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MAGNETOHYDRODYNAMIC REGIME OF THE BORN-INFELD

ELECTROMAGNETISM

XIANGLONG DUAN

Abstract. The Born-Infeld (BI) model is a nonlinear correction of Maxwell’s
equations. By adding the energy and Poynting vector as additional variables,

it can be augmented as a 10×10 system of hyperbolic conservation laws, called
the augmented BI (ABI) equations. The author found that, through a qua-
dratic change of the time variable, the ABI system gives a simple energy dissi-
pation model that combines Darcy’s law and magnetohydrodynamics (MHD).
Using the concept of “relative entropy” (or “modulated energy”), borrowed
from the theory of hyperbolic systems of conservation laws, we introduce a
notion of generalized solutions, that we call dissipative solutions. For given
initial conditions, the set of generalized solutions is not empty, convex, and
compact. Smooth solutions to the dissipative system are always unique in this
setting.

1. Introduction

There are many examples of dissipative systems that can be derived from con-
servative ones. The derivation can be done in many different ways, for example by
adding a very strong friction term or by homogenization techniques or by properly
rescaling the time variable by a small parameter (through the so-called “parabolic
scaling”). In the recent work of the author and Y. Brenier [8], we suggested a very
straightforward idea: just perform the quadratic change of time t → θ = t2/2.
Several examples were studied in that paper. One example was the porous medium
equation, which can be retrieved from the Euler equation of isentropic gases. An-
other relevant example, at the interface of Geometry and High Energy Physics,
is the dissipative geometric model of curve-shortening flow in R

d (which is the
simplest example of mean-curvature flow with co-dimension higher than 1) that
we obtained from the conservative evolution of classical strings according to the
Nambu-Goto action. This paper is a follow-up of [8], where the Born-Infeld model
of Electromagnetism is taken as an example, and as a result, we get a dissipative
model of Magnetohydrodynamics (MHD) where we have non-linear diffusions in
the magnetic induction equation and the Darcy’s law for the velocity field.

The Born-Infeld (BI) equations were originally introduced by Max Born and
Leopold Infeld in 1934 [5] as a nonlinear correction to the linear Maxwell equations
allowing finite electrostatic fields for point charges. In high energy Physics, D-
branes can be modelled according to a generalization of the BI model [24, 18]. In
differential geometry, the BI equations are closely related to the study of extremal
surfaces in the Minkowski space. In the 4-dimensional Minkowski space of special
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relativity, the BI equations form a 6 × 6 system of conservation laws in the sense
of [12], with 2 differential constraints,

∂tB +∇×
(
B × (D ×B) +D

h

)
= 0, ∂tD +∇×

(
D × (D ×B)−B

h

)
= 0,

h =
√
1 +D2 +B2 + (D ×B)2, ∇ · B = ∇ ·D = 0,

where we use the conventional notations for the inner product · and the cross-
product× in R

3, the gradient operator∇, the curl operator∇× and the electromag-
netic field (B,D). By Noether’s theorem, this system admits 4 extra conservation
laws for the energy density h and Poynting vector P , namely,

∂th+∇ · P = 0, ∂tP +∇ ·
(
P ⊗ P −B ⊗B −D ⊗D

h

)
= ∇

(
1

h

)
,

where
P = D ×B, h =

√
1 +D2 +B2 + |D ×B|2.

As advocated in [6], by viewing h, P as independent variables, the BI system can
be “augmented” as a 10× 10 system of hyperbolic conservation laws with an extra
conservation law involving a “strictly convex” entropy, namely

h−1(1 +B2 +D2 + P 2).

This augmented BI system belongs to the nice class of systems of conservation
laws “with convex entropy”, which, under secondary suitable additional conditions,
enjoy important properties such as well-posedness of the initial value problem, at
least for short times, and “weak-strong” uniqueness principles [12].

For the 10× 10 augmented BI system, we obtain, after the quadratic change of
the time variable t→ θ = t2/2, the following asymptotic system as θ << 1:

∂θB +∇× (h−1B × P ) +∇× (h−1∇× (h−1B)) = 0,

∂θh+∇ · P = 0, P = ∇ · (h−1B ⊗B) +∇(h−1).

This system can be interpreted as an unusual, fully dissipative version of standard
Magnetohydrodynamics, including a generalized version of the Darcy law, with
a fluid of density h, momentum P and pressure p = −h−1 (of Chaplygin type),
interacting with a magnetic field B. It belongs to the class of non-linear degenerate
parabolic PDEs.

In the rest of the paper, we proceed to the analysis of this asymptotic model (that
we call “Darcy MHD”) obtained after rescaling the 10× 10 augmented BI model:
(i) in Section 3, we define a concept of “dissipative solutions” in a sense inspired
by the work of P.-L. Lions for the Euler equation of incompressible fluids [22], the
work of L. Ambrosio, N. Gigli, G. Savaré [1] for the heat equation (working in a
very general class of metric measured spaces) and quite similar to the one recently
introduced by Y. Brenier in [7]; (ii) in Section 4, we demonstrate some properties
of the dissipative solutions. we establish a “weak-strong” uniqueness principle, in
the sense that, for a fixed smooth initial condition, a smooth classical solutions is
necessarily unique in the class of dissipative solutions admitting the same initial
condition; we prove the ”weak compactness” of such solutions (i.e. any sequence
of dissipative solutions has accumulations points, in a suitable weak sense, and
each of them is still a dissipative solution); (iii) in Section 4, we estimate the error
between dissipative solutions of the asymptotic system and smooth solutions of the
10 augmented Born-Infeld system; (iv) we finally prove the global existence solution
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of dissipative solution for any initial condition, without any smoothness assumption.
This last point, which is a non-surprising consequence of the weak compactness,
nevertheless requires a lengthy and technical proof which is presented in Section 6
and Section 7.

Acknowlegment. The author is very grateful to his PhD advisor, Yann Brenier
for his help during the completion to this paper. The author is also very grateful
to Alexis F. Vasseur for pointing out references [15, 16].

2. Direct Derivation of the diffusion equations

2.1. Presentation of the Born-Infeld model. For a n + 1 dimensional space-
time, the Born-Infeld equations can be obtained by varying the Lagrangian of the
following density

LBI = λ2

(
1−

√
− det

(
η +

F

λ

))

where η = diag(−1, 1, . . . , 1) is the Minkowski metric tensor, Fµν = ∂µAν − ∂νAµ

is the electromagnetic field tensor with A a vector potential. The parameter λ ∈
(0,∞) is called the absolute field constant which can be comprehended as the upper
limit of the field strength [5]. In the 4 dimensional spacetime, by using the classical
electromagnetic field symbols B,D, the BI equations can be written as

(2.1) ∂tB +∇×
(

λ2D +B × (D ×B)√
λ4 + λ2B2 + λ2D2 + |D ×B|2

)
= 0, ∇ · B = 0,

(2.2) ∂tD +∇×
(

−λ2B +D × (D ×B)√
λ4 + λ2B2 + λ2D2 + |D ×B|2

)
, ∇ ·D = 0.

Now, let us introduce some background of the BI model. The BI model was
originally introduced by Max Born and Leopold Infeld in 1934 [5] as a nonlinear
correction to the linear Maxwell model. Born had already postulated [3] a universal
bound λ for any electrostatic field, even generated by a point charge (which is
obviously not the case of the Maxwell theory for which the corresponding field is
unbounded and not even locally square integrable in space), just as the speed of
light is a universal bound for any velocity in special relativity. As λ→ ∞ the linear
Maxwell theory is easily recovered as an approximation of the BI model. Max Born
proposed a precise value for λ (based on the mass of the electron) and showed no
substantial difference with the Maxwell model until subatomic scales are reached. In
this way, the BI model was thought as an alternative to the Maxwell theory to tackle
the delicate issue of establishing a consistent quantization of Electromagnetism with
λ playing the role of a cut-off parameter. As a matter of fact, the BI model rapidly
became obsolete for such a purpose, after the arising of Quantum Electrodynamics
(QED), where renormalization techniques were able to cure the problems posed by
the unboundedness of the Maxwell field generated by point charges. [Interestingly
enough, M. Kiessling has recently revisited QED from a Born-Infeld perspective
[19, 20].] Later on, there has been a renewed interest for the BI model in high
energy Physics, starting in the 1960s for the modelling of hadrons, with a strong
revival in the 1990s, in String Theory. In particular the new concept of D-brane
was modelled according to a generalization of the BI model [24, 18].
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Another important feature of the BI model is its deep link with differential
geometry, already studied in a memoir of the Institut Henri Poincare by Max Born
in 1938 [4]. Indeed, the BI equations are closely related to the concept of extremal
surfaces in the Minkowski space. As a matter of fact [6, 9], as λ→ 0, the BI model
provides a faithful description of a continuum of classical strings, which are nothing
but extremal surfaces moving in the Minkowski space.

From a PDE viewpoint, the BI equations belong to the family of nonlinear
systems of hyperbolic conservation laws [12], for which the existence and uniqueness
of local in time smooth solutions can be proven by standard devices. A rather
impressive result was recently established by J. Speck [27] who was able to show the
global existence of smooth localized solutions for the original BI system, provided
the initial conditions are of small enough amplitude. His proof relies on the null-
form method developed by Klainerman and collaborators (in particular for the
Einstein equation) combined with dispersive (Strichartz) estimates. This followed
an earlier work of Lindblad on the model of extremal surfaces in the Minkowski
space which can be seen as a “scalar” version of the BI system [21].

