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Summary. As a consequence of the recent policies for smart meter development, elec-
tricity operators are nowadays able to collect data on electricity consumption widely and
with a high frequency. This is in particular the case in France where EDF will be able soon
to remotely record the consumption of its 27 millions clients every 30 minutes. We propose
in this work a new co-clustering methodology, based on the functional latent block model
(funLBM), which allows to build "summaries" of these large consumption data through co-
clustering. The funLBM model extends the usual latent block model to the functional case
by assuming that the curves of one block live in a low-dimensional functional subspace.
Thus, funLBM is able to model and cluster large data set with high-frequency curves. An
SEM-Gibbs algorithm is proposed for model inference. An ICL criterion is also derived
to address the problem of choosing the number of row and column groups. Numerical
experiments on simulated and original Linky data show the usefulness of the proposed
methodology.

1. Introduction

Nowadays, electric meters are mostly electromechanical meters. They measure consump-
tion and require a technician if a change in power or an outage occurs. Linky is a com-
municating meter, which means that it can receive and send data without the need for
the physical presence of a technician. Installed in end-consumer properties and linked
to a supervision centre, it is in constant interaction with the electricity network. After
the installation of 300,000 smart meters "Linky" between 2009 and 2011 in the area of
Lyon and Tours (France), the French authorities have decided to generalize these me-
ters throughout the territory. By 2021, 35 million meters should be replaced in French
households by Linky meters, allowing electricity operators to remotely record electricity
consumption. For an operator like EDF with 27 millions of residential dwellings, these
new smart meters represent a great opportunity to gather customer consumption data
and therefore to improve client knowledge. Indeed, so far, customer data were recorded
only every six months, while with the smart meter, the data can be taken up to every
second. In practice, EDF plans to access the data every half hour, which means 17,472
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measures per year for each of the 27 million customers. Nevertheless, this data flood may
also be a drawback since they represent a mass of data to store and manage. To this
end, it will be necessary to build meaningful "summaries" of these data, and one of the
way to achieve that is though co-clustering.

The clustering of the time series corresponding to the customer consumptions, also
quoted as functional data (Ramsay and Silverman, 2005), can be performed using func-
tional data clustering techniques (see Jacques and Preda (2014) for a survey). With
such approaches, the whole set of customers can be summarized into a small number of
clusters. Nevertheless, the interpretation of these clusters, using for instance the mean
consumption curves, is difficult due to the long period of observation (several months
or even years). In order to provide a synthetic summary of the consumption data, it
has been decided to cut the period of observation into small units of times. Taking into
account EDF expectations in term of interpretation, the daily unit has been selected:
thus, 365 daily curves consumption are observed per year for each of the 27 million cus-
tomers. If for each cluster the interpretation of one mean daily consumption curve is
feasible (and meaningful for EDF), it is still not possible to interpret them for all days.
There is also a need to summarize the days of observations into a small number of clus-
ters. Consequently, the analysis of the data provided by the Linky meters needs to build
both clusters of customers and clusters of days of observation. From a statistical point of
view, we are facing with a problem of clustering both the individuals (customers) and the
features (days of observation), which is know in the literature as a co-clustering problem.

In the context of data recorded in a table where rows index individuals and columns
index features, co-clustering techniques aims to simultaneously cluster individuals and
features into homogeneous sets. Thus, the large data matrix can be summarized by a
reduced number of blocks of data (or co-clusters). If the earliest (and most cited) method
is probably due to Hartigan (1972), model-based approaches have recently proven their
efficiency either for continuous, binary, categorical or contingency data (Govaert and
Nadif, 2013; Jacques and Biernacki, 2017). Those latter approaches relies on the latent
block model (LBM, Govaert and Nadif (2013)), which tackles with combinatorial issues
by assuming local independence, i.e. all the random variables representing the cells of
the data table are independent once the row and column partition have been fixed.

