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Abstract

We introduce a new random graph model motivated by biological ques-
tions relating to speciation. This random graph is defined as the stationary
distribution of a Markov chain on the space of graphs on {1, . . . , n}. The
dynamics of this Markov chain is governed by two types of events: vertex
duplication, where at constant rate a pair of vertices is sampled uniformly,
one of these vertices loses its incident edges and is rewired to the other
vertex and its neighbors; and edge removal, where each edge disappears at
constant rate. Besides the number of vertices n, the model has a single
parameter rn.

Using a coalescent approach, we obtain explicit formulas for the first
moments of several graph invariants such as the number of edges or the
number of complete subgraphs of order k. These are then used to identify
five non-trivial regimes depending on the asymptotics of the parameter rn.
We derive an explicit expression for the degree distribution, and show that
under appropriate rescaling it converges to classical distributions when the
number of vertices goes to infinity. Finally, we give asymptotic bounds for
the number of connected components, and show that in the sparse regime
the number of edges is Poissonian.
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1 Introduction

In this paper, we introduce a random graph derived from a minimalistic model of
speciation. This random graph bears superficial resemblance to classic models of
protein interaction networks [3, 6, 13, 16] in that the events shaping the graph are
the duplication of vertices and the loss of edges. However, our model is obtained as
the steady state of a Markov process (rather than by repeatedly adding vertices),
and has the crucial feature that the duplication of vertices is independent from
the loss of edges. These differences result in a very different behavior of the
model.

Before describing the model formally in Section 1.2, let us briefly explain the
motivation behind its introduction.

1.1 Biological context

Although it is often presented as central to biology, there is no consensus about how
the concept of species should be defined. A widely held view is that it should be
based on the capacity of individuals to interbreed. This is the so-called “biological
species concept”, wherein a species is defined as a group of potentially interbreeding
populations that cannot interbreed with populations outside the group.

This view, whose origins can be traced back to the beginning of the 20th century
[11], was most famously promoted by Ernst Mayr [9] and has been most influential
in biology [4]. However, it remains quite imprecise: indeed, groups of populations
such that (1) all pairs of populations can interbreed and (2) no population can
interbreed with a population outside the group are probably not common in nature
– and, at any rate, do not correspond to what is considered a species in practice.
Therefore, some leniency is required when applying conditions (1) and (2). But
once we allow for this, there are several ways to formalize the biological species
concept, as illustrated in Figure 1. Thus, it seems arbitrary to favor one over the
others in the absence of a mechanism to explain why some kind of groups should
be more relevant (e.g., arise more frequently) than others.

Figure 1: The vertices of the graph represent populations and its edges denote inter-
breeding potential (that is, individuals from two linked population could interbreed,
if given the chance). Even with such perfect information, it is not obvious how to
delineate “groups of potentially interbreeding populations that cannot interbreed with
populations outside the group”: should these correspond to connected components (on
the left, in green), maximal complete subgraphs (on the right, in red), or be based on
some other clustering method (middle, in blue)?
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Our aim is to build a minimal model of speciation that would make predictions
about the structure and dynamics of the interbreeding network and allow one to
recover species as an emergent property. To do so, we model speciation at the
level of populations. Thus, we consider a set of n populations and we track the
interbreeding ability for every pair of populations. All this information is encoded
in a graph whose vertices correspond to populations and whose edges indicate
potential interbreeding, i.e., two vertices are linked if and only if the corresponding
populations can interbreed.

Speciation will result from the interplay between two mechanisms. First, popu-
lations can sometimes “split” into two initially identical populations which then
behave as independent entities; this could happen as a result of the fragmentation
of the habitat or of the colonization of a new patch. Second, because they behave
as independent units, two initially identical populations will diverge (e.g., as a
result of genetic drift) until they can no longer interbreed.

1.2 Formal description of the model

Start from any graph with vertex set V = {1, . . . , n}, and let it evolve according
to the following rules

1. Vertex duplication: each vertex “duplicates” at rate 1; when a vertex
duplicates, it chooses another vertex uniformly at random among the other
vertices and replaces it with a copy of itself. The replacement of j by a copy
of i means that j loses its incident edges and is then linked to i and to all of
its neighbors, as depicted in Figure 2.

Figure 2: An illustration of vertex duplication. Here, i duplicates and replaces
j. After the duplication, j is linked to i and to each of its neighbors.

2. Edge removal: each edge disappears at constant rate ρ.

This procedure defines a continuous-time Markov chain (Gn(t))t>0 on the finite
state space of all graphs whose vertices are the integers 1, . . . , n. It is easy to
see that this Markov chain is irreducible. Indeed, to go from any graph G1 to
any graph G2, one can consider the following sequence of events: first, a vertex
is duplicated repeatedly in order to obtain the complete graph of order n (e.g.,
∀k ∈ {2, . . . , n}, vertex k is replaced by a copy of vertex 1); then, all the edges
that are not in G2 are removed.
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Because the Markov chain (Gn(t))t>0 is irreducible, it has a unique stationary
probability distribution µn,ρ. This probability distribution on the set of graphs of
order n defines a random graph that is the object of study of this paper.

1.3 Notation

To study the asymptotic behavior of our model as n → +∞, we can let ρ, the
ratio of the edge removal rate to the vertex duplication rate, be a function of n.
As will become evident, it is more convenient to parametrize the model by

rn := n−1
2 ρn .

Thus, we write Gn,rn to refer to a random graph whose law is µn, 2rn
n−1

.

Although some of our results hold for any (n, r), in many cases we will be interested
in asymptotic properties that are going to depend on the asymptotics of rn. To
quantify these, we will use the Bachmann–Landau notation, which for positive
sequences rn and f(n) can be summarized as:

• rn ∼ f(n) when rn/f(n)→ 1.

• rn = o(f(n)) when rn/f(n)→ 0.

• rn = Θ(f(n)) when there exists positive constants α and β such that, asymp-
totically, βf(n) 6 rn 6 βf(n).

• rn = ω(f(n)) when rn/f(n)→ +∞.

These notations also have stochastic counterparts, whose meaning will be recalled
when we use them.

Finally, we occasionally use the expression asymptotically almost surely (abbrevi-
ated as a.a.s.) to that a property holds with probability that goes to 1 as n tends
to infinity:

Qn a.a.s. ⇐⇒ P(Qn) −−−−−→
n→+∞

1 .
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1.4 Statement of results

Table 1 lists the first moments of several graph invariants obtained in Section 3.1.
These are then used to identify different regimes, depending on the asymptotic
behavior of the parameter rn, as stated in Theorem 3.10.

Variable Expectation Variance Covariance
1{i↔j}

1
1+r

r
(1+r)2

r
(1+r)2(3+2r) if vertex in common,

2 r
(1+r)2(3+r)(3+2r) otherwise.

D(i)
n

n−1
1+r

r(n−1)(1+2r+n)
(1+r)2 (3+2r)

r
(1+r)2

(
1 + 3(n−2)

3+2r + 2(n−2)(n−3)
(3+r)(3+2r)

)
|En| n(n−1)

2(1+r)
rn(n−1)(n2+2r2+2nr+n+5r+3)

2 (1+r)2(3+r) (3+2r) —

Xn,k

(
n
k

)(
1

1+r

)k−1
? —

Table 1: First and second moments of several graph invariants of Gn,r: 1{i↔j} is the variable
indicating that {ij} is an edge, D

(i)
n the degree of vertex i, |En| the number of edges and Xn,k

the number of complete subgraphs of order k. These expressions hold for every n and r. The
variance of the number of complete subgraphs of order k is not known. Finally, the covariance of
the indicator variables of two edges depends on whether these edges share a common end, hence
the two expressions.

Theorem 3.10. Let Dn be the degree of a fixed vertex of Gn,rn. In the limit as
n → +∞, depending on the asymptotics of rn we have the following behaviors
for Gn,rn

(i) Transition for the complete graph: when rn = o(1/n), P(Gn,rn is complete)
goes to 1, while when rn = ω(1/n) it goes to 0; when rn = Θ(1/n), this
probability is bounded away from 0 and from 1.

(ii) Dense regime: when rn = o(1), P(Dn = n− 1)→ 1.

(iii) Sparse regime: when rn = ω(n), P(Dn = 0)→ 1.

(iv) Transition for the empty graph: when rn = o(n2), P(Gn,rn is empty) goes
to 0 while when rn = ω(n2) it goes to 1; when rn = Θ(n2), this probability is
bounded away from 0 and from 1.

In Section 4, we derive an explicit expression for the degree distribution, which
holds for every value of n and rn. We then show that, under appropriate rescaling,
this degree converges to classical distributions.

Theorem 4.1.

Let Dn be the degree of a fixed vertex of Gn,rn. Then, for each k ∈ {0, . . . , n− 1},

P(Dn = k) = 2 rn (2 rn + 1)
(n+ 2 rn)(n− 1 + 2 rn) (k + 1)

k∏
i=1

n− i
n− i+ 2 rn − 1 , (1)

where the empty product is 1.
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Theorem 4.2.

(i) If rn → r > 0, then Dn
n

converges in distribution to a Beta(2, 2 r) random
variable.

(ii) If rn is both ω(1) and o(n), then Dn
n/rn

converges in distribution to a size-biased
exponential variable with parameter 2.

(iii) If 2 rn/n → ρ > 0, then Dn + 1 converges in distribution to a size-biased
geometric variable with parameter ρ/(1 + ρ).

Asymptotic bounds for the number of connected components are obtained in Sec-
tion 5, where the following theorem is proved.

Theorem 5.1. Let #CCn be the number of connected components of Gn,rn. If rn
is both ω(1) and o(n), then

rn
2 + op(rn) 6 #CCn 6 2 rn log n+ op(rn log n)

where, for a positive sequence (un), op(un) stands for some sequence of random
variables (Xn) such that Xn/un → 0 in probability.

Because the method used to obtain the upper bound in Theorem 5.1 is rather
crude, we formulate the following conjecture, which is well supported by simula-
tions.

Conjecture 5.4.

∃α, β > 0 s.t. P(αrn 6 #CCn 6 βrn) −−−−→
n→∞

1.

Finally, in Section 6 we use the Stein–Chen method to show that the number of
edges is Poissonian in the sparse regime, as shown by Theorem 6.1.

Theorem 6.1. Let |En| be the number of edges of Gn,rn. If rn = ω(n) then

dTV
(
|En|,Poisson(λn)

)
−−−−−→
n→+∞

0 ,

where dTV stands for the total variation distance and λn = E(|En|) ∼ n2

2rn . If in
addition rn = o(n2), then λn → +∞ and as a result

|En| − λn√
λn

D−−−−−→
n→+∞

N (0, 1) ,

where N (0, 1) denotes the standard normal distribution.

