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Summary. Due to their flexibility, Gaussian processes (GPs) have been widely used
in nonparametric function estimation. A prior information about the underlying function

is often available. For instance, the physical system (computer model output) may be
known to satisfy inequality constraints with respect to some or all inputs. We develop

a finite-dimensional approximation of GPs capable of incorporating inequality constraints

and noisy observations for computer model emulators. It is based on a linear combination
between Gaussian random coefficients and deterministic basis functions. By this method-

ology, the inequality constraints are respected in the entire domain. The mean and the

maximum of the posterior distribution are well defined. A simulation study to show the
efficiency and the performance of the proposed model in term of predictive accuracy and

uncertainty quantification is included.

Keywords: Gaussian processes; Inequality constraints; Finite-dimensional approxi-
mation; Uncertainty quantification; Truncated Gaussian vector

1. Introduction and related work

In the estimation of nonparametric function, Gaussian processes (GPs) are the most
popular choices. This is because of their flexibility and other nice properties. For in-
stance, the conditional GP with linear equality constraints is still a GP (Cramer and
Leadbetter, 1967). Additionally, some inequality constraints (such as monotonicity and
convexity) of output computer responses are related to partial derivatives. The partial
derivatives of the GP remain GPs (Cramer and Leadbetter, 1967; Parzen, 1962). In-
corporating an infinite number of linear inequality constraints (such as boundedness,
monotonicity and convexity) into a GP model is a difficult problem. This is because the
resulting conditional process is not a GP in general.

Constrained GPs (or kriging) has been studied in the domain of geostatistics (Freulon
and de Fouquet, 1993; Kleijnen and Van Beers, 2013). In the literature, there are a
variety of ways for incorporating linear inequality constraints into a GP emulator. In
Abrahamsen and Benth (2001); Da Veiga and Marrel (2012), the idea is based on a
discrete location approximation. In that case, the inequality constraints are satisfied
in a finite number of input locations. For monotonicity and isotonicity constraints,
some methodologies are based on the knowledge of the derivatives of the GP at some
input locations (Golchi et al., 2015; Riihimäki and Vehtari, 2010; Wang and Berger,
2016). As mentioned in Wang and Berger (2016), ‘only a modest number of virtual
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derivative points seems to be needed to effectively impose the desired shape constraint’.
In Lin and Dunson (2014), Gaussian process projection is studied. A comparison with
spline-based models is included. Recently, a new methodology based on a modification
of the covariance function in Gaussian processes to correctly account for known linear
constraints is developed in Jidling et al. (2017).

For monotone function estimations, using B-splines was firstly introduced by Ramsay
(1988, 1998). The idea is based on the integration of B-splines defined on a properly set
of knots with positive coefficients to ensure monotonicity constraints. Xuming and Peide
(1996) take the same approach and suggest the calculation of the coefficients by solving
a finite linear minimization problem. In Delecroix et al. (1996), nonparametric function
estimation in a general cone is studied. Their method is based on a projection into a
discretized version of the cone, using the theory of reproducing kernel Hilbert spaces. In
Shively et al. (2009), a Bayesian approach to estimate nonparametric monotone functions
using restricted splines is developed. In Saarela and Arjas (2011), the generalization of
monotonic regression to multiple dimensions is studied.

The methodology developed in the present paper is quite different. It is based on a
finite-dimensional approximation of GPs (or a GP approximation) that converges uni-
formly pathwise. It can be seen as a linear combination between deterministic basis
functions and Gaussian random coefficients, where the coefficients are not independent.
The main idea is to choose the basis functions such that the infinite number of inequality
constraints on the GP approximation are equivalent to a finite number of constraints
on the coefficients. Therefore, the simulation of the conditional GP approximation is
reduced to the simulation of a Gaussian vector (random coefficients) restricted to convex
sets which is a well-known problem with existing algorithms (Botts, 2013; Chopin, 2011;
Maatouk and Bay, 2016; Philippe and Robert, 2003; Robert, 1995).

The article is structured as follows. In Section 2, Gaussian processes for computer
experiments, their derivative processes and the choice of covariance functions are briefly
reviewed. In Section 3, a finite-dimensional approximation of GPs capable of incorpo-
rating inequality constraints and noisy observations is developed. Section 4 shows some
simulated examples of the finite-dimensional approximation of GPs conditionally to in-
equality constraints (such as boundedness and monotonicity) and noisy observations in
one and two dimensions. In Section 5, the performance of the proposed model in terms
of predictive accuracy and uncertainty quantification is investigated.

2. Gaussian processes for computer experiments

The following model is considered

y = f(x), x ∈ R
d,

where the simulator response y is assumed to be a deterministic real-valued function of
the d-dimensional variable x = (x1, . . . , xd) ∈ R

d. The true function is supposed to be
continuous and evaluated at data of size n (design of experiments) given by the rows of

the n× d matrix X =
(

x(1), . . . ,x(n)
)⊤

, where x(i) ∈ R
d, 1 ≤ i ≤ n. In many practical

situations, it is not possible to get exact evaluations of y at the design of experiments, but
rather pointwise noisy measurements. In such case, an approximate response y(X) + ǫ
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is available, where ǫ ∼ N (0, σ2
noiseI) with σ2

noise the noise variance and I the identity

matrix. To simplify notations, we denote ỹi = y(x(i))+ ǫi, i = 1, . . . , n. In the statistical
framework, y is viewed as a realization of a continuous GP

Z(x) = η(x) + Y (x), x ∈ D ⊂ R
d,

where D is a compact subset of R
d and the deterministic continuous function η : x ∈

R
d −→ η(x) ∈ R is the mean and Y is a zero-mean GP with continuous covariance

function

K : (x,x′) ∈ D ×D −→ K(x,x′) ∈ R.