2.2. The 10 × 10 augmented BI system. In 2004, Y. Brenier showed that the
structure of the BI system can be widely “simplified” by using the extra conserva-
tion laws of energy and momentum provided by the Noether invariance theorem,
where the momentum (called Poynting vector) is P = D × B while the energy

density is h =
√
1 +B2 +D2 + P 2 [6]. They read (after λ has been normalized to

be 1, which is possible by a suitable change of physical units)

(2.3) ∂th+∇ · P = 0, ∂tP +

(
P ⊗ P −B ⊗B −D ⊗D

h

)
= ∇

(
1

h

)
,

At this point, there are two main possibilities. The first one amounts to add the
conservation of momentum (i.e. 3 additional conservation laws) to the 6×6 original
BI equations, written in a suitable way, where P is considered as independent from
B and D (namely not given by the algebraic relation P = D × B) while h is

still h =
√
1 +B2 +D2 + P 2. This strategy leads to the 9 × 9 system and the

conservation of energy then reads

∂t
√
1 +B2 +D2 + P 2 +∇ · P +∇ ·

(
(D · P )D + (B · P )B − P +D ×B

1 +B2 +D2 + P 2

)
= 0

where the energy is now a strictly convex function of B, D and P . It can be shown
[6] that the algebraic constraint P = D×B is preserved during the evolution of any
smooth solution of this system, which implies that, at least for smooth solutions,
the 9×9 augmented system is perfectly suitable for the analysis of the BI equations.
This idea has been successfully extended to a very large class of nonlinear systems
in Electromagnetism by D. Serre [26]. An even more radical strategy was followed
and emphasized in [6], where h itself is considered as a new unknown variable,
independent from B, D and P , while adding the conservation of both energy and
momentum (i.e. 4 conservation laws) to the original 6 × 6 BI system, written in
a suitable way. This leads to the following 10 × 10 system of conservation law for
B,D, P, h:

(2.4) ∂th+∇ · P = 0, ∂tB +∇×
(
B × P +D

h

)
= 0, ∇ ·B = ∇ ·D = 0,



MAGNETOHYDRODYNAMIC REGIME OF THE BORN-INFELD ELECTROMAGNETISM 5

(2.5)

∂tD +∇×
(
D × P −B

h

)
= 0, ∂tP +∇ ·

(
P ⊗ P −B ⊗B −D ⊗D − I3

h

)
= 0,

Once again, the algebraic constraints, namely

P = D ×B, h =
√
1 +B2 +D2 + P 2

are preserved during the evolution of smooth solutions. The 10× 10 extension has
a very nice structure, enjoying invariance under Galilean transforms

(t, x, B,D, P, h) −→ (t, x+ V t,B,D, P − V h, h)

(where V ∈ R
3 is any fixed constant velocity). This is quite surprising, since the BI

model is definitely Lorentzian and not Galilean, but not contradictory since such
Galilean transforms are not compatible with the algebraic constraints:

P = D ×B, h =
√
1 +B2 +D2 + P 2

In [9] it is further observed that, written in non conservation forms, for variables

(τ, b, d, v) = (1/h,B/h,D/h, P/h) ∈ R
10,

the 10× 10 system reduces to

(2.6) ∂tb+ (v · ∇)b = (b · ∇)v − τ∇× d, ∂td+ (v · ∇)d = (d · ∇)v + τ∇× b,

(2.7) ∂tτ + (v · ∇)τ = τ∇ · v, ∂tv + (v · ∇)v = (b · ∇)b+ (d · ∇)d+ τ∇τ,
which is just a symmetric quadratic system of first order PDEs, automatically well-
posed (for short times) in Sobolev spaces, such as W s,2 for any s > 5/2, without
any restriction on the values of (b, d, v, τ) in R

10 (including negative values of τ !).
Once again, the algebraic constraints, which can be now nicely written as

b2 + d2 + v2 + τ2 = 1, τv = d× b

are preserved during the evolution. Notice that two interesting reductions of this
system can be performed. First, it is consistent to set simultaneously τ = 0 and
d = 0 in the equations, which leads to

∂tb+ (v · ∇)b = (b · ∇)v, ∂tv + (v · ∇)v = (b · ∇)b,

while the algebraic constraints become

b2 + v2 = 1, b · v = 0.

This system can be used to describe the evolution of a continuum of classical strings
(i.e. extremal 2−surfaces in the 4−dimensional Minkowski space) [9]. A second
reduction can be obtained by setting τ = 0, b = d = 0 which leads to the inviscid
Burgers equation

∂tv + (v · ∇)v = 0

This equation, as well known, always leads to finite time singularity for all smooth
localized initial conditions v, except for the trivial one: v = 0 (which, by the way,
shows that Speck’s result cannot be extended to the 10 × 10 BI system, without
restrictions on the initial conditions).
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2.3. Quadratic time rescaling of the augmented BI system. Let us perform
the following rescaling of the 10× 10 augmented BI system (2.4)-(2.5):

t→ θ = t2/2, h, B, P,D → h,B, P
dθ

dt
,D

dθ

dt

Observe that the symmetry between B and D is broken in this rescaling since
D is rescaled in the same way as P but not as B. We obtain, after very simple
calculations, the following rescaled equations,

∂θh+∇ · P = 0, ∂θB +∇×
(
B × P +D

h

)
= 0,

D + 2θ

[
∂θD +∇×

(
D × P

h

)]
= ∇×

(
B

h

)
,

P + 2θ

[
∂θP +∇ ·

(
P ⊗ P −D ⊗D

h

)]
= ∇ ·

(
B ⊗B

h

)
+∇(h−1).

In the regime θ >> 1, we get a self-consistent system for (D,P, h) (without B!)

∂θh+∇ · P = 0, ∂θD +∇×
(
D × P

h

)
= 0,

∂θP +∇ ·
(
P ⊗ P −D ⊗D

h

)
= 0,

which, written in non-conservative variables (d, v) = (D/h, P/h), reduces to

∂tv + (v · ∇)v = (d · ∇)d, ∂td+ (v · ∇)d = (d · ∇)v,

that we already saw in the previous subsection as a possible reduction of the (10×10)
extended BI system (which describes the motion of a continuum of strings). The
regime of higher interest for us is the dissipative one obtained as θ << 1. Neglecting
the higher order terms as θ << 1, we first get

D = ∇×
(
h−1B

)

which allows us to eliminate D and get for (B,P, h) the self-consistent system

∂θB +∇×
(
h−1B × P

)
+∇×

(
h−1∇×

(
h−1B

))
= 0,

∂θh+∇ · P = 0, P = ∇ ·
(
h−1B ⊗B

)
+∇

(
h−1

)
.

This can be seen as a dissipative model of Magnetohydrodynamics (MHD) where a
fluid of density h and momentum P interacts with a magnetic field B, with several
interesting (and intriguing) features:
(i) the first equation, which can be interpreted in MHD terms as the “induction
equation” for B, involves a second-order diffusion term typical of MHD: ∇ ×(
h−1∇×

(
h−1B

))
(with, however, an unusual dependence on h); (ii) the third

equation describes the motion of the fluid of density h and momentum P driven by
the magnetic field B and can be interpreted as a (generalized) Darcy law (and not
as the usual momentum equation of MHD), just if the fluid was moving in a porous
medium (which seems highly unusual in MHD!); (iii) there are many coefficients
which depend on h in a very peculiar way; in particular the Darcy law involves the
so-called Chaplygin pressure p = −h−1 (with sound speed

√
dp/dh = h−1), which

is sometimes used for the modeling of granular flows and also in cosmology, but not
(to the best of our knowledge) in standard MHD.
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To conclude this subsection, let us emphasize the remarkable structure of the
(10×10) extended Born-Infeld system, after quadratic time-rescaling t→ θ = t2/2,
which interpolates between the description of a continuum of strings (as θ >> 1),
in the style of high energy physics (however without any quantum feature) and a
much more “down to earth” (but highly conjectural) dissipative model of MHD in
a porous medium (as θ << 1)!

3. dissipative solution of the diffusion equations

From now on, we focus on the analysis of the following system of diffusion equa-
tions (we call Darcy MHD, or DMHD),

(3.1) ∂th+∇ · (hv) = 0,

(3.2) ∂tB +∇× (B × v + d) = 0,

(3.3) D = hd = ∇×
(
B

h

)
, P = hv = ∇ ·

(
B ⊗B

h

)
+∇

(
h−1

)
,

(3.4) ∇ ·B = 0.

Written in the non-conservative variables (τ, b, d, v) = (1/h,B/h,D/h, P/h), the
equation reads

(3.5) ∂tτ + v · ∇τ = τ∇ · v, ∂tb+ (v · ∇)b = (b · ∇)v − τ∇× d,

(3.6) d = τ∇× b, v = (b · ∇)b + τ∇τ.

For simplicity, we consider the periodic solutions on [0, T ]×T
3, T > 0, T = R/Z.

3.1. Relative entropy and the idea of dissipative solution. For the moment,
ignoring the existence and regularity issues, we assume that there exists a suffi-
ciently smooth solution (h > 0, B,D, P ) of the Darcy MHD (3.1)-(3.4).

First, as introduced in the previous section, the augmented BI equations (2.4)-
(2.5) have a strictly convex entropy, namely,

1 +B2 +D2 + P 2

2h
.

By performing the quadratic change of time t → θ = t2/2, in the regime θ << 1,
the entropy is reduced to

1 +B2

2h
.

It is natural to consider the above energy for the reduced parabolic system i.e.,
Darcy MHD. As an easy exercise, we can show that the energy we suggested above
is decreasing as time goes on. In fact, we have the following equality,

(3.7)
d

dt

∫

x∈T3

B2 + 1

2h
+

∫

x∈T3

D2 + P 2

h
= 0
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(This is easy to check, since

d

dt

∫
B2 + 1

2h
=

∫
B · ∂tB

h
−
∫
B2 + 1

2h2
∂th

= −
∫

∇×
(
B

h

)
· (B × v + d)−

∫
∇
(
B2 + 1

2h2

)
· P

= −
∫ [

∇×
(
B

h

)]
· D
h

−
∫ [

∇ ·
(
B ⊗B + I3

h

)]
· P
h

which, by (3.3), gives the dissipative term.)
Now, for any smooth test functions (b∗, h∗) ∈ R

3 × R
+, the relative entropy is

defined by
1

2h

[
(B − hb∗)2 + (1 − hh∗−1)2

]

Before going on, let’s look at the following lemma which gives us a nice formula for
the relative entropy:

Lemma 3.1. For any functions P,B,D, v∗, b∗, d∗ ∈ C1([0, T ]× T
3,R3), and posi-

tive functions 0 < h, h∗ ∈ C1([0, T ]× T
3,R), suppose (h,B,D, P ) is a solution of

the Darcy MHD (3.1)-(3.4), then the following equality always holds

(3.8)
d

dt

∫

x∈T3

∣∣Ũ
∣∣2

2h
+

∫

x∈T3

W̃TQ(w∗)W̃

2h
+

∫

x∈T3

W̃ · L(w∗) = 0

where

Ũ =
(
1− hh∗−1, B − hb∗

)
, W̃ =

(
Ũ ,D − hd∗, P − hv∗

)
, w∗ = (h∗−1, b∗, d∗, v∗),

Q(w∗) is a symmetric matrix that has the following expression

(3.9) Q(w∗) =




−2∇ · v∗ (∇× d∗)T −(∇× b∗)T 0

∇× d∗ −∇v∗ −∇v∗T 0 ∇b∗ −∇b∗T
−∇× b∗ 0 2I3 0

0 ∇b∗T −∇b∗ 0 2I3


 ,

L(w∗) =
(
Lh(w

∗),LB(w
∗),LD(w∗),LP (w

∗)
)
has the following expression

(3.10) Lh(w
∗) = ∂t

(
h∗−1)− h∗−1∇ · v∗ + v∗ · ∇

(
h∗−1),

(3.11) LB(w
∗) = ∂tb

∗ + (v∗ · ∇)b∗ − (b∗ · ∇)v∗ + h∗−1∇× d∗,

(3.12) LD(w∗) = d∗ − h∗−1∇× b∗,

(3.13) LP (w
∗) = v∗ − (b∗ · ∇)b∗ − h∗−1∇

(
h∗−1).

