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Abstract—Our aim is to evaluate fundamental parameters from the
analysis of the electromagnetic spectra of stars. We may use 103-105

spectra; each spectrum being a vector with 102-104 coordinates. We
thus face the so-called “curse of dimensionality”. We look for a method
to reduce the size of this data-space, keeping only the most relevant
information. As a reference method, we use principal component analysis
(PCA) to reduce dimensionality. However, PCA is an unsupervised
method, therefore its subspace was not consistent with the parameter.
We thus tested a supervised method based on Sliced Inverse Regression
(SIR), which provides a subspace consistent with the parameter. It also
shares analogies with factorial discriminant analysis: the method slices
the database along the parameter variation, and builds the subspace
which maximizes the inter-slice variance, while standardizing the total
projected variance of the data. Nevertheless the performances of SIR
were not satisfying in standard usage, because of the non-monotonicity
of the unknown function linking the data to the parameter and because of
the noise propagation. We show that better performances can be achieved
by selecting the most relevant directions for parameter inference.

Preliminary tests are performed on synthetic pseudo-line profiles plus
noise. Using one direction, we show that compared to PCA, the error
associated with SIR is 50% smaller on a non-linear parameter, and 70%
smaler on a linear parameter. Moreover, using a selected direction, the
error is 80% smaller for a non-linear parameter, and 95% smaller for a
linear parameter.

I. INTRODUCTION

As an historically data-intensive science, astrophysics has obvi-
ously to deal with significant data-processing issues. Projects such as
the Gaia survey [1] or LSST1 are acquiring and will acquire a lot of
data, both in terms of number of samples and in terms of amount of
data by sample.We are interested in methods able to extract as much
physical content as possible from such large volumes of data.

Our problem deals with high dimensional data-processing. Simi-
larly to [2], our goal is to infer stellar fundamental parameters such as
effective temperature, surface gravity or metallicity. We also want to
infer an important physical parameter which may significantly affect
the appearance of stellar spectra, the projected rotational velocity.

These physical parameters values are to be estimated from the
stars measured spectra. Nowadays precision optical spectroscopy
relies on observations made over large spectral bandwidths, of the
order of about 500 nm or more (without any gap), and at high-spectral
resolution, typically of several 104 in resolvance (resolvance is related
to sampling properties of these instruments R = λ

∆λ
).

For these problems, there is no direct linear relationship between
the data and the physical parameters. To ease the search for such

1https://www.lsst.org/

a function or relationship, we use methods based on a reduction of
the dimensionality of our data-space. These methods should extract
from the data the information related to the physical parameter we
want to infer. One of the most popular among these methods is
PCA [3] which is the method used by [2]. In this study, our aim
is to find the best subspace for the estimation of an explanatory
variable y from a data vector x. This subspace is to be estimated
from a database containing many examples of pairs (xi,yi). Once
the subspace is found, a k-Nearest-Neighbours method will give the
estimator ŷi of the unknown value yi associated with the data vector
xi. Hereafter we will propose an alternative solution based on SIR
[4] to improve the results. Unlike PCA, SIR is a supervised method.
Hence, when building the projection subspace, we will be able to
add the information about the physical parameters (or explanatory
variables) we want to retrieve from the data. These parameters are
considered independently one at a time. SIR method has already been
used in [5]. One of the differences with our case is that we have no
information about the dimension of the subspace consistent with the
one-dimensional manifold described by the physical parameter; and
we cannot use a physical modelling to determine the dimension of
this subspace.

SIR suffers from a limitation due to the ill-conditioning of the
variance-covariance matrix. Thus, it will sometimes require some
preprocessing in order to perform a stable inversion of the variance-
covariance matrix. This preprocessing will consist in applying a PCA
on the data before applying SIR.

The first section briefly recalls the basic principles of PCA and
SIR methods. The second section presents the implementation of SIR
and some examples to enlighten how it basically works. The third
section is about testing SIR method on a simplified data set which
mimics the astrophysical data we want to deal with. The fourth section
discusses the tuning of the method and the pre-processing.

II. METHODS

A. Principal Component Analysis

PCA is a method which aims at finding the subspace that
preserves the most the variance of the projected data.