In that case, the GP can be written as Z ∼ GP (η(x),K(x,x′)). Conditionally to noisy
observations ỹ = (ỹ1, . . . , ỹn)

⊤, the process remains a GP

Z(x) | Z (X) = ỹ ∼ GP
(

ζ(x), τ2(x)
)

,

where

ζ(x) = η(x) + k(x)⊤(K + σ2
noiseI)

−1 (ỹ − µ) ; (1)

τ2(x) = K(x,x)− k(x)⊤(K + σ2
noiseI)

−1k(x),

and µ = η(X) is the vector of trend values at the design of experiments, Ki,j =

K(x(i),x(j)), i, j = 1, . . . , n is the covariance matrix of Z(X) and k(x) = K(x,x(i)) is
the vector of covariance between Z (x) and Z (X). Additionally, the covariance function
between any two inputs is equal to

C(x,x′) = Cov(Z(x), Z(x′) | Z(X) = ỹ) = K(x,x′)− k(x)⊤(K + σ2
noiseI)

−1k(x′),

where C is the covariance function of the conditional GP. The mean ζ(x) is called kriging
mean prediction of Z(x) based on the computer model outputs Z (X) = ỹ (Rasmussen
and Williams, 2006).

2.1. The choice of covariance function

The choice of the covariance function K has crucial consequences specially in controlling
the smoothness of the kriging metamodel. It must be chosen in the set of definite and
positive kernels. Some popular covariance functions used in kriging methods are given
in Table 1. Notice that these covariance functions are placed in decreasing order of
smoothness, the squared exponential covariance function corresponding to C∞ function
(i.e., the space of functions that admit derivatives of all orders) and the exponential
covariance function to continuous one (Rasmussen and Williams, 2006).

2.2. Derivatives of Gaussian processes

In this subsection, the paths of the GP (Z(x))
x∈Rd are assumed to be of class Cp (i.e.,

the space of functions that admit derivatives up to order p). This can be guaranteed
if K is smooth enough, and in particular if K is of class C∞ (Cramer and Leadbetter,
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Table 1. Some popular covariance functions used in kriging methods

Name Expression Class

Squared exponential σ2 exp
(

− (x−x
′)2

2θ2

)

C∞

Matérn 5/2 σ2
(

1 +
√
5|x−x

′|
θ

+ 5(x−x
′)2

3θ2

)

exp
(

−
√
5|x−x

′|
θ

)

C2

Matérn 3/2 σ2
(

1 +
√
3|x−x

′|
θ

)

exp
(

−
√
3|x−x

′|
θ

)

C1

Exponential σ2 exp
(

− |x−x
′|

θ

)

C0

1967). Since differentiation is a linear operator, the order partial derivatives of a GP
remain GPs (Cramer and Leadbetter, 1967; Parzen, 1962) and

E
(

∂p
xk
Z(x)

)

=
∂p

∂xpk
η(x),

Cov
(

∂p
xk
Z(x(i)), ∂q

xℓ
Z(x(j))

)

=
∂p+q

∂xpk∂(x
′
ℓ)

q
K(x(i),x(j)).

3. Finite-dimensional approximation of GPs

Let Y ∼ GP(0,K(x,x′)) be a zero-mean GP with covariance function K. In this paper,
the finite-dimensional approximation of Gaussian processes developed in Maatouk and
Bay (2017) and applied to finance and insurance in Cousin et al. (2016) is considered

Y N (x) =

N
∑

j=0

ξjφj(x), x ∈ D ⊂ R
d, (2)

where ξ = (ξ0, . . . , ξN )⊤ is a zero-mean Gaussian vector with covariance matrix ΓN and
φ = (φ0, . . . , φN )⊤ is a vector of deterministic basis functions. In next subsections, the
covariance matrix ΓN is computed explicitly which depends on the covariance function
K of the original GP Y and the choice of the basis functions is studied. The covariance
function KN (x,x′) of the Gaussian process approximation Y N is equal to

KN (x,x′) = φ(x)⊤ΓNφ(x′).

This type of covariance functions are very similar to ones used in Cressie and Johannesson
(2008), where ΓN is a square positive definite matrix estimated from the data, which it is
not the case in the present paper. By this approach (2), simulate the GP approximation
is equivalent to simulate the Gaussian vector ξ restricted to

N
∑

j=0

ξjφj(x
(i)) = yi + ǫi = ỹi, i = 1, . . . , n,

ξ ∈ Ccoef,

where ǫi
i.i.d.∼ N (0, σ2

noise) and Ccoef is the space of coefficients which verify some linear
constraints deduced from the choice of the basis functions. Next, we show how the
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basis functions can be chosen and how the covariance matrix of the coefficients can be
computed.

Notice that, model (2) does not correspond to a truncated Karhunen-Loève expansion
Y (x) =

∑+∞
j=0 Zjej(x); see, for example, Rasmussen and Williams (2006); Trecate et al.

(1999) since the coefficients ξj are not independent (unlike the coefficients Zj) and the
basis functions φj are not the eigenfunctions ej of the Mercer kernel K(x, x′).

3.1. One-dimensional cases
The input x ∈ R and without loss of generality in the unit interval D = [0, 1].

3.1.1. Boundedness constraints

In this subsection, the real function is supposed continuous and belong to the convex set

C =
{

f ∈ C0 (D) : −∞ ≤ a ≤ f(x) ≤ b ≤ +∞, x ∈ D
}

.