These results are summarized in Figure 3.
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Figure 3: A graphical summary of the main results established in the paper; Dn is the degree of
a fixed vertex, |En| the number of edges, #CCn the number of connected components, and ωn

the clique number. All equalities and inequalities are to be understood “asymptotically almost
surely” (i.e. hold with probability that goes to 1 as n tends to infinity).

2 Coalescent constructions of Gn,rn

In this section, we detail coalescent constructions ofGn,rn that will be used through-
out the rest of the paper. Let us start by recalling some results about the Moran
model.

2.1 The standard Moran process

The Moran model [10] is a classic model of population genetics. It consists in a set
of n particles governed by the following dynamics: after an exponential waiting
time with parameter

(
n
2

)
, a pair of particles is sampled uniformly at random. One

of these particles is then removed (death) and replaced by a copy of the other
(birth), and we iterate the procedure.

In this document, we will use the Poissonian representation of the Moran process
detailed in the next definition.

Definition 2.1. The driving measure of a standard Moran process on V is a
collection M = (M(ij))(ij)∈V 2 of i.i.d. Poisson point processes with rate 1/2 on R.

We think of the elements of V as sites, each occupied by a single particle. In
forward time, each atom t ∈ M(ij) indicates the replacement, at time t, of the
particle in i by a copy of the particle in j.

For any given time α ∈ R, M defines a genealogy of V on ]−∞, α]. Taking α = 0
and working in backward time, i.e. writing t > 0 to refer to the absolute time −t,
this genealogy is described by a collection of ancestor functions at, t ∈ [0,+∞[,
at : V → V , defined as follows: (at)t>0 is the piecewise constant process such that

(i) a0 is the identity on V .

(ii) If t ∈M(ij) then at(i) = at−(j) and, for all k 6= i, at(k) = at−(k).

(iii) If for all (ij) ∈ V 2, M(ij) ∩ [s, t] = O6 , then at = as.

8



We refer to at(i) as the ancestor of i at time t before the present – or, more simply,
as the ancestor of i at time t.

The standard Moran process is closely related to the Kingman coalescent [7]. In-
deed, let Rt denote the equivalence relation on V defined by

iRt j ⇐⇒ at(i) = at(j) ,

and let Kt = V/Rt be the partition of V induced by Rt. Then, (Kt)t>0 is a King-
man coalescent on V . In particular, we will frequently use the next lemma.

Lemma 2.2. Let (at)t>0 be the ancestor functions of a standard Moran process
on V . For any i 6= j, let

T{ij} = inf{t > 0 : at(i) = at(j)}

be the coalescence time of i and j, and for any S ⊂ V let

TS = inf{T{ij} : i, j ∈ S, i 6= j}

Then, for all t > 0, conditional on {TS > t}, (TS − t) is an exponential variable
with parameter

(
|S|
2

)
.

2.2 Backward construction

We now turn to the description of the coalescent framework on which our study
relies.

First, consider the two-sided extension of (Gn(t))t>0, i.e. the corresponding station-
ary process on R (see, e.g., Section 7.1 of [5]), which by a slight abuse of notation
we note (Gn(t))t∈R.

To study the stationary distribution of (Gn(t))t∈R, it is equivalent to consider the
time-rescaled process (G′(t))t∈R defined by

G′(t) = Gn(t(n− 1)/2) .

In this process, each vertex duplicates at rate (n − 1)/2 and each edge disap-
pears at rate rn = (n − 1)ρn/2. All these events being independent, we see that
the vertex duplications correspond to the atoms of a standard Moran process on
V = {1, . . . , n}, and the edge removals to the atoms of

(
n
2

)
i.i.d. Poisson point

processes with rate rn on R that are independent of the Moran process. More
specifically, writing M = (M(ij))(ij)∈V 2 for the vertex duplication process and
P = (P{ij}){ij}∈V (2) , where V (2) denotes the set of unordered pairs of elements
of V , for the edge removal process,

• If t ∈M(ij), then j duplicates and replaces i at time t.

• If t ∈ P{ij}, then if there is an edge between i and j at time t, it is removed.
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Now let us re-express the event “i is linked to j in G′(0)” in terms of M and P .
Using the notation of Definition 2.1 for the ancestor functions (i.e. writing at(i)
for the ancestor of vertex i at time t before the present), set

τ = sup{t > 0 : at(i) = i, at(j) = j} .

If τ < T{ij}, then{
i↔ j in G′(0)

}
=
{
P{ij} ∩ ]−τ, 0] = O6

}
∩
{
aτ (i)↔ aτ (j) in G′(−τ)

}
,

while if τ = T{ij} then{
i↔ j in G′(0)

}
=
{
P{ij} ∩ ]−τ, 0] = O6

}
,

because either i or j was duplicated from the other one at time −τ , and a dupli-
cated vertex and its copy are always linked right after the duplication.

Proceeding similarly, we let σ = sup{t > τ : at(i) = aτ (i), at(j) = aτ (j)} in order
to express {aτ (i)↔ aτ (j) in G′(−τ)} as

•
{
P{aτ (i)aτ (j)} ∩ ]−σ,−τ ] = O6

}
∩
{
aσ(i)↔ aσ(j) in G′(−σ)

}
if σ < T{ij},

•
{
P{aτ (i)aτ (j)} ∩ ]−σ,−τ ] = O6

}
if σ = T{ij}.

And, likewise, we reexpress {aσ(i)↔ aσ(j) in G′(−σ)}, etc. This iterative proce-
dure will always stop before the finite time TMRCA = sup{T{ij} : {ij} ∈ V (2)}, i.e.
after at most n− 1 steps.

Since T{ij} and the intermediate times τ, σ, . . . are determined by M , this shows
that G′(0) is fully specified by M and P . Note that we do not need any initial
condition, reflecting the fact that every edge of G′(0) is descended from an edge
that was introduced between a vertex and its copy.

We record these observations in the following proposition.

Proposition 2.3. Let V = {1, . . . , n} and let V (2) be the set of unordered pairs of
elements of V . Let M be the driving measure of a standard Moran process on V ,
and (at)t>0 the associated ancestor functions (that is, for each i in V , at(i) is the
ancestor of i at time t). Let P = (P{ij}){ij}∈V (2) be a collection of i.i.d. Poisson
point processes with rate rn on [0,+∞[ such that M and P are independent. For
every pair {ij} ∈ V (2), define

P ?
{ij} =

{
t > 0 : t ∈ P{at(i)at(j)}

}
,

with the convention that, ∀k ∈ V , P{k} = O6 . Finally, let G = (V,E) be the graph
defined by

E =
{
{ij} ∈ V (2) : P ?

{ij} = O6
}
.

Then, G ∼ Gn,rn.

In the rest of this document, we writeGn,rn for the graph obtained by the procedure
of Proposition 2.3.

Finally, our study of Gn,rn is based on the following result.
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Lemma 2.4. Let S be a subset of V (2). Conditional on the measure M , for any
interval I such that

(i) For all {ij} ∈ S, ∀t ∈ I, at(i) 6= at(j).

(ii) For all {k`} 6= {ij} in S, ∀t ∈ I, {at(i), at(j)} 6= {at(k), at(`)},

P ?
{ij} ∩ I, {ij} ∈ S, are independent Poisson point processes with rate rn on I.

Moreover, for any disjoint intervals I and J , (P ?
{ij} ∩ I){ij}∈S is independent of

(P ?
{ij} ∩ J){ij}∈S.

Proof of Lemma 2.4. For all t > 0, define St by

St = {{at(i), at(j)} : {ij} ∈ S} .

Set t0 = inf I and let t1, . . . , tm−1 be the jump times of (St)t>0 on I, i.e.

tp = inf
{
t > tp−1 : St 6= Stp−1

}
, p = 1, . . . ,m− 1.

Finally, set tm = sup I and, for p = 0, . . . ,m − 1, let Ip = [tp, tp+1[ and ãp = atp .
With this notation, for all {ij} ∈ S,

P ?
{ij} ∩ I =

m−1⋃
p=0

(
P{ãp(i), ãp(j)} ∩ Ip

)
,

where for p 6= q, Ip ∩ Iq = O6 , and P{uv}, {uv} ∈ V (2), are i.i.d. Poisson point
processes on [0,+∞[ with rate rn. By assumption, for all p = 0, . . . ,m− 1, for all
{ij} 6= {k`} in S, ãp(i) 6= ãp(j), ãp(k) 6= ãp(`) and {ãp(i), ãp(j)} 6= {ãp(k), ãp(`)}.
This shows that (P{ãp(i),ãp(j)}∩Ip), {ij} ∈ S and p = 0, . . . ,m−1, are i.i.d. Poisson
point processes with rate rn on the corresponding intervals, proving the first part
of the lemma.

The second assertion is proved similarly. Adapting the previous notation to work
with two disjoint intervals I and J , i.e. letting (ãIp)p∈{0,...,mI} be the embedded
chain of (at)t∈I and (ãJp )p∈{0,...,mJ} that of (at)t∈J , for all {ij} ∈ S we write

P ?
{ij} ∩ I =

mI−1⋃
p=0

(
P{ãIp(i), ãIp(j)} ∩ Ip

)
,

and
P ?
{ij} ∩ J =

mJ−1⋃
p=0

(
P{ãJp (i), ãJp (j)} ∩ Jp

)
.

We conclude the proof by noting that the families(
P{ãIp(i), ãIp(j)} ∩ Ip

)
{ij}∈S, p∈{0,...,mI}

and (
P{ãJp (i), ãJp (j)} ∩ Jp

)
{ij}∈S, p∈{0,...,mJ}

are independent, because the elements of these families are either deterministic (if,
e.g, ãIp(i) = ãIp(j), in which case P{ãIp(i), ãIp(j)} = O6 ) or Poisson point processes on
intervals that are disjoint from each of the intervals involved in the definition of
the other family.
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If we think of {at(i), at(j)} as being the ancestor of {ij} at time t, then the
genealogy of vertices induces a genealogy of pairs of vertices, as illustrated by
Figure 4. In words, Proposition 2.3 and Lemma 2.4 say that edge-removal events
occur at constant rate rn along the branches of this genealogy, and that the events
affecting disjoint sections of branches are independent. Thus, we can think of
P ?
{ij}, {ij} ∈ V (2), as a single Poisson point process P ? on the lineages of pairs of

vertices; a pair of vertices corresponds to an edge in Gn,rn if and only if there is
no atom of P ? on its lineage.

Figure 4: On the left, a genealogy on {i, j, k, `} and on the right the
corresponding genealogy of the pairs. Edge removal events occur at
constant rate along the lineages of pairs of vertices, and a pair of
vertices is an edge of Gn,rn

if and only if there is no atom on its
lineage.

2.3 Forward construction

We now give a forward version of the coalescent construction presented in the
previous section.

Consider the Markov process (G†r(t))t>0 defined by

(i) G†r(0) = ({1, 2}, {{1, 2}}) is the complete graph of order 2.