Considering a data matrix X of dimension M × N with each
line being an element from the database, PCA finds the projection
matrix V such as XTV has the maximum variance. The first vector
v1 is the one that maximizes V ar(XT v1) under the constraint
vT1 v1 = 1, the second vector v2 is the vector orthogonal to v1 that



maximizes V ar(XT v2) under the same constraint, and so on until
the number of components reaches the specified dimension of the
projection subspace. To find these vectors, one can perform an eigen-
decomposition of the variance-covariance matrix of X denoted by Σ.
Thus we will find these vectors by solving: (Σ− λIM )v = 0 [3].

The first step of PCA is to compute the variance-covariance matrix
Σ:

Σi,j =
1

M

M∑
k=1

(Xk,i − Xi)(Xk,j − Xj) (1)

where N is the dimension of the original data-space, Xk is the kth

column containing all the x vectors projected on the kth component
of the original data-space. Xi and Xj are the mean values computed
on lines i and j.

The subspace obtained by PCA is spanned by the eigenvectors of
Σ associated to its greatest eigenvalues.

Let V be the N×P matrix with every column being one of these
P selected eigenvectors, and N being the dimension of the original
space. The x vectors can be projected on the subspace associated with
PCA:

xp = (xT − X)V (2)

where x is the representation of an element from the database in
the original data-space, and X is the mean of the elements from the
database in the original data-space. X is computed on all the lines of
the matrix X.

The main drawback of PCA on our application is that this method
does not take into account the prior knowledge on the explanatory
variable we want to infer, as it is an unsupervised method. This is
why we decided to investigate SIR as an alternative.

B. Sliced Inverse Regression

SIR [4] aims at finding the directions that explain the best the
variation of the explanatory variable y (taken one by one) from the
data x. The principle of the method is very close to the one of
the PCA: it relies on the estimation of a linear projection subspace.
However SIR takes into account the information on the variation of
the explanatory variable in the building of this subspace. The database
is divided into H slices along the variation of the explanatory variable,
each slice being composed of pairs (x,y) which have close values
of the explanatory variable. SIR builds a subspace that maximizes
the variance between the slices while minimizing the variance within
the slices. Somehow, SIR can be compared to a Linear Discriminant
Analysis (LDA)[6] in a classification problem. Thus, SIR finds
a linear projection that drives apart the elements that have very
different values of the explanatory variable while bringing together
the elements which have close values of the explanatory variable. Let
us denote by Xh the elements from the database in the slice h. For
every slice we compute the mean mh

mh =
1

nh

∑
Xi∈h

Xi (3)

where nh is the number of elements in the slice h, so that we have
the matrix XH with every line being the mean mh associated with
the elements of the slice h. We then compute the variance-covariance
of the slices means:

Γ =
1

H
(XH − XH)T (XH − XH). (4)

The directions computed by SIR will be given by the eigenvectors
associated with the greatest eigenvalues of Σ−1Γ. The vectors
spanning the sub-space we are looking for are the solutions of
(Σ−1Γ− λIM )v = 0.

III. SLICED INVERSE REGRESSION

A. Implementation

SIR can be computed the following way:

• compute the variance-covariance matrix Σ as in eq. 1
• sort the parameter vector y so it becomes ysorted
• split the sorted vector ysorted in H non-overlapping slices
• for each slice h compute the mean mh according to eq. 3
• set the Γ matrix as in eq. 4
• build a projection matrix V so that the columns of V are

the eigenvectors associated with the greatest eigenvalues of
Σ−1Γ.

One of the critical point of this method may be the inversion of
Σ. Indeed, Σ can be ill-conditioned as discussed in section 4. In that
case, we propose to apply a PCA to project the data on a subspace
that maximizes the variance. Doing so, PCA will lead to an inversion
of Σ more stable, and in the meantime, it will reduce the dimension
of the dataspace and thus requires less computational resources. There
is a compromise to find between improving enough the conditioning
and loosing information held by the data. This will be discussed in
section 5.

B. Examples

1) Linear example: As a first example we will consider a linear
relationship between x and y such as y = βTx+ε. The dimension of
x is 4 and the database contains 1000 elements. X follows a normal
standard distribution X ∼ N(µ, I4), where µ is a null vector of
dimension 4 × 1 and I4 is a dimension 4 identity matrix, βT =
[1, 1, 0, 1] and the noise ε ∼ N(0, 0.1I4).

Fig. 1. Values of y versus the realisations of X for the example of
section III-B1. We can observe that none of these directions xi of the original
data-space is relevant to explain the variations of the explanatory variable y.
This can be explained by the xi varying independently from one to another,
y being a linear combination of these xi, and all these components having
the same weight.