The input set D is discretized uniformly to (N + 1) nodes 0 = tN,0, . . . , tN,N = 1
but the methodology can be adapted to non-uniform subdivision easily. The finite-
dimensional approximation of GPs is defined as follow

Y N (x) :=
N
∑

j=0

Y (tN,j)hj(x) =
N
∑

j=0

ξjhj(x), x ∈ D, (3)

where ξj = Y (tN,j) and (hj)j are the hat functions associated to the nodes tN,j: hj(x) =
h((x − tN,j)/∆N ), where ∆N = 1/N and h(x) = (1− |x|) 1(|x|≤1), x ∈ R. The value
of any basis function at any node is equal to Kronecker’s Delta function (hj(tN,k) =
δj,k, j, k = 0, . . . , N), where δj,k is equal to one if j = k and zero otherwise.

Proposition 1. If the realizations of the original GP Y are continuous, then the
finite-dimensional approximation of GPs defined in (3) verifies the following properties:

• Y N is a finite-dimensional GP† with covariance function KN (x, x′) = h(x)⊤ΓNh(x′),
where h(x) = (h0(x), . . . , hN (x))⊤, ΓN

i,j = K(tN,i, tN,j) and K is the covariance
function of the original GP Y .

• Y N is almost surely converge uniformly to Y when N tends to infinity.

• Y N is in C if and only if the (N + 1) coefficients Y (tN,j) are contained in [a, b].

From this proposition, the advantage of the proposed model is shown. In fact, the
infinite number of inequality constraints of Y N are reduced to a finite number of linear
inequality constraints on the random coefficients (Y (tN,j))j . Thus, simulate Y N with
boundedness constraints and noisy observations is equivalent to simulate the truncated
Gaussian vector ξ = (Y (tN,0), . . . , Y (tN,N ))⊤ restricted to a convex set formed by

Y N (x(i)) =
N
∑

j=0

ξjhj(x
(i)) = ỹi, i = 1, . . . , n,

ξ ∈ Ccoef = {ξ ∈ R
N+1 : a ≤ ξj ≤ b, j = 0, . . . , N}.

†A GP with paths lying in a finite-dimensional space is called a finite-dimensional GP.
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Proof (Proof of Proposition 1). Since Y N is a linear combination of (N + 1)
Gaussian variables Y (tN,j), j = 0, . . . , N , then it is a GP with dimension equal to N +1
and covariance between two input variables

KN (x, x′) = Cov
(

Y N (x), Y N (x′)
)

=

N
∑

i,j=0

Cov (Y (tN,i), Y (tN,j)) hi(x)hj(x
′)

=

N
∑

i,j=0

K(tN,i, tN,j)hi(x)hj(x
′).

To prove the almost sure uniform convergence of the approximating random process Y N

to the limiting process Y , write more explicitly, for any ω ∈ Ω

Y N (x;ω) =

N
∑

j=0

Y (tN,j ;ω)hj(x).

Using the fact that hj(x) ≥ 0 and
∑N

j=0 hj(x) = 1, for all x ∈ D, we get

∣

∣Y N (x;ω)− Y (x;ω)
∣

∣ =

∣

∣

∣

∣

∣

∣

N
∑

j=0

(Y (tN,j;ω)− Y (x;ω))hj(x)

∣

∣

∣

∣

∣

∣

≤
N
∑

j=0

sup
|x−x′|≤∆N

∣

∣Y (x′;ω)− Y (x;ω)
∣

∣ hj(x)

= sup
|x−x′|≤∆N

∣

∣Y (x′;ω)− Y (x;ω)
∣

∣ .

Thus, on can deduce that

sup
x∈D

∣

∣Y N (x;ω)− Y (x;ω)
∣

∣ −→
N→+∞

0

with probability 1, since the sample paths of the process Y are uniformly continuous
on the compact interval D. Now, if the (N + 1) coefficients (Y (tN,j))0≤j≤N are in the
interval [a, b], then the piecewise linear approximation Y N is in C. Conversely, suppose
that Y N is in C, then, for i = 0, . . . , N

Y N (tN,i) =
N
∑

j=0

Y (tN,j)hj(tN,i) =
N
∑

j=0

Y (tN,j)δij = Y (tN,i) ∈ [a, b],

which completes the proof of the last property, and hence the proof of the proposition.

3.1.2. Monotonicity constraints

The real function f is supposed at least differentiable. Let C be the space of functions
verify monotonicity constraints

C =
{

f : C1(D) −→ R : f ′(x) ≥ 0, x ∈ D
}

.
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In that case, the finite-dimensional approximation of GPs is defined as

Y N (x) := Y (0) +

N
∑

j=0

Y ′(tN,j)φj(x) = ζ +

N
∑

j=0

ξjφj(x), (4)

where ζ = Y (0), ξj = Y ′(tN,j) and (φj)j are the basis functions defined as the primitive
functions of the hat functions hj

φj(x) :=

∫ x

0
hj(t)dt, x ∈ D.

Similar to the hat functions, the derivative of the basis functions φj at any node tN,i, i =
0, . . . , N is equal to the Kronecker’s delta (φ′

j(tN,i) = δij).