(ii) Conditional on |Vt| = k, where Vt is the set of vertices of G†r(t): after an
exponential time with parameter

(
k
2

)
, a vertex is sampled uniformly in Vt

and duplicated without replacement (i.e., we copy the vertex and all incident
edges, resulting in a graph with k + 1 vertices).

(iii) During the whole process, each edge disappears at constant rate r.

Next, for k ∈ N, k > 2, let G?
r(k) = G†r(tk−), where

tk = sup{t > 0 : G?
r(t) has k vertices} .

Then, (G?
r(k))k>2 is a sequence of graphs of increasing order with the property

that
∀r > 0, ∀n > 2, G?

r(n) ∼ Gn,r .

12



In particular, for any given sequence (rn), for any n > 2 G?
rn(n) ∼ Gn,rn . Note,

however, that unless (rn) is constant, this is not a compatible construction of a
sequence (Gn,rn)n>2, as all elements of a sequence (G?

r(n))n>2 that results from the
procedure described above are associated to the same value of r, while each term
of a sequence (Gn,rn)n>2 corresponds to a different value of rn.

3 First moments methods

In this section, we apply Proposition 3.7 and Lemma 2.4 to obtain the expressions
presented in Table 1. These are then used to identify different regimes for Gn,rn ,
depending on the asymptotic behavior of the parameter rn.

In order to be able to use Lemma 2.4, we will always reason conditionally on
the genealogy of the vertices (i.e. on the vertex duplication process M ) and then
integrate against its law.

3.1 First moments of graph invariants

3.1.1 Degree and number of edges

Proposition 3.1. For any fixed vertices i and j, i 6= j, the probability that i and
j are linked in Gn,rn is

P(i↔ j) = 1
1 + rn

.

Corollary 3.2. Let Dn be the degree of a fixed vertex of Gn,rn, and |En| be the
number of edges of Gn,rn. Then,

E(Dn) = n− 1
1 + rn

and E(|En|) =
(
n

2

)
1

1 + rn
.

Proof. By Proposition 2.3,

{i↔ j} ⇐⇒ P ?
{ij} ∩ [0, T{ij}[ = O6 .

Reasoning conditionally on T{ij} and applying Lemma 2.4 to S = {{ij}} and
I = [0, T{ij}[, we see that P ?

{ij} is a Poisson point process with rate rn on I. Since
T{ij} ∼ Exp(1),

P(i↔ j) = P
(
e1 > T{ij}

)
,

where e1 = inf P ?
{ij} is an exponential variable with rate rn that is independent

of T{ij}.

The corollary follows directly from the fact that the degree of a vertex v can be
written as

D(v)
n =

∑
i 6=v

1{i↔v}

13



and that the number of edges of Gn,rn is

|En| =
∑

{ij}∈V (2)

1{i↔j} .

Proposition 3.3. Let i, j and k be three distinct vertices of Gn,rn. We have

Cov
(
1{i↔j},1{i↔k}

)
= rn

(3 + 2rn)(1 + rn)2

Corollary 3.4. Let Dn be the degree of a fixed vertex of Gn,rn. We have

Var(Dn) = rn(n− 1)(1 + 2 rn + n)
(1 + rn)2 (3 + 2 rn)

Proof. For all t > 0, let St = {at(i), at(j), at(k)}. Let τ1 = inf{t > 0 : |St| = 2}
and τ2 = inf{t > τ1 : |St| = 1}. Recall from Lemma 2.2 that τ1 and τ2 − τ1 are
independent exponential variables with parameter 3 and 1, respectively. Finally,
let {u, v} = Sτ1 .

By Proposition 2.3, {ij} and {ik} are edges of Gn,rn if and only if P ?
{ij} ∩ [0, T{ij}[

and P ?
{ik} ∩ [0, T{ik}[ are empty, which can also be written(

P ?
{ij} ∩ [0, τ1[

)
∪
(
P ?
{ik} ∩ [0, τ1[

)
∪
(
P ?
{uv} ∩ [τ1, τ2[

)
= O6

Conditionally on τ1 and τ2, by Lemma 2.4, (P ?
{ij} ∩ [0, τ1[)∪ (P ?

{ik} ∩ [0, τ1[) is inde-
pendent of P ?

{uv} ∩ [τ1, τ2[, P ?
{ij} and P ?

{ik} are independent Poisson point processes
with rate rn on [0, τ1[, and P ?

{uv} is a Poisson point process with rate rn on [τ1, τ2[.
Therefore,

P(i↔ j, i↔ k) = P(e1 > τ1)P(e2 > τ2 − τ1) ,

where e1 = inf(P ?
{ij} ∪P ?

{ik}) ∼ Exp(2 rn) is independent of τ1 and e2 = inf(P ?
{uv} ∩

[τ1,+∞[) ∼ Exp(rn) is independent of τ2 − τ1. As a result,

P(i↔ j, i↔ k) = 3
3 + 2 rn

× 1
1 + rn

.

A short calculation shows that

Cov
(
1{i↔j},1{i↔k}

)
= rn

(3 + 2rn)(1 + rn)2 ,

proving the proposition.

As before, the corollary follows from writing the degree of v as D(v)
n = ∑

i 6=v 1{i↔v},
which gives

Var
(
D(v)
n

)
= (n− 1) Var

(
1{i↔v}

)
+ (n− 1)(n− 2) Cov

(
1{i↔v},1{j↔v}

)
.

Substituting Var
(
1{i↔v}

)
= rn/(1+rn)2 and Cov

(
1{i↔v},1{j↔v}

)
yields the desired

expression.
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Proposition 3.5. Let i, j, k and ` be four distinct vertices of Gn,rn. We have

Cov
(
1{i↔j},1{k↔`}

)
= 2 rn

(1 + rn)2(3 + rn)(3 + 2 rn)

Corollary 3.6. Let D(i)
n and D(j)

n be the respective degrees of two fixed vertices i
and j, and let |En| be the number of edges of Gn,rn. We have

Cov
(
D(i)
n , D

(j)
n

)
= rn

(1 + rn)2

(
1 + 3(n− 2)

3 + 2 rn
+ 2(n− 2)(n− 3)

(3 + rn)(3 + 2 rn)

)

and
Var(|En|) = rn n (n− 1)(n2 + 2 r2

n + 2n rn + n+ 5 rn + 3)
2 (1 + rn)2 (3 + rn) (3 + 2 rn)

The proof of Proposition 3.5 and its corollary are conceptually identical to the
proofs of Propositions 3.1 and 3.3 and their corollaries, but the calculations are
more tedious and so they have been relegated to Section A of the Appendix.

3.1.2 Complete subgraphs

From a biological perspective, complete subgraphs are interesting because they
are related to how fine the partition of the set of populations into species can be.
Indeed, the vertices of a complete subgraph – and especially of a large one – should
be considered as part of the same species. A complementary point of view will be
brought by connected components in Section 5.

In this section we establish the following results.

Proposition 3.7. The expected number of complete subgraphs of order k in Gn,rn

is
E(Xn,k) =

(
n

k

)( 1
1 + rn

)k−1
.

Corollary 3.8. Let ωn be the clique number of Gn,rn, i.e. the maximal number of
vertices in a complete subgraph of Gn,rn. If (kn) is such that(

n

kn

)( 1
1 + rn

)kn−1
−−−−→
n→∞

0 ,

then kn is asymptotically almost surely an upper bound on ωn, i.e. P(ωn 6 kn)→ 1
as n→ +∞. In particular, when rn → +∞,

(i) If rn = o(n), then ωn 6 log(rn)n/rn a.a.s.

(ii) If rn = O(n/ log(n)), ωn = Op(n/rn), i.e.

∀ε > 0, ∃M > 0, ∃N s.t. ∀n > N, P(ωn > Mn/rn) < ε .
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Proof of Proposition 3.7. The number of complete subgraphs of order k of Gn,rn

is
Xn,k =

∑
S∈V (k)

1{Gn,rn [S] is complete}

where the elements of V (k) are the k-subsets of V = {1, . . . , n}, and Gn,rn [S] is the
subgraph of Gn,rn induced by S. By exchangeability,

E(Xn,k) =
(
n

k

)
P
(
Gn,rn [S] is complete

)
,

where S is any fixed set of k vertices. Using the notation of Proposition 2.3,

Gn,rn [S] is complete ⇐⇒ ∀{ij} ∈ S, P ?
{ij} = O6 .

For all t > 0, let At = {at(i) : i ∈ S} be the set of ancestors of S at t. Let τ0 = 0
and for each ` = 1, . . . , k−1 let τ` be the time of the `-th coalescence between two
lineages of S, i.e.

τ` = inf
{
t > τ`−1 : |At| = |Aτ`−1 | − 1

}
Finally, let Ã` = Aτ` and I` = [τ`, τ`+1[. With this notation,

{
∀{ij} ∈ S, P ?

{ij} = O6
}

=
k−2⋂
`=0

B` ,

where
B` =

⋂
{ij}∈Ã(2)

`

{P ?
{ij} ∩ I` = O6 }

and Ã
(2)
` denotes the (unordered) pairs of Ã`. Since for ` 6= m, I` ∩ Im = O6 ,

Lemma 2.4 shows that conditionally on I0, . . . , Ik−1, the events B0, . . . , Bk−2 are
independent. By construction, for all {ij} 6= {uv} in Ã(2)

` ,

∀t ∈ I`, {at(i), at(j)} 6= {at(u), at(v)} 6= O6

and so it follows from Lemma 2.4 that, conditional on I`, (P ?
{ij} ∩ I`), {ij} ∈ Ã

(2)
` ,

are i.i.d. Poisson point processes with rate rn on I`. Therefore,

P(B`) = P
(
min

{
e

(`)
{ij} : {ij} ∈ Ã(2)

`

}
> |I`|

)
,

where e(`)
{ij}, {ij} ∈ Ã

(2)
` , are

(
k−`

2

)
i.i.d. exponential variables with parameter rn

that are also independent of |I`|. Since |I`| ∼ Exp
((

k−`
2

))
,

P(B`) = 1
1 + rn

and Proposition 3.7 follows.
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Proof of Corollary 3.8. The first part of the corollary is a direct consequence of
Proposition 3.7. First, note that

Xn,kn = 0 ⇐⇒ ωn < kn

that a complete subgraph of order k contains complete subgraphs of order ` for all
` < k. As a result, any kn such that P(Xn,kn = 0) → 1 is asymptotically almost
surely an upper bound on the clique number ωn. Now, observe that since Xn,kn is
a non-negative integer, Xn,kn > 1{Xn,kn 6=0} and therefore,

E(Xn,kn) > P(Xn,kn 6= 0) .

Finally, becauseXn,k is integer-valued, P(Xn,kn 6= 0)→ 0 implies P(Xn,kn = 0)→ 1.