Fig. 1 shows that from every component of X, it is impossible
to determine precisely y. It appears in these four sub-figures that for
any value of the xi, y looks like it is randomly distributed. This is
why one must find the correct linear combination of the xi to explain
y.



Fig. 2. Values of y versus the realisations of X projected on the first direction
given by PCA for the example of section III-B1. Such a cloud of points
indicates that the variance is nearly irrelevant to infer the value of y from a
known value of x.

The first direction v1 given by PCA, displayed in Fig. 2, is the
one that maximizes the variance in the data, and it appears that this
criterion is not relevant here, because as in Fig. 1, y seems to be
randomly distributed for any value of the projected data xT v1.

Fig. 3. Values of y versus the realisations of X projected on the first direction
given by SIR for the example of section III-B1. This figure clearly shows that
SIR is able to find the linear projection which explains y from the components
presented on Fig.1.

Fig. 3 shows that SIR provides a direction v1 that allows us to
determine quite precisely y from xT v1. Indeed for every value of
xT v1 the range of values that y can take is limited.

This first example shows that the first direction given by SIR
(Fig. 3) finds a much more relevant combination of X to explain
y than PCA (Fig. 2) even though it is quite difficult to infer that
relationship from X in the original space (Fig. 1). In this case, the
condition number associated with Σ is 1.26, so there is no need for
any preprocessing.

2) Nonlinear example: The second example focusses on a non
linear case. All the components of X are independent and follow a
standard uniform distribution U [0, 1] and y(x) = 2x1x2+x3+0x4+
ε, where the noise is ε ∼ N(0, 0.01I4).

Fig. 4. Values of y versus the realisations of X for the example of section
III-B2. As in the case of the linear example, it is not obvious to find a
relationship between the data in its original space and the explanatory variable
even if we can see that the three first components (top-left, top-right, and
bottom-left) of the data-space hold information about y. This is due to the
fact that the range of the values taken by y is rather wide whatever the value
of xi is.

Once again in this example, we have to find a good combination
of the components xi shown on Fig. 4 to explain y.

Fig. 5. Values of y versus the realisations of X projected on the first directions
given by PCA for the example of section III-B2. It appears that the first
direction given by PCA holds almost no information about the explanatory
variable because no matter what xT v1 is, y cannot be precisely determined.

We show with Fig. 5 that, using PCA, a relationship appears
between xT v1 and y. Indeed, the scatter-plot (Fig. 5) exhibits a shape
and is not fully random. Nevertheless, this so-called ’shape’ is far
from being sufficiently narrow to determine precisely y from xT v1.

Fig. 6. Values of y versus the realisations of X projected on the first direction
given by SIR for the example of section III-B2. Even though the direction is
not as efficient as in the linear case, we can see here that SIR projects the data
on a direction which highly correlates the data with the explanatory variable.

Again in the case where the relationship between the data and the
parameter is not linear, SIR (Fig. 6) provides more relevant directions



to explain y from X than PCA. Of course, since it is a linear projection
method more than one direction can be necessary to estimate correctly
the one dimensional explanatory variable which is non-linearly linked
to the data. In this example, a preprocessing of the data was not
necessary because the condition number associated with Σ is 1.17.

IV. APPLICATION TO SYNTHETIC DATA

A. Inference of simple Gaussian lines parameters

We showed that SIR can determine the combinations of X that
best explain y. We will try to use it to obtain ŷ when it is unknown.
Hereafter, the database is a set of simplified Gaussian lines that mimic
the astrophysical data of interest. It is a set of 103 Gaussian X in
which 800 will be used as a reference (y is known) database X0

and the 200 others will be used as a test database Xi (y is to be
determined). Each Gaussian xj is associated with a set of explanatory
variables hj and wj , respectively the depression and the width of a
simplified Gaussian spectral line:

x(λ;h,w) = 1− h× e−
1
2

(
λ−λ0
w

)2

+ ε. (5)

h and w will be processed independently, λ0 = 0 is common to all
the elements. h and w are uniformly distributed h ∼ U [0.1, 0.9],
w ∼ U [1, 3] and the noise ε is normally distributed ε ∼ N(0, σε).

For this example we will add a noise ε such as σε = 0.005
equivalent to a signal to noise ratio around 32dB.