Proposition 2. Suppose that the realizations of the original GP Y are almost surely
continuously differentiable. The finite-dimensional approximation of GPs

(

Y N (x)
)

x∈D
defined in (4) verifies the following properties:

• Y N is a finite-dimensional GP with covariance function

KN (x, x′) =
(

1, φ(x)⊤
)

Γ̃N
(

1, φ(x′)⊤
)⊤

,

where φ(x) = (φ0(x), . . . , φN (x))⊤ and Γ̃N is the covariance matrix of the Gaussian

vector (ζ, ξ) = (Y (0), Y ′(tN,0), . . . , Y
′(tN,N ))⊤

Γ̃N =

[

K(0, 0) ∂K
∂x′

(0, tN,j)
∂K
∂x (tN,i, 0) ΓN

i,j

]

0≤i,j≤N

,

with ΓN
i,j =

∂2K
∂x∂x′

(tN,i, tN,j) and K the covariance function of the original GP Y .

• Y N is almost surely converge uniformly to Y when N tends to infinity.

• Y N is non-decreasing (resp. non-increasing) if and only if the coefficients Y ′(tN,j)
are all nonnegative (resp. nonpositive).

Similar to boundedness constraints, the infinite number of inequality constraints of
Y N are reduced to a finite number of linear inequality constraints on the random coef-
ficients (Y ′(tN,j))0≤j≤N . From the last property in Proposition 2, the simulation of Y N

with monotonicity constraints and noisy observations is equivalent to the simulation of
the truncated Gaussian vector (ζ, ξ) restricted to a convex set formed by

Y N (x(i)) = ζ +

N
∑

j=0

ξjφj(x
(i)) = ỹi, i = 1, . . . , n,

(ζ, ξ) ∈ Ccoef =
{

(ζ, ξ) ∈ R
N+2 : ξj ≥ 0, j = 0, . . . , N

}

.
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Proof (Proof of Proposition 2). The proof of this proposition is similar to the
boundedness constraints case. The first property is a consequence of the fact that the
derivative of a GP remains GP. For all x, x′ ∈ D

KN (x, x′) = Cov
(

Y N (x), Y N (x′)
)

= Var (Y (0)) +
N
∑

i=0

∂K

∂x
(tN,i, 0)φi(x)

+

N
∑

j=0

∂K

∂x′
(0, tN,j)φj(x) +

N
∑

i,j=0

∂2K

∂x∂x′
(tN,i, tN,j)φi(x)φj(x

′).

Let us write that for any ω ∈ Ω

Y N (x;ω) = Y (0;ω) +

∫ x

0





N
∑

j=0

Y ′(tN,j;ω)hj(t)



 dt.

The almost sure uniform convergence of Y N to Y can be deduced from Proposition 1.
In fact,

∑N
j=0 Y

′(tN,j;ω)hj(x) converges uniformly pathwise to Y ′(x;ω) since the real-
izations of the process are almost surely continuously differentiable.

Remark 1. The monotonicity constraints can be obtained with model (3). The GP
approximation (Y N (x))x∈D is non-decreasing if and only if the sequence of coefficients
(Y (tN,j))j is non-decreasing (i.e., Y (tN,j−1) ≤ Y (tN,j), j = 1, . . . , N). In that case, we
have Ccoef = {ξ ∈ R

N+1 : ξj−1 ≤ ξj, j = 1, . . . , N}.

3.1.3. Convexity Constraints

The realizations of the original GP Y are assumed to be at least twice differentiable.
The finite-dimensional approximation of GPs is defined as

Y N (x) := Y (0) + Y ′(0)x +

N
∑

j=0

Y ′′(tN,j)ϕj(x) = ζ + κx+

N
∑

j=0

ξjϕj(x), (5)

where ζ = Y (0), κ = Y ′(0) and ξj = Y ′′(tN,j). The basis functions (ϕj)j are the two
times primitive functions of hj

ϕj(x) :=

∫ x

0

(∫ t

0
hj(u)du

)

dt, x ∈ D.

In that case, Y N is convex if and only if the random coefficient Y ′′(tN,j) are all non-
negative. Additionally, the covariance function of the finite-dimensional approximation
of GPs is equal to

KN (x, x′) =
(

1, x, ϕ(x)⊤
)

Γ̃N
(

1, x′, ϕ(x′)⊤
)⊤

,
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where ϕ(x) = (ϕ0(x), . . . , ϕN (x))⊤ and

Γ̃N =







K(0, 0) ∂K
∂x′

(0, 0) ∂2K
∂(x′)2 (0, tN,j)

∂K
∂x (0, 0)

∂2K
∂x∂x′

(0, 0) ∂3K
∂x∂(x′)2 (0, tN,j)

∂2K
∂x2 (tN,i, 0)

∂3K
∂x2∂x′

(tN,i, 0) ΓN
i,j







0≤i,j≤N

,

and

ΓN
i,j = Cov(Y ′′(tN,i), Y

′′(tN,j)) =
∂4K

∂x2∂(x′)2
(tN,i, tN,j), i, j = 0, . . . , N.

Remark 2. The convexity constraints can be obtained with model (3) which is a
piecewise-linear function. In that case, (Y N (x))x∈D is convex if and only if the sequence
of coefficients (Y (tN,j))j verifies

Y (tN,j)− Y (tN,j−1)

tN,j − tN,j−1
≤ Y (tN,j+1)− Y (tN,j)

tN,j+1 − tN,j
, j = 1, . . . , N − 1.

This is equivalent to Y (tN,j) − Y (tN,j−1) ≤ Y (tN,j+1) − Y (tN,j), due to the uniform
subdivision of the input set D used in this paper.

The problem dimension d ≥ 2 is considered. For boundedness and convexity con-
straints, the proposed model can be easily extended to multidimensional cases. In the
following, isotonicity constraints are developed.