Moreover, we have L(w∗) = 0 if (h∗, h∗b∗, h∗d∗, h∗v∗) is also a solution to the Darcy
MHD (3.1)-(3.4).

With the above lemma and the nice formula of the relative entropy, we can
apply the Gronwall’s lemma to estimate the growth of the relative entropy. This
is the start point of introducing the concept of dissipative solution to study such
degenerate parabolic system.

Now, first, we see that the matrix valued function Q(w∗) in (3.8) is a symmetric
and its right down 6 × 6 block is always positive definite. Now let us use In:m
to represent the n × n diagonal matrix whose first m terms are 1 while the rest
terms are 0, let Id be the d × d identity matrix. Then it is easy to verify that for
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any δ ∈ (0, 2), there is a constant r0 = r0(w
∗, δ, T ), such that for all r ≥ r0 and

(t, x) ∈ [0, T ]× T
3, we have

Q(w∗) + rI10:4 ≥ (2 − δ)I10 > 0.

For the convenience of writing, let us denote,

(3.14) Qr(w
∗) = Q(w∗) + rI10:4.

Then, (3.8) can be written as,

(3.15)

(
d

dt
− r

)∫ ∣∣Ũ
∣∣2

2h
+

∫
W̃TQr(w

∗)W̃

2h
+

∫
W̃ · L(w∗) = 0.

We integrate it from 0 to t, then we have
(3.16)
∫ ∣∣Ũ(t)

∣∣2

2h(t)
+

∫ t

0

er(t−s)

[∫
W̃TQr(w

∗)W̃

2h
+ W̃ · L(w∗)

]
ds = ert

∫ ∣∣Ũ(0)
∣∣2

2h(0)
.

Notice that the above equality have a nice structure since the left hand side is in fact
a convex functional of (h,B,D, P ). It is even possible to extend the meaning of the
equality to Borel measures (cf. [13]). In our case, it is quite simple and direct. For
any Borel measure ρ ∈ C(T3,R)′ and vector-valued Borel measure U ∈ C(T3,R4)′,
we define

(3.17) Λ(ρ, U) = sup

{∫

T3

aρ+A · U, a+
1

2
|A|2 ≤ 0

}
∈ [0,+∞],

where the supremum is taken over all (a,A) ∈ C(Td;R×R
4). As an easy exercise,

we can check that

(3.18) Λ(ρ, U) =





1

2

∫

T3

|u|2ρ, ρ ≥ 0, U ≪ ρ, U = uρ, u ∈ L2
ρ

+∞, otherwise

So we can see that Λ(ρ, U) is somehow a generalization of the functional
∫ |U|2

2ρ to

Borel measures. Similarly, we can define a functional in terms of the space time
integral of ∫ t

s

∫

T3

WTQW

2ρ

More precisely, for any Borel measure ρ ∈ C([0, T ] × T
3,R)′, vector-valued Borel

measure W ∈ C([0, T ] × T
3,R10)′, and matrix valued function Q ∈ C([0, T ] ×

T
3,R10×10) which is always positive definite, we define

(3.19)

Λ̃(ρ,W,Q; s, t) = sup

{∫ t

s

∫

T3

aρ+ A ·W, a+
1

2
|
√
Q−1A|2 ≤ 0

}
∈ [0,+∞],

where the supremum is taken over all (a,A) ∈ C([s, t]×T
d;R×R

10), 0 ≤ s < t ≤ T .
Similarly, we have
(3.20)

Λ̃(ρ,W,Q; s, t) =





1

2

∫ t

s

∫

T3

|
√
Qw|2ρ, on [s, t], ρ ≥ 0, W ≪ ρ, W = wρ, w ∈ L2

ρ

+∞, otherwise
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By using the above defined functional, (3.16) can be written as

(3.21) e−rtΛ(h(t), Ũ(t)) + Λ̃(h, W̃ , e−rsQr(w
∗); 0, t) +R(t) = Λ(h(0), Ũ(0)).

where

R(t) =

∫ t

0

∫

T3

e−rsW̃ · L(w∗).

Now, instead of having an equality, we would like to look for all measure valued

solutions such that their relative entropies Λ(h, Ũ) are less than the initial data in
(3.16). This is the idea of introducing the concept of dissipative solution.

3.2. Definition of the dissipative solutions. With the help of (3.16) and the
introducing of Λ(h, U). Now we can give a definition of the dissipative solution of
(DMHD). Our definition reads,

Definition 3.2. We say that (h,B,D, P ) with h ∈ C([0, T ], C(T3,R)′w∗), B ∈
C([0, T ], C(T3,R3)′w∗), D,P ∈ C([0, T ]×T

3,R3)′, is a dissipative solution of (DMHD)
(3.1)-(3.4) with initial data h0 ∈ C(T3,R)′, B0 ∈ C(T3,R3)′ if and only if

(i) h(0) = h0, B(0) = B0, Λ(h0, U0) < ∞, where U0 = (L, B0), L is the Lebesgue
measure on T

3.
(ii) (h,B) is bounded in C0, 12 ([0, T ], C(T3,R4)′w∗) by some constant that depends
only on T and (h0, B0).
(iii) (3.1) and (3.4) is satisfied in the sense of distributions. More precisely, for all
u ∈ C1([0, T ]× T

3,R) and t ∈ [0, T ], we have

(3.22)

∫ t

0

∫

T3

∂tu h+∇u · P =

∫

T3

u(t)h(t)−
∫

T3

u(0)h(0)

(3.23)

∫

T3

∇u(t) ·B(t) = 0

(iv) For all t ∈ [0, T ] and all v∗, b∗, d∗ ∈ C1([0, T ]× T
3,R3), 0 < h∗ ∈ C1([0, T ]×

T
3,R) and all real number r ≥ r0, the following inequality always holds

(3.24) e−rtΛ(h(t), Ũ(t)) + Λ̃(h, W̃ , e−rsQr(w
∗); 0, t) +R(t) ≤ Λ(h(0), Ũ(0))

where

Ũ =
(
L − h∗−1h,B − hb∗

)
, W̃ =

(
Ũ ,D − hd∗, P − hv∗

)

w∗ = (h∗−1, b∗, d∗, v∗),

Qr(w
∗) is a symmetric matrix defined by Qr(w

∗) = Q(w∗) + rI10:4, where Q(w∗)
is defined in (3.9). r0 is a constant chosen such that Qr0(w

∗) ≥ I10 for all (t, x) ∈
[0, T ]× T

3. R(t) is a functional that depends linearly on W̃ with the expression

(3.25) R(t) =

∫ t

0

∫

T3

e−rsW̃ · L(w∗).

where L(w∗) is defined in (3.10)-(3.13).
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Note that in the above definition, C(T3,R)′w∗ is the dual space of C(T3,R)
equipped with the weak-∗ topology. It is a metrizable space, we can define a metric
that is consistent with the weak-∗ topology, for example, we can take

(3.26) d(ρ, ρ′) =
∑

n≥0

2−n

∣∣〈ρ− ρ′, fn
〉∣∣

1 +
∣∣〈ρ− ρ′, fn

〉∣∣

where {fn}n≥0 is a smooth dense subset of the separable space C(T3,R), 〈·, ·〉
denote the duality pairing of C(T3,R) with its dual space.

4. Properties of the Dissipative Solutions

In this section, we will study some properties of the dissipative solutions that
we define in the previous part. We will show that the dissipative solutions satisfy
the weak-strong uniqueness, the set of solutions are convex and compact in the
weak-∗ topology, and under what situation, the dissipative solutions become strong
solutions.

4.1. Consistency with smooth solutions. In this part, let’s look at a very inter-
esting question about the dissipative solution. It has been shown that, in Lemma
3.1, any strong solution (h,B,D, P ) to (DMHD) satisfies the energy dissipative
inequality (3.24), so it is naturally a dissipative solution. On the contrary, it is gen-
erally not true that a dissipative solution is a strong solution. However, if we know
that the dissipative solution has some regularity (for example C1 solutions), then
the reverse statement is true. We summarize our result in the following proposition:

Proposition 4.1. Suppose (h,B,D, P ) ∈ C1([0, T ]×T
3,R10) is a dissipative solu-

tion to (DMHD) (3.1)-(3.4) in the sense of Definition 3.2, then is must be a strong
solution.

Proof. The proof follows almost the same computation as in Lemma 3.1. First,
the equation (3.1) and (3.4) is naturally satisfied by the definition of dissipative
solution. Our goal is to show that (h,B,D, P ) also satisfy (3.2),(3.3) in the strong
sense. o prove this, we denote

φ = ∂tB +∇×
(
D +B × P

h

)
, ψ = D −∇×

(
B

h

)

ϕ = P −∇ ·
(
B ⊗B

h

)
−∇

(
1

h

)

We only need to prove that φ = ψ = ϕ = 0. In fact, for any test function
v∗, b∗, d∗ ∈ C1([0, T ] × T

3,R3), h∗ > 0 ∈ C1([0, T ] × T
3,R), we follow the same

computation as in Lemma 3.1 (this is shown in the Appendix), then we can the
following equality,

d

dt

∫ ∣∣Ũ
∣∣2

2h
+

∫
WTQ(w∗)W

2h
+

∫
W̃ ·L(w∗) =

∫ [
φ·
(
b−b∗

)
+ψ·

(
d−d∗

)
+ϕ·

(
v−v∗

)]

Now, let’s set b∗ = b− φ, d∗ = d− ψ, v∗ = v − ϕ, then we have

d

dt

∫ ∣∣Ũ
∣∣2

2h
+

∫
WTQ(w∗)W

2h
+

∫
W̃ · L(w∗) =

∫ (
φ2 + ψ2 + ϕ2

)
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For r big enough, we have

e−rT

∫ ∣∣Ũ(T )
∣∣2

2h(T )
+

∫ T

0

e−rs

[∫
W̃TQr(w

∗)W̃

2h
+ W̃ · L(w∗)

]
ds−

∫ ∣∣Ũ(0)
∣∣2

2h(0)

=

∫ T

0

∫
e−rs

(
φ2 + ψ2 + ϕ2

)

By the definition of dissipative solution, we have
∫ T

0

∫
e−rs

(
φ2 + ψ2 + ϕ2

)
≤ 0

This implies that φ ≡ ϕ ≡ ψ ≡ 0, which completes the proof.
�

4.2. Weak-strong uniqueness and stability result. The weak-strong unique-
ness is essentially an important property for a suitable concept of “weak” solution
of a given evolution system. By the weak-strong uniqueness, we mean that any
weak solution must coincide with a strong solution emanating from the same ini-
tial data as long as the latter exists. In other words, the strong solutions must be
unique within the class of weak solutions. This kind of problem has been widely
studied in various kinds of equations (Navier-Stokes, Euler, etc.), even for measure
valued solutions [10]. In our (DMHD), we will show that the dissipative solution
also enjoy this kind of property. First, let’s us show a stability estimate.

