing rates of snakes and Medusa for chroma = 1 with respect to the
number transitions, decomposed by tool, model, and number of worker processes.

able (i.e., 10 transitions per second as each transition takes 0.1 second), but it
accelerates with the number of tokens.

Finally, in figure 11 we show how Medusa behaves when the size of the sim-
ulated Petri net grows. The rate of the snakes simulator is plotted also for
comparison. As previously observed, adding transitions allows to add concur-
rency, which yields better rates, especially when we use more processes. We can
indeed see how the initial slope is steeper when there are more worker processes.
Then, after this initial growth, the rates stabilises and only depends on the num-
ber of workers. We can also observe that, for a fixed number of workers, the rates
stay constant when the nets get larger. However, model Parallel is different since
the rate decreases with the size of the nets. Actually, the smallest instances we
have used have 10 concurrent transitions, which is already enough to keep 10
workers fully busy, and indeed, we reach 100 firings per second for 10 workers
and 10 transitions whose firing costs 0.1 second each. But the workers are already
fully busy and cannot absorb more, so increasing the number of transitions only
results in increasing the overhead to manage them. Similarly, for a fixed number
of transitions, adding more workers only results in increasing the overhead to
manage them as well.

From all these experiments, we observe that for a better overall performance,
we need to have: (1) more worker processes to reduce the waiting time; (2) more
concurrent Petri nets to always be able to feed these worker processes and use
them as much as possible; (3) more cpu-intensive activity when computing token
flows to reduce the overhead introduced by Medusa, which is the case with
coloured nets that may perform high-level computation in their arcs and in their
guards. So we conclude that Medusa is well suited to accelerate the simulation
of large coloured Petri nets involving cpu-intensive computation, which is the
typical case that requires acceleration (the other cases being naturally fast to
simulate).

4.2 Analysing the Design of Medusa

Medusa is designed to be “as concurrent as possible”, i.e., every player is given
a chance to fire its transition, even if its work may be invalidated by another
player firing a transition (which yields a retry, i.e., the execution of lines 10–11
in figure 1).

To observe how this design impacts the execution, we have counted the num-
ber of retries performed by Medusa with respect to the number of firings, which
is plotted in figure 12. This shows that the number of retries highly depends on
the model (from lines 18 and 22 in figure 1: a retry is possible only if a player
is working on a transition that is given tokens from another, but may have had
tokens stolen by another player in the team). But in any case it remains propor-
tional to (and lower than or equal to) the number of firings.

Fewer retries would be desirable because they correspond to wasted work. But
it currently looks like they are hard to avoid without resorting to a higher-level
scheduler that would choose which player is given a chance to fire its transition.
But doing so is not necessarily more efficient because such an arbiter cannot
know in advance which player will actually succeed in firing its transition.

Fig. 12. Number of retries with respect to the number of firings. Lower is better. Model
Parallel is not depicted because it requires no retry at all.

Fig. 13. Distances between snakes and Medusa simulations with respect to the number
of firings (events). Lower is better.

4.3 Fairness Analysis

To analyse the fairness of Medusa from a quantitative perspective, we have com-
pared it to the snakes simulator (presented above, see figure 7) using both
small and large instances of each model. Each instance has been simulated us-
ing both simulators for growing lengths of simulations (measured as the number
of firings). For each pair of simulation, we have counted the frequency of firing
for each transition and computed the distance between these two vectors. Both
simulators use the same random number generator. The result is rendered in fig-
ure 13 from which we observe that, for every model, the two simulators converge
to the same distribution of the transitions they choose as the number of firing
grows. However, we have used nets whose transitions need all the same time to
fire, it is likely that if some transitions need less time than others, they are more
likely to be chosen by Medusa that is designed to fire transitions “as soon as
possible”, which is not the case for a sequential simulator that first chooses a
transitions to fire regardless of the time it will take.

