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ABSTRACT
Due to their flexibility, Gaussian processes (GPs) have been widely used in non-
parametric function estimation. A prior information about the underlying function
is often available. In this paper, the finite-dimensional Gaussian approach (Maatouk
and Bay, 2017) which can satisfy linear inequality conditions everywhere (e.g. mono-
tonicity, convexity and boundary) is considered. In a variety of real-world problems,
the observed data usually possess noise. In this paper, this approach has been ex-
tended to deal with noisy observations. The mean and the maximum of the posterior
distribution are well defined. Additionally, to simulate from the posterior distribu-
tion two methods have been used: the exact rejection sampling from the Mode and
the Hamiltonian Monte Carlo method which is more efficient in high-dimensional
cases. The generalization of the Kimeldorf-Wahba correspondence Kimeldorf and
Wahba (1970) is proved in noisy observation cases. A comparison shown that the
proposed model outperforms all recent models dealing with the same constraints in
terms of predictive accuracy and coverage intervals.

KEYWORDS
Gaussian processes; nonparametric estimation; noisy observations; shape
constraints; Kimeldorf-Wahba correspondence

1. Introduction

Gaussian processes (GPs) are one of the most famous choices in nonparametric func-
tion estimation. This is because of their flexibilities and other nice properties. For ex-
ample, the conditional GP with linear equality constraints is still a GP (see Cramer and
Leadbetter (1967)). Additionally, some linear inequality constraints (such as mono-
tonicity and convexity) of output computer responses are related to partial derivatives.
The partial derivatives of the GP remain GPs (see e.g. Cramer and Leadbetter (1967);
Parzen (1962)).

In many real problems, a prior information about the underlying function is often
available. Including shape constraints, the problem is called Constrained Gaussian
Process (CGP) regression (or constrained kriging). It has been studied in the domain
of geostatistics (see e.g. Freulon and de Fouquet (1993); Kleijnen and Van Beers (2013))
and used to improve the quality of predictions and to provide more realistic coverage
intervals.
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In the literature, there are a variety of way to incorporate some linear constraints
such as monotonicity and boundedness into a GP regression. Therefore, there exists
a variety of methodologies to deal with them. For instance, GP regression with in-
equality constraints has been considered in Abrahamsen and Benth (2001); Da Veiga
and Marrel (2012); Freulon and de Fouquet (1993); Koyejo et al. (2013); Rudovic and
Pantic (2011); Salzmann and Urtasun (2010). For example, in Abrahamsen and Benth
(2001) the idea is based on a discrete location approximation. In that case, the in-
equality constraints are satisfied in a finite number of input locations. Recently, a new
methodology based on a modification of the covariance function in Gaussian processes
to correctly account for known linear constraints is developed in Jidling et al. (2017).
Recently, two new methodologies have been developed to incorporate boundedness
constraints into a GP regression (see Agrell (2019); Jensen et al. (2013)).

For monotonicity and isotonicity constraints into a GP regression, a variety of meth-
ods have been developed. To the best of our knowledge, incorporating monotonicity
information into a GP regression has been firstly introduced in Morris et al. (1993).
Their idea is based on the fact that the order partial derivatives of a GP remain GPs
(see Parzen (1962)). In fact, suppose that the paths of the GP (y(x))x∈Rd are of class
Cp (i.e., the space of functions that admit derivatives up to order p). This can be
guaranteed if the covariance function k is smooth enough, and in particular if k is of
class C∞ (see Cramer and Leadbetter (1967)). Since differentiation is a linear operator,
the order partial derivatives of a GP remain GPs (see Cramer and Leadbetter (1967);
Parzen (1962)). Recently, this idea has been reconsidered in the machine learning
framework for qualitative information (e.g., increasing or decreasing), see for example
Riihimäki and Vehtari (2010). Their method is based on the knowledge of derivatives
of the GP at some input locations. They incorporate the monotonicity information by
placing virtual derivatives at specified input locations to force the derivative process to
be positive at these points. In Golchi et al. (2015), this methodology has been extended
to the interpolation case (i.e., free noisy observations). As well as, the simulation from
the exact joint posterior distribution rather than relying on an approximation has
been proposed. The authors provide complete Bayesian inference for all parameters
of the emulator and the predicted function at unsampled inputs. The disadvantage
of this methodology is the monotonicity constraints are not guaranteed in the entire
domain. However, as mentioned in Wang and Berger (2016), ‘only a modest number
of virtual derivative points seems to be needed to effectively impose the desired shape
constraint’. Another way to incorporate monotonicity information into a GP regression
is the so called ‘GP projection’ (see Lin and Dunson (2014)) which is a competitive
method (see Section 5 for a comparison with the proposed GP approximation in terms
of prediction accuracy and coverage intervals). A comparison with spline-based models
is included.

Recently, this approach has been extended to boundedness constraints (see Zhang
and Lin (2018)).