Proposition 4.2. Suppose that (h∗ > 0, B∗, D∗, P ∗) is a classical (at least C1) so-
lution of (DMHD) (3.1)-(3.4) with initial value (h∗, B∗)|t=0 = (h∗0, B

∗
0). (h,B,D, P )

is a dissipative solution with initial value (h,B)|t=0 = (h0, B0). Let us denote

Ũ =
(
L − hh∗−1, B − hb∗

)
, W̃ =

(
Ũ ,D − hd∗, P − hv∗

)

where b∗ = B∗/h∗, d∗ = D∗/h∗, v∗ = P ∗/h∗. Then, for any t ∈ [0, T ], there
exist a constant C that depends only on the choice of (h∗, B∗, D∗, P ∗), the value of

Λ(h0, Ũ0) and T , such that the following estimates hold

(4.1) ‖Ũ(t)‖2TV ≤ CeCtΛ(h0, Ũ0), ‖W̃‖2TV ∗ ≤ CeCTΛ(h0, Ũ0).

Here ‖ · ‖TV , ‖ · ‖TV ∗ respectively represent the total variation of measures on T
3

and [0, T ]× T
3. Furthermore, we have that

(4.2) ‖h(t)− h∗(t)‖2TV , ‖B(t)− B∗(t)‖2TV ≤ CeCtΛ(h0, Ũ0),

(4.3) ‖D −D∗‖2TV ∗ , ‖P − P ∗‖2TV ∗ ≤ CeCTΛ(h0, Ũ0).

Proof. The proof is very simple. We just need to take (h∗, b∗, d∗, v∗) defined in the
proposition as our test functions and apply it to the energy dissipative inequality
(3.24). Because (h∗, B∗, D∗, P ∗) is a strong solution, so we have L(w∗) ≡ 0, where

w∗ = (h∗−1, b∗, d∗, v∗). Let r0 > 0 be a constant such that Qr0(w
∗) ≥ I10 for all

(t, x) ∈ [0, T ]× T
3. Then for r ≥ r0 and t ∈ [0, T ], (3.24) gives

e−rtΛ(h(t), Ũ(t)) + Λ̃(h, W̃ , e−rsQr(w
∗); 0, t) ≤ Λ(h0, Ũ0).

So we have

Λ(h(t), Ũ(t)) ≤ ertΛ(h0, Ũ0),
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and, since e−rsQr(w
∗) ≥ e−rT I10, we have

e−rT Λ̃(h, W̃ , I10; 0, T ) ≤ Λ̃(h, W̃ , e−rsQr(w
∗); 0, T ) ≤ Λ(h0, Ũ0).

Now, since h satisfies (3.1) in the sense of distributions, we have
∫

T3

h(t) =

∫

T3

h0.

Then, by the expression of Λ, Λ̃ in (3.18),(3.20), and Cauchy-Schwarz inequality,
we have

‖Ũ(t)‖2TV ≤ 2Λ(h(t), Ũ(t))

∫

T3

h(t) ≤ 2ertΛ(h0, Ũ0)

∫

T3

h0

‖W̃‖2TV ∗ ≤ 2Λ̃(h, W̃ , I10; 0, T )

∫ T

0

∫

T3

h ≤ 2TerTΛ(h0, Ũ0)

∫

T3

h0

Now, we would like to estimate the value of ‖h0‖TV , given the value of Λ0 =

Λ(h0, Ũ0) and h
∗
0. Since

2Λ0

∫

T3

h0 ≥ ‖Ũ0‖2TV ≥
∥∥∥L − h0h

∗
0
−1
∥∥∥
2

TV
≥ ‖h∗0‖−2

∞

(∫

T3

|h∗0 − h0|
)2

So we have ∫

T3

|h∗0 − h0| ≤ ‖h∗0‖∞
√
2Λ0

∫

T3

h0

Then we have that
∫

T3

h0 ≤
∫

T3

|h∗0 − h0|+
∫

T3

h∗0 ≤ ‖h∗0‖∞
√
2Λ0

∫

T3

h0 +

∫

T3

h∗0

≤ 1

2

∫

T3

h0 + ‖h∗0‖2∞Λ0 +

∫

T3

h∗0

So we have the estimate
∫

T3

h0 ≤ 2

(
‖h∗0‖2∞Λ0 +

∫

T3

h∗0

)

Combining the above results, we can find a constant C which depends only on

(h∗, B∗, D∗, P ∗), Λ(h0, Ũ0) and T , such that the estimate (4.1) is satisfied. (4.2),(4.3)
are also easy to prove, since we have

‖B(t)−B∗(t)‖TV ≤ ‖B(t)− h(t)b∗(t)‖TV + ‖B∗(t)− h(t)b∗(t)‖TV

≤ ‖B(t)− h(t)b∗(t)‖TV + ‖B∗(t)‖∞
∥∥∥L − h(t)h∗−1(t)

∥∥∥
TV

≤ (1 + ‖B∗‖∞)‖Ũ(t)‖TV

Similarly, we have

‖D −D∗‖TV ∗≤ ‖D − hd∗‖TV ∗ + ‖D∗‖∞
∥∥∥L − hh∗−1

∥∥∥
TV ∗

≤ (1 + ‖D∗‖∞)‖W̃‖TV ∗,

‖h(t)− h∗(t)‖TV ≤ ‖h∗‖∞‖Ũ(t)‖TV , ‖P − P ∗‖TV ∗ ≤ (1 + ‖P ∗‖∞)‖W̃‖TV ∗

Then by (4.1), we can quickly get our desired result.
�
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The above proposition gives us an estimate of the distance of two different dis-
sipative solution as time evolves. As a direct consequence, we immediately get the
weak-strong uniqueness for the dissipative solutions.

Proposition 4.3. Suppose that (h > 0, B,D, P ) is a classical (at least C1) solution
to (DMHD) (3.1)-(3.4) with initial value (h,B)|t=0 = (h0, B0), then it is the unique
dissipative solution to (DMHD) with the same initial value.

Proof. The proof is very simple. Suppose there is another dissipative solution

(h′, B′, D′, P ′). Since Ũ0 = 0, the estimates (4.2),(4.3) in the previous proposition
just give us the uniqueness.

�

4.3. Weak compactness. From the previous parts, we know that, if we have a
smooth dissipative solution, then it should be a strong solution, and, therefore, it
should be the unique dissipative solution with the same initial data. However, in
general, dissipative solutions are not usually that regular. A natural question is
that, what happens to the dissipative solutions that are not smooth? Are they
unique? If not, what can we conclude for the set of dissipative solutions? In this
part, we will show that the dissipative solutions satisfy the “weak compactness”
property (i.e. any sequence of dissipative solutions has accumulations points, in a
suitable weak sense, and each of them is still a dissipative solution). We summarize
our result in the following theorem:

Theorem 4.4. For any initial data B0 ∈ C(T3,R3)′, h0 ∈ C(T3,R)′, satisfying
that ∇·B0 = 0 in the sense of distributions and Λ(h0, U0) <∞, let A be the set of all
dissipative solutions (h,B,D, P ) to (DMHD) (3.1)-(3.4) with initial data (h0, B0).
Then A is a non-empty convex compact set in the space C([0, T ], C(T3,R×R

3)′w∗)×
C([0, T ]× T

3,R3 × R
3)′w∗.

Proof. The non-emptiness of A refers just to the existence of the dissipative solu-
tions. The proof is a little lengthy, we leave the existence proof in Section 6 and
Section 7. Here, let’s prove the convexity and compactness. The convexity of A is
quite easy. As we can see in Definition 3.2, (3.22),(3.23) are linear equations. So
it is always satisfied under any convex combination of dissipative solutions. Since

the functional Λ, Λ̃ are convex, so (3.24) is also satisfied. So we know that the set
A is convex. Now let’s show the compactness. Since h∗ ≡ 1, B∗ = D∗ = P ∗ = 0 is
a trivial solution, then for any family of dissipative solutions (hn, Bn, Dn, Pn) with
initial data (h0, B0), by Proposition 4.2, there exist a constant C that depends only
on (h0, B0) and T , such that

‖hn(t)− 1‖TV , ‖Bn(t)‖TV , ‖Dn‖TV ∗ , ‖Pn‖TV ∗ ≤ C.

Since (hn, Bn) are uniformly bounded in C0, 12 ([0, T ], C(T3,R4)′w∗), then up to a
subsequence, (hn, Bn) converge to some function (h,B) in C([0, T ], C(T3,R4)′w∗).
Also, since (Dn, Pn) are uniformly bounded in C([0, T ]×T

3,R3×R
3)′, then up to a

subsequence, (Dn, Pn) converge weakly-∗ to some (D,P ) in C([0, T ]×T
3,R3×R

3)′.
Now we only need to prove that (h,B,D, P ) is a dissipative solution. This is easy
since (3.22),(3.23) and (3.24) are weakly stable.

�
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5. Comparison with smooth solutions of the ABI equations

As it has been shown in Section 2, we can get our (DMHD) out of the augmented
BI equations (2.4),(2.5) through the quadratic change of the time variable θ → t2/2.
Now a natural question is that, since the (DMHD) can be seen as an approximation
of the ABI equations, how about the solutions of these two systems of equations?
Are they close to each other when the initial data are the same? With our concept
of the dissipative solution, it is possible to give an answer.

In [9], it is shown that ABI equations can be rewritten as a symmetric hyperbolic
system of conservation laws. So smooth solutions exist at least in a short period
of time for smooth initial data, see [12]. Now, for any smooth function h0 > 0,
B0, ∇ · B0 = 0, there exist a time interval [0, t0], such that there exists a smooth
solution (h′, B′, D′, P ′) to the augmented BI system with initial value (h0, B0, 0, 0).
We will compare the smooth solution (h′, B′, D′, P ′) with the dissipative solution
(h,B,D, P ) to the Darcy MHD on [0, T ], T ≥ t20/2, with the same initial value
(h0, B0). Our estimates are in the following proposition.