To prove the second part of the corollary, using Stirling’s formula we find that
whenever rn and kn are o(n) and go to +∞ as n→ +∞,(

n

kn

)( 1
1 + rn

)kn−1
∼ C√

kn

nn

kknn (n− kn)n−kn
( 1

1 + rn

)kn−1
,

where C =
√

2π. The right-hand side goes to zero if and only if its logarithm goes
to −∞, i.e. if and only if

An := kn log
(

n− kn
kn(1 + rn)

)
− n log

(
1− kn

n

)
+ log

(
1 + rn√
kn

)

goes to−∞. Now let kn = ngn/rn, where gn → +∞ and is o(rn), so that kn = o(n).
Then,

kn log
(

n− kn
kn(1 + rn)

)
∼ −kn log(gn)

and
−n log

(
1− kn

n

)
∼ kn .

Moreover, as long as it does not go to zero,

log
(

1 + rn√
kn

)
∼ 3

2 log(rn)− 1
2 log(ngn) .

Putting the pieces together, we find that An is asymptotically equivalent to

−ngn
rn

log(gn) + 3
2 log(rn)− 1

2 log(ngn) .

Taking gn = log(rn), this expression goes to −∞ as n → +∞, yielding (i). If
rn = O(n/ log(n)), then it goes to −∞ for any gn → +∞, which proves (ii).
Indeed, if there exists ε > 0 such that

∀M > 0, ∀N, ∃n > N s.t. P(ωn > Mn/rn) > ε ,
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then considering successively M = 1, 2, . . ., we can find n1 < n2 < · · · such that

∀k ∈ N, P(ωnk > knk/rnk) > ε .

Defining (gn) by
∀n ∈ {nk, . . . , nk+1 − 1}, gn = k ,

we obtain a sequence (gn) that goes to infinity and yet is such that for all N there
exists n := min{nk : nk > N} such that P(ωn > gnn/rn) > ε.

A natural pendant to Proposition 3.7 and Corollary 3.8 would be to use the vari-
ance of Xn,k to find a lower bound on the clique number. Indeed, it follows from
Chebychev’s inequality that

P(Xn,k = 0) 6 Var(Xn,k)
E(Xn,k)2 .

However, computing Var(Xn,k) requires being able to compute the probability that
two subsets of k vertices S and S ′ both induce a complete subgraph, which we have
not managed to do. Using the probability that Gn,rn [S] is complete as an upper
bound for this quantity, we have the very crude inequality

Var(Xn,k) 6
(
n

k

)2

p (1− p) ,

where p = 1/(1 + rn)k−1. This shows that when rn → 0 and kn = o(1/rn),
P(Xn,kn = 0) tends to zero, proving that ωn is at least Θ(1/rn).

Finally, because we expect our model to form dense connected components, whose
number we conjecture to be on the order of rn in the intermediate regime (see
Theorem 5.1 and Conjecture 5.4), and since the degree of a typical vertex is ap-
proximately n/rn in that regime, it seems reasonable to conjecture

Conjecture 3.9. In the intermediate regime, i.e. when rn → +∞ and rn = o(n),

∃α, β > 0 s.t. P(αn/rn 6 ωn 6 βn/rn) −−−−−→
n→+∞

1.

3.2 Identification of different regimes

We now use the results of the previous section to identify different regimes for
the behavior of Gn,rn . The proof of our next theorem relies in part on results
proved later in the paper (namely, Theorems 4.1 and 6.1), but no subsequent re-
sult depends on it, avoiding cyclic dependencies. While this section could have
been placed at the end of the paper, it makes more sense to present it here be-
cause it relies mostly on Section 3.1 and because it helps structure the rest of the
paper.
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Theorem 3.10. Let Dn be the degree of a fixed vertex of Gn,rn. In the limit as
n → +∞, depending on the asymptotics of rn we have the following behaviors
for Gn,rn

(i) Transition for the complete graph: when rn = o(1/n), P(Gn,rn is complete)
goes to 1, while when rn = ω(1/n) it goes to 0; when rn = Θ(1/n), this
probability is bounded away from 0 and from 1.

(ii) Dense regime: when rn = o(1), P(Dn = n− 1)→ 1.

(iii) Sparse regime: when rn = ω(n), P(Dn = 0)→ 1.

(iv) Transition for the empty graph: when rn = o(n2), P(Gn,rn is empty) goes
to 0 while when rn = ω(n2) it goes to 1; when rn = Θ(n2), this probability is
bounded away from 0 and from 1.

Proof. (i) is a direct consequence of Proposition 3.7 which, applied to k = n, yields

P(Gn,rn is complete) =
( 1

1 + rn

)n−1
.

(ii) is intuitive since E(Dn) = (n− 1)/(1 + rn); but because it takes rn = o(1/n2)
for Var(Dn) to go to zero, a second moment method is not sufficient to prove it.
However, using Theorem 4.1, we see that P(Dn = n− 1) can be written as

P(Dn = n− 1) = Γ(2 + 2 rn)Γ(n+ 1)
Γ(n+ 1 + 2 rn) ,

where Γ is the gamma function. The results follows by letting rn go to zero and
using the continuity of Γ.

(iii) follows from the same argument as in the proof of Corollary 3.8, by which,
Dn being a non-negative integer, P(Dn 6= 0) 6 E(Dn) = n−1

1+rn .

In (iv), the fact that Gn is empty when rn = ω(n2) is yet another application of this
argument, but this time using the expected number of edges, E(|En|) = n(n−1)

2(1+rn) ,
in conjunction with the fact that Gn is empty if and only if |En| = 0; to see why
the graph cannot be empty when rn = o(n2), consider the edge that was created
between the duplicated vertex and its copy in the most recent duplication. Clearly,
if this edge has not disappeared yet then Gn cannot be empty. But the probability
that this edge has disappeared is just

rn(
n
2

)
+ rn

,

which goes to zero when rn = o(n2). Finally, the fact that P(Gn is empty) is
bounded away from 0 and from 1 when rn = Θ(n2) is a consequence of Theorem 6.1,
which shows that the number of edges is Poissonian when rn = ω(n). As a result,
P(|En| = 0) ∼ e−E(|En|).
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Remark 3.11. Note that when rn = o(1), Var(Dn) ∼ rnn
2/3 can go to infinity even

though Dn = n− 1 with probability that goes to 1. Similarly, when rn = o(1/n),
Var(|En|) ∼ rnn

4/18 and |En| =
(
n
2

)
a.a.s. Notably, Dn = (n− 1)−Dn converges

to 0 in probability while Var
(
Dn

)
goes to infinity.

4 The degree distribution

The degree distribution is one of the most widely studied graph invariants in
network science. Our model makes it possible to obtain an exact expression for its
probability distribution:

Theorem 4.1 (degree distribution).

Let Dn be the degree of a fixed vertex of Gn,rn. Then, for each k ∈ {0, . . . , n− 1},

P(Dn = k) = 2 rn (2 rn + 1)
(n+ 2 rn)(n− 1 + 2 rn) (k + 1)

k∏
i=1

n− i
n− i+ 2 rn − 1 , (2)

where the empty product is 1.

The expression above holds for any positive sequence (rn) and any n; but as
n → +∞ it becomes much simpler and, under appropriate rescaling, the degree
converges to classical distributions:

Theorem 4.2 (convergence of the rescaled degree).

(i) If rn → r > 0, then Dn
n

converges in distribution to a Beta(2, 2 r) random
variable.

(ii) If rn is both ω(1) and o(n), then Dn
n/rn

converges in distribution to a size-biased
exponential variable with parameter 2.

(iii) If 2 rn/n → ρ > 0, then Dn + 1 converges in distribution to a size-biased
geometric variable with parameter ρ/(1 + ρ).

In this section we prove Theorem 4.1 by coupling the degree to the number of
individuals descended from a founder in a branching process with immigration.
Theorem 4.2 is then easily deduced by a standard study that has been relegated
to Section B of the Appendix.

4.1 Ideas of the proof of Theorem 4.1

Before jumping to the formal proof of Theorem 4.1, we give a verbal account of
the main ideas of the proof.

In order to find the degree of a fixed vertex v, we have to consider all pairs {iv} and
look at their ancestry to assess the absence/presence of atoms in the corresponding
Poisson point processes. To do so, we can restrict our attention to the genealogy
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of the vertices, and consider that edge-removal events occur along the lineages of
this genealogy: a point that falls on the lineage of vertex i at time t means that
t ∈ P ?

{iv}. In this setting, edge-removal events occur at constant rate rn on every
lineage different from that of v.

Next, the closed neighborhood of v (i.e. the set of vertices that are linked to
v, plus v itself) can be obtained through the following procedure: we trace the
genealogy of vertices, backwards in time; if we encounter an edge-removal event
on lineage i at time t, then we mark all vertices that descend from this lineage, i.e.
all vertices whose ancestor at time t is i; only the lineages of unmarked vertices are
considered after t. We stop when there is only one lineage left in the genealogy.
The unmarked vertices are then exactly the neighbors of v (plus v itself). The
procedure is illustrated in Figure 5.

Figure 5: Illustration of the procedure used to find the neighborhood of v. On the left, the
genealogy of the vertices, where the lineage of the focal vertex v has been highlighted in blue. A
dot on lineage k corresponds to a point in P{kat(v)}. In the middle, we uncover the genealogy and
edge-removal events in backward time, as described in the main text. On the right, the forest
that we get when the procedure is complete. The non-colored (black) branches are exactly the
neighbors of v.

This vertex marking process is not convenient to describe in backward time because
we typically mark several vertices simultaneously. By contrast, the forest that
results from the completed process seems much easier to describe in forward time.
Indeed, the arrival of a new lineage corresponds either to the addition of a new
unmarked vertex or to the addition of a marked one, depending on whether the
new lineage belongs to the same tree as v or not.

Moreover, in forward time, the process is reminiscent of a branching process with
immigration: new lineages are either grafted to existing ones (branching) or sprout
spontaneously (immigration). Let us try to find what the branching and immi-
gration rates should be. In backward time, when there are k + 1 lineages then a
coalescence occurs at rate

(
k+1

2

)
, while an edge-removal event occurs at rate k rn.

Reversing time, these events occur at the same rates. As a result, when going
from k to k + 1 lineages, the probability that the next event is a branching is
(k + 1)/(k + 1 + 2 rn).

Next, we have to find the probability that each lineage has to branch, given that
the next event is a branching. Here, a classic argument suggests that every lineage
branches at rate 1, except for the lineage of v, which branches at rate 2: in
backward time, when going from k+ 1 to k lineages, there are k pairs out of

(
k+1

2

)
that involve the lineage of v. Therefore, the probability that the lineage of v is
involved in the next coalescence is 2/(k + 1).
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If this heuristic is correct, then in forward time it is easy to track the number of
branches of the tree of v versus the number of branches of other trees: when there
are p branches in the tree of v and q branches in the other trees, the probability
that the next branch is added to the tree of v is just (p + 1)/(p + 1 + q + 2 rn).
Moreover, when the total number of branches reaches n, the number of branches
in the tree of v is also the number of unmarked vertices at the end of the vertex
marking procedure, which is itself D(v)

n + 1, the degree of v plus one.