For monotonic function estimations, using B-splines was firstly introduced by Ram-
say (1988, 1998). The idea is based on the integration of B-splines defined on a properly
set of knots with positive coefficients to ensure monotonicity constraints. Xuming and
Peide (1996) take the same approach and suggest the calculation of the coefficients by
solving a finite linear minimization problem. In Kong and Eubank (2006), regression
spline has been used to estimate monotone smoothing function with application to
dose-response curve. In Delecroix et al. (1996), nonparametric function estimation in
a general cone is studied. Their method is based on a projection into a discretized
version of the cone, using the theory of reproducing kernel Hilbert spaces. In Shively
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et al. (2009), a Bayesian approach to estimate nonparametric monotone functions us-
ing restricted splines is developed. In Saarela and Arjas (2011); T. and L. (2007), the
generalization of monotonic regression to multiple dimensions are studied. Bornkamp
and Ickstadt (2009) adopt mixture modelling.

Finally, there is a vast frequentest literature on monotone function and isotonic
regression estimation, with a common approach minimizing a least squares loss subject
to a restriction (see Brunk et al. (1972); Robertson et al. (1988)). For more recent
references see also Bhattacharya and Kong (2007); Bhattacharya and Lin (2010, 2011);
Wahl and Espinasse (2018). For restricted kernel methods, refer to Dette et al. (2005);
Mammen (1991); Müller and Schmitt (1988).

The methodology developed in the present paper is quite different. It has two key
motivations: (1) By the proposed approach, the generalization of the Kimeldorf-Wahba
correspondence (see Kimeldorf and Wahba (1970)) for constrained interpolation cases
is proved (see Bay et al. (2016)) and for noisy observations can be generalized as we
show in the next sections. (2) The linear inequality constraints on the Gaussian pro-
cesses are respected in the entire domain and it is a competitive approach in terms of
prediction and more importantly in terms of coverage intervals. In fact, the proposed
approach is based on a finite-dimensional approximation of GPs (or a GP approxi-
mation) that converges uniformly pathwise. It can be seen as a linear combination
between deterministic basis functions and Gaussian random coefficients, where the
coefficients are not independent. The main idea is to choose the basis functions such
that the infinite number of linear inequality constraints on the GP approximation are
equivalent to a finite number of constraints on the coefficients. Therefore, the simula-
tion of the conditional GP approximation is reduced to the simulation of a Gaussian
vector (random coefficients) restricted to convex sets which is a well-known problem
with existing algorithms (see e.g. Botts (2013); Chopin (2011); Maatouk and Bay
(2016); Philippe and Robert (2003); Robert (1995)). Recently, the model developed in
Maatouk and Bay (2017) has been used to estimate the proton radius from electron
scattering data based on a non-parametric Gaussian process (see Zhou et al. (2019)).

The article is structured as follows. In Section 2, Gaussian processes for computer
experiments are briefly reviewed. In Section 3, a finite-dimensional approximation
of GPs capable of incorporating linear inequality constraints and noisy observations
is developed. Section 4 shows the generalization of the Kimeldorf-Wahba correspon-
dence (see Bay et al. (2017)) in the noisy observations case. Section 5 investigates the
performance of the proposed model in terms of predictive accuracy and uncertainty
quantification.

2. Gaussian processes for computer experiments

The following model is considered

y = f(x), x ∈ Rd,

where the simulator response y is assumed to be a deterministic real-valued function
of the d-dimensional variable x = (x1, . . . , xd) ∈ Rd. The true function is supposed to
be continuous and evaluated at data of size n (design of experiments) given by the

rows of the n×d matrix X =
(
x(1), . . . ,x(n)

)>
, where x(i) ∈ Rd, i = 1 . . . , n. In many

practical situations, it is not possible to get exact evaluations of y at the design of
experiments, but rather pointwise noisy measurements. In such case, an approximate
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response y(X) + ε is available, where ε ∼ N (0, σ2
noiseI) with σ2

noise the noise variance
and I the identity matrix. To simplify notations, we denote

ỹi = y(x(i)) + εi, i = 1, . . . , n.

and ỹ = y(X) + ε. In the statistical framework, y is viewed as a realization of a
continuous GP

Y (x) = η(x) + z(x), x ∈ D ⊂ Rd,

where D is a compact subset of Rd and the deterministic continuous function η : x ∈
Rd −→ η(x) ∈ R is the mean and z is a zero-mean GP with covariance function

k : (x,x′) ∈ D ×D −→ k(x,x′) ∈ R.

In that case, the GP can be written as Y ∼ GP (η(x), k(x,x′)). Conditionally to noisy
observations ỹ = (ỹ1, . . . , ỹn)>, the process remains a GP

Y (.) | {y (X) + ε} ∼ GP
(
ζ(x), C(x,x′)

)
,

where

ζ(x) = E [Y (x) | ỹ] = η(x) + k(x)>(K + σ2
noiseI)−1 (ỹ − µ) ; (1)

and µ = η(X) is the vector of trend values at the design of experiments, Ki,j =

k(x(i),x(j)), i, j = 1, . . . , n is the covariance matrix of Y (X) and k(x) = k(x,X)
is the vector of covariance between Y (x) and Y (X). Additionally, the covariance
function between any two inputs is that

C(x,x′) = Cov(Y (x), Y (x′) | y(X) = ỹ) = k(x,x′)− k(x)>(K + σ2
noiseI)−1k(x′),

where C is the covariance function of the conditional GP. The mean ζ(x) is called
kriging mean prediction of y(x) based on the computer model outputs y (X) = ỹ (see
Rasmussen and Williams (2006)). We refer to Lyu et al. (2018) for more details on
the evaluation of the GP metamodels for noisy level set estimation. In next sections,
the generalization of the model developed in Maatouk and Bay (2017) to the case of
observations with Gaussian noise is investigated.