3.2. Isotonicity in two dimensions
The input x = (x1, x2) ∈ R

2 and without loss of generality in the unit square (i.e.,
D = [0, 1]2). The real function f is supposed to be monotone (non-decreasing) with
respect to the two inputs

x1 ≤ x′1 and x2 ≤ x′2 ⇒ f(x1, x2) ≤ f(x′1, x
′
2).

As in the one-dimensional case, the basis functions are constructed such that monotonic-
ity constraints are equivalent to constraints on the coefficients. The finite-dimensional
approximation of GPs

(

Y N (x)
)

x∈D2
is defined as

Y N (x1, x2) :=

N
∑

i,j=0

Y (tN,i, tN,j)hi(x1)hj(x2) =

N
∑

i,j=0

ξi,jhi(x1)hj(x2), (6)

where ξi,j = Y (tN,i, tN,j) and (hj)j are the hat functions. Then, Y N is non-decreasing
with respect to the two inputs if and only if the (N +1)2 random coefficients ξi,j verify
the following linear constraints:

(a) ξi−1,j ≤ ξi,j and ξi,j−1 ≤ ξi,j, i, j = 1, . . . , N ;
(b) ξi−1,0 ≤ ξi,0, i = 1, . . . , N ;
(c) ξ0,j−1 ≤ ξ0,j , j = 1, . . . , N .

Remark 3 (Isotonicity with respect to one variable). If the function is non-
decreasing with respect to the first variable only, then model (6) is non-decreasing with
respect to x1 if and only if the random coefficients ξi−1,j ≤ ξi,j, i = 1, . . . , N and j =
0, . . . , N .
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3.3. Isotonicity in multidimensional cases
The input x = (x1, . . . , xd) ∈ R

d and without loss of generality in D = [0, 1]d. The
finite-dimensional approximation of GPs Y N can be seen as a simple extension of two-
dimensions

Y N (x) :=
N
∑

i1,...,id=0

Y (tN,i1 , . . . , tN,id)
∏

σ∈{1,...,d}

hiσ(xσ),

where hiσ are the hat functions defined in Subsection 3.1.1.

3.4. Simulated paths
This subsection is devoted to the sampling scheme of the proposed model conditionally
to inequality constraints and noisy observations. For the sake of simplicity, the finite-
dimensional approximation of GPs is supposed as in (2). In this paper, the case where
the GP is observed with error is considered. The space of observations is defined as

Iξ :=







ξ ∈ R
N+1 :

N
∑

j=0

ξjφj(x
(i)) = ỹi, i = 1, . . . , n







=
{

ξ ∈ R
N+1 : Aξ = ỹ

}

,

where ỹi = yi + ǫi, i = 1, . . . , n, ǫi
i.i.d.∼ N (0, σ2

noise) and Ai,j = φj

(

x(i)
)

. The set of
inequality constraints on the coefficients Ccoef is a convex set (for instance, the nonneg-
ative quadrant ξj ≥ 0, j = 0, . . . , N for non-decreasing constraints in one dimension).
The sampling scheme can be summarized in two steps: first, the conditional Gaussian
vector ξ with only noisy observations is simulated

ξ | Aξ = ỹ ∼ N
(

(AΓN )⊤(AΓNA⊤ + σ2
noiseI)

−1ỹ,ΓN − (AΓN )⊤(AΓNA⊤ + σ2
noiseI)

−1AΓN
)

.

Second, by an improved rejection sampling (Maatouk and Bay, 2016), only the random
coefficients in the convex set Ccoef are selected. Now, the three estimates used in the
illustrative examples (Section 4) are defined.

Definition 1. The so-called unconstrained mean is defined as

mN (x) := E

(

Y N (x)
∣

∣

∣ Y N (x(i)) = ỹi, i = 1, . . . , n
)

= ξ⊤I φ(x),

where ξI := E (ξ | ξ ∈ Iξ) = ΓNA⊤
(

AΓNA⊤ + σ2
noiseI

)−1
ỹ.

Similarly to the kriging mean of the original GP Y (Eq. (1), Z = Y when η is the null
function), the kriging mean mN of the finite-dimensional approximation of GPs Y N can
be written as

mN (x) = kN (x)⊤
(

KN + σ2
noiseI

)−1
ỹ,

where kN (x) = (KN (x,x(i)))i =
(

AΓNφ(x)
)

is the vector of covariance between Y N (x)

and Y N (X) and (KN )i,j = KN (x(i),x(j)) =
(

AΓNA⊤
)

i,j
, i, j = 1, . . . , n is the covariance

matrix of Y N (X).



Gaussian Process Approximations with Inequality Constraints 11

Remark 4. The unconstrained mean mN (x) respects inequality constraints in the
entire domain if and only if the conditional Gaussian vector to only noisy observations
ξI lies inside the convex set Ccoef.

Definition 2. The mean of the posterior distribution of Y N conditionally to inequal-
ity constraints and noisy observations is defined as

mN
pos(x) := E

(

Y N (x)
∣

∣

∣ Y N (x(i)) = ỹi, ξ ∈ Ccoef

)

= ξ⊤posφ(x),

where ξpos := E (ξ | ξ ∈ Iξ ∩ Ccoef) is the mean of the truncated Gaussian vector which
computed from simulations.