Proposition 5.1. Suppose (h′, B′, D′, P ′) is a smooth solution to the augmented
BI equations (2.4),(2.5) on [0, t0] with smooth initial data (h0, B0, 0, 0). (h,B,D, P )
is a dissipative solution to (DMHD) (3.1)-(3.4) on [0, T ], T ≥ t20/2, with the
same initial data (h0, B0). Then there exists a constant C that depends only on
(h′, B′, D′, P ′) and t0, such that for any t ∈ [0, t0], we have

(5.1) ‖h′(t)− h(t2/2)‖TV , ‖B′(t)−B(t2/2)‖TV ≤ Ct3

(5.2)
∣∣D′(s)− sD(s2/2)

∣∣([0, t]× T
3),

∣∣P ′(s)− sP (s2/2)
∣∣([0, t]× T

3) ≤ Ct4

Here | · | represents the variation of the vector-valued measures. sD(s2/2), sP (s2/2)
denote the vector-valued Borel measures on [0, t0]×T

3 defined in the way such that,
for all ϕ ∈ C([0, t0]× T

3,R3), we have
∫ t0

0

∫

T3

ϕ(s) · sD(s2/2) =

∫ t20/2

0

∫

T3

ϕ(
√
2s) ·D(s)

∫ t0

0

∫

T3

ϕ(s) · sP (s2/2) =
∫ t20/2

0

∫

T3

ϕ(
√
2s) · P (s)

Proof. First, since (h′, B′, D′, P ′) is a smooth solution to the augmented BI equa-
tions, then the non-conservative variables

(τ ′, b′, d′, v′) = (1/h′, B′/h′, D′/h′, P ′/h′)

should satisfy the following equations

∂tb
′ + (v′ · ∇)b′ = (b′ · ∇)v′ − τ ′∇× d′, ∂td

′ + (v′ · ∇)d′ = (d′ · ∇)v′ + τ ′∇× b′,

∂tτ
′ + (v′ · ∇)τ ′ = τ ′∇ · v′, ∂tv

′ + (v′ · ∇)v′ = (b′ · ∇)b′ + (d′ · ∇)d′ + τ ′∇τ ′,
Now let’s take our test function h∗, b∗, d∗, v∗ defined as following

(5.3)
h∗(θ, x) = h′(

√
2θ, x) b∗(θ, x) = b′(

√
2θ, x)

d∗(θ, x) =
d′(

√
2θ, x)√
2θ

v∗(θ, x) =
v′(

√
2θ, x)√
2θ

We should notice that d∗, v∗ is well defined and continuous with value ∂td
′(0), ∂tv

′(0)
at time θ = 0. Moreover, it is easy to verify that ∂2t d

′(0) = ∂2t v
′(0) = 0, so we know
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that h∗, b∗, d∗, v∗ are C1 functions with ∂θd
∗(0) = 1

3∂
3
t d

′(0), ∂θv
∗(0) = 1

3∂
3
t v

′(0).

Now, let’s do the change of time θ = t2/2, (5.3) means

τ ′(t, x) = h∗−1(θ, x), b′(t, x) = b∗(θ, x), d′(t, x) = td∗(θ, x), v′(t, x) = tv∗(θ, x)

Then our test function should satisfy the following equations,

∂θ(h
∗−1) + (v∗ · ∇)h∗−1 = h∗−1∇ · v∗

∂θb
∗ + (v∗ · ∇)b∗ = (b∗ · ∇)v∗ − h∗−1∇× d∗

d∗ − h∗−1∇× b∗ = −2θ
[
∂θd

∗ + (v∗ · ∇)d∗ − (d∗ · ∇)v∗
]
,

v∗ − (b∗ · ∇)b∗ − h∗−1∇(h∗−1) = −2θ
[
∂θv

∗ + (v∗ · ∇)v∗ − (d∗ · ∇)d∗
]
,

So we have that

Lh(w
∗) = LB(w

∗) = 0, LD(w∗) = −2θψ∗
d, LP (w

∗) = −2θψ∗
v ,

where ψ∗
d, ψ

∗
v are continuous functions with the following expressions

ψ∗
d = ∂θd

∗ + (v∗ · ∇)d∗ − (d∗ · ∇)v∗,

ψ∗
v = ∂θv

∗ + (v∗ · ∇)v∗ − (d∗ · ∇)d∗.

Now, for the dissipative solution (h,B,D, P ) to (DMHD), we denote as usual,

Ũ =
(
L − hh∗−1, B − hb∗

)
, W̃ =

(
Ũ ,D − hd∗, P − hv∗

)

Since the initial value are the same, we have Ũ(0) = 0. Now we follow the definition
of dissipative solution, there exists a constant r > 0 such that Qr(w

∗) ≥ I10 for all
(θ, x) ∈ [0, t20/2]× T

3. By (3.24), we have, for θ ∈ [0, t20/2],

(5.4) e−rθΛ(h(θ), Ũ(θ)) + Λ̃(h, W̃ , e−rθ′

Qr(w
∗); 0, θ) +R(θ) ≤ 0.

where

R(θ) = −2θ

∫ θ

0

∫

T3

[
ψ∗
d · (D − hd∗) + ψ∗

v · (P − hv∗)
]
.

By Cauchy-Schwarz inequality, we have

‖Ũ(θ)‖2TV ≤ 2Λ(h(θ), Ũ(θ))

∫

T3

h(θ) = 2Λ(h(θ), Ũ(θ))

∫

T3

h0

(∣∣W̃
∣∣([0, θ]× T

3)
)2

≤ 2θerθΛ̃(h, W̃ , e−rθ′

Qr(w
∗); 0, θ)

∫

T3

h0

Now let M = ‖ψ∗
d‖∞ + ‖ψ∗

v‖∞, then we have

|R(θ)| ≤ 2θ
∣∣W̃
∣∣([0, θ]× T

3)M

Therefore, (5.4) implies,

(5.5) θ‖Ũ(θ)‖2TV +
(∣∣W̃

∣∣([0, θ]× T
3)
)2

≤ Cθ2
∣∣W̃
∣∣([0, θ]× T

3)

where C is a constant that depends only on M , h0, r and t0. Then we have that
∣∣W̃
∣∣([0, θ]× T

3) ≤ Cθ2, ‖Ũ(θ)‖2TV ≤ C2θ3.

Since

‖h(t2/2)− h′(t)‖TV = ‖h(θ)− h∗(θ)‖TV ≤ ‖h∗‖∞‖L − hh∗−1‖TV

≤ ‖h∗‖∞‖Ũ(θ)‖TV ≤ 2−
3
2 ‖h∗‖∞Ct3

‖B(t2/2)−B′(t)‖TV ≤ ‖B(θ)− h(θ)b∗(θ)‖TV + ‖b∗(θ)(h(θ) − h∗(θ))‖TV
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≤ (1 + ‖h∗b∗‖∞)‖Ũ(θ)‖TV ≤ 2−
3
2 (1 + ‖h∗b∗‖∞)Ct3

so we get (5.1). Now, for sD(s2/2), we have
∣∣D′(s)− sD(s2/2)

∣∣([0, t]× T
3) =

∣∣h∗(θ)d∗(θ) −D(θ)
∣∣([0, θ]× T

3)

≤ (1 + ‖h∗d∗‖∞)
∣∣W̃
∣∣([0, θ]× T

3) ≤ 2−2(1 + ‖h∗d∗‖∞)Ct4

similarly, ∣∣P ′(s)− sP (s2/2)
∣∣([0, t]× T

3) ≤ 2−2(1 + ‖h∗v∗‖∞)Ct4

so we get (5.2).
�

6. Faedo-Galerkin approximation

In the following two sections, we will mainly focus on the existence theory of
the dissipative solutions. In this section, we consider an approximate system of
(DMHD). We want to get a dissipative solution of (DMHD) by the approaching
of solutions of the approximate system. In fact, we don’t really need to solve the
approximate system, we only need to find a sequence of approximate solutions on
some finite dimensional spaces, which is quite similar to the Faedo-Galerkin method
of E. Feireisl [15, 16, 17]. We consider the following approximate equations

(6.1) ∂th+∇ · (hv) = 0,

(6.2) ∂tB +∇× (B × v + d) = 0, ∇ · B = 0

(6.3) ε
[
∂t(hd) +∇ · [h(d⊗ v − v ⊗ d)] + (−△)ld

]
+ hd = ∇× b,

(6.4) ε
[
∂t(hv)+∇·(hv⊗v)−(hd ·∇)d+(−△)lv

]
+hv = ∇·

(
B ⊗B

h

)
+∇

(
h−1

)
,

Here, 0 < ε < 1, we choose l sufficiently big (l ≥ 8). The idea of using these
equations as approximate system comes from the way we get the Darcy MHD from
augmented BI. The time derivatives of d, v here can ensure that the approximate
solutions are continuous with respect to time. We introduce the high order deriva-
tives here to get some regularities that will be useful in showing the existence. Very
similar to the case of augmented BI, we have the following formula (the proof is
quite straightforward, we leave it to interested readers)

(6.5)
d

dt

∫

T3

[
1 +B2

2h
+ ε

h(v2 + d2)

2

]
+

∫

T3

h(v2 + d2) + ε

∫

T3

∣∣∇lv
∣∣2 +

∣∣∇ld
∣∣2 = 0

6.1. Classical Solution for Fixed (d, v). Now let us consider the solution of
(6.1) and (6.2) when d, v are given smooth functions.

Lemma 6.1. Suppose h0, B0 are smooth functions with ∇ ·B0 = 0, h0 > 0. Then
for any integer k ≥ 1 and given d, v ∈ C([0, T ], Ck+1(T3,R3)), there exists a unique
solution h ∈ C1([0, T ], Ck(T3,R3)), B ∈ C1([0, T ], Ck(T3,R3)) to (6.1) and (6.2)
with initial data h0, B0.
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Proof. We use the method of characteristics to show the existence of classical so-
lutions. For (6.1), the solution can be written explicitly as

(6.6) h(t, x) = h0
(
Φ(0, t, x)

)
exp

{
−
∫ t

0

∇ · v
(
s,Φ(s, t, x)

)
ds

}

where Φ(t, s, x) ∈ C1([0, T ]× [0, T ]× T
3) is the unique solution of

(6.7)

{
∂tΦ(t, s, x) = v

(
t,Φ(t, s, x)

)
0 ≤ t ≤ T

Φ(s, s, x) = x 0 ≤ s ≤ T, x ∈ T
3

Because v ∈ C([0, T ], Ck+1(T3,R3)), the existence and uniqueness of such so-
lution is obtained directly by Cauchy-Lipschitz Theorem. Moreover, we can proof
that the solution Φ(t, s, x) ∈ C1([0, T ], C1([0, T ], Ck(T3,R3))).(Take space deriva-
tives on both side of the equation, the new equation is composed of lower derivatives
and is linear for the highest older derivatives. By induction, the Cauchy-Lipschitz
Theorem gives a solution and by uniqueness, we can show the solution of (6.7) is
that sufficiently differentiable.)