Once the data is projected on the subspace computed by SIR we
will proceed with a simple mean on a 10 nearest neighbours method,
to infer the value of the explanatory variable ŷi of an individual xi:

ŷi =
1

10

∑
y0j∈Wi

y0j . (6)

Here, Wi is the set of the values of the explanatory variable from
the training data-base xp, associated with the 10 nearest neighbours
of xpi .

Because of the ill-conditioning of Σ (about 3 · 105), we chose to
perform a PCA first on the data, in order to improve the conditioning.
SIR is ran on the data projected on the subspace of dimension 6 given
by PCA, so that we can see the directions given by SIR on Fig. 7
and Fig. 8. The choice of the dimension of the subspace given by
PCA as a preprocessing will be discussed in section 5.

Fig. 7. Values of the depressions of the Gaussians y versus the realisations
of X0 projected on the 6 directions given by SIR. Most of the information we
seek is held by the first two directions (top-left and top-center), but in some
cases the directions 3 (top-right), 4 (bottom-left) or 5 (bottom-center) can add
quite precise information about y.

We can see on Fig. 7 that most of the information about the
depression is held by the first 2 directions (top-right and top-center)
given by SIR. Indeed we can get an accurate estimator of the
depressions from the projection of the data on the second direction
(top-center of Fig. 7) as these two quantities are linearly related.

Fig. 8. Values of the widths of the Gaussians y versus the realisations of
X0 projected on the 6 directions given by SIR. In that case the link between
the explanatory variable and the data is non-linear so it does not seem to be
a subspace which explains correctly all the values that can be taken by y.

We show on Fig. 8, that the direction which is the most relevant
to explain the width from the data highly depends on the value of the
projected data on the several directions. For instance the first direction
is relevant for high values of xTu1 as the associated values of y are
narrow (top-left of Fig. 8). The same first direction though is not very
relevant to infer y when the value of xTu1 is around 0 because the
corresponding values of y spread from 1.5 to 3 which is 3/4 of the
total range of values y can take.

From Fig. 7 and Fig. 8, one can see that the directions which are
relevant for estimating y can vary from an individual to another. So
the question remains: which of these directions will be relevant to
estimate y from x? We will suggest a way in the following section
to individually select the most relevant sub-space for each of the
elements x one wants to determine the paired y.

B. Direction selection

As shown in Fig. 7 and 8, the directions computed by SIR that
best explain y from x may depend on the value of x. This is why we
suggest to select the directions that will minimize the variance on the
values of y associated with the xT v which are in the neighbourhood
of the xi one wants to determine the associated value ŷi. We thus
can have a variable number of directions that is optimal to determine
ŷi from an individual to another. For every individual xi, we look
for the set of directions Di spanning the subspace which minimizes
the variance of y0 ∈ Wi, where Wi = {y0j |distsij ≤ dist10i},
distij = ‖xTi Di−xTj Di‖ and dist10i is the distance between xTi Di
and its 10th nearest neighbour.

C. Validation of the modified SIR method

The first test we will run is a comparison of the results given with
the first direction of PCA, the first direction of SIR, and one selected
direction of SIR.



Fig. 9. Results of the estimation of depressions and widths with PCA
using only the first direction (blue spots), SIR using the first direction (green
triangles).

We can observe in Fig. 9 that the results given by SIR are much
more precise than the ones given by PCA. The perfect estimation
being the line ŷ = y, results given by the method using SIR are
closer to that line than the PCA ones.

Fig. 10. Results of the estimation of depressions and widths with SIR using
the first direction (green triangles), and the modified version of SIR with the
direction selection (red spots).

As shown in Fig. 10, the selection of the direction that minimizes
the variance of y0 in the neighbourhood improves the results of SIR,
and the efficiency of these different methods can be assessed with the
computation of the mean absolute error (MAE) defined as:

MAE =
1

M

M∑
i=1

‖ŷi − yi‖ (7)

Results with PCA
first direction

Results with SIR
first direction

Results with SIR
one selected direc-
tion

Depressions 0.097 0.012 0.010
Widths 0.616 0.223 0.029

TABLE I. Table of the mean absolute errors given by the three versions
of the method using only one direction for the projection.

The improvement given by the selection of the directions is very
efficient in finding the best direction when the link between x and y
is non linear.

We thus can compare the results given by the optimal version
of PCA (keeping 6 components) with SIR on its optimal number of
directions for either depression (2 directions) or widths (3 directions),
and also the version of SIR which looks for the subspace which
minimizes the variance on y in the neighbourhood. The results of
this comparison are shown on table II.