Finally, let µ be the maximum of the probability density function (pdf) of ξ restricted
to Iξ ∩ Ccoef. It is the solution of the following convex optimization problem

µ := arg min
c∈Iξ∩Ccoef

(

1

2
c⊤

(

ΓN
)−1

c

)

, (7)

where ΓN is the covariance matrix of the Gaussian vector ξ. The quadratic optimization
problem (7) is equivalent to

µ = arg min
c∈Ccoef

(

1

2
c⊤

(

ΓN
cond

)−1
c+ ξ⊤I c

)

, (8)

where ΓN
cond is the covariance matrix of the conditional Gaussian vector ξ | Aξ = ỹ.

In fact, µ representes the maximum of the pdf of the Gaussian vector ξ restricted to
Iξ ∩ Ccoef and its numerical calculation is a standard problem in the minimization of
positive quadratic forms subject to convex constraints (Boyd and Vandenberghe, 2004;
Goldfarb and Idnani, 1983). Let us mention that in all simulated examples illustrated
in this paper, the R-package ‘solve.QP’ described in Goldfarb and Idnani (1983) is used
to solve the quadratic convex optimization problems (7)-(8).

Definition 3. The maximum of the posterior distribution of Y N conditionally to
inequality constraints and noisy observations is defined as

MN
pos(x) :=

N
∑

j=0

µjφj(x), x ∈ R
d,

where µ = (µ0, . . . , µN )⊤ is computed by (8).

Remark 5. The maximum a posteriori estimate MN
pos does not depend on the vari-

ance hyper-parameter σ of the covariance function K as well as on the simulations but
depends on the length hyper-parameters of the covariance function θ = (θ1, . . . , θd).

Remark 6. In the case where the GP is observed without error (i.e., with noise-free
data), the maximum a posteriori estimate MN

pos converges uniformly to the constrained
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Algorithm 1: Sampling scheme

Initialization:
ξ /∈ Ccoef; ξ ← ξcurrent
1← unif; 0← t
while unif > t do

ξ ← ξcurrent
while ξcurrent /∈ Ccoef do

N (µ,ΓN
cond)← ξcurrent

end

exp
(

µ⊤(ΓN
cond)

−1(µ− ξI − ξcurrent) + ξ⊤current(Γ
N
cond)

−1ξI
)

← t
U(0, 1) ← unif

end

interpolation function defined as the solution of the following convex optimization prob-
lem

arg min
h∈H∩I∩C

‖h‖2H ,

where H is a reproducing kernel Hilbert space (RKHS) associated to the positive type
kernel K (Aronszajn, 1950), I is the set of functions verify interpolation conditions and
the convex set C is the space of functions verify inequality constraints (Bay et al., 2016,
2017).

This generalizes to the case of interpolation conditions and inequality constraints the
well known correspondence established by Kimeldorf and Wahba (1970) between Bayesian
estimation on stochastic process and smoothing by splines.

In Algorithm 1, the sampling scheme of the proposed model is described. It is based on
the rejection sampling from the Mode (RSM) algorithm to simulate truncated Gaussian
vectors ξ restricted to the convex set Ccoef (see, Maatouk and Bay (2016) for more
details).

4. Illustrative examples

The goal of this section is twofold: first, to illustrate the condition simulation of the GP
approximation developed in the present paper with certain constraints such as bounded-
ness, positivity and monotonicity in one and two dimensions. Second, to show the two
different cases in the simulation.

• The unconstrained mean respects the constraints and then coincides with the max-
imum of the posterior distribution.

• The unconstrained mean does not respect the constraints, then the unconstrained
mean and the maximum of the posterior distribution are different.

The Matérn 3/2 and squared exponential (or Gaussian) covariance functions are used
(Table 1).
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4.1. Boundedness constraints

The real function is supposed to respect boundedness constraints

C =
{

f ∈ C0([0, 1]) : −∞ ≤ a ≤ f(x) ≤ b ≤ +∞, x ∈ [0, 1]
}

. (9)

The constrained data of size n = 10 (black points in Fig. 1) are not taken from con-
strained functions. The noise variance is fixed to σ2

noise = 1.12. Additionally, the Matérn
3/2 covariance function is used with the hyper-parameters fixed to (θ, σ) = (0.3, 10).
In Fig. 1a, we generate one hundred sample paths taken from model (3) with N = 50
conditionally to positivity constraints (i.e., a = 0 and b = +∞ in (9)). The simulated
trajectories (gray lines) respect positivity constraints in the entire domain as well as the
mean of the posterior distribution. The unconstrained mean and the maximum of the
posterior distribution coincide and respect positivity constraints in the entire domain:
it corresponds to the situation where the conditional Gaussian vector ξI lies inside the
acceptance region Ccoef (Remark 4). In Fig. 1b, the boundedness constraint is consid-
ered (i.e., a = −20 and b = 20 in (9)). The simulated trajectories (gray lines) respect
boundedness constraints in the entire domain as well as the mean and the maximum of
the posterior distribution, contrarily to the unconstrained mean. This is the case where
ξI lies outside the acceptance region Ccoef (Remark 4).
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Fig. 1. The GP approximation (3) with positivity constraints (a) and boundedness constraints
(b). The unconstrained mean coincides with the maximum a posteriori in (a) but not in (b)

4.2. Monotonicity constraints

The monotone (non-decreasing) function f(x) = 0.32(x+sin(x)), x ∈ [0, 10] used in the
literature to compare different models is considered. It is evaluated at data of size n = 50
chosen randomly on [0, 10] (black points in Fig. 2) with standard deviation σnoise = 1.
In Fig. 2, we generate one hundred sample paths taken from model (4) with N = 50
conditionally to monotonicity (non-decreasing) constraints. The squared exponential
covariance function is used with hyper-parameters (θ, σ) = (2.5, 1). Notice that, the
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simulated trajectories (gray lines) are non-decreasing in the entire domain as well as the
mean and the maximum of the posterior distribution, contrarily to the unconstrained
mean. It corresponds to the case where the conditional Gaussian vector ξI lies outside
the acceptance region Ccoef (Remark 4).