The originality of the present work is that the objects which have to be co-clusterize
are functional data (electricity consumption curves). To the best of our knowledge,
the only work dedicated to the co-clustering of such data is Ben Slimen et al. (2016),
which proposes a co-clustering for functional data based on a two-steps approach: first, a
functional PCA (fPCA, Ramsay and Silverman (2005)) is carried out onto the whole set of
curves; second a Gaussian LBM is assumed onto the first fPCA scores. As model-based
approaches have recently improved the two-steps approches in the clustering context
(see Jacques and Preda (2014)), we propose in this work a functional Latent Block
Model (funLBM) in order to improve the modeling capabilities of the model developed
in Ben Slimen et al. (2016). The advantages of the funLBM model developed in this work
are the following: first, the whole set of fPCA scores are modeled and not only the first
ones as in Ben Slimen et al. (2016); second, the parametrization remains parsimonious
since the data are assume to live in block-specific functional subspaces; finally, the fPCAs
are carried out block per block, allowing to detect fine phenomena in the data structure.
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The paper is organized as follows. Section 2 introduces the functional latent block
model (funLBM) as well as its inference algorithm. Numerical experiments illustrates
the interest and the behavior of the proposed co-clustering strategy in Section 3. Then,
Section 4 presents the co-clustering analysis of the Linky meter data. Some concluding
remarks are provided in Section 5.

2. The functional latent block model

After having introducing the notation, the funLBM model is defined. Then its inference
is investigated through a Stochastic EM algorithm embedding a Gibbs sampling. The
section ends with the definition of model selection criteria to choose the number of co-
clusters.

2.1. The data
Let us consider that the data set is composed of a matrix of n customers (rows or samples)
of p daily consumption curves (columns or functional features): x = (xij(t))1≤i≤n,1≤j≤p
where t ∈ [0, T ] corresponds to the time in a day of observation (T = 24 for the Linky
data). In practice, the functional expressions of the observed curves are not known and we
only have access to the discrete observations at a finite set of ordered times. As explained
in Aguilera et al. (2011), it is therefore necessary to first reconstruct the functional form
of the data from their discrete observations. A common way to do this is to assume
that curves belong to a finite dimensional space spanned by a basis of functions (see for
example Ramsay and Silverman (2005)). Let also assume that each observed curve xij
(1 ≤ i ≤ n, 1 ≤ j ≤ p) can be expressed as a linear combination of basis functions
{φh}h=1,...,m:

xij(t) =

m∑
h=1

aijhφh(t), t ∈ [0, T ].

The basis expansion coefficients aij = (aijh)h of each curve xij can be estimated by least
square smoothing (Ramsay and Silverman, 2005). With this assumption, each curve xij
will be represented by its basis expansion coefficient vector aij . Let a = (aij)ij be the
whole data set to co-cluster.

2.2. The model
The latent block model (LBM, Govaert and Nadif (2013)) is certainly the most popular
model for co-clustering. It assumes that the two random variables z = (zik)1≤i≤n,1≤k≤K
and w = (wj`)1≤j≤p,1≤`≤L, indicating respectively the row and column partitions, are
independent and that, conditionally to z and w, the n × p random variables x are also
independent. Note that standard binary partition is used for both z and w, i.e. zik = 1
if observation i belongs to the row cluster k, 0 otherwise. Adapting it to functional data,
we define the functional latent block model (funLBM):

p(a; θ) =
∑
z∈Z

∑
w∈W

p(z; θ)p(w; θ)p(a|z,w; θ) (1)
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where (the straightforward ranges for i, j, k and ` are omitted hereafter):

• Z the set of all possible partitions of rows into K groups, W the set of partitions
of the columns into L groups,

• p(z; θ) =
∏

ik α
zik
k and p(w; θ) =

∏
j` β

wj`

` where αk and β` are the row and column
mixing proportions, belonging to [0, 1] and summing to 1,

• p(a|z,w; θ) =
∏

ijk` p(aij ; θk`)
zikwj` is the probability density of the basis expansion

coefficients aij .