PCA Classic SIR SIR with selected
directions

Depressions 0.0063 0.0025 0.0032
Widths 0.029 0.027 0.024

TABLE II. Table of the mean absolute errors given by PCA with 6
directions, classic SIR with the optimal number of directions, and SIR with

the selection of the directions which minimize the variance on y0 in the
neighbourhood of the individual one wants to estimate the value of y.

The results displayed on table II show that SIR provides better
results than the ones we can achieve with PCA. The fact that
the classical version of SIR yields accurate estimates regarding the
depressions can be explained by its efficiency on linear relationships
between x and y. Maybe the criterion used to determine the best
directions combination (variance on y) is not the best criterion.
However there is a non negligible gain regarding the widths estimation
with SIR combined with the direction selection. We can note that the
dimension of the subspace varies from an individual to another as
shown on Fig. 11 for the depressions and Fig. 12 for the widths.

Fig. 11. Histogram of the dimension of the subspaces chosen by the method
for the depression estimation for each of the 200 elements of the test database.

We can observe in Fig. 11 that, as in the classical SIR case, most
of the time the subspace that best explains the depression value from
the data is spanned by 2 directions.

Fig. 12. Histogram of the dimension of the subspaces chosen by the method
for the widths estimation for each of the 200 elements of the test database.

Fig. 12 shows that the optimal number of directions to determine
the width can either be 2 or 3. With classical SIR the optimal number



of directions is 3, but Fig. 12 shows that it is not that often the best
solution.

V. DISCUSSION ABOUT PREPROCESSING

We chose to perform a PCA to improve the conditioning of Σ, as
it is a way to reduce the dimension of the data-space, while loosing
the least information. Doing that, we assume that the information
held by the last directions given by PCA are, even if relevant, drawn
into noise. Performing a PCA carefully should not cause any loss of
information, except for the information we could not have retrieved
anyway. But how many directions should be kept? If we keep too
many, we will not make the conditioning decrease enough, and the
directions given by SIR will not be accurate. If we do not keep enough
directions, there is a risk of loosing information on the explanatory
variable.

To get an idea of what the best solution would be, let us have a
look at Fig. 13 and Fig. 14 to the 10 first directions given by PCA
on our dataset:

Fig. 13. Value of the depressions of the Gaussians y versus the realisations
of X0 projected on the 10 directions given by PCA. Directions given by PCA
seem to enclose information about y up to the fifth direction.

Fig. 14. Value of the widths of the Gaussians y versus the realisations of
X0 projected on the 10 directions given by PCA. As in Fig. 13, the directions
over the fifth seems to be irrelevant as the distribution of y looks independent
from the value of xT vi.

We can see in Fig. 13 and Fig. 14 that from the sixth direc-
tion (bottom-left), the remaining directions do not seem to hold
any information about the parameter, since the value of y looks
independent from xT vi. This assumption is verified by a validation

protocol based on the estimation of the explanatory variables with
PCA for several noise realisations. It appears that the dimension of
the subspace given by PCA that gives the best results is 6. It makes
the conditioning decrease to about 4 · 104. Even if we only gain a 10
factor on the conditioning, we cannot reduce more the dimensionality
because we would most probably loose important information about
the explanatory variable.

VI. CONCLUSION AND FUTURE WORK

In this article we have shown that SIR, being a supervised method,
provides a subspace more relevant to link the data to the explanatory
variable than the PCA one. We have also tried to give an answer to
the problem of the number of directions which would be relevant. We
also considered the problem of the choice of that relevant directions
which can change with the location of the studied sample. We have
shown that the method can be adapted to give the optimal subspace
to locally contain the manifold where the explanatory variable is
best explained. Preliminary results for this method using the same
data set as in [2], show that, compared to the PCA-based method,
the proposed SIR-based method decreases the estimation error by
20% for the effective temperature and the surface gravity while we
obtain similar estimation errors for the metallicity. However, the error
increases by 30% for the projected rational velocity. The adaptation
of the method to real astrophysical data is still in progress. Because
the data are a lot more complex, the dimension of the original data-
space can be 10 or 100 times larger than the one used for this study,
and the conditioning of Σ can reach 1023. We will need to run more
tests to determine the optimal number of components to keep with
PCA as a preprocessing, and also to know the best way to consider
the neighbourhood depending on the number of directions kept by the
method. We believe that better results should be achieved by finding
a way to correctly tune the method for this particular case.
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