3. Finite-dimensional approximation of GPs

The input set is supposed the unit hypercube D = [0, 1]d (without loss of general-
ity). The input set D is discretized uniformly to (m + 1)d knots. For example, in
one dimension where D = [0, 1], the discretization can be summarized as follow:
0 = tm,0, . . . , tm,m = 1. Let Y ∼ GP(0, k(x, x′)) be a zero-mean GP with covariance
function k. The finite-dimensional approximation of Gaussian processes developed in
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Maatouk and Bay (2017) is then considered

ym(x) =

m∑
l=0

Y (tm,l)φl(x) =

m∑
l=0

βlφl(x), x ∈ D (2)

where β = (β0, . . . , βm)> = (Y (tm,0), . . . , Y (tm,m)) is a zero-mean Gaussian vector
with covariance matrix Γm, with Γmj,l = k(tm,j , tm,l), 0 ≤ j, l ≤ m and φl is the hat

function associated to the knot tm,l (see Maatouk and Bay (2017) for more details).
We first discretize the input set as 0 = tm,0 < tm,1 < . . . < tm,m = 1, and on each
knot we build a function. For the sake of simplicity, we use a uniform subdivision of
the input set, but the methodology can be adapted for any subdivision. For example
at the jth knot tm,j = j∆m = j/m, the associated function is

φj(x) = h

(
x− tm,j

∆m

)
, j = 0, . . . ,m, (3)

where ∆m = 1/m and h(x) = (1− |x|)1(|x|≤1), x ∈ R. The value of any basis function
at any knot is equal to Kronecker’s Delta function (φl(tm,j) = δj,l, j, l = 0, . . . ,m),
where δj,l is equal to one if j = l and zero otherwise. The covariance function km(x, x′)
of the Gaussian process approximation ym is

km(x, x′) = φ(x)>Γmφ(x′), (4)

where φ(x) = (φ0(x), . . . , φm(x)) ∈ Rm+1. By this special choice of the basis functions,
the finite-dimensional approximation of GPs ym can be viewed as the piecewise linear
interpolation of Y at the knots tm,0, . . . , tm,m. By this approach (2), simulate the GP
approximation with linear inequality constraints (i.e., ym ∈ C, where C is the space of
functions verifying linear inequality constraints such as monotonicity, boundedness,...)
and noisy observations is equivalent to simulate the Gaussian vector β = (β0, . . . , βm)>

restricted to

β × φ(x(i)) = yi + εi = ỹi, i = 1, . . . , n,

β = (β0, . . . , βm)> ∈ Ccoef,

where φ(x(i)) = (φ0(x(i)), . . . , φm(x(i))) ∈ Rm+1, εi
i.i.d.∼ N (0, σ2

noise) and Ccoef is the
space of coefficients which verify some linear constraints. In the next sections, we
show how Ccoef can be computed in the case where C is the space of functions verify-
ing convexity constraints for example. In this paper, boundedness, monotonicity and
convexity constraints are considered but the methodology can be easily adapted to
any linear inequality constraints. Additionally, incorporating multiple linear inequal-
ity constraints can be easily adapted as well (see López-Lopera et al. (2018)). Let us
recall that other basis functions have been used in Maatouk and Bay (2017) to incor-
porate some linear inequality constraints which are related to derivative information
such as monotonicity and convexity (see Remark 2 below).
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3.1. GP approximation with convexity constraints

In this section, C is the space of functions verifying convexity constraints. For the sake
of simplicity, the convexity constraint in two dimensions is considered. The multidi-
mensional case is a simple extension of two dimensional one. The finite-dimensional
approximation of GPs defined as

ym(x1, x2) =

m∑
j,l=0

Y (tm,j , tm,l)φj(x1)φl(x2) =

m∑
j,l=0

βj,lφj(x1)φl(x2), (x1, x2) ∈ D2

(5)
is convex with respect to the two inputs if and only if the random coefficients verify

(1) βj,l−βj−1,l

tm,j−tm,j−1
≤ βj+1,l−βj,l

tm,j+1−tm,j
and βj,l−βj,l−1

tm,l−tm,l−1
≤ βj,l+1−βj,l

tm,l+1−tm,l
, j, l = 1, . . . ,m− 1;

(2) βj,0−βj−1,0

tm,j−tm,j−1
≤ βj+1,0−βj,0

tm,j+1−tm,j
, j = 1, . . . ,m− 1;

(3) β0,l−β0,l−1

tm,l−tm,l−1
≤ β0,l+1−β0,l

tm,l+1−tm,l
, l = 1, . . . ,m− 1.

Remark 1. From Model (5), the convexity constraints can be obtained easily with
respect to one of the two input variables. For example, the convexity constraint of ym

with respect to the first input variable is equivalent to the following constraints

βj,l − βj−1,l

tm,j − tm,j−1
≤

βj+1,l − βj,l
tm,j+1 − tm,j

, j = 1, . . . ,m− 1, l = 0, . . . ,m. (6)

In that case, Ccoef =
{

(βj,l)j,l ∈ R(m+1)2
∣∣ βj,l verify (6)

}
.