The model we assume for the density p(a|z,w; θ) is the one used for each cluster
in the parsimonious FunHDDC model (Bouveyron and Jacques, 2011). We therefore
assume that, for each block, there exists a low-dimensional latent subspace in which
the curves can be adequately described. Following this model, p(·; θk`) is a m-variate
Gaussian density with mean Uk`µk` and variance Uk`Σk`U

t
k` + Ξk`:

p(aij ; θk`) = N (aij ;Uk`µk`, Uk`Σk`U
t
k` + Ξk`),

where

• Uk` is the m × d matrix (d < m) defined such that the orthogonal m ×m matrix
describing the linear transformation between the original space of the aij and the
low-dimensional latent one can be decomposed into Qk` = [Uk`, Vk`] with Vk` of size
m× (m− d) with U t

k`Uk` = Id, V t
k`Vk` = Im−d and U t

k`Vk` = 0,

• µk` and Σk` are the mean and variance of the projection of the basis expansion
coefficients of the curves belonging to block k` into the low-dimensional subspace,
with Σk` = diag(σk`1, . . . , σk`d) a diagonal matrix,

• Ξk` the noise covariance matrix of size m × m, assuming to be such that ∆k` =
Qt

k`(Uk`Σk`U
t
k` + Ξk`)Qk` can be written as follows:

∆k` =



sk`1 0
. . .

0 sk`d

0

0

bk` 0
. . .

. . .
0 bk`



 d

 (m− d)

with sk`j > bk` for all j = 1, ..., d.

• θk` = (µk`,Σk`, Uk`, σ
2
k`) are the model parameter of block k`,

Let us finally denotes the whole set of mixture parameters by θ = (αk, β`, θk`)1≤k≤K,1≤`≤L.
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2.3. Model inference with SEM-Gibbs algorithm
The aim is to estimate θ by maximizing the observed log-likelihood

`(θ;a) =
∑
z,w

ln p(a; θ). (2)

For computational reasons, and EM algorithm is not tractable in the co-clustering case
(see Govaert and Nadif (2013)), thus we opt for one of its stochastic version, called
SEM-Gibbs (Keribin C. and G., 2010). The main idea of this algorithm is, in a so-called
SE step, to generate the unobserved row and column partitions (z,w) without having
to compute their joint distribution (which is computationally intractable), thanks to a
Gibbs sampling.

Starting from an initial value θ(0) for the parameter set and an initial partitionw(0) for
the unobserved column grouping, the qth iteration of the partial SEM-Gibbs alternates
the following SE and M steps:

SE step. Execute a small number of iterations of the two following steps (Gibbs sam-
pling):

(a) generate the row partition z
(q+1)
i = (z

(q+1)
i1 , . . . , z

(q+1)
iK )|a,w(q) for all 1 ≤ i ≤ n

according to z(q+1)
i ∼M(1, z̃i1, . . . , z̃iK) with for 1 ≤ k ≤ K

z̃ik = p(zik = 1|a,w(q); θ(q)) =
α
(q)
k fk(ai|w(q); θ(q))∑

k′ α
(q)
k′ fk′(ai|w(q); θ(q))

where ai = (aij)j and fk(ai|w(q); θ(q)) =
∏

j` p(aij ; θ
(q)
k` )w

(q)
j` ,

(b) generate the column partition w
(q+1)
j = (w

(q+1)
j1 , . . . , w

(q+1)
jL )|a, z(q+1) for all 1 ≤

j ≤ p according to w(q+1)
j ∼M(1, w̃j1, . . . , z̃jL) with for 1 ≤ ` ≤ L

w̃j` = p(wj` = 1|a, z(q+1); θ(q)) =
β
(q)
` f`(aj |z(q+1); θ(q))∑

`′ β
(q)
`′ f`′(aj |z(q+1); θ(q))

where f`(aj |z(q+1); θ(q)) =
∏

ik p(aij ; θ
(q)
k` )z

(q+1)
ik .

M step. Estimate θ(q+1) conditionally on z(q+1) and w(q+1). This can be done with the
same M step than the one of the EM algorithm derived for FunHDDC inference (Bou-
veyron and Jacques, 2011). Mixture proportions are updated by α(q+1)

k = 1
n

∑
i z

(q+1)
ik

and β(q+1)
` = 1

p

∑
j w

(q+1)
j` , whereas the block-means are updated as follows:

µ
(q+1)
k` =

1

n
(q+1)
k`

∑
i

∑
j

a
z
(q+1)
ik w

(q+1)
j`

ij

with n(q+1)
k` =

∑
i

∑
j z

(q+1)
ik w

(q+1)
j` .
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For the variance parameter updates, let us introduce the sample covariance matrix of
the block indexed by k`:

C
(q)
k` =

1

n
(q)
k`

n∑
i=1

p∑
j=1

z
(q+1)
ik ω

(q+1)
j` (aij − µ(q)k` )t(aij − µ(q)k` ),

and Ω = (Ωjk)1≤j,k≤m, the matrix of inner products between the basis functions: Ωjk =∫ T
0 φj(t)φk(t)dt. With these notations, the update formula for the model parameters
sk`j , bk` and Qk`j are:

• the d first columns of Qk are updated by the eigenvectors associated with the largest
eigenvalues of Ω

1

2C
(q)
k` Ω

1

2 ,

• the variance parameters sk`j , j = 1, ..., d, are updated by the d largest eigenvalues
of Ω

1

2C
(q)
k` Ω

1

2 ,

• the variance parameters bk are updated by trace(Ω
1

2C
(q)
k` Ω

1

2 )−
∑d

j=1 s
(q)
k`j .

The SEM-Gibbs algorithm is run for a given number of iterations (from our exper-
iments, 3 iterations are sufficient to ensure a good behavior of the algorithm). After a
burn-in period, the final estimation of the parameters is the mean of the sample distri-
bution. Let us denote the final estimate by θ̂. Then, a sample of (z,w) is generated
with the Gibbs sampling described above (SE step) with θ set to θ̂. The final bi-partition
(ẑ, ŵ) is estimated by the mode of their sample distributions.

2.4. Model selection
Regarding model selection, since a model-based approach is proposed here, two funLBM
models will be seen as different if they have different values of K and/or L . Therefore,
the task of estimating K and L can be viewed as a model selection problem. Many model
selection criteria have been proposed in the literature, such as the Akaike information
criterion (AIC, Akaike (1974)) and the Bayesian information criterion (BIC, Schwarz
(1978)). In this paper, because the optimization procedure considered involves binary
matrices for z andw, we rely on a ICL criterion. This criterion was originally proposed by
(Biernacki et al., 2000) for Gaussian mixture models. We extend below to the functional
case the ICL criterion developed by Lomet (2012) for co-clustering:

ICL(K,L) = log p(x, v̂, ŵ; θ̂)− K − 1

2
log n− L− 1

2
log p− KLν

2
log(np)

where ν = md+ d+ 1 is the number of continuous parameters per block and

log p(x, v̂, ŵ; θ̂) =
∏
ik

ẑik logαk +
∏
j`

ŵj` log β` +
∑
ijk`

ẑikŵj` log p(aij ; θ̂k`).

The couple (K,L) leading to the highest ICL value is selected as the most appropriate
model for the data at hand.
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Table 1. Parameter values for the three simulation scenarios (see text for details).
Scenario A B C
n (nb. of rows) 100
p (nb. of columns) 100
T (length of curves) 30
K (nb. of row groups) 3 4 4
L (nb. of column groups) 3 3 3
α (row group prop.) (0.333, ..., 0.333) (0.2, 0.4, 0.1, 0.3) (0.2, 0.4, 0.1, 0.3)
β (column group prop.) (0.333, ..., 0.333) (0.4, 0.3, 0.3) (0.4, 0.3, 0.3)
τ (simulation noise) 0 0.1 0.3

3. Numerical experiments

This section aims at highlighting the main features of the proposed approach on synthetic
data. In particular, the validity of the inference algorithm and model selection criterion,
both presented in the previous section, is demonstrated on simulated data.

3.1. Simulation setup
To simplify the characterization and facilitate the reproducibility of the experiments, we
designed a common simulation scenario on which the main characteristics of the proposed
methodology will be illustrated. The simulation setup is as follows:

• we designed four different functions f1(t), ..., f4(t), which will serve as block means,
at equi-spaced time points t = 0, 1/T, 2/T, ..., 1. Figure 1 shows those functions.

• then, all curve points are sampled as follows:

xij(t)|zikwjl = 1 ∼ N (mk`(t), s
2),

where s = 0.3, m11 = m21 = m33 = m42 = f1, m12 = m22 = m31 = f2, m13 =
m32 = f3 and m23 = m41 = m43 = f4.

• finally, we add some noise within the blocks by randomly simulating a certain
percentage τ of curves using other block means.