For (6.2), we also have an explicit expression of the solution

(6.8) B(t, x) = G
(
t,Φ(0, t, x)

)
exp

{
−
∫ t

0

∇ · v
(
s,Φ(s, t, x)

)
ds

}

where G(t, x) ∈ C1([0, T ]× T
3) is the unique solution of

(6.9)



∂tG(t, x) = ∇v
(
t,Φ(t, 0, x)

)
·G(t, x) 0 ≤ t ≤ T

−(∇× d)
(
t,Φ(t, 0, x)

)
exp

{∫ t

0 ∇ · v
(
s,Φ(s, 0, x)

)
ds
}

G(0, x) = B0(x) x ∈ T
3

By the same reason, G(t, x) ∈ C([0, T ], Ck(T3,R3)). It is not hard verify that
(h,B) defined in (6.6),(6.8) is indeed a solution. At last, let us look into the
uniqueness of solutions. Because the equations are linear with respect to h and
B, it is easy to show the uniqueness by the L2 estimates of the difference of two
solutions. We can also see it from the following lemma. �

Now for any fixed z = (d, v) ∈ C([0, T ], Ck+1(T3,R6)), let us denote h[z, h0],
B[z,B0] the unique solution of (6.1),(6.2) with initial value h0, B0 at time t = 0.
Then we have the following lemma.

Lemma 6.2. Suppose z = (d, v) ∈ C([0, T ], Ck+1(T3,R6)), k ≥ 1, h0, B0 are
smooth functions, ∇ ·B0 = 0, h0 > 0. Then we have
(i) For all t ∈ [0, T ], x ∈ T

3,

(6.10) 0 < e−
∫

t

0
‖∇·v(s)‖∞ds inf

x∈T3
h0 ≤ h(t, x) ≤ e

∫
t

0
‖∇·v(s)‖∞ds sup

x∈T3

h0

(ii) Suppose sup
t∈[0,T ]

‖v(t)‖Ck+1 , sup
t∈[0,T ]

‖d(t)‖Ck+1 ≤Mk+1, then

(6.11) sup
t∈[0,T ]

∥∥h[z, h0]
∥∥
Hk(T3)

≤ Ck(T, ‖h0‖Hk ,Mk+1)

(6.12) sup
t∈[0,T ]

∥∥B[z,B0]
∥∥
Hk(T3)

≤ Ck(T, ‖B0‖Hk ,Mk+1)
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(iii) For any κ > 0, any z, z̃ belonging to the set

Cκ =
{
z ∈ C([0, T ], C3(T3,R6))

∣∣ sup
t∈[0,T ]

‖v(t)‖C3 , sup
t∈[0,T ]

‖d(t)‖C3 ≤ κ
}

we have

(6.13) sup
t∈[0,T ]

∥∥h[z, h0]− h[z̃, h0]
∥∥
H1(T3)

≤ c(T, ‖h0‖H2 , κ) sup
t∈[0,T ]

∥∥z(t)− z̃(t)
∥∥
C2

(6.14) sup
t∈[0,T ]

∥∥B[z,B0]−B[z̃, B0]
∥∥
H1(T3)

≤ c(T, ‖B0‖H2 , κ) sup
t∈[0,T ]

∥∥z(t)− z̃(t)
∥∥
C2

Proof. (i) This is a direct conclusion from the explicit expression of h in (6.6).
(ii) Let’s prove (6.12). The case for (6.11) is simpler. For any α ∈ N

3, |α| ≤ k,
we have

∂t(∂
αBi) + ∂jvj∂

αBi + vj∂j(∂
αBi)− ∂jvi∂

αBj + ǫijk∂
α(∂jdk)

+
∑

β<α

cα,β

[
∂α−β(∂jvj)∂

βBi + ∂α−βvj∂
β(∂jBi)− ∂α−β(∂jvi)∂

βBj

]
= 0

Here cα,β are constants depending on the choice of α, β, ǫijk is the Levi-Civita
symbol. From the above equality, we have that

∂t

∫
|∂αBi|2 +

∫ [
∂jvj |∂αBi|2 − 2∂jvi∂

αBi∂
αBj + 2ǫijk∂

α(∂jdk)∂
αBi

]

+2
∑

β<α

cα,β

∫ [
∂α−β(∂jvj)∂

βBi+∂
α−βvj∂

β(∂jBi)−∂α−β(∂jvi)∂
βBj

]
∂αBi = 0

Now, we sum up all the index |α| ≤ k, i, then there exist a constant c(k), such that

(6.15) ∂t‖B‖2Hk ≤ c(k)Mk+1(‖B‖2Hk + 1)

Therefore, by Gronwall’s lemma, we can get the conclusion.
(iii) We only prove the estimate for B. Let ω = B[z,B0] − B[z̃, B0], then we

have that

∂tωi + ∂jvjωi + vj∂jwi − ∂jviωj + ǫijk∂j(dk − d̃k)

+ ∂j(vj − ṽj)B̃i + (vj − ṽj)∂jB̃i − ∂j(vi − ṽi)B̃j = 0

So we have

∂t

∫
|ωi|2 +

∫
∂jvj |ωi|2 − 2

∫
∂jviωiωj + 2ǫijk

∫
∂j(dk − d̃k)ωi

+ 2

∫
∂j(vj − ṽj)B̃iωi + 2

∫
(vj − ṽj)∂jB̃iωi − 2

∫
∂j(vi − ṽi)B̃jωi = 0

∂t‖w‖2L2 ≤ c(‖z − z̃‖C1 + ‖v‖C1 + 1)‖w‖2L2 + c‖z − z̃‖C1(‖B̃‖2H1 + 1)

Now we use the same strategy as in (ii) to compute the estimate for Dω, without
entering the details, we finally can get

(6.16) ∂t‖w‖2H1 ≤ c(‖v − ṽ‖C2 + ‖v‖C2 + 1)‖w‖2H1 + c‖z − z̃‖C2(‖B̃‖2H2 + 1)

By Gronwall’s lemma and(6.12), this implies the inequality (6.14).
�
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6.2. The Faedo-Galerkin Approximate Scheme. Now let us consider the ap-
proximate equation (6.3) and (6.4). We will not try to find a solution. Instead,
we will find an approximate solution that satisfy the weak formulation of (6.3)
and (6.4) on a finite dimensional space XN , very like the Galerkin method. For
the torus T

3, we can choose XN = [span{ei, ẽi}Ni=1]
3 equipped with the 2-norm

(dimXN = 6N), where ei =
√
2 sin(2π~ki · x), ẽi =

√
2 cos(2π~ki · x) and {~ki}∞i=1 is

a permutation of Z3
+, where

Z
3
+ :=

{
(n1, n2, n3) ∈ Z

3| n1 ≥ 0
}
\
({

(0, n2, n3) ∈ Z
3| n2 < 0

}
∪
{
(0, 0, n3) ∈ Z

3| n3 ≤ 0
})
.

We can see that {ei, ẽi}∞i=1 is not only the normalized orthogonal basis of L2(T3),
but also the orthogonal basis of Hk(T3), k ∈ N. Now we set X =

⋃∞
n=1Xn, then X

is dense in Ck(T3,R3), k ∈ N. Because XN has finite dimensions (dimXN = 6N),
then there exist a constant c = c(N, k), such that

‖v‖XN
= ‖v‖L2 , ‖v‖Ck ≤ c(N, k)‖v‖XN

, ∀v ∈ XN

Now for every strictly positive function ρ ∈ L1(T3), ρ ≥ ρ > 0, we introduce a
family of operators

MN [ρ] : XN 7→ X∗
N ,
〈
MN [ρ]v, u

〉
=

∫

T3

ρv · u, ∀u, v ∈ XN

Then we have the following lemma:

Lemma 6.3. The family of operator MN [·] satisfies the following properties
(i) For any function ρ ∈ L1(T3), MN [ρ] ∈ L(XN , X

∗
N ).

(ii) For any strictly positive function ρ ∈ L1(T3), ρ ≥ ρ > 0, MN [ρ] is invertible,

M−1
N [ρ] ∈ L(X∗

N , XN ), and

(6.17) ‖M−1
N [ρ]‖L(X∗

N
,XN ) ≤ ρ−1

(iii) For any ρ1, ρ2 ∈ L1(T3), ρ1, ρ2 ≥ ρ > 0

(6.18) ‖M−1
N [ρ1]−M−1

N [ρ2]‖L(X∗
N
,XN ) ≤ c(N, ρ)‖ρ1 − ρ2‖L1

Proof. (i) For any u, v ∈ XN , we have

(6.19)
∣∣〈MN [ρ]v, u

〉∣∣ ≤ ‖v · u‖L∞

∫
|ρ| ≤ c(N)‖ρ‖L1‖v‖XN

‖u‖XN

(ii) For any v1, v2 ∈ XN , v1 6= v2, let u = v1 − v2, then we have

〈
MN [ρ]v1 −MN [ρ]v2, u

〉
=

∫
ρ|v1 − v2|2 > 0

So MN [ρ] : XN 7→ X∗
N is injective. Because XN has finite dimension, so MN [ρ] :

XN 7→ X∗
N is bijective, thus invertible. For any χ ∈ XN , set v = M−1

N [ρ]χ, then

‖χ‖X∗
N
‖v‖XN

≥
〈
χ, v

〉
=

∫
ρ|v|2 ≥ ρ‖v‖2L2 = ρ‖v‖2XN

=⇒ ‖M−1
N [ρ]χ‖XN

≤ ρ−1‖χ‖X∗
N

(iii) Because of the identity

M−1
N [ρ1]−M−1

N [ρ2] = M−1
N [ρ1](MN [ρ2]−MN [ρ1])M−1

N [ρ2]

Use the inequality in (6.17) and (6.19), we can get the result. �
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With the above properties, by standard fixed point argument, we can get the
following theorem:

Theorem 6.4. For any initial data 0 < h0 ∈ C∞(T3), divergence-free vector field
B0 ∈ C∞(T3,R3), P0, D0 ∈ L2(T3,R3) and any T > 0, there exists a solution
(hn, Bn, dn, vn) with hn ∈ C1([0, T ], Ck(T3)), Bn ∈ C1([0, T ], Ck(T3,R3)), zn =
(dn, vn) ∈ C([0, T ], Xn ×Xn) to the equation (6.1)-(6.3) in the following sense:
(i) (6.1) and (6.2) are satisfied in the classical sense, that is hn = h[zn, h0], Bn =
B[zn, B0].
(ii) (6.3) and (6.4) are satisfied in the weak sense on XN , more specifically, for
any t ∈ [0, T ] and any ψ ∈ XN ,

(6.20)

∫
hn(t)dn(t) · ψdx−

∫
D0 · ψdx =

∫ t

0

∫
Sε(hn, Bn, dn, vn) · ψdxds

(6.21)

∫
hn(t)vn(t) · ψdx−

∫
P0 · ψdx =

∫ t

0

∫
Nε(hn, Bn, dn, vn) · ψdxds

where

Sε(h,B, d, v) = −∇ · [h(d⊗ v − v ⊗ d)]− (−△)ld+ ε−1
[
∇× b− hd

]

Nε(h,B, d, v) = (hd·∇)d−∇·(hv⊗v)−(−△)lv+ε−1

[
∇ ·
(
B ⊗B

h

)
+∇

(
h−1

)
− hv

]

Proof. Step 1: Local Existence

Let us define a map Jn[·] : L2(T3,R3) 7→ X∗
n, such that

〈
Jn[f ], ψ

〉
=

∫
f · ψ, ∀ψ ∈ Xn.