Remark 2. In one-dimensional cases, the convexity constraints can be also obtained
by replacing the basis functions in (2) by the two times primitive functions of φl(x)

ψl(x) =

∫ x

0

(∫ v

0
φl(u)du

)
dv.

In that case, the finite-dimensional approximation of GPs defined as

ym(x) = Y (0) + Y ′(0)x+

m∑
l=0

Y ′′(tm,l)ψl(x), x ∈ D

is convex if and only if the (m+1) random coefficients (Y ′′(tm,l)) are all non-negative.

Thus, Ccoef = {(Y (0), Y ′(0), (Y ′′(tm,l))l) ∈ R(m+3)2 | Y ′′(tm,l) ≥ 0, ∀ l = 0, . . . ,m}.

3.2. Simulated paths

This subsection is devoted to the sampling scheme of the proposed model conditionally
to linear inequality constraints and noisy observations. To simplify notations, the finite-
dimensional approximation of GPs in one dimension is considered

ym(x) =

m∑
l=0

Y (tm,l)φl(x) =

m∑
l=0

βlφl(x), x ∈ D.
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In this paper, the GP is observed with error. The space of coefficients is defined

Icoef = {β ∈ Rm+1 :

m∑
l=0

βlφl(x
(i)) = ỹi, i = 1, . . . , n}

=
{
β ∈ Rm+1 : Aβ = ỹ

}
,

where ỹi = yi + εi, i = 1, . . . , n, εi
i.i.d.∼ N (0, σ2

noise) and Ai,l = φl(x
(i)). The sampling

scheme can be summarized in two steps: first, the conditional Gaussian vector β with
only noisy observations is simulated

β | Aβ = ỹ ∼ N
(

(AΓm)>(AΓmA> + σ2
noiseI)

−1ỹ,Γm − (AΓm)>(AΓmA> + σ2
noiseI)

−1AΓm
)
.

Second, by an improved rejection sampling (see Maatouk and Bay (2016)), only the
random coefficients in the convex set Ccoef are selected.

Definition 3.1. The so-called unconstrained mean which is the mean of the Gaussian
process approximation conditionally only to noisy observations is defined as

mm(x) = E
[
ym(x)

∣∣∣ ym(x(i)) = ỹi, i = 1, . . . , n
]

= φ(x)>βI,

where βI = E [β | β ∈ Icoef] = ΓmA>
(
AΓmA> + σ2

noiseI
)−1

ỹ.

Similarly to the kriging mean of the original GP y (equation (1), when η is the null
function), the kriging mean mm of the finite-dimensional approximation of GPs ym

can be written as

mm(x) = km(x)>
(
Km + σ2

noiseI
)−1

ỹ,

where km(x) = km(x,X) = (AΓmφ(x)) is the vector of covariance between ym(x) and
ym (X) and (Km)i,j = km(x(i), x(j)) =

(
AΓmA>

)
i,j

, i, j = 1, . . . , n is the covariance

matrix of ym (X).

Remark 3. The unconstrained mean mm(x) respects linear inequality constraints
in the entire domain if and only if the conditional Gaussian vector to only noisy
observations βI lies inside the convex set Ccoef.

Definition 3.2. The mean of the posterior distribution of ym conditionally to linear
inequality constraints and noisy observations is defined as

mm
pos(x) = E

[
ym(x)

∣∣∣ ym(x(i)) = ỹi, β ∈ Ccoef
]

= φ(x)>βpos,

where βpos = E [β | ỹ,β ∈ Ccoef] is the posterior mean which is computed from simu-
lations.

Finally, let µ be the maximum of the probability density function (pdf) of β re-
stricted to Icoef ∩Ccoef. It is the solution of the following convex optimization problem

µ = arg min
x∈Icoef∩Ccoef

(
1

2
x> (Γm)−1 x

)
, (7)
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where Γm is the covariance matrix of the Gaussian vector β. The quadratic optimiza-
tion problem (7) is equivalent to

µ = arg min
x∈Ccoef

((
1

2
x> − β>I

)
(Γmcond)−1 x

)
, (8)

= arg min
x∈Ccoef

(
−β>I (Γmcond)−1 x+

1

2
x> (Γmcond)−1 x

)
,

where Γmcond is the covariance matrix of the conditional Gaussian vector β | Aβ = ỹ.
Equation (8) done by the log-likelihood of β | Aβ = ỹ. In fact,

1

2
(x− βI)

> (Γmcond)−1 (x− βI) =
1

2
x> (Γmcond)−1 x− 1

2
x> (Γmcond)−1 βI

− 1

2
β>I (Γmcond)−1 x+

1

2
β>I (Γmcond)−1 βI

=
1

2
x> (Γmcond)−1 x− β>I (Γmcond)−1 x+

1

2
β>I (Γmcond)−1 βI.

Thus,

arg min
x∈Ccoef

(
1

2
x> (Γmcond)−1 x− β>I (Γmcond)−1 x+

1

2
β>I (Γmcond)−1 βI

)
= arg min

x∈Ccoef

(
−β>I (Γmcond)−1 x+

1

2
x> (Γmcond)−1 x

)
.