4.2 Formal proof of Theorem 4.1

The ideas and outline of the proof parallels the account given in the previous
section: first, given a realization of the vertex-duplication process M and of the
edge-removal process P , we describe a deterministic procedure that gives the closed
neighborhood of any vertex v,

NG[v] =
{
i ∈ V : {iv} ∈ E

}
∪
{
v
}
,

where G = (V,E) is the graph associated to M and P ; then, we identify the law
of the process (Ft)t>0 corresponding to this procedure, and recognize it as the law
of a branching process with immigration.

Definition 4.3. A rooted forest with marked vertices is a triple F = (V ◦, V •, ~E)
such that

(i) V ◦ ∩ V • = O6 .

(ii) Letting V = V ◦ ∪ V •, (V, ~E) is an acyclic digraph with the property that
∀i ∈ V , deg+(i) ∈ {0, 1}, where deg+(i) is the out-degree of vertex i.

The marked vertices are the elements of V •; the roots of F are the vertices with
out-degree 0 (that is, edges are oriented towards the root), whose set we denote
by R(F ); finally, the trees of F are its connected components (in the weak sense,
i.e. considering the underlying undirected graph), and we write TF (i) for the tree
containing i in F .

4.2.1 The vertex-marking process

We now define the backward-time process (Ft)t>0 that corresponds to the procedure
described informally in Section 4.1. Recall the notation of Proposition 2.3. For
a given realization of M and P , and for any fixed vertex v, let (Ft)t>0 be the
piecewise constant process defined deterministically by

• F0 = (V,O6 ,O6 ).

• If t ∈M(ij), then ∀k, ` ∈ R(Ft−) ∩ V ◦t− such that (at−(k), at−(`)) = (i, j),

~Et = ~Et− ∪
{

(k, `)
}
.
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• If t ∈ P{iat(v)}, then letting dt(i) = {j ∈ V : at(j) = i} be the set of descen-
dants of i born after time t, {

V ◦t = V ◦t− \ dt(i)
V •t = V •t− ∪ dt(i) .

What makes (Ft)t>0 interesting is that
NG[v] = V ◦∞ .

Indeed, by construction,

i ∈ V ◦t ⇐⇒
⋃

s∈[0,t]

 ⋃
j:i∈ds(j)

P{jas(v)}

 = O6 ,

and since for every s the unique j such that i ∈ ds(j) is as(i), we have

V ◦t =
{
i ∈ V : P ?

{iv} ∩ [0, t] = O6
}
.

The Poissonian construction given above shows that (Ft, at)t>0 is a Markov process.
Now, observe that conditional on at
(i) M(ij) ∩ ]t,+∞[ ∼ M(at(i)at(j)) ∩ ]t,+∞[ and is independent of (Fs, as)s6t
(ii) P{iat(v)} ∩ ]t,+∞[ ∼ P{at(i)at(v)} ∩ ]t,+∞[ and is independent of (Fs, as)s6t
(iii) j ∈ dt(i) ⇐⇒ i ∈ R(Ft) and j ∈ TFt(i)

As a consequence, (Ft)t>0 is also a Markov process, whose law is characterized
by

• F0 = (V,O6 ,O6 ).

• Ft goes from (V ◦t , V •t , ~Et) to

–
(
V ◦t , V

•
t , ~Et ∪ {(i, j)}

)
at rate 1/2, for all i, j in R(Ft)

–
(
V ◦t \ TFt(i), V •t ∪ TFt(i), ~Et

)
at rate rn, for all i in R(Ft).

Let (F̃k)k∈{1,...,n} be the chain embedded in (Ft)t>0, i.e. defined by

F̃k = Ftk , where tk = inf
{
t > 0 : |R(Ft)| = n− k + 1

}
.

The rooted forests with marked vertices that correspond to realizations of F̃n
are exactly the fn = (V ◦, V •, ~E) that have n vertices and are such that V ◦ =
Tfn(v). Moreover, for each of these there exists a unique trajectory (f1, . . . , fn) of
(F̃1, . . . , F̃n) such that F̃n = fn and it follows from the transition rates of (Ft)t>0
that

P
(
F̃n = fn

)
= (1/2)n−|R(fn)| r|R(fn)|−1

n
n∏
k=2

(k(k − 1)/2 + (k − 1)rn)

= 1
(n− 1)! ×

(2 rn)|R(fn)|−1

n∏
k=2

(k + 2 rn)
(3)
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Finally, note that Ṽ ◦n = V ◦∞ is the closed neighborhood of v in our graph.

4.2.2 The branching process

The process with which we will couple the vertex-marking process described in
the previous section is a simple random function of the trajectories of a branching
process with immigration (Zt)t>0. In this branching process, immigration occurs
at rate 2 rn and each particle gives birth to a new particle at rate 1 – except for
one particle, which carries a special item that enables it to give birth at rate 2;
when this lineage reproduces, it keeps the item with probability 1/2, and passes it
to its offspring with probability 1/2.

Formally, we consider the Markov process on the set of rooted forests with marked
vertices (augmented with an indication of the carrier of the item), defined by
Z0 = ({1},O6 ,O6 , 1) and by the following transition rates:

(Zt)t>0 goes from (W ◦, W •, ~E, c) to

•
(
W ◦ ∪ {N}, W •, ~E ∪ {(N, i)}, c

)
at rate 1, for all i ∈ W ◦

•
(
W ◦, W • ∪ {N}, ~E ∪ {(N, i)}, c

)
at rate 1, for all i ∈ W •

•
(
W ◦ ∪ {N}, W •, ~E ∪ {(N, c)}, N

)
at rate 1

•
(
W ◦, W • ∪ {N}, ~E, c

)
at rate 2 rn

where N = |W ◦ ∪W •|+ 1 is the label of the new particle. The fourth coordinate
of (Zt)t>0 tracks the carrier of the item.

As previously, the Markov chain (Z̃k)k∈N∗ embedded in (Zt)t>0 is defined by

Z̃k = Ztk , where tk = inf
{
t > 0 : |W ◦

t ∪W •
t | = k

}
.

The realizations of Z̃n are exactly the (W ◦
n ,W

•
n , ~En, cn) such that fn = (W ◦

n ,W
•
n , ~En)

is a rooted forest with marked vertices on {1, . . . , n} and W ◦
n = Tfn(1) = Tfn(cn).

For these, it follows from the transition rates of (Zt)t>0 that

P
(
Z̃n = (W ◦

n ,W
•
n ,
~En, cn)

)
= (2 rn)|R(fn)|−1

n−1∏
k=1

(k + 1 + 2 rn)
. (4)

Finally, note that (Xk)k∈N∗ =
(
|W̃ ◦

k |, |W̃ •
k |
)
k∈N∗

, which counts the number of
descendants of the first particle and the number of descendants of immigrants, is
a Markov chain whose law is characterized by X1 = (1, 0) and Xk goes from (p, q)
to

• (p+ 1, q) with probability p+1
p+1+q+2rn

• (p, q + 1) with probability q+2r
p+1+q+2rn .
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4.2.3 Relabeling and end of proof

The last step before finishing the proof of Theorem 4.1 is to shuffle the vertices of
the forest associated to Z̃n appropriately. For any fixed n, v and c in {1, . . . , n},
let Φ(c,v) be uniformly and independently of anything else picked among the per-
mutations of {1, . . . , n} that map c to v; define Φv(Z̃n) by

Φv

(
W̃ ◦
n , W̃

•
n , Ẽn, c̃n

)
=
(
Φ(c̃n,v)(W̃ ◦

n), Φ(c̃n,v)(W̃ •
n), Φ(c̃n,v)(Ẽn)

)
where Φ(c̃n,v)(Ẽn) is to be understood as

{(
Φ(c̃n,v)(i),Φ(c̃n,v)(j)

)
: (i, j) ∈ Ẽn

}
.

With all these elements, the proof of Theorem 4.1 goes as follows. First, from
equations (3) and (4) and the definition of Φv, we see that for all rooted forest
with marked vertices fn,

P
(
F̃n = fn

)
= P

(
Φv(Z̃n) = fn

)
.

In particular, Ṽ ◦n , the set of unmarked vertices in the vertex-marking process, and
Φ(c̃n,v)(W̃ ◦

n), the relabeled set of descendants of the first particle in the branching
process, have the same law. Now, on the one hand we have∣∣∣Ṽ ◦n ∣∣∣ =

∣∣∣NG[v]
∣∣∣ = D(v)

n + 1 ,

and on the other hand we have∣∣∣Φ(c̃n,v)(W̃ ◦
n)
∣∣∣ =

∣∣∣W̃ ◦
n

∣∣∣ .
Since

∣∣∣W̃ ◦
n

∣∣∣ is the first coordinate of the Markov chain (Xk)k∈N∗ introduced in the
previous section, it follows directly from the transition probabilities of (Xk)k∈N∗
that

P
(
Xn = (k + 1, n− k − 1)

)
=
(
n− 1
k

) k∏
p=1

(p+ 1)
n−k−2∏
q=0

(q + 2 rn)
n−1∏

(p+q)=1

(
(p+q) + 1 + 2 rn

) ,

from which the expression of Theorem 4.1 can be deduced through elementary
calculations.

5 Connected components in the intermediate regime

From a biological perspective, connected components are good candidates to define
species, and have frequently been used to that end. Moreover, among the possible
definitions of species, they play a special role because they indicate how coarse the
partition of the set of populations into species can be; indeed, it would not make
sense biologically for distinct connected components to be part of the same species.
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As a result, connected components are in a sense the “loosest” possible definition
of species. This complements the perspective brought by complete subgraphs,
which inform us on how fine the species partition can be (see Section 3.1.2). For
a discussion of the definition of species in a context where traits and ancestral
relationships between individuals are known, see [8].

The aim of this section is to prove the following theorem.

Theorem 5.1. Let #CCn be the number of connected components of Gn,rn. If rn
is both ω(1) and o(n), then

rn
2 + op(rn) 6 #CCn 6 2 rn log n+ op(rn log n)

where, for a positive sequence (un), op(un) stands for some sequence of random
variables (Xn) such that Xn/un → 0 in probability.

5.1 Lower bound on the number of connected components

The proof of the lower bound on the number of connected components uses the for-
ward construction introduced in Section 2.2 and the associated notation. It relies
on the simple observation that, letting #CC(G) denote the number of connected
components of a graph G, #CC(G?

rn(k)) is a nondecreasing function of k. Indeed,
in the sequence of events defining (G?

rn(k))k>2, vertex duplications do not change
the number of connected components – because a new vertex is always linked to
an existing vertex (its ‘mother’) and her neighbors – and edge removals can only
increase it. Thus, ifmn 6 n and `n are such that P

(
#CC(G?

rn(mn) > `n
)
−−−−→
n→∞

1,
then `n is asymptotically almost surely a lower bound on the number of connected
components of G?

rn(n) — and therefore of Gn,rn .