5 Conclusion

In this paper we have presented a parallel algorithm to compute a sequential run
of a Petri net. This algorithm is based on cooperative multitasking and thus is
actually sequential, but it delegates computation to other processes which allows
to keep it simple while achieving acceleration by launching computation in par-
allel processes. This architecture is well suited for multi-core cpus or multi-cpus
computers, as well as for distributed computers where inter-process communi-
cation is made over the network. Moreover, our Python prototype shows that
Medusa can be implemented successfully even with a language that is notori-
ously bad with concurrency and whose default implementation (that we have
used) cannot exploit more than one core or cpu.

We have presented a formal analysis of Medusa, as well as a prototype imple-
mentation with a benchmark. This allowed to show that Medusa is well suited
to accelerate the simulation of large coloured Petri nets with concurrency, that

is, exactly the kind of nets that are usually slow to simulate and for which
faster simulation is highly desirable. Moreover, Medusa scales well and is able
to execute very large nets with thousands of transitions. We have only limited
experiment for these cases but the systematic bench we have presented is still
in progress processing larger nets. Preliminary results are fully consistent with
what we have presented above. Moreover, we have shown in our benchmark that
the firing rate does not depend on the size of the nets (except in pathological
cases like model Parallel). Finally, Medusa has been proved correct and complete
on a limited but varied set of simulated nets.

We have also identified some limitations of Medusa, and of our analysis. First,
it is designed to compute random runs by fire transitions “as soon as possible”,
consequently, it may be a big change to design a variant with, for instance, pri-
orities between transitions. Such variants have been tested and involve a higher-
level scheduling, which works correctly but slows down simulation because we
try to fire transitions in one order that is not necessarily available Moreover,
on the one hand, we have shown that Medusa does not generate unfair runs of
the simulated Petri net from fair runs of the simulation. But on the other hand,
unfair runs of the simulation are likely to occur with nets whose transitions do
not all require the same computation time considering that Medusa will tend
to fire the first one for which this computation completes. Finally, we have seen
that Medusa introduces an important overhead on small uncoloured Petri nets
and that it cannot accelerate a Petri net that has no concurrency because it is
just as concurrent as the simulated Petri net. To do so we would need a radically
different algorithm focusing on parallelising the firing of a single transition. This
is however not really a limitation but rather a design choice, and actually, having
simultaneously two levels of concurrency can be envisaged.

Despite these limitations, we believe that we have demonstrated strong ar-
guments to convince that Medusa has a clear potential to lead to efficient im-
plementations of faster simulators.

5.1 Related Works

The question of executing a Petri net has been long standing. In [11], the author
propose a sophisticated solution based on places invariants to extract processes
from a Petri net in order to distribute its execution on Ada threads. This is nec-
essary because a naive implementation that would put one thread for each tran-
sition would quickly collapse as the number of transitions would grow (threads
or processes do not scale well). This highlights a crucial aspect of our proposal:
we rely on cooperative multitasking instead of threads, which we have tested to
scale happily to hundreds of thousands of pseudo-concurrent activities. Building
such a net or loading it in memory takes a lot of time, but we have tested that
once this is done, simulation is as fast as with smaller nets, even faster if more
transitions means more concurrency.

In [12], the question of parallel simulation of timed Petri nets is solved using
also a sophisticated partitioning of the Petri net to distribute its nodes on the
computation units (cpu + memory), and a complex communication protocol to

synchronise the distributed timed execution in order to ensure that it remains
globally correct. The problem solved is substantially distinct from ours: [12]
distributes a timed uncoloured Petri net and ensures the synchronisation the
timed executions of its resulting parts, while we distribute the computation that
arises from the execution of a centralised untimed coloured Petri net. We end
up with a much simpler approach that has probably a much lower overhead
and can be executed even on a modest multi-core cpu while [12] is designed for
distributed-memory parallel computers.

[19] is a 3-pages paper in which, among other things, the authors describe
a parallel simulation engine that relies on partitioning a Petri nets into a set of
sub-nets, being then processed in parallel. However, this topic is treated only
briefly in a paper that is already very short, so it gives no further details about
the parallel algorithm itself. Moreover, we have found no further reference to
this paper, including no available software.