The vector µ represents the maximum of the pdf of the Gaussian vector β restricted
to Icoef∩Ccoef and its numerical calculation is a standard problem in the minimization
of positive quadratic forms subject to convex constraints (see Boyd and Vandenberghe
(2004); Goldfarb and Idnani (1983)). Let us mention that in all simulated examples
illustrated in this paper, the R-package ‘solve.QP’ described in Goldfarb and Idnani
(1983) is used to solve the quadratic convex optimization problems (7)-(8).

Definition 3.3. The maximum of the posterior distribution of ym conditionally to
linear inequality constraints and noisy observations is defined as

Mm
pos(x) =

m∑
l=0

µlφl(x), x ∈ D,

where µ = (µ0, . . . , µm)> is computed by (8).

Remark 4. The maximum a posteriori estimateMm
pos does not depend on the variance

hyper-parameter σ of the covariance function k as well as on the simulations but
depends on the length hyper-parameters of the covariance function θ = (θ1, . . . , θd).

Remark 5. In the case where the GP is observed without error (i.e., with noise-free
data), the maximum a posteriori estimate Mm

pos is computed as follow

Mm
pos(x) =

m∑
l=0

µ̃lφl(x), x ∈ Rd,

8



Algorithm 1: Sampling scheme

Initialization:
β /∈ Ccoef; β = βcurrent

unif = 1; t = 0
while unif > t do

β = βcurrent

while βcurrent /∈ Ccoef do
βcurrent ∼ N (µ,Γmcond)

end

t = exp
(
µ>(Γmcond)−1(µ− βI − βcurrent) + β>current(Γ

m
cond)−1βI

)
unif ∼ U(0, 1)

end

where µ̃ = (µ̃0, . . . , µ̃m)> is computed by the following new quadratic optimization
problem

µ̃ = arg min
x∈Ccoef

((
1

2
x> + β̃

>
I

)(
Γ̃mcond

)−1
x

)
, (9)

where Γ̃mcond is the covariance matrix of the conditional Gaussian vector β | Aβ = y,

with y = (y(x(1)), . . . , y(x(n))) and β̃I = E [β | Aβ = y] = ΓmA>(AΓmA>)−1y. In
that case, the authors in Bay et al. (2016, 2017) show that the maximum a posteriori
estimate Mm

pos converges uniformly to the constrained interpolation function solution
of the following convex optimization problem

arg min
h∈H∩I∩C

‖h‖2H ,

where H is the reproducing kernel Hilbert space (RKHS) associated to the positive
type kernel K (see Aronszajn (1950); Berlinet and Thomas-Agnan (2004)), I is the
set of functions verify interpolation conditions (i.e., h(xi) = yi) and the convex set C
is the space of functions verifying linear inequality constraints.

This generalizes to the case of interpolation conditions and linear inequality con-
straints the well known correspondence established by Kimeldorf and Wahba (1970)
between Bayesian estimation on stochastic process and smoothing by splines. By this
result, the constrained interpolation function has a nice probabilistic interpretation
as a Bayesian estimator. It can be seen as the most likely function which verifies the
interpolation condition and linear inequality constraints. By this correspondence, one
can compute the constrained interpolation function in a deterministic setting and sam-
ple from the posterior distribution of a GP to quantify the uncertainty in a Bayesian
framework. Additionally, this new correspondence shows that the maximum a posteri-
ori estimate when m is large enough has the same smoothness of the given reproducing
kernel.

Based on the result developed in the present paper (see section 4), the well known
correspondence established by Kimeldorf and Wahba (1970) is generalized to the lin-
early constrained cases with noisy observations.

In Algorithm 1, the sampling scheme of the proposed model is described. It is based
on the rejection sampling from the Mode (RSM) algorithm to simulate the Gaussian
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Figure 1. Run-time (in seconds) of the simulations using Hamiltonian Monte Carlo (HMC) and Rejection

Sampling from the Mode (RSM).

vector β restricted to the convex set Icoef ∩ Ccoef (see, Maatouk and Bay (2016) for
more details). This is an exact method to simulate from the posterior distribution
in multidimensional cases. Additionally, it is simple to implement. However, in high-
dimensional cases, the acceptance rate becomes low. In the literature, many different
algorithms have been developed to simulate from the truncated Gaussian vector re-
stricted to linear constraints. Recently, three different algorithms have been proposed:
Gibbs sampling (see Souris et al. (2018); Taylor and Benjamini (2017)), Metropolis-
Hastings (see Murphy (2012)), and Hamiltonian Monte Carlo (HMC) (see Pakman
and Paninski (2014)). In this paper, the HMC proposed in Pakman and Paninski
(2014) has been used which is an efficient sampler for the proposed framework (see
López-Lopera et al. (2018)).

In Figure 1, the boundedness constraints example used in Section 4 to show the new
generalization of the Kimeldorf-Wahba correspondence is considered. The run-time (in
seconds) of the simulations has been computed using the exact Rejection Sampling
from the Mode (RSM) and the Hamiltonian Monte Carlo (HMC).

3.3. Predictive accuracy and uncertainty quantification

The aim of this section is to show the performance of the proposed model in terms
of prediction and more importantly in terms of coverage intervals. The monotonicity
constraint is considered

C =
{
f ∈ C0([0, 1]) : f(u) ≤ f(v), ∀ u ≤ v

}
.