To find such a pair (mn, `n), note that, for every graph G of order m,

#CC(G) > m−#edges(G) .

Moreover, since for any fixed n, G?
rn(mn) has the same law as Gmn,rn , the exact

expressions for the expectation and the variance of |E?
mn|, the number of edges

of G?
rn(mn), are given in Table 1. We see that, if rn and mn are both ω(1) and

o(n),

E
(
|E?

mn|
)
∼ m2

n

2 rn
and Var

(
|E?

mn|
)
∼ m2

n

4 r3
n

(
m2
n + 2 r2

n

)
.

By Chebychev’s inequality,

P

( ∣∣∣|E?
mn| − E

(
|E?

mn|
)∣∣∣ > m1−ε

n

)
6

Var
(
|E?

mn|
)

m2−2ε
n

.

When mn = Θ(rn), since rn = ω(1) the right-hand side of this inequality goes to
0 as n→ +∞, for all ε < 1/2. It follows that

|E?
mn| = E

(
|E?

mn|
)

+ op(rn) .
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Taking mn := bα rnc, we find that

#CC(G?
rn(mn)) > mn − |E?

mn| = α
(
1− α

2
)
rn + op(rn) .

The right-hand side is maximal for α = 1 and is then rn/2 + op(rn).

5.2 Upper bound on the number of connected components

Our strategy to get an upper bound on the number of connected components is to
find a spanning subgraph whose number of connected components we can estimate.
A natural idea is to look for a spanning forest, because forests have the property
that their number of connected components is their number of vertices minus their
number of edges.

Definition 5.2. A pair of vertices {ij} is said to be a founder if it has no ancestor
other than itself, i.e., letting T{ij} = sup{t > 0 : at(i) 6= at(j)} be the coalescence
time of i and j, {ij} is a founder if and only if ∀t < T{ij}, {at(i) at(j)} = {ij}.

Let F be the set of founders of Gn,rn = (V,E), and let Tn = (V,F ). Note that
#F = n − 1 and that Tn is a tree. Therefore, letting Fn = (V,F ∩ E) be the
spanning forest of Gn,rn induced by Tn, we have

#CCn 6 n−#edges(Fn) .

Let us estimate the number of edges of Fn. Recall Proposition 2.3. By construction,
∀{ij} ∈ F , P ?

{ij} = P{ij} ∩ [0, T{ij}]. It follows that

#edges(Fn) =
∑
{ij}∈F

1{P{ij}∩[0,T{ij}]=O6 }

and, as a consequence,

#CCn 6 1 +
∑
{ij}∈F

1{P{ij}∩[0,T{ij}] 6=O6 } .

Now, 1{P{ij}∩[0,T{ij}] 6=O6 } 6 #(P{ij}∩ [0, T{ij}]), and since (P{ij}){ij}∈F are i.i.d. Pois-
son point processes with intensity rn that are also independent of (T{ij}){ij}∈F ,∑

{ij}∈F

#(P{ij} ∩ [0, T{ij}]) 6 #(P ∩ [0, Ln]) ,

where P is a Poisson point process on ]0,+∞] with intensity rn and Ln = TMRCA +∑
{ij}∈F T{ij} is the total branch length of the genealogy of the vertices. Putting

the pieces together,
#CCn 6 1 + #(P ∩ [0, Ln]) .

Conditional on Ln, #(P ∩ [0, Ln]) is a Poisson random variable with parameter
rnLn. Moreover, it is known [15] that

E(Ln) = 2
n−1∑
i=1

1
i

and Var(Ln) = 4
n−1∑
i=1

1
i2
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As a result,
E(#(P ∩ [0, Ln])) = rnE(Ln) ∼ 2 rn log n

and
Var(#(P ∩ [0, Ln])) = rnE(Ln) + Var(rnLn) ∼ 2 rn log n+ α r2

n ,

with α = 2π2/3. Using Chebychev’s inequality, we find that for all ε > 0,

P
(
|#(P ∩ [0, Ln])− 2 rn log n| > ε rn log n

)
= O

(
2

ε2 rn log(n) + α

ε2 log(n)2

)
.

The right-hand side goes to 0 as n → +∞, which shows that #(P ∩ [0, Ln]) −
2 rn log n = op(rn log n) and finishes the proof.

Remark 5.3. Using #(P ∩ [0, Ln]) as an upper bound for ∑{ij}∈F 1{P{ij}∩[0,T{ij}]6=O6 }
turns out not to be a great source of imprecision, because most of the total branch
length of a Kingman coalescent comes from very short branches. As a result, when
rn = o(n), only a negligible proportion of the P{ij} ∩ [0, T{ij}]’s, {ij} ∈ F , have
more than one point.

By contrast, using n − #edges(Fn) as an upper bound on #CCn is very crude.
This leads us to formulate the following conjecture:

Conjecture 5.4.

∃α, β > 0 s.t. P(αrn 6 #CCn 6 βrn) −−−−→
n→∞

1.

6 Number of edges in the sparse regime

From the expressions obtained in section 3.1.1 and recapitulated in Table 1, we
see that when rn = ω(n),

E(|En|) ∼ Var(|En|) ∼
n2

2 rn
.

This suggests that the number of edges is Poissonian in the sparse regime, and
this is what the next theorem states.

Theorem 6.1. Let |En| be the number of edges of Gn,rn. If rn = ω(n) then

dTV
(
|En|,Poisson(λn)

)
−−−−−→
n→+∞

0 ,

where dTV stands for the total variation distance and λn = E(|En|) ∼ n2

2rn . If in
addition rn = o(n2), then λn → +∞ and as a result

|En| − λn√
λn

D−−−−−→
n→+∞

N (0, 1) ,

where N (0, 1) denotes the standard normal distribution.
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The proof of Theorem 6.1 is a standard application of the Stein–Chen method
[14, 2]. A reference on the topic is [1], and another excellent survey is given in
[12]. Let us state briefly the results that we will need.

Definition A. The Bernoulli variables X1, . . . , XN are said to be positively related
if for each i = 1, . . . , N there exists (X(i)

1 , . . . , X
(i)
N ), built on the same space as

(X1, . . . , XN), such that

(i)
(
X

(i)
1 , . . . , X

(i)
N

)
∼ (X1, . . . , XN) | Xi = 1.

(ii) For all j = 1, . . . N , X(i)
j > Xj.

Note that other equivalent definitions of positive relation are known (see e.g.
Lemma 4.27 in [12]).

We will also need the following classic theorem, which appears, e.g., as Theo-
rem 4.20 in [12]:

Theorem A. Let X1, . . . , XN be positively related Bernoulli variables with P(Xi = 1) =
pi. Let W = ∑N

i=1 Xi and λ = E(W ). Then,

dTV(W,Poisson(λ)) 6 min{1, λ−1}
(

Var(W )− λ+ 2
N∑
i=1

p2
i

)
.

It is intuitive that the variables indicating the presence of edges in our graph are
positively related, because the only way through which these variables depend on
each other is through the fact that the edges share ancestors. But we need to
prove it before we can use Theorem A.

6.1 Proof of the positive relation between the edges

6.1.1 Preliminary lemmas

In this section we isolate the proof of two useful results that are not tied to the
particular setting of our model.

Lemma 6.2. Let X = (X1, . . . , XN) be a vector of Bernoulli variables. The
distribution of X is characterized by the quantities

E

(∏
i∈I
Xi

)
, I ⊂ {1, . . . , N}, I 6= O6

Proof. For all I ⊂ {1, . . . , N}, I 6= O6 , let

pI = E

(∏
i∈I
Xi

)
and qI = E

∏
i∈I
Xi

∏
j∈Ic

(1−Xj)


where the empty product is understood to be 1.
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Clearly, the distribution of X is fully specified by (qI). Now, observe that∏
j∈Ic

(1−Xj) =
∑
K⊂Ic

(−1)|K|
∏
k∈K

Xk .

Therefore,

qI =
∑
K⊂Ic

(−1)|K| pI∪K

=
∑
J⊃I

(−1)|J |−|I| pJ ,

which terminates the proof.

Lemma 6.3. Let X1, . . . , XN be independent random nondecreasing functions
from [0,+∞[ to {0, 1} such that, ∀i ∈ {1, . . . , N}, inf{t > 0 : Xi(t) = 1} < +∞
almost surely. Let T be a non-negative random variable that is independent of
(X1, . . . , XN). Then, X1(T ), . . . , XN(T ) are positively related.

Proof. Pick i ∈ {1, . . . , N}. Now, let τi = inf{t > 0 : Xi(t) = 1}. Assume without
loss of generality thatXi is left-continuous, so that {Xi(T ) = 1} = {T > τi}. Next,
note that,

∀x, t > 0, P(T > x, T > t) > P(T > x)P(T > t) .

Integrating in t against the law of τi, we find that

∀x > 0, P(T > x | T > τi) > P(T > x) .

This shows that T is stochastically dominated by T (i), where T (i) has the law
of T conditioned on {T > τi}. As a result, there exists S, built on the same
space as X1, . . . , XN and independent of (Xj)j 6=i, such that S ∼ T (i) and S > T .
For all j 6= i, let X(i)

j = Xj(S). Since Xj is nondecreasing, X(i)
j > Xj(T ), and

since (Xj)j 6=i ⊥⊥ (T, τi), (X(i)
j )j 6=i ∼ ((Xj(T ))j 6=i | Xi(T ) = 1). This shows that

X1(T ), . . . , XN(T ) are positively related.

Remark 6.4. Lemma 6.3 and its proof are easily adapted to the case whereX1, . . . , XN

are nonincreasing and such that inf{t > 0 : Xi(t) = 0} < +∞ a.s.

6.1.2 Stein–Chen coupling

To prove that the variables indicating the presence of the edges of Gn,rn are posi-
tively related, we use the forward construction described in Section 2.3, and pro-
ceed by induction. Note that, in this section, we make no assumptions on rn.

To keep the notation light, throughout the rest of this section we index the pairs
of vertices of G?

r(n) = ({1, . . . , n}, E?
n) by the integers from 1 to N =

(
n
2

)
and, for

i ∈ {1, . . . , N}, we let Xi = 1{i∈E?n}. We also make consistent use of bold letters
to denote vectors, i.e., given any family of random variables Z1, . . . , Zp, we write
Z for (Z1, . . . , Zp).
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For small values of n (e.g., n = 3), the law of Gn,r — and hence of G?
r(n) — can

be worked out explicitly. It is then straightforward to check that X1, . . . , XN are
positively related for all values of r.

Now assume that X1, . . . , XN are positively related in G?
r(n), i.e.