Finally, as stated on Renew’s web page [18], “[its] simulation engine is capable
of true concurrency and supports symmetric multi-processor architectures”. Con-
sidering that Renew is able to execute Java code attached to the transitions of
the Petri nets it simulates [3], this makes it very comparable to snakes equipped
with Medusa. (Note that, like Renew, snakes is able to execute nets-within-nets
as shown in [13].) However, we’ve found no description of this concurrent simu-
lation algorithm but a comparison with Medusa should be very interesting.

5.2 Future Works

In the future, we intend to combine Medusa with the compilation of Petri nets
as performed by Neco [6]. In the current prototype, we indeed rely on snakes
to compute the token flows and so, the simulated net is interpreted (i.e., it is
represented as a data structure that is requested and on which generic algorithms
are executed). What Neco does is to compile a Petri net into a set of specialised
data structures and algorithms so that the Petri net structure disappears and the
algorithms can be optimised on a per-transition basis. Experiments have showed
that this yields a dramatic improvement in the performances for the computation
of state spaces. Neco is currently operating on steps that are coarser than we
need, being able to compute the successors of a marking, but not the tokens
flows. To make them available to Medusa, we will need to refine Neco.

That done, we should be able to experiment with other finer-grains algo-
rithms. In particular, we envisage to randomise the iterations on the tokens of
input places in order to compute a single random token flow, instead computing
all the possible flows before to chose one randomly. This should greatly alleviate
the work load of worker processes, making them available for more computation
(thus reducing the waiting times we have observed in figure 9). But at the same
time, this should also increase the number of retries as a single flow is more likely
to be invalidated by a concurrent firing than a whole set of flows. In this new
algorithm, a retry would however only consist in requesting the next random
flow and so should be less time consuming than in the current setting.

We also want to experiment with other implementation languages, we think
in particular about the Go language [1,9] that features native cooperative multi-
tasking (through so called goroutines) with compiler that generates native code
that is able to efficiently exploit multi-core cpus. Go programs are expected to
run at the speed of C, even with hundreds of thousands of goroutines started
simultaneously. So we expect a Go implementation of Medusa to have a low
overhead whose performance on sequential Petri nets could be comparable to a
simpler sequential simulator like that outlined in figure 7.

Coming back to our current prototype, we would like to perform a finer anal-
ysis of the effect of colours. Choosing parameter chroma in {0, 1} as considered
in this paper turned out to be much too coarse, and we should have designed
our benchmark with much smaller delays (e.g., chroma/100 seconds instead of
chroma/10) but when we have had enough data to analyse the benchmark and
discovered this, it was to late to restart it from scratch. Furthermore, we should
experiment with real cases of coloured Petri nets instead of the artificial ones we
have used here. We shall also consider more varied models, in particular those
from the model-checking contest [10] should be good candidates as they already
come with scaling parameters.

Analysis of fairness should also be refined, first by defining properly what
would fairness mean in the context of the “as soon as possible” execution policy
on which Medusa has been built. This definition should be general enough to
allow for a comparison with other policies, and we would like to adapt Medusa
to allow it to be parametrised by such policies.

A more theoretical work will be to provide a formal mechanised proof of
Medusa algorithm. We expect to be able to adapt the techniques used in [7]
where the authors prove BSP-parallel programs. Such programs are structured
as sequences of super-steps, each of which being the parallel run of independent
sequential blocks of code. The proof technique relies on the fact that the blocks
being independent, they may be run sequentially in any order that respect the
order of the super-steps; so the proof is reduced to that of a sequential program.
Like a BSP program, Medusa algorithm is also organised a set of sequential
blocks that are already scheduled sequentially, so we see no major obstacle to
reuse the techniques from [7].

Supplementary Material

The abcd model of Medusa, the scripts to analyse it, and the prototype imple-
mentation of Medusa are available as free software under the gnu gpl licence
at http://github.com/fpom/PETRINETS-2017-supplementary [16].