Table 1 provides the parameter values for the three simulation scenarios. Figure 2 shows
a simulated data set according scenario B (K = 4, L = 3, noise τ = 0.1) where colors
indicate the used block mean functions. It is worth noticing that all simulation scenarios
have been designed such that they do not follow the funLBM model and therefore they
do not particularly favor our model in comparisons. In all the following experiments,
Fourier basis functions are used to reconstruct the functional form of the data.

3.2. An introductory example
As an introductory example, we consider a data set simulated according to scenario B:
K = 4 groups of rows, L = 3 group of columns, unbalanced row and column groups, and
10% of block noise. Figure 2 shows such a data set. In order to illustrate the behavior
of the proposed inference algorithm, the SEM-Gibbs algorithm was run on the data with
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Fig. 1. The four block mean functions used in the simulations (see text for details).
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Fig. 2. A simulated data set with noise τ = 0.1: colors indicate the used block mean functions.
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Fig. 3. Complete data likelihood (top) and estimates for mixture parameters (bottom) along the
iterations of the SEM-Gibbs algorithm on the introductory example.
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Fig. 4. Estimated functional means for the K × L blocks on the introductory example.

the actual numbers of row and column groups (the problem of model selection will be
considered in next section). First, Figure 3 shows on the top panel the behavior of
the complete data likelihood over the iterations of the funLBM algorithm. One can see
that the funLBM algorithm converges in a few iterations. The figure also presents the
evolution of the SEM-Gibbs estimates for model parameters α and β along the iterations.
Figure 5 finally shows the obtained clustering, which is here perfect both regarding the
simulated row and column partitions. Finally, it may be meaningful in practical cases to
be able to visualize the functional means estimated by the funLBM algorithm. Figure 4
shows the estimated functional means for the K × L blocks and one may recognize
functions very close to the block mean functions used in the simulations (Figure 1).

3.3. Initialization
We now focus on the initialization of SEM-Gibbs algorithm and consider three possible
ways for that: random, kmeans and functional. The first possible initialization procedure
is to randomly sample the z and w values. The second one consists in running the
kmeans algorithm on the binning of the time series values according to the rows and
then the columns. Finally, we also propose to use a functional clustering algorithm,
funFEM (Bouveryon et al., 2015), instead of a kmeans on the binned functions.

We run our SEM-Gibbs algorithm with the three initialization strategies on 25 data
sets simulated according to the three simulations scenarios. We evaluated the perfor-
mance of the different results using the adjusted Rand index on both row and column
partitions. In the clustering community, the adjusted Rand index (ARI, Rand (1971))
serves as a widely accepted criterion for the difficult task of clustering evaluation. The
ARI looks at all pairs of nodes and check wether they are classified in the same group or
not in both partitions. As a result, an ARI value close to 1 means that the partitions are
similar and, in our case, that the funLBM algorithm succeeds in recovering the simulated
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True partition FunLBM partition

Fig. 5. Clustering results on the introductory example.

partitions. Figure 6 presents the results of this study.
As one can observe, the three techniques provide most of the time a satisfying result for

both row and columns partitions on scenario A, which is the easier situation. For scenario
B, which has unbalanced groups and some noise, the functional-based initialization clearly
outperforms the two other strategy. Conversely, the kmeans initalization seems to be
slightly superior on scenario C compared to the functional one. As a summary, the
functional-based initialization may be viewed as the best overall solution and will be
used in the following experiments.

3.4. Model selection
This third simulation study focuses on model selection and aims at highlighting the ability
of our approach to catch the actual model. To this end, 100 data sets were simulated
for each scenario and the SEM-Gibbs algorithm (with the functional initialization) was
applied in combination with our model selection criterion for values of K and L ranging
from 1 to 6. Table 2 presents the percentage of selections by ICL for each model (K,L)
on the 100 simulated data sets of each of the three scenarios.

In the three different situations, our ICL criterion succeeds most of the time in iden-
tifying the actual combination of the number of row and column groups. For scenario
A, the criterion allows our approach to identify perfectly the correct models. The task
is of course slightly harder in the cases of the noisy scenarios B and C. The ICL allows
nevertheless to recover the actual simulation model in more that 7 cases over 10. It is
worth noticing that when ICL does not select the correct values for K and L, wrongly
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Fig. 6. Adjusted Rand index values for the different initialization procedures on the three simu-
lation scenarios.
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Table 2. Percentage of selections by ICL for each model (K,L) on 100 simulated data sets of each
of three scenarios. Highlighted rows and columns correspond to the actual values for K and L.