To do this, we take the real increasing function f(x) = log(20x + 1) used in Golchi
et al. (2015) (black dashed lines in Figure 2a). Suppose that f is evaluated at X =
(0, 0.1, 0.2, 0.3, 0.4, 0.9, 1). As mentioned in Golchi et al. (2015), this is a challenge
situation for unconstrained GP since we have a large gap between the fifth and sixth
design points (i.e. 0.4 < x < 0.9). In Figure 2a, prediction intervals and maximum a
posteriori estimate together with the real function are shown using GP approximation
with monotonicity constraints. As in Golchi et al. (2015), the Matérn 5/2 covariance
function is used. Applying a suited cross validation method to estimate covariance
hyper-parameters Cousin et al. (2016); Maatouk et al. (2015), we get σ = 335.5 and
θ = 4.7. Let us mention that the maximum likelihood estimation under inequality
constraints proposed in Bachoc et al. (2019) can be used.
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Figure 2. GP approximation together with the true function (a). Boxplot of the RMSEs (b) and average
width of the 95% credible intervals (c).

In Figure 2b and Figure 2c, boxplot of the root-mean-square error (RMSEs) and
average width of the 95% credible intervals (AWoCI) for unconstrained and constrained
GP are shown. Let us recall that the AWoCI criteria used in Figure 2c is defined as

AWoCI =
1

nt

nt∑
i=1

(Q
(i)
0.975 −Q

(i)
0.025),

where Q
(i)
p is the pth posterior sample quantile and nt = 7 the number of tested points

specified by a Latin hypercube design. Because the prediction accuracy depends on
the design locations, we repeated the procedure with twenty different random Latin
hypercube design. Figures 2b and 2c show that the constrained GP approximations
often outperform the unconstrained ones. According to the AWoCI criterion, the con-
strained GP approximations provide more realistic coverage intervals. In Figure 3, the
predictive uncertainties for four design points chosen equidistant between 0.4 and 0.9
are given using unconstrained and constrained GP respectively. The reduction in pre-
diction uncertainty for the constrained GP approximation is evident from the boxplot
of the AWoCI criteria.
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rior maximum and 95% confidence intervals obtained by constrained GP (black dashed-lines); the circles show
the true function values.

4. Generalization of the Kimeldorf-Wahba correspondence for linear
inequality constraints and noisy observations

The goal of this section is twofold: first, to illustrate the condition simulation of the GP
approximation developed in the present paper with boundedness constraints and noisy
observations. Second, to describe the two different cases in the simulation which can
help the readers to better understand the new generalization of the Kimeldorf-Wahba
correspondence in the case of linear inequality constraints and noisy observations.

• The unconstrained mean respects the constraints and then coincides with the
maximum of the posterior distribution.
• The unconstrained mean does not respect the constraints, then the unconstrained

mean and the maximum of the posterior distribution are different.

In the following, the generalization of the Kimeldorf-Wahba correspondence for
linear inequality constraints and noisy observations is considered.

Proposition 4.1. Let {ym(x)}x∈D be a finite-dimensional GP of the form (2) and
Hm := Vect {φl, 1 ≤ l ≤ m} =

{
ym ∈ RD : (c1, . . . , cm) ∈ Rm, ym =

∑m
l=1 clφl

}
be

the linear space spanned by the basis functions φj. According to Bay et al. (2016),
Hm is the RKHS associated with the kernel function km given in (4). Let I be the
space of functions verifying noisy observations. Then, the MAP estimator ŷm defined
as the mode of the posterior distribution density of {ym | ym ∈ C ∩ I} is equal to the
constrained function yopt,m solution of

arg min
ym∈Hm∩C

‖ym‖2m +

n∑
i=1

n∑
k=1

[ym(x(i))− yi](bik)−1[ym(x(k))− yk],

where B = (bik)i,k = σ2
noiseI is a positive definite matrix and ‖ym‖2m = 〈ym, ym〉m =

c>(Γm)−1c (see Bay et al. (2016) for more details). In fact, bik = E[εiεk], for all
i, k = 1, . . . , n.
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As mentioned in Kimeldorf and Wahba (1970), if
∑n

i=1

∑n
k=1[ym(x(i)) −

yi](bik)
−1[ym(x(k)) − yk] is interpreted as a measure of the disparity of ym with the

data, then yopt,m, is a compromise between smoothness and fidelity to the data.

Proof. According to Bay et al. (2016), the (unconstrained) density function of ym is

ym ∈ Hm 7−→
1√

2π
m|Γm|1/2

exp

(
−1

2
‖ym‖2m

)
,

where for all ym =
∑m

l=0 clφl ∈ Hm, ‖ym‖2m = (ym, ym)m = c>(Γm)−1c. Let us
now introduce the space of functions which verify noisy observations. According to
Kimeldorf and Wahba (1970) (see Theorem 3.1, where the positive definite matrix B is
σ2

noiseI in our case), The posterior likelihood Lpos defined as the pdf of ym conditionally
to noisy observations is

ym ∈ Hm 7−→ k−11(ym∈Hm) exp (−1

2
‖y‖2m −

1

2
σ−2

noise

n∑
i=1

n∑
k=1

[ym(x(i))− yi][ym(x(k))− yk]),

where k 6= 0 is a normalizing constant. In the Bayesian framework, the prior including
inequality constraints is the following truncated pdf :

ym ∈ Hm 7−→ k−11(ym∈Hm∩C) exp (−1

2
‖ym‖2m),

where k is a different normalizing constant. The posterior likelihood Lpos of ym con-
ditionally to inequality constraints and noisy observations is

Lpos(y
m) = k−11(ym∈Hm∩C) exp (−1

2
‖ym‖2m −

1

2
σ−2

noise

n∑
i=1

n∑
k=1

[ym(x(i))− yi][ym(x(k))− yk]).