Jn can be seen as the orthogonal projection of L2(T3,R3) onto X∗
n. We have

‖Jn[f ]‖X∗
n
≤ ‖f‖L2

Let us consider the operator Kn[·] : C([0, T ], Xn × Xn) 7→ C([0, T ], Xn × Xn),
which maps z = (d, v) 7→ Kn[z] = (Kn[z]

d,Kn[z]
v) such that

Kn[z]
d(t) = M−1

n [h[z, h0](t)]

(
Jn

[
D0 +

∫ t

0

Sε(h[z, h0], B[z,B0], d, v)(s)ds

])

Kn[z]
v(t) = M−1

n [h[z, h0](t)]

(
Jn

[
P0 +

∫ t

0

Nε(h[z, h0], B[z,B0], d, v)(s)ds

])

To prove the theorem, it suffices to show that Kn has a fixed point on C([0, T ], Xn×
Xn). First, we should prove that Kn is well defined. It is obvious that Kn[z](t) ∈
Xn ×Xn, ∀t ∈ [0, T ]. We only need to prove the continuity. In fact, we can prove
that Kn[z](t) is Lipschitz continuous in time on the set

Fκ,σ =
{
(d, v) ∈ C([0, σ], Xn×Xn)

∣∣‖v(t)‖Xn
, ‖d(t)‖Xn

≤ κ, ∀t ∈ [0, σ]
}
, 0 < σ ≤ T.

In fact, for any s, t ∈ [0, σ],
∥∥Kn[z]

v(t)−Kn[z]
v(s)

∥∥
Xn

≤
∥∥∥∥
(
M−1

n [h[z, h0](t)]−M−1
n [h[z, h0](s)]

)(
Jn

[
P0 +

∫ s

0

Nε(h,B, d, v)(r)dr

])∥∥∥∥
Xn

+

∥∥∥∥M−1
n [h[z, h0](t)]

(
Jn

[∫ t

s

Nε(h[z, h0], B[z,B0], d, v)(r)dr

])∥∥∥∥
Xn
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Now, we let

(6.22) C0 = max
{
(inf h0)

−1, suph0, ‖h0‖H4 , ‖B0‖H4 , ‖P0‖L2, ‖D0‖L2

}

By (6.10),(6.11),(6.12),(6.17),(6.18), we have

∥∥Kn[z]
v(t)−Kn[z]

v(s)
∥∥
Xn

≤ c(T, n, ε, κ, C0)

[∫ ∫ t

s

∣∣∂th[z, h0](r)
∣∣drdx+ |t− s|

]

≤ c(T, n, ε, κ, C0)|t− s|
By the same reason,

∥∥Kn[z]
d(t)−Kn[z]

d(s)
∥∥
Xn

≤ c(T, n, ε, κ, C0)|t− s|
Therefore, we have that

Kn[·] : Fκ,σ 7→W 1,∞([0, σ], Xn ×Xn) ⊂⊂ C([0, σ], Xn ×Xn).

Moreover, we have
∥∥Kn[z]

v(t)
∥∥
Xn

≤ ‖M−1
n [h0]Jn[P0]‖Xn

+ c(T, n, ε, κ, C0)t
∥∥Kn[z]

d(t)
∥∥
Xn

≤ ‖M−1
n [h0]Jn[D0]‖Xn

+ c(T, n, ε, κ, C0)t

Now if we choose κ = κ0 big enough and σ = σ0 small enough, for example

(6.23) κ0 ≥ 2(inf h0)
−1
(
‖P0‖L2 + ‖D0‖L2

)
, σ0 ≤ κ0

2c(T, n, ε, κ0, C0)

Then we have that Kn[·] : Fκ0,σ0 →֒ Fκ0,σ0 . By Arzelá-Ascoli theorem, Kn[Fκ0,σ0 ]
is a relatively compact subset of Fκ0,σ0 . Now if we can prove thatKn is a continuous
map, then by Schauder’s Fixed Point Theorem, there exist a fixed point z of Kn

on Fκ0,σ0 , such that z = Kn[z]. Now, let’s show that the map Kn is continuous on
Fκ0,σ0 . For z, z̃ ∈ Fκ0,σ0 , ∀t ∈ [0, σ0], we have,

∥∥Kn[z]
v(t)−Kn[z̃]

v(t)
∥∥
Xn

≤
∥∥∥∥
[
M−1

n [h[z, h0](t)]−M−1
n [h[z̃, h0](t)]

] (
Jn

[
P0 +

∫ t

0

Nε(h,B, d, v)(τ)dτ

])∥∥∥∥
Xn

+

∥∥∥∥M−1
n [h[z̃, h0](t)]

(
Jn

[∫ t

0

(
Nε(h,B, d, v)(τ) −Nε(h̃, B̃, d̃, ṽ)(τ)

)
dτ

])∥∥∥∥
Xn

≤ c(T, n, ε, κ0, C0)
∥∥h[z, h0](t)− h[z̃, h0](t)

∥∥
L1

+ c(T, n, ε, κ0, C0)
∥∥∥Nε(h[z, h0], B[z,B0], d, v)−Nε(h[z̃, h0], B[z̃, B0], d̃, ṽ)

∥∥∥
L2

t,x

By (6.13) and (6.14), we can finally have that

sup
t∈[0,T ]

∥∥Kn[z]
v(t)−Kn[z̃]

v(t)
∥∥
Xn

≤ c(T, n, ε, κ0, C0)
(∥∥v − ṽ

∥∥
C([0,σ0],Xn)

+
∥∥d− d̃

∥∥
C([0,σ0],Xn)

)

By similar argument, we can show that Kn is continuous on Fκ0,σ0 . Then by
Schauder’s Fixed Point Theorem, there is a “solution” on [0, σ0].

Step 2: Global Existence

From the above argument, we know that at small time interval [0, σ0] there exist a
solution z ∈ Fκ0,σ0 s.t. z = Kn[z]. Now we want to apply the fixed point argument
repeatedly to obtain the existence on the whole time interval [0, T ]. Now we suppose

that on [0, T0], T0 < T , we have a fixed point z = Kn[z], we use h̃0 = h[z, h0](T0),
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B̃0 = B[z,B0](T0), D̃0 = h̃0d(T0), P̃0 = h̃0v(T0) as our new initial data, and use
the local existence result above to extend the existence interval. This argument can
be applied as long as we can prove that there is still a fixed point in Fκ0,τ0 with our

new initial data (h̃0, B̃0, D̃0, P̃0) while the constants κ0, σ0 chosen in previous part
do not change. (They only depend on the initial data h0, B0, D0, P0, ε, T and n).

Now, we only need to prove that the constant C̃0 for the new initial data defined
in (6.22) has a uniform bound.

Suppose (hn, Bn, dn, vn) is the solution on [0, T0]. Because dn, vn ∈ C([0, T0], Xn)
is Lipschitz continuous, so it is differentiable almost everywhere. We take the
derivative on both sides of (6.20) and (6.21), then we have that, for any ϕ, ψ ∈ Xn,
any g ∈ C1(T3), φ ∈ C1(T3,R3),

∫
∂thn(t)g −

∫
hn(t)vn(t) · ∇g = 0

∫
∂tBn(t) · φ−

∫
(Bn ⊗ vn − vn ⊗Bn) : ∇φ+

∫
dn · (∇× φ) = 0

∫
∂t
(
hn(t)dn(t)

)
· ψ −

∫
hn(dn ⊗ vn − vn ⊗ dn) : ∇ψ +

∫
∇ldn : ∇lψ

+ ε−1

∫ [
− bn · (∇× ψ) + hndn · ψ

]
= 0

∫
∂t
(
hn(t)vn(t)

)
· ϕ−

∫
hnvn ⊗ vn : ∇ϕ−

∫ [
(hndn · ∇)dn

]
· ϕ

+

∫
∇lvn : ∇lϕ+ ε−1

∫ [
h−1
n (Bn ⊗Bn + I3) : ∇ϕ+ hnvn · ϕ

]
= 0

Now, let’s choose φ = bn(t) = Bn(t)/hn(t), ψ = εdn(t), ϕ = εvn(t) and g =
− 1

2

(
|hn(t)|−2+|bn(t)|2+ε|vn(t)|2+ε|dn(t)|2

)
, then add the these equations together,

we have the following equality

(6.24)
d

dt

∫
hn(t)

2

(
|hn(t)|−2 + |bn(t)|2 + ε|vn(t)|2 + ε|dn(t)|2

)

+

∫
hn(t)(|vn(t)|2 + |dn(t)|2) + ε

∫ [
|∇lvn(t)|2 + |∇ldn(t)|2

]
= 0

We denote Λn(t) =

∫
hn(t)

2

(
|hn(t)|−2 + |bn(t)|2 + ε|vn(t)|2 + ε|dn(t)|2

)
, then from

the above equality, we have

(6.25) sup
t∈[0,T0]

Λn(t), ‖h
1
2
nvn‖2L2

t,x
, ‖h

1
2
ndn‖2L2

t,x
, ε‖∇lvn‖2L2

t,x
, ε‖∇ldn‖2L2

t,x
≤ Λn(0)

By Cauchy-Schwartz inequality, we can easily get that

‖dn‖L2(L1), ‖vn‖L2(L1) ≤
√
2Λn(0), ‖∇lvn‖L2(L1) ≤ ε−1Λn(0)

So we get that ‖vn‖L2(W l,1) ≤ c(ε,Λn(0)). With l > 4, by Sobolev embedding, we
have that ‖vn‖L2(W 1,∞) ≤ c(ε,Λn(0)). So by the result in Lemma 6.2.(i), we have

that, there exist a constant c0 = c0(ε, T,Λn(0)) > 0 s.t. for all t ∈ [0, T0], x ∈ T
3,

0 < c0 ≤ hn(t, x) ≤ c−1
0
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So by (6.25), we have

sup
t∈[0,T0]

‖vn‖2L2, sup
t∈[0,T0]

‖dn‖2L2, sup
t∈[0,T0]

‖Pn‖2L2 , sup
t∈[0,T0]

‖Dn‖2L2 ≤ 2(εc0)
−1Λn(0)

Then by Lemma 6.2.(ii), we have that

sup
t∈[0,T0]

‖h‖H4 , sup
t∈[0,T0]

‖B‖H4 ≤ c(T, n, ε,Λn(0), ‖h0‖H4 , ‖B0‖H4)

So we know that C̃0 have a uniform bound that depends only on initial data. So
we can see from the choice of κ0, σ0 in (6.23) that by slightly modify the choice of
κ0, σ0, the fixed point method can be repeatedly applied on the same space Fκ0,σ0 ,
so we get the global existence on [0, T ].