Scenario A (K = 3, L = 3)
K\L 1 2 3 4 5 6

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 100 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0

Scenario B (K = 4, L = 3)
K\L 1 2 3 4 5 6

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 70 0 1 0
5 0 0 26 1 0 0
6 0 0 2 0 0 0

Scenario C (K = 4, L = 3)
K\Q 1 2 3 4 5 6

1 0 0 0 0 0 0
2 0 0 17 0 0 0
3 0 0 77 0 0 0
4 0 0 5 0 0 0
5 0 0 1 0 0 0
6 0 0 0 0 0 0

selected models are usually close to the simulated one. Let us also recall that, since the
data are not strictly simulated according to a funLBM model, the ICL criterion does not
have the model which generated the data in the set of tested models. This experiment
allows to validate ICL as a model selection tool for funLBM.

4. Application to EDF data

This section now presents the results of the modeling with funLBM of electricity con-
sumption curves measured through autonomous meters, known as "Linky" meters.

4.1. Context of the study
With the upcoming installation of Linky meters in all french households, the field of
operational applications of co-clustering methods is very wide at EDF. For instance, the
co-clustering results may be used to design new marketing offers, to propose demand
response programs or to detect outliers. Indeed, prior launching a new offer or service,
some experimental trials are always made to evaluate the impact of the offer by comparing
a test group and a control group. The two groups must be similar except the offer or
the service tested. To ensure this hypothesis, we could select the samples among clusters
built by the co-clustering technique. It is also possible to use the co-clustering results to
design programs which consist in giving incentives to the customers to use less electricity
at critical peak. Two ways exist: Price based demand response use changing prices to
induce changes in customers consumption of electricity and direct load control, where
equipment can be shut down remotely by the program operator. Once again, the groups
of households and days found by the co-clustering may be used to parametrize these
programs. Finally, with co-clustering techniques, the electricity operator should be able
to detect outliers and warn customer if his consumption increases unusually, comparing
to the mean or the quantiles of the clients of the same cluster.

4.2. Data and protocol
The Linky data set provided by EDF is made of 1,481 households in France (metropoli-
tan) for which the electricity consumption has been monitored every 30 minutes and
this over a period of almost two years (July 2010 – March 2012). The data set there-
fore consists in a table with n = 1, 481 rows (households) and p = 630 columns (days),
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Table 3. Selection of the most appropriate
model for the Linky data.

Rank K L ICL (×106)
1 9 4 -116.09
2 10 3 -116.11
3 9 3 -116.15
4 8 4 -116.18
5 8 3 -116.36

1 2 3 4 5 6 7 8 9
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Fig. 7. Estimated proportions α̂ and β̂ for the row (left) and column (right) groups.

where each entry is a time series of the daily electricity consumption with 48 measures.
To transform the raw consumption data as meaningful functional data, the consumption
data were first regressed against the observed temperatures at each household location to
accommodate with geographic variations. Then, the residuals of such a regression were
projected on a basis of 15 Fourier functions. We finally end up with a 1481×630×15 cube
which contains for each row and columns the 15 Fourier coefficients of the corresponding
individual electricity consumption profiles. The SEM-Gibbs algorithm was run to infer
funLBM models on those final data set for a number K of row (household) groups and
a number L of column (date) groups ranging from 2 to 10.

4.3. Numerical results
As shown by Table 3, ICL selects the funLBM model with 9 groups of households and 4
groups of dates. Table 3 also shows the 5 models selected as the most appropriate ones for
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Fig. 8. Average curve of each block, as estimated by the SEM-Gibbs algorithm for funLBM.

the data by ICL. It is interesting to notice that, among the best models, there is a relative
consensus on the choice of K and L, since those models are "centered" on the values of
the best model. We therefore comment in the following the results corresponding to the
funLBM model with K = 9 and L = 4.