0 2 4 6 8 10

0
1

2
3

4

x

M
on

ot
on

e 
G

P

unconstrained mean
mean a posteriori
maximum a posteriori

Fig. 2. The GP approximation (4) with monotonicity constraints for sinusoidal function f(x) =
0.32(x+ sin(x)). The unconstrained mean does not coincide with the maximum a posteriori

4.3. Isotonicity in two dimensions
In two dimensions, the monotone (non-decreasing) function with respect to the two
inputs used in Saarela and Arjas (2011); Shively et al. (2009)

f(x1, x2) = 1{(x−1−1)2+(x2−1)2<1}{1− (x1 − 1)2 − (x2 − 1)2}1/2, (x1, x2) ∈ [0, 1]2

is considered. It is evaluated at data of size n = 100 chosen randomly on [0, 1]2 with
standard deviation σnoise = 0.1. In Fig. 3, the two-dimensional squared exponential
covariance function is used

K(x,x′) = σ2 exp

(

−(x1 − x′1)
2

2θ21

)

× exp

(

−(x2 − x′2)
2

2θ22

)

, (10)

where the variance hyper-parameter σ = 1 and the length hyper-parameters (θ1, θ2) =
(0.02, 0.17) are estimated using cross-validation methods (Maatouk et al., 2015). Figure 3
shows the maximum of the posterior distribution using model (6) with N = 10 and the
associated contour levels. It respects monotonicity (non-decreasing) constraints with
respect to the two inputs.

Remark 7. For monotonicity with respect to only one variable, model (6) (with
noise-free data) has been used in Cousin et al. (2016) to estimate the discount factor
surface as a function of time-to-maturities and quotation dates. It is a monotone (non-
increasing) function with respect to time-to-maturities at each quotation date.
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Fig. 3. The maximum of the posterior distribution drawn from model (6) respecting monotonicity

(non-decreasing) constraints for the two inputs, and the associated contour levels

5. Simulation study

In this section, a comparison between the finite-dimensional approximation of GPs de-
veloped in the present paper and models deal with monotonicity and isotonicity con-
straints is shown. The real non-decreasing functions proposed by Holmes and Heard
(2003); Neelon and Dunson (2004) and used in a comparative study by Shively et al.
(2009); Lin and Dunson (2014) are considered

• flat function f1(x) = 3, x ∈ (0, 10];

• sinusoidal function f2(x) = 0.32{x + sin(x)}, x ∈ (0, 10];

• step function f3(x) = 3 if x ∈ (0, 8] and f3(x) = 8 if x ∈ (8, 10];

• linear function f4(x) = 0.3x, x ∈ (0, 10];

• exponential function f5(x) = 0.15 exp(0.6x− 3), x ∈ (0, 10];

• logistic function f6(x) = 3/{1 + exp(−2x+ 10)}, x ∈ (0, 10].

These functions are supposed to be evaluated at data of size n = 100 with standard
deviation σ = 1. The root-mean-square error (RMSE) of the estimates is computed at
the one hundred x values taken uniformly (equidistant) in the interval (0, 10]:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

f(xi)− f̂(xi)
)2

,

where f̂(x) is the estimate of f(x) and xi are the n equally-spaced x-values. For the GP
approximation developed in this paper, the maximum a posteriori estimate (Definition 3)
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Table 2. Length hyper-parameter estimates using a suited cross-

validation method

Flat Step Linear Exponential Logistic Sinusoidal

θ̂ 100.0 0.8 8.6 1.0 2.0 2.5

Table 3. Root-mean-square error (× 100) for data of size n = 100. The results are obtained by
repeating the simulation 5000 times

Flat Step Linear Exponential Logistic Sinusoidal
Gaussian process 15.1 27.1 16.7 19.7 25.5 21.9

Gaussian process projection 11.3 25.3 16.3 19.1 22.4 21.1
Regression spline 9.7 28.5 24.0 21.3 19.4 22.9

Gaussian process approximation 8.2 41.1 15.8 20.8 21.0 20.6

is used as an estimate of f(x), where N is fixed to fifty. Let us recall that this estimate
depends only on the length hyper-parameter θ. The squared exponential covariance
function (Table 1) is used in the simulation, with σ fixed to 1 and θ estimated using
the suited cross-validation method (Maatouk et al., 2015; Cousin et al., 2016). Table 2

shows the values of the parameter estimation θ̂.
In Table 3, the RMSE of the estimates is calculated for the finite-dimensional approx-

imation of GPs, and it is compared with results of Gaussian process with and without
projection given in Lin and Dunson (2014) and results of the regression spline method
given in Shively et al. (2009). To ensure stability of results, the simulations have been
repeated 5000 times. Table 3 shows that the finite-dimensional approximation of GPs
outperforms regression splines (resp. Gaussian process with and without projection)
except in the step and logistic cases (resp. in the step and exponential cases).

Remark 8. Let us recall that the finite-dimensional approximation of GPs developed
in the present paper is supposed centered (i.e., mean-zero). To be coherent, the results
presented in Table 3 should be computed when the output values are normalized

ȳi = yi − ȳ, i = 1, . . . , n,

where ȳi is the normalized value of the ith output observation and ȳ = 1
n

∑n
i=1 yi is

the mean of the output observations. In that case, the finite-dimensional approximation
of GPs outperforms regression spline and Gaussian process with and without projection
except in the step case.