(10)
By definition, the MAP estimator ŷm is the solution of the following optimization
problem

arg maxLpos(y
m) = arg min (−2 logLpos(y

m)) .

From expression (10), the MAP estimator ŷm is the constrained function yopt,m which
minimizes

‖ym‖2m +

n∑
i=1

n∑
k=1

[ym(x(i))− yi](bik)−1[ym(x(k))− yk].

In the case of noise-free evaluations (i.e., ym(x(i)) = yi, ∀i = 1, . . . , n), we found the
result of Proposition 1 in Bay et al. (2016).

4.1. Numerical illustration

In this section, the numerical illustration of the Kimeldorf-Wahba correspondence for
inequality constraints and noisy observations is now considered.
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The real function is supposed to respect boundedness constraints

C =
{
f ∈ C0([0, 1]) : −∞ ≤ a ≤ f(x) ≤ b ≤ +∞, x ∈ [0, 1]

}
. (11)

The constrained data of size n = 10 (black points in Figure 4) are not taken from
constrained functions. The noise variance is fixed to σ2

noise = 1.12. Additionally, the
Matérn 3/2 covariance function

kθ,σ(x, x′) = σ2

(
1 +

√
3 | x− x′ |

θ

)
exp

(
−
√

3|x− x′|
θ

)
,

is used with the hyper-parameters fixed to (θ, σ) = (0.3, 10).
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Figure 4. Unconstrained and mean a posteriori together with the maximum a posteriori (MAP) estimator

using the constrained model. The lower and upper bounds are equal to −20 and 20 (a) and equal to −20 and
26 (b). The black points represent the observations.

In Figure 4a, we generate one hundred sample paths taken from Model (2) with
d = 1 and m = 50 conditionally to boundedness constraints (i.e., a = −20 and b = 20
in (11)). The simulated trajectories (gray lines) respect boundedness constraints in
the entire domain as well as the mean and the maximum of the posterior distribution,
contrarily to the unconstrained mean. This is the case where βI lies outside the accep-
tance region Ccoef (Remark 3). In Figure 4b, we just relax the boundedness constraints
such that the unconstrained mean respects it. In that case, the unconstrained mean
coincides with the MAP estimator but not with the mean of the posterior distribution.
It corresponds to the situation where the conditional Gaussian vector βI lies inside the
acceptance region Ccoef (Remark 3). Hence, in the constrained case the correspondence
established by Kimeldorf-Wahba (see Kimeldorf and Wahba (1970)) is achieved with
the MAP estimator and not the mean of the posterior distribution.

5. Simulation study

In this section, a comparison between the finite-dimensional approximation of GPs
developed in the present paper and models deal with monotonicity and isotonicity
constraints is shown. The real non-decreasing functions proposed by Holmes and Heard
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Table 1. Length hyper-parameter estimates using a suited cross-validation method.

Flat Step Linear Exponential Logistic Sinusoidal

θ̂ 100.0 0.1 3 2.5 3.4 3.5

Table 2. Root-mean-square error (× 100) for data of size n = 100. The results are obtained by repeating the

simulation 5000 times.

Flat Step Linear Exponential Logistic Sinusoidal
Gaussian process 15.1 27.1 16.7 19.7 25.5 21.9

Gaussian process projection 11.3 25.3 16.3 19.1 22.4 21.1
Regression spline 9.7 28.5 24.0 21.3 19.4 22.9

Gaussian process approximation 0.5 25.3 16.3 18.6 19.5 20.4

(2003); Neelon and Dunson (2004) and used in a comparative study by Lin and Dunson
(2014); Shively et al. (2009) are considered

• flat function f1(x) = 3, x ∈ (0, 10];
• step function f2(x) = 3 if x ∈ (0, 8] and f3(x) = 8 if x ∈ (8, 10];
• linear function f3(x) = 0.3x, x ∈ (0, 10];
• exponential function f4(x) = 0.15 exp(0.6x− 3), x ∈ (0, 10];
• logistic function f5(x) = 3/{1 + exp(−2x+ 10)}, x ∈ (0, 10];
• sinusoidal function f6(x) = 0.32{x+ sin(x)}, x ∈ (0, 10].