Figure 7 shows the estimated proportions α̂ and β̂ for respectively the row and column
groups. It is interesting to notice that funLBM formed groups of rows and columns which
are balanced, without extremely small or large groups. Figure 8 then presents the average
consumption profile of the 9 groups of households for the 4 identified periods of time.
Before to go further in the analysis, we have to explain that two major factors can have
impacts on load curve profiles. First, the possession of electric heating system, which
is particularly widespread in France (around 30 %), implies load peaks during winter
and, in average, as soon as the external temperature falls down under 15 Celsius degrees.
Second, the possession of an electric heating tank for sanitary water has also a significant
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Fig. 9. Clustering of columns (dates) viewed as a calendar.

impact on load curve profiles. About 45% of the dwellings in France are equipped with
such systems. To flatten its overall load curve, EDF was the first operator to create a
time-of-use (TOU) tarification so that consumers benefit of 8 hours a day at a lower price
to encourage them to shift some appliance use. Two main designs are proposed, one with
8 hours of off-peak prices during the night and another with 2 hours of off-peak price
between noon and 5pm, and six remaining hours during the night.

At this point, it may be noticed from Figure 8 that some household groups have
specific behaviors. On the one hand, the funLBM model allows to identify 6 groups
(groups 1, 3, 4, 5, 8 and 9) of households which have stable electricity consumptions
along the year, but which differ by their consumption profiles. These ones seem not
have electricity as principal heating energy. For instance, the 1st and 3rd groups have
an almost constant consumption of electricity both along the day and the year (they
slightly differ in winter, probably by the use of a secondary heating system which may be
electric), whereas the 4th and 5th groups have profiles which strongly vary within a day
but the day profile is stable within a year. Their daily profile is typical from customers
who benefit of off-peak hours during the day. The 8th and 9th groups reveals the daily
behavior of customer with 8 hours of off-peak price in a row during the night.

On the other hand, 3 groups (groups 2, 6 and 7) have consumption profiles which
are dependent of the time periods. To better understand those variations, it is necessary
to have a look at the groups of days that funLBM provided. Figure 9 shows the group
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memberships of the 630 days of the data set with a calendar view. In a few words, the
1st period (pink) corresponds to intermediate seasons (spring and fall), the 2nd period
(green) gathers winter days, the 3rd one (blue) corresponds to the beginnings and endings
of winter, and finally the 4th period (purple) is made of summer and spring holidays. In
view of this interpretation of the four periods, the 6th and 7th household groups have
similar consumption profiles but with different intensity: the consumption is higher in
winter and summer than in intermediate seasons. More interestingly, the 2nd group (2nd
top row of Figure 8) has significantly different profiles in winter and summer: in winter,
they consume frequently during the day whereas, in summer, they consume only in the
afternoon. It may due to the installation of a programmable controller for the office
heating system.

Finally, let us highlight that one specific day has a surprising group membership:
Wednesday June, 27th, 2011 is classified in the winter period. This may be explained
by the fact that a heat wave was at its maximum on that day (37.5 Celsius degrees at
Clermont-Ferrand), forcing people to use air conditioning at their maximum to cool their
homes or offices. This unusual use of air conditioning may be viewed here as similar in
term of electricity profiles to winter days where people use electric heating systems.

With this co-clustering method, EDF has obtained a very precise clustering of the
load curves with clusters significantly different in terms of seasonality and of daily forms.
For EDF, co-clustering with the funLBM model is an innovative approach since it allows
to get these kind of clusters in one batch whereas EDF usually had to perform several in-
dependent steps. Indeed, the current approach at EDF for this is to combine two different
clusterings based on dimension reduction (PCA and Kohonen), one for the seasonality,
the other one for the daily forms. Let us also highlight that the funLBM framework
allows to automatically identify the best combination of number K of household groups
and number L of day groups.

5. Conclusion

To address the upcoming problem of exploring extremely large sets of electricity con-
sumption curves, we proposed in this work a new co-clustering methodology for functional
data, based on the functional latent block model (funLBM). The resulting co-clustering
algorithm allows to build "summaries" of these large consumption data which can be
efficiently used by operators. The funLBM model extends the LBM model to the func-
tional case by assuming that the curves of one block live in a low-dimensional functional
subspace. Model inference is done through a SEM-Gibbs algorithm and an ICL criterion
has been also derived to address the model selection problem (choosing the number of
row and column groups). Numerical experiments on simulated and original Linky data
have shown the usefulness of the methodology.
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