∀i 6 N, ∃Y(i) =
(
Y

(i)
1 , . . . , Y

(i)
N

)
such that

(i) Y(i) ∼ (X | Xi = 1) (5)
(ii) ∀k 6 N, Y

(i)
k > Xk

Remember that G?
r(n + 1) is obtained by (1) adding a vertex to G?

r(n) (which,
without loss of generality, we label n + 1) and linking it to a uniformly chosen
vertex un of G?

r(n) as well as to the neighbors of un; and (2) waiting for an
exponential time T with parameter

(
n
2

)
while removing each edge at constant

rate r.

Formally, ∀k 6 N + n, we define the “mother” of k, Mk ∈ {1, . . . , N} ∪ {O6 },
by

• If k 6 N (i.e., if k is the label of {u, v}, with 1 6 u < v 6 n), then Mk = k.

• If k > N is the label of {v, n+ 1}, with 1 6 v 6 n, then Mk = `, where ` is
the label of {un, v}.

• If k > N is the label of {un, n+ 1}, then Mk = O6 .

Letting X ′k = 1{k∈E?n+1}, we then have

X ′k =

 Ak if Mk = O6
XMk

Ak otherwise

with Ak = 1{ek>T}, where we recall that T ∼ Exp(N) and, e1, . . . , eN+n are i.i.d.
exponential variables with parameter r that are also independent of everything
else.

Note that the random functions Ãk : t 7→ 1{ek>t}, k ∈ {1, . . . N + n} are nonin-
creasing and such that inf{t > 0 : Ãk(t) = 0} < +∞ almost surely. By Lemma 6.3
(see also Remark 6.4), it follows that A1, . . . , AN+n are positively related.

We now pick any i 6
(
n+1

2

)
= N + n and build a vector Y′(i) that has the same

law as (X′ | Xi = 1) and satisfies Y′(i) > X′.

Assume that Mi 6= O6 . In that case,

1. By the induction hypothesis, there exists Y(Mi) that satisfies (5).

2. Since by A1, . . . , AN+n are positively related, ∃B(i) ∼ (A | Ai = 1) such that
B(i) > A.

31



Note that A, B(i), X and Y(Mi) are all built on the same space. Therefore, omitting
the (Mi) and (i) superscripts to keep the notation light, we can set Y ′i = 1 and,
for k 6= i,

Y ′k =

 Bk if Mk = O6
YMk

Bk otherwise.

With this definition, ∀J ⊂ {1, . . . , N + n},

E

∏
j∈J
Y ′j

 = E

∏
j∈J̃

Yj

E
∏
j∈J
Bj

 ,
where J̃ = {Mj : j ∈ J,Mj 6= O6 }. By hypothesis,

E

∏
j∈J̃

Yj

 = E

∏
j∈J̃

Xj

∣∣∣∣∣∣∣XMi
= 1

 = E

(
XMi

∏
j∈J̃

Xj

)/
E
(
XMi

)

Similarly,

E

∏
j∈J
Bj

 = E

Ai ∏
j∈J

Aj

/ E(Ai) .
As a result,

E

∏
j∈J
Y ′j

 =
E
(
XMi

∏
j∈J̃ Xj

)
E
(
Ai
∏
j∈J Aj

)
E(XMi

)E(Ai)

=
E
(
XMi

Ai
∏
j∈J X

′
j

)
E(XMi

Ai)

= E

∏
j∈J
X ′j

∣∣∣∣∣∣X ′i = 1


By Lemma 6.2, this shows that Y′ ∼ (X′ | X ′i = 1).

IfMi = O6 , we can no longer choose Y(Mi). However, in that case, X ′i depends only
on Ai. Therefore, we set Y ′i = 1 and, for k 6= i,

Y ′k = XMk
Bk

Remembering that X ′i = Ai, we then check that

E

∏
j∈J
Y ′j

 =
E
(∏

j∈J̃ Xj

)
E
(
Ai
∏
j∈J Aj

)
E(Ai)

= E

∏
j∈J
X ′j

∣∣∣∣∣∣X ′i = 1
 .

Finally, it is clear that, with both constructions of Y(i), Y′(i)k > X′k.
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6.2 Proof of Theorem 6.1

Applying Theorem A to |En| =
∑
{ij} 1{i↔j} and using the expressions in table 1,

we get
dTV

(
|En|,Poisson(λn)

)
6 min

{
1, λ−1

n

}
Cn ,

with λn = n(n−1)
2(rn+1) and

Cn = n(n− 1)(n2rn + 2nr2
n + nrn − 2r2

n + 3rn + 9)
2 (2 rn + 3)(rn + 3)(rn + 1)2 .

When rn = ω(n),

Cn = Θ
(
n4

r3
n

+ n3

r2
n

)
.

Now, if rn > n(n−1)
2 − 1, so that min{1, λ−1

n } = 1, we see that Cn = Θ(n3/r2
n). If

by contrast rn 6 n(n−1)
2 − 1 then λ−1

n Cn = Θ(n/rn). In both cases, min{1, λ−1
n }Cn

goes to zero as n→ +∞, proving the first part of Theorem 6.1.

The convergence of |En|−λn√
λn

to the standard normal distribution is a classic con-
sequence of the conjunction of dTV(|En|,Poisson(λn)) → 0 with λn → +∞. See,
e.g., [1], page 17, where this is recovered as a consequence of inequality (1.39).
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A Proofs of Proposition 3.5 and Corollary 3.6

In this section we prove Proposition 3.5 and its corollary.

Proposition 3.5. Let i, j, k and ` be four distinct vertices of Gn,rn. We have

Cov
(
1{i↔j},1{k↔`}

)
= 2 rn

(1 + rn)2(3 + rn)(3 + 2 rn)

Corollary 3.6. Let D(i)
n and D(j)

n be the respective degrees of two fixed vertices i
and j, and let |En| be the number of edges of Gn,rn. We have

Cov
(
D(i)
n , D

(j)
n

)
= rn

(1 + rn)2

(
1 + 3(n− 2)

3 + 2 rn
+ 2(n− 2)(n− 3)

(3 + rn)(3 + 2 rn)

)

and
Var(|En|) = rn n (n− 1)(n2 + 2 r2

n + 2n rn + n+ 5 rn + 3)
2 (1 + rn)2 (3 + rn) (3 + 2 rn)

A.1 Proof of Proposition 3.5

The proof of Proposition 3.5 parallels that of Proposition 3.3, but this time the
topology of the genealogy of the pairs of vertices has to be taken into account.
Indeed, define

St = {at(i), at(j), at(k), at(`)}
and let τ1 < τ2 < τ3 be the times of coalescence in the genealogy of {i, j, k, `},
i.e.

τp = inf{t > 0 : |St| = 4− p}, p = 1, 2, 3 .
Write I1 = [0, τ1[, I2 = [τ1, τ2[ and I3 = [τ2, τ3[. Finally, for m = 1, 2, let

A
(m)
{uv} = {aτm−(u) 6= aτm−(v)} ∩ {aτm(u) = aτm(v)}

be the event that the m-th coalescence in the genealogy of {i, j, k, `} involved the
lineages of u and v (note that the third coalescence is uniquely determined by the
first and the second, so we do not need A(3)

{uv}).

On A(1)
{ij} ∩ A

(2)
{k`}, {i↔ j, k ↔ `} is equivalent to

(P ?
{ij} ∩ I1) ∪ (P ?

{k`} ∩ I1) ∪ (P ?
{k`} ∩ I2) = O6

so that, conditionally on I1 and I2, by Lemma 2.4,

P
(
i↔ j, k ↔ `

∣∣∣ A(1)
{ij} ∩ A

(2)
{k`}

)
= P

(
(P ?
{ij} ∪ P ?

{k`}) ∩ I1 = O6
)
× P

(
P ?
{k`} ∩ I2 = O6

)
= 6

6 + 2 rn
× 3

3 + rn
.

By contrast, on A(1)
{ij} ∩ A

(2)
{ik}, {i↔ j, k ↔ `} is

(P ?
{ij} ∩ I1) ∪ (P ?

{k`} ∩ I1) ∪ (P ?
{k`} ∩ I2) ∪ (P ?

{k`} ∩ I3) = O6
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and thus

P
(
i↔ j, k ↔ `

∣∣∣ A(1)
{ij} ∩ A

(2)
{ik}

)
= 6

6 + 2 rn
× 3

3 + rn
× 1

1 + rn
.

Given a realization of the topology of the genealogy of the form A
(1)
{u1v1} ∩A

(2)
{u2v2},

we can always express {i↔ j, k ↔ `} as a union of intersections of P ?
{ij} and P ?

{k`}

with I1, I2 and I3. In total, there are
(

4
2

)
×
(

3
2

)
= 18 possible events A(1)

{u1v1}∩A
(2)
{u2v2},

each having probability 1/18. This enables us to compute P(i↔ j, k ↔ `), but in
fact the calculations can be simplified by exploiting symmetries, such as the fact
that {ij} and {k`} are interchangeable. In the end, it suffices to consider four
cases, as depicted in Figure 6.

Figure 6: The four cases that we consider to compute P(i↔ j, k ↔ `). Top, the “aggregated”
genealogies of vertices and their probability. Each of these correspond to several genealogies on
{i, j, k, `}, which are obtained by labeling symbols in such a way that a pair of matching symbols
has to correspond to either {ij} or {k`}. For instance, C = (A(1)

{ij} ∩ A
(2)
{k`}) ∪ (A(1)

{k`} ∩ A
(2)
{ij})

and therefore P(C) = 2/18. Similarly, A = (A(1)
{ij} ∩ A

(2)
{ik}) ∪ (A(1)

{ij} ∩ A
(2)
{i`}) ∪ (A(1)

{k`} ∩ A
(2)
{ik}) ∪

(A(1)
{k`} ∩ A

(2)
{jk}) and P(A) = 4/18, etc. Bottom, the associated genealogy of the pairs and the

corresponding conditional probability of {i↔ j, k ↔ `} ⇔ {�↔ �,•↔ •}.
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Putting the pieces together, we find that

P(i↔ k, j ↔ `) = 6
9 ×

1
1 + rn

× 3
3 + 2r ×

6
6 + 2 rn

+ 2
9 ×

1
1 + rn

× 3
3 + rn

× 6
6 + 2 rn

+ 1
9 ×

3
3 + rn

× 6
6 + 2 rn

= 9 + 2 rn
(1 + rn)(3 + rn)(3 + 2 rn) .

and Proposition 3.5 follows, since

P(i↔ j)P(k ↔ `) =
( 1

1 + rn

)2
.

A.2 Proof of Corollary 3.6

Corollary 3.6 is proved by standard calculations. First,

Cov
(
D(i)
n , D

(j)
n

)
= Cov

∑
k 6=i
1{i↔k},

∑
`6=j
1{j↔`}


= Var

(
1{i↔j}

)
+ 3(n− 2) Cov

(
1{i↔k},1{j↔k}

)
+ (n− 2)(n− 3) Cov

(
1{i↔k},1{j↔`}

)
Remembering from Proposition 3.1 that Var(1{i↔j}) = rn/(1 + rn)2 and from
Proposition 3.3 that Cov(1{i↔k},1{j↔k}) = rn

(1+rn)2(3+2 rn , and using Proposition 3.5,
we find that

Cov
(
D(i)
n , D

(j)
n

)
= rn

(1 + rn)2

(
1 + 3(n− 2)

3 + 2 rn
+ 2(n− 2)(n− 3)

(3 + rn)(3 + 2 rn)

)
.