Acknowledgements

We warmly thank Camille Coti (lipn) for her help in understanding our hard-
ware and how to exploit it correctly for our benchmark.

http://github.com/fpom/PETRINETS-2017-supplementary

References

1. The Go programming language. http://golang.org
2. Bilenko, D., gevent contributors: gevent. http://www.gevent.org
3. Cabac, L., Haustermann, M., Mosteller, D.: Renew 2.5 – towards a comprehensive

integrated development environment for Petri net-based applications. In: Proc. of
PETRI NETS 2016. LNCS, vol. 9698. Springer (2016)

4. Chaou, S., Utard, G., Pommereau, F.: Evaluating a peer-to-peer storage system in
presence of malicious peers. In: Proceedings of HPCS’11. IEEE Computer Society
(2011)

5. Fernandez, J.C., Mounier, L.: “On the fly” verification of behavioural equivalences
and preorders. In: Proc. of CAV’91. LNCS, vol. 575. Springer (1992)

6. Fronc, L., Pommereau, F.: Building Petri nets tools around Neco compiler. In:
Proc. of PNSE’13 (2013)

7. Gava, F., Fortin, J., Guedj, M.: Deductive verification of state-space algorithms.
In: Proc. of IFM 2013. LNCS, vol. 7940. Springer (2013)

8. Gehrcke, J.P.: gipc: child processes and IPC for gevent. http://gehrcke.de/gipc
9. Kincaid, J.: Google’s Go: A new programming language that’s Python meets C++.

http://techcrunch.com/2009/11/10/google-go-language (2009)
10. Kordon, F., Garavel, H., Hillah, L.M., Hulin-Hubard, F., Chiardo, G., Hamez,

A., Jezequel, L., Miner, A., Meijer, J., Paviot-Adet, E., Racordon, D., Rodriguez,
C., Rohr, C., Srba, J., Thierry-Mieg, Y., Tri.nh, G., Wolf, K.: Complete Results
for the 2016 Edition of the Model Checking Contest. http://mcc.lip6.fr/2016/
results.php (2016)

11. Kordon, F.: Prototypage de systèmes parallèles à partir de réseaux de Petri colorés.
Ph.D. thesis, UPMC (1992)

12. Nicol, D.M., Mao, W.: Automated parallelization of timed Petri-net simulations.
Journal of Parallel and Distributed Computing (1995)

13. Pommereau, F.: Nets in nets with SNAKES. In: Proc. of MOCA’09. Universität
Hamburg, Dept. Informatik, Hamburg (2009)

14. Pommereau, F.: SNAKES: a flexible high-level Petri nets library. In: Proc. of
PETRI NETS’15. LNCS, vol. 9115. Springer (2015)

15. Pommereau, F.: ABCD: a user-friendly language for formal modelling and analysis.
In: Proc. of PETRI NETS 2016. LNCS, vol. 9698. Springer (2016)

16. Pommereau, F., de la Houssaye, J.: Supplementary material. http://github.com/
fpom/PETRINETS-2017-supplementary

17. Rodola, G.: A cross-platform process and system utilities module for Python. http:
//github.com/giampaolo/psutil

18. The Theoretical Foundations Group of the Department for Informatics of the
University of Hamburg: Renew, the reference net workshop — highlights. http:
//www.informatik.uni-hamburg.de/TGI/renew/highlights.html

19. Wang, B., Zhao, C.: A Petri net simulation kernel with extendibility, convenient
modeling and fast simulation engine. In: Proc. of ICCT 2003. vol. 2. IEEE (2003)

http://golang.org
http://www.gevent.org
http://gehrcke.de/gipc
http://techcrunch.com/2009/11/10/google-go-language
http://mcc.lip6.fr/2016/results.php
http://mcc.lip6.fr/2016/results.php
http://github.com/fpom/PETRINETS-2017-supplementary
http://github.com/fpom/PETRINETS-2017-supplementary
http://github.com/giampaolo/psutil
http://github.com/giampaolo/psutil
http://www.informatik.uni-hamburg.de/TGI/renew/highlights.html
http://www.informatik.uni-hamburg.de/TGI/renew/highlights.html

	Faster Simulation of (Coloured) Petri Nets Using Parallel Computing