Now, the uncertainty quantification is investigated. The monotone (non-decreasing)
function f(x) = 0.32(x+ sin(x)), x ∈ (0, 10] (sinusoidal function) is considered (dashed
lines in Fig. 4). It is evaluated at data of size n = 100 distributed randomly on (0, 10]
(grey crosses in Fig. 4), with standard deviation σnoise = 1.

In Table 4, the percentage of the empirical coverage of 95% pointwise credible in-
tervals of GP approximation is computed by repeating the simulation 1000 times. The
coverage for Gaussian process approximation is closer to the nominal 95% than is that
of the Gaussian process at most of input locations chosen by Lin and Dunson (2014).
Additionally, the finite-dimensional approximation of GPs outperforms Gaussian process
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Fig. 4. The 95% credible intervals of the Gaussian process approximation together with the

sinusoidal function, the observations (grey crosses) and the maximum a posteriori estimate

Table 4. Empirical coverage (%) for 95% credible intervals at different x values.

The simulations are repeated 1000 times
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Gaussian process 97.3 94.6 91.8 88.0 90.5 95.2 96.8 91.0 86.5 86.3
Gaussian process projection 94.1 95.4 92.0 89.5 93.1 94.6 96.0 90.0 89.0 86.9

Gaussian process approximation 97.0 93.0 89.6 90.1 94.1 97.1 95.5 89.5 85.4 86.7

with projection at some input locations and slightly bad at the other locations.

To compare the proposed approach with the methodology based on the knowledge of
the derivatives of the GP at some input locations, the logistic artificial function f(x) =
2/(1 + exp(−8x + 4)), x ∈ [0, 1] defined in Riihimäki and Vehtari (2010) is considered.
This function is supposed to be evaluated at data of size n with standard deviation
σnoise = 0.5. The squared exponential covariance function is used. In Riihimäki and
Vehtari (2010), the RMSE is equal to 0.077 (resp. 0.062) for n = 100 (resp. n = 200). In
Fig. 5, the root-mean-square error using the GP approximation is illustrated at different
sample sizes. Notice that, we just need data of size n = 160 to reach the optimal
value 0.062 obtained by Riihimäki and Vehtari (2010). The results are based on 1000
simulation replicates.

The isotonicity (non-decreasing) functions with respect to the two inputs used in Lin
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Fig. 5. The root-mean-square error at different sample sizes together with the optimal values

obtained in Riihimäki and Vehtari (2010). The results are based on 1000 simulation replicates

Table 5. The summary of length hyper-parameter estimates in two dimensions using

cross-validation methods

f1 f2 f3 f4 f5 f6
(θ̂1, θ̂2) (0.17,0.38) (0.46,1.32) (0.18,0.22) (0.38,0.01) (0.08,0.09) (0.02,0.17)

and Dunson (2014); Saarela and Arjas (2011) are considered

f1(x1, x2) =
√
x1, (x1, x2) ∈ [0, 1]2;

f2(x1, x2) = 0.5x1 + 0.5x2, (x1, x2) ∈ [0, 1]2;

f3(x1, x2) = min(x1, x2), (x1, x2) ∈ [0, 1]2;

f4(x1, x2) = 0.25x1 + 0.25x2 + 0.5× 1{x1+x2>1}, (x1, x2) ∈ [0, 1]2;

f5(x1, x2) = 0.25x1 + 0.25x2 + 0.5× 1{min(x1,x2)>5}, (x1, x2) ∈ [0, 1]2;

f6(x1, x2) = 1{(x1−1)2+(x2−1)2<1}

√

1− (x1 − 1)2 − (x2 − 1)2, (x1, x2) ∈ [0, 1]2.

The two-dimensional squared exponential covariance function (10) is used, with σ fixed
to 1 and (θ1, θ2) estimated using the suited cross-validation method (Maatouk et al.,

2015; Cousin et al., 2016). Table 5 shows the values of the parameter estimation (θ̂1, θ̂2).
In Table 6, the mean square error (MSE) of the estimates is calculated for the finite-

dimensional approximation of GPs, and it is compared with results of Gaussian process
projections given in Lin and Dunson (2014). Table 6 shows that the finite-dimensional

Table 6. Mean square error (× 100) for data of size n = 1024 with standard deviation
σnoise = 0.1. The results are based on 100 simulation replicates

f1 f2 f3 f4 f5 f6
Gaussian process projection 0.04 0.02 0.05 0.20 0.19 0.10

Gaussian process approximation 2.86e-3 4.40e-4 7.09e-3 0.55 0.34 0.04
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approximation of GPs outperforms Gaussian process projections except in f4 and f5
cases. This is very similar to the one-dimensional case results, because of the similarity
of f4 and f5 functions to the step case.

6. Conclusion

In this paper, a finite-dimensional approximation of Gaussian processes to incorporate
infinite number of inequality constraints (such as boundedness, monotonicity and con-
vexity) and noisy observations is developed. It is based on a linear combination between
Gaussian random coefficients and deterministic basis functions. The basis functions are
chosen such that the infinite number of inequality constraints on the Gaussian process
approximation are equivalent to a finite number of constraints on the coefficients. Con-
sequently, simulate the conditional approximating process is equivalent to simulate a
truncated Gaussian vector restricted to convex sets. By this methodology, the mean and
the maximum of the posterior distribution are well defined. To show the performance of
the proposed model in term of predictions and uncertainty quantification, a comparison
with several recently models deal with the same constraints is shown.
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