These functions are supposed to be evaluated at data of size n = 100 with standard
deviation σnoise = 1. The RMSE of the estimates is computed at the one hundred x
values taken uniformly (equidistant) in the interval (0, 10]:

RMSE =

√√√√ 1

n

n∑
i=1

(
f(xi)− f̂(xi)

)2
, (12)

where f̂(x) is the estimate of f(x) and xi are the n equally-spaced x-values. For
the GP approximation developed in this paper, the maximum a posteriori estimate
(Definition 3.3) is used as an estimate of f(x), where N is fixed to fifty. Let us recall
that this estimate depends only on the length hyper-parameter θ. The Matérn 5/2
covariance function

kθ,σ(x, x′) = σ2

(
1 +

√
5 | x− x′ |

θ
+

5(x− x′)2

3θ2

)
exp

(
−
√

5|x− x′|
θ

)
(13)

is used in the simulation, with σ fixed to 1 and θ estimated using the suited cross-
validation method (see Cousin et al. (2016); Maatouk et al. (2015)). Table 1 shows the

values of the parameter estimation θ̂.
In Table 2, the RMSE of the estimates is calculated for the finite-dimensional ap-

proximation of GPs, and it is compared with results of Gaussian process with and
without projection given in Lin and Dunson (2014) and results of the regression spline
method given in Shively et al. (2009). To ensure stability of results, the simulations
have been repeated 5000 times. Table 2 shows that the finite-dimensional approxima-
tion of GPs outperforms regression splines and Gaussian process with and without
projection.

To compare the proposed approach with the methodology based on the knowledge
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of the derivatives of the GP at some input locations, the logistic artificial function
f(x) = 2/(1 + exp(−8x + 4)), x ∈ [0, 1] defined in Riihimäki and Vehtari (2010) is
considered. This function is supposed to be evaluated at data of size n with standard
deviation σnoise = 0.5. The squared exponential covariance function (13) is used. In
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Figure 5. The root-mean-square error at different sample sizes together with the optimal values obtained in

Riihimäki and Vehtari (2010).

Riihimäki and Vehtari (2010), the RMSE is equal to 0.077 (resp. 0.062) for n = 100
(resp. n = 200). In Figure 5, the root-mean-square error using the GP approximation
is illustrated at different sample sizes together with the optimal values obtained by
Riihimäki and Vehtari (2010). Notice that, we just need data at size n = 160 to reach
the optimal value 0.062 obtained by Riihimäki and Vehtari (2010). The results are
based on 1000 simulation replicates.

6. Conclusion

In this paper, a finite-dimensional approximation of Gaussian processes which satisfy
linear inequality constraints everywhere (such as boundedness, monotonicity and con-
vexity) and noisy observations is developed. We show that the generalization of the
Kimeldorf-Wahba correspondence (see Kimeldorf and Wahba (1970)) proved in Bay
et al. (2016) is conserved in the observations with Gaussian noise case. The perfor-
mance of the proposed model in terms of predictive accuracy and uncertainty quan-
tification is shown by a comparison with several recent models dealing with the same
constraints.
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Riihimäki, J. and Vehtari, A. (2010). Gaussian processes with monotonicity informa-

tion. J. Mach. Learn. Res., 9:645–652.
Robert, C. P. (1995). Simulation of truncated normal variables. Stat. Comput.,

5(2):121–125.
Robertson, T., Wright, F. T., and Dykstra, R. L. (1988). Order Restricted Statistical

Inference. Wiley, New York.
Rudovic, O. and Pantic, M. (2011). Shape-constrained Gaussian process regression

for facial-point-based head-pose normalization. In Computer Vision (ICCV), 2011
IEEE International Conference on, pages 1495–1502. IEEE.

Saarela, O. and Arjas, E. (2011). A method for Bayesian monotonic multiple regres-
sion. Scand. J. Statist., 38(3):499–513.

Salzmann, M. and Urtasun, R. (2010). Implicitly constrained Gaussian process re-
gression for monocular non-rigid pose estimation. In Lafferty, J. D., Williams, C.
K. I., Shawe-Taylor, J., Zemel, R. S., and Culotta, A., editors, Advances in Neural
Information Processing Systems 23, pages 2065–2073. Curran Associates, Inc.

Shively, T. S., Sager, T. W., and Walker, S. G. (2009). A Bayesian approach to
non-parametric monotone function estimation. J. R. Stat. Soc. B, 71(1):159–175.

Souris, A., Bhattacharya, A., and Pati, D. (2018). The soft multivariate truncated
normal distribution with applications to bayesian constrained estimation.

T., G. and L., F. (2007). Generalized smooth monotonic regression in additive mod-
eling. J. Comp. Graph. Stat., 16(1):165–188.

Taylor, J. and Benjamini, Y. (2017). RestrictedMVN: multi-
variate normal restricted by affine constraints. https://cran.r-
project.org/web/packages/restrictedMVN/index.html.

Wahl, F. and Espinasse, T. (2018). Simplex Regression: Multivariable parametric
regression under shape constraints. working paper or preprint.

Wang, X. and Berger, J. O. (2016). Estimating shape constrained functions using
Gaussian processes. SIAM/ASA J. Uncertain. Quantif., 4(1):1–25.

Xuming, H. and Peide, S. (1996). Monotone B-spline smoothing. J. Amer. Statist.
Assoc., 93:643–650.

Zhang, J. and Lin, L. (2018). Bounded regression with Gaussian process projection.
arXiv preprint arXiv:1810.11881.

Zhou, S., Giulani, P., Piekarewicz, J., Bhattacharya, A., and Pati, D. (2019). Reexam-
ining the proton-radius problem using constrained gaussian processes. Phys. Rev.
C, 99:055202.

19