Finally, to compute Var(|En|), we could do a similar calculation. However, it is
easier to note that

|En| =
1
2

n∑
i=1

D(i)
n .

As a result,

Var(|En|) = 1
4
(
nVar

(
D(i)
n

)
+ n(n− 1) Cov

(
D(i)
n , D

(j)
n

))
= rn n (n− 1)(n2 + 2 r2

n + 2n rn + n+ 5 rn + 3)
2(1 + rn)2(3 + rn)(3 + 2 rn) .
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B Proof of Theorem 4.2

In this section, we prove Theorem 4.2.

Theorem 4.2 (convergence of the rescaled degree).

(i) If rn → r > 0, then Dn
n

converges in distribution to a Beta(2, 2 r) random
variable.

(ii) If rn is both ω(1) and o(n), then Dn
n/rn

converges in distribution to a size-biased
exponential variable with parameter 2.

(iii) If 2 rn/n → ρ > 0, then Dn + 1 converges in distribution to a size-biased
geometric variable with parameter ρ/(1 + ρ).

The proof of (iii) is immediate: indeed, by Theorem 4.1,

P(Dn + 1 = k) = 2 rn (2 rn + 1)
(n+ 2 rn)(n− 1 + 2 rn) k

k−1∏
i=1

n− i
n− i+ 2 rn − 1 .

If 2 rn/n→ ρ, then for any fixed k this goes to k
(

ρ
1+ρ

)2( 1
1+ρ

)k−1
as n→ +∞.

B.1 Outline of the proof

To prove (i) and (ii), we show the pointwise convergence of the cumulative distri-
bution function Fn of the rescaled degree. To do so, in both cases,

1. We show that, for any ε > 0, for n large enough,

∀y > 0,
∫ y

0
fn(x) dx 6 Fn(y) 6

∫ y+ε

0
fn(x) dx

for some function fn to be introduced later.

2. We identify the limit of fn as a classical probability density f , and use
dominated convergence to conclude that

∀y > 0,
∫ y

0
fn(x) dx→

∫ y

0
f(x) dx .

In order to factorize as much of the reasoning as possible, we introduce the rescaling
factor Nn:

• When rn → r, i.e. when we want to prove (i), Nn = n.

• When rn is both ω(1) and o(n), i.e. when we want to prove (ii), Nn = n/rn.

Thus, in both cases the rescaled degree is Dn/Nn and its cumulative distribution
function is

Fn(y) =
bNnyc∑
k=0

P(Dn = k) .
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B.2 Step 1

For all x > 0, let
fn(x) = NnP(Dn = bNnxc),

so that
∀k ∈ N, P(Dn = k) =

∫ (k+1)/Nn

k/Nn
fn(x) dx .

If follows that
Fn(y) =

∫ (bNnyc+1)/Nn

0
fn(x) dx .

Finally, since y 6 bNnyc+1
Nn

6 y + 1
Nn

and fn is non-negative, for any ε > 0, for n
large enough,

∀y > 0,
∫ y

0
fn(x) dx 6 Fn(y) 6

∫ y+ε

0
fn(x) dx ,

and the rank after which these inequalities hold is uniform in y, because the con-
vergence of (bNnyc+ 1)/Nn to y is.

B.3 Step 2

To identify the limit of fn, we reexpress it in terms of the gamma function. Using
that Γ(z) = zΓ(z), by induction,

k∏
i=1

(n− i) = Γ(n)
Γ(n− k) and

k∏
i=1

(n− i+ 2 rn − 1) = Γ(n+ 2 rn − 1)
Γ(n− k + 2 rn − 1) .

Therefore, fn(x) can also be written

fn(x) = Nn 2 rn (2 rn + 1)
(n+ 2 rn)(n− 1 + 2 rn)

(
bNnxc+ 1

)
× Pn(x) , (6)

where
Pn(x) = Γ(n) Γ(n− bNnxc+ 2 rn − 1)

Γ(n− bNnxc) Γ(n+ 2 rn − 1) . (7)

We now turn to the specificities of the proofs of (i) and (ii).
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B.3.1 Proof of (i)

In this subsection, rn → r > 0 and Nn = n.

Limit of fn. Recall that

∀α ∈ R, Γ(n+ α)
Γ(n) ∼ nα .

Using this in (7), we see that, for all x ∈ [0, 1[,

Pn(x)→ (1− x)2r−1 .

Therefore, for all x ∈ [0, 1[,

fn(x)→ 2r(2r + 1)x (1− x)2r−1 .

Noting that 2r(2r + 1) = 1/B(2, 2r), where B denotes the beta function, we can
write f = limn fn as

f : x 7→ x(1− x)2r−1

B(2, 2r) 1[0,1[(x)

and we recognize the probability density function of the Beta(2, 2r) distribu-
tion.

Domination of (fn). First note that, for all x ∈ [0, 1[,

1
n− 1 + 2 rn

bnxc∏
i=1

n− i
n− i+ 2 rn − 1 = 1

n− bnxc+ 2 rn − 1

bnxc∏
i=1

n− i
n− i+ 2 rn

,

where the empty product is understood to be 1. Since 2 rn > 0, this enables us to
write that, for all x ∈ [0, 1[,

fn(x) = n 2r (2r + 1)
n+ 2r︸ ︷︷ ︸
6(2r+1)2

× bnxc+ 1
n− 1 + 2r ×

1
n− bnxc+ 2r − 1︸ ︷︷ ︸

6 1
2r

×
bnxc∏
i=1

n− i
n− i+ 2r︸ ︷︷ ︸
61

.

where, to avoid cluttering the expression, the n index of rn has been dropped.
Since

bnxc+ 1
n− 1 + 2 rn

6
(n− 1)x+ x+ 1

n− 1 6 x+ 2
n− 1

uniformly−−−−−−→
n→+∞

x ,

there exists c such that, for all x ∈ [0, 1[ and n large enough,

fn(x) 6 c x

Since fn is zero outside of [0, 1[, this shows that (fn) is dominated by g : x 7→
c x1[0,1[(x).
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B.3.2 Proof of (ii)

In this subsection, rn is both ω(1) and o(n), and Nn = n/rn. For brevity, we will
write kn for bnx/rnc. It should be noted that

• kn is both ω(1) and o(n).

• knrn/n→ x uniformly in x on [0,+∞[.

Limit of fn. In this paragraph, we will need Stirling’s formula for the asymp-
totics of Γ:

Γ(t+ 1) ∼
√

2πt t
t

et
.

Using this in Equation (7),

Pn(x) = Γ(n) Γ(n− bNnxc+ 2 rn − 1)
Γ(n− bNnxc) Γ(n+ 2 rn − 1)

∼

√√√√(n− 1)(n− 2− kn + 2 rn)
(n− 1− kn)(n− 2 + 2 rn)︸ ︷︷ ︸

∼1

× e
n−1−kn en−2+2rn

en−1 en−2−kn+2rn︸ ︷︷ ︸
=1

×Qn

where
Qn = (n− 1)n−1 (n− 2− kn + 2 rn)n−2−kn+2rn

(n− 1− kn)n−1−kn (n− 2 + 2 rn)n−2+2rn
.

Let us show that Qn → e−2x:

logQn = (n− 1) log(n− 1)
+ (n− a+ b) log(n− a+ b)
− (n− a) log(n− a)
− (n− 1 + b) log(n− 1 + b)

where, to avoid cluttering the text, we have written a for kn + 1 and b for 2 rn− 1.
Factorizing, we get

logQn = n log
(

(n− 1)(n− a+ b)
(n− a)(n− 1 + b)

)
−a log

(
n− a+ b

n− a

)
+b log

(
n− a+ b

n− 1 + b

)
−log

(
n− 1

n− 1 + b

)
.

Now,
(n− 1)(n− a+ b)
(n− a)(n− 1 + b) = 1 + (a− 1)b

n2 − n+ nb− na+ a− ab︸ ︷︷ ︸
∼ 2knrn

n2 = o(1)

so that
n log

(
(n− 1)(n− a+ b)
(n− a)(n− 1 + b)

)
∼ 2knrn

n
→ 2x
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Similarly,

−a log
(
n− a+ b

n− a

)
= −a log

(
1 + b

n− a

)
∼ −ab

n
→ −2x

b log
(
n− a+ b

n− 1 + b

)
= b log

(
1 + 1− a

n− 1 + b

)
∼ −ab

n
→ −2x

and, finally, − log
(

n−1
n−1+b

)
→ 0. Putting the pieces together,

logQn → −2x .

Having done that, we note that

2n(2 rn + 1)
(n+ 2 rn)(n− 1 + 2 rn)(kn + 1) → 4x .

Plugging these results in Equation (6), we see that

∀x ∈ R, fn(x) → 4x e−2x 1[0,+∞[(x)

and we recognize the probability density function of a size-biased exponential dis-
tribution with parameter 2.

Domination of (fn). Recall that, since Nn = n/rn, for all x ∈ [0, 1[,

fn(x) = 2n (2 rn + 1)
(n+ 2 rn)(n− 1 + 2 rn) (kn + 1)

kn∏
i=1

n− i
n− i+ 2 rn − 1 .

Next, note that, for all i,

n− i
n− i+ 2 rn − 1 = 1− 2 rn − 1

n− i+ 2 rn − 1 6 exp
(
− 2 rn − 1
n− i+ 2 rn − 1

)
so that

kn∏
i=1

n− i
n− i+ 2 rn − 1 6 exp

− kn∑
i=1

2 rn − 1
n− i+ 2 rn − 1

 ,

with
kn∑
i=1

2 rn − 1
n− i+ 2 rn − 1 > kn

2 rn − 1
n− 1 + 2 rn − 1 .

Because rn = ω(1), for all ε > 0, 2 rn−1 > (1−ε)2 rn for n large enough. Similarly,
since rn = o(n), 1

n+2 rn >
1

(1+ε)n . As a result, there exists c > 0 such that

kn
2 rn − 1

n− 1 + 2 rn − 1 > c kn
2 rn
n

uniformly−−−−−−→ 2cx .
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We conclude that

∀x > 0,
kn∏
i=1

n− i
n− i+ 2 rn − 1 6 exp(−2cx)

for n large enough. Finally,

2× n

n+ 2 rn︸ ︷︷ ︸
61

× (2 rn + 1)(kn + 1)
(n− 1 + 2 rn)︸ ︷︷ ︸
→2x, uniformly

6 4cx

and so (fn) is dominated by g : x 7→ 4c x e−2cx 1[0,+∞[(x).
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