�

7. Existence of the Dissipative Solution

7.1. Smooth approximation of initial data. We suppose that our initial data
h0 is a nonnegative Borel measure in C(T3,R)′, B0 ∈ C(T3,R3)′, satisfying∇·B0 =
0 in the sense of distributions. Moreover, we suppose 0 < Λ(h0, U0) < ∞, where
U0 =

(
L, B0

)
. Now we will find a family of smooth functions to approach our initial

data.

Let us define a positive Schwartz function ρ̃(x) = 1

(2π)
3
2
e−

|x|2

2 ∈ C∞(R3,R). We

have that
∫
R3 ρ̃(x)dx = 1. For any 0 < ε < 1, we define a function ρε on T

3 by

(7.1) ρε(x) =
∑

~k∈Z3

ρ̃ε(x+ ~k) =
∑

~k∈Z3

1

ε3
ρ̃

(
x+ ~k

ε

)
.

We can easily check that ρε(x) is also a smooth positive function on T
3, and we

have
∫
T3 ρε(x)dx = 1. Now, for 0 < ε < 1, we define

(7.2) hε0 = h0 ∗ ρε =
∫

T3

ρε(x− y)d h0(y), Bε
0 = B0 ∗ ρε

Because 0 < Λ(h0, U0) < ∞, then h0 ≥ 0, h0 6= 0. So we have that hε0 > 0 for any
0 < ε < 1. Besides, it’s easily to verify that Bε

0, h
ε
0 are smooth functions on T

3 and
converge to B0, h0 in the weak-∗ topology of C(T3)′. Moreover, for any smooth
function φ on T

3, we have

(7.3)

∫

T3

φ∇ ·Bε
0= −

∫

T3

∇φ(x) ·
(∫

T3

ρε(x− y)dB0(y)

)
dx

=

∫

T3

∇y

(∫

T3

φ(x)ρε(x− y)dx

)
dB0(y) = 0

So we know that

(7.4) ∇ · Bε
0 = 0.

Besides, we can get the following result.

Proposition 7.1. For all 0 < ε < 1, we have that

(7.5) Λ(hε0, U
ε
0 ) =

∫ |Bε
0|2 + 1

2hε0
≤ Λ(h0, U0)

Moreover, we have that

Λ(hε0, U
ε
0 ) → Λ(h0, U0) as ε→ 0.
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Proof. We know that

Λ(hε0, U
ε
0 )

= sup
a∈C(T3,R),A∈C(T3,R4)

a+1
2
|A|2≤0

∫
a(x)

(∫
ρε(x− y)dh0(y)

)
dx +

∫
A(x)

(∫
ρε(x− y)dU0(y)

)
dx

= sup
a∈C(T3,R),A∈C(T3,R4)

a+1
2
|A|2≤0

∫ (∫
a(x)ρε(x− y)dx

)
dh0(y) +

∫ (∫
A(x)ρε(x− y)dx

)
dU0(y)

By Cauchy-Schwarz inequality, we can easily know that
∣∣∣∣
∫
A(x)ρε(x− y)dx

∣∣∣∣
2

≤
(∫

|A(x)|2ρε(x − y)dx

)(∫
ρε(x − y)dx

)

≤ −2

∫
a(x)ρε(x − y)dx

So we get that

Λ(hε0, U
ε
0 ) ≤ sup

ã∈C(T3,R),Ã∈C(T3,R4)

ã+1
2
|Ã|2≤0

〈
h0, ã

〉
+
〈
U0, Ã

〉
= Λ(h0, U0)

Now because for each fixed continuous function a,A,
〈
hε0, a

〉
→
〈
h0, a

〉
,
〈
Uε
0 , A

〉
→〈

U0, B
〉
as ε→ 0, then we have that

lim inf
ε→0

Λ(hε0, U
ε
0 ) ≥ Λ(h0, U0)

Combining the above two results, we can get the convergence Λ(hε0, U
ε
0 ) → Λ(h0, U0)

as ε→ 0.
�

7.2. Existence of converging sequence. Now let
{
εk
}∞
k=1

be a sequence such
that 0 < εk < 1, lim

k→∞
εk = 0. By Theorem 6.4, for every n ∈ N

∗, there exists

a solution (hεkn , B
εk
n , dεkn , v

εk
n ) on [0, T ] that satisfies (6.1),(6.2),(6.20),(6.21) with

ε = εk and the initial data (hεk0 , B
εk
0 , 0, 0). For simplicity, we denote

Bεk
n = hεkn b

εk
n , Dεk

n = hεkn d
εk
n , P εk

n = hεkn v
εk
n ,

Λεk
n (t) =

∫
hεkn
2

((
hεkn
)−2

+
∣∣bεkn

∣∣2 + εk
∣∣dεkn

∣∣2 + εk
∣∣vεkn

∣∣2
)
, Λεk

0 =

∫ |Bεk
0

∣∣2 + 1

2hεk0

Lemma 7.2. Suppose (hεkn , B
εk
n , dεkn , v

εk
n ) is the solution in Theorem 6.4 with initial

data (hεk0 , B
εk
0 , 0, 0). Then there exist a constant C0 that depends only on h0, B0,

such that for all n and εk,

(7.6)
∥∥hεkn

∥∥
L∞

t (L1
x)
,
∥∥hεkn bεkn

∥∥
L∞

t (L1
x)
,
∥∥hεkn dεkn

∥∥
L2

t (L
1
x)
,
∥∥hεkn vεkn

∥∥
L2

t (L
1
x)

≤ C0

(7.7)
√
εk
∥∥∇ldεkn

∥∥
L2

t,x

,
√
εk
∥∥∇lvεkn

∥∥
L2

t,x

≤ C0

Proof. By Lemma 6.2, we know that hεkn is always positive. Since hεkn solves (6.1),
we have ∫

hεkn (t) =

∫
hεk0 =

∫ (∫
ρεk(x − y)dh0(y)

)
dx =

∫
h0
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By (6.25) and (7.5), we know that

(7.8) sup
t∈[0,T ]

∫
1 + |Bεk

n (t)|2
2hεkn (t)

+

∫ T

0

∫
hεkn (t)(|vεkn (t)|2 + |dεkn (t)|2)

+ εk

∫ T

0

∫ [
|∇lvεkn (t)|2 + |∇ldεkn (t)|2

]
≤
∫

1 + |Bεk
0 |2

2hεk0
≤ Λ(h0, U0)

By Cauchy-Schwartz inequality,
(∫ ∣∣Bεk

n (t)
∣∣
)2

≤
(∫ |Bεk

n (t)|2
hεkn (t)

)(∫
hεkn (t)

)
≤ 4Λ(h0, U0)

∫
h0

∫ T

0

(∫ ∣∣hεkn (t)vεkn (t)
∣∣
)2

≤
∫ T

0

∫
hεkn (t)

∣∣vεkn (t)
∣∣2
∫
hεkn (t) ≤ Λ(h0, U0)

∫
h0

We can get the conclusion easily from the above estimates.
�

From the above lemma, we know that (hεkn , B
εk
n , Dεk

n , P
εk
n ) are bounded in some

suitable spaces, so we can extract a converging subsequence.

Lemma 7.3. There exists a subsequence
{
ni

}∞
i=1

⊆ N
∗, h ∈ C([0, T ], C(T3,R)′w∗),

B ∈ C([0, T ], C(T3,R3)′w∗), P,D ∈ C([0, T ]× T
3,R3)′, such that

h
εni
ni → h in C([0, T ], C(T3,R)′w∗), B

εni
ni → B in C([0, T ], C(T3,R3)′w∗)

h
εni
ni

w∗

−−→ h in C([0, T ]× T
3,R)′

B
εni
ni

w∗

−−→ B, P
εni
ni

w∗

−−→ P, D
εni
ni

w∗

−−→ D in C([0, T ]× T
3,R3)′

Moreover, we have that (h,B) is bounded in C0, 12 ([0, T ], C(T3,R4)′w∗) by some con-
stant that depends only on T and (h0, B0).

Proof. For any smooth function f ∈ C∞(T3,R), we have

(7.9)

∣∣∣∣
∫

T3

(
hεkn (t, x) − hεkn (s, x)

)
f(x)dx

∣∣∣∣

=

∣∣∣∣
∫ t

s

∫

T3

P εk
n (σ, x) · ∇f(x)dσdx

∣∣∣∣

≤
(∫ t

s

∫

T3

|P εk
n (σ, x)|2
hεkn (σ, x)

dσdx

) 1
2
(∫ t

s

∫

T3

|∇f(x)|2hεkn (σ, x)dσdx

) 1
2

≤ ‖∇f‖∞
(
Λ(h0, U0)

〈
h0, 1

〉) 1
2 |t− s| 12

Besides, for any smooth function φ ∈ C(T3,R3)

(7.10)

∣∣∣∣
∫

T3

(
Bεk

n (t, x)−Bεk
n (s, x)

)
· φ(x)dx

∣∣∣∣

=

∣∣∣∣
∫ t

s

∫

T3

(
Bεk

n × vεkn + dεkn
)
· (∇× φ)

∣∣∣∣

≤
√
2‖∇× φ‖∞

(∫ t

s

∫

T3

|P εk
n |2 + |Dεk

n |2
hεkn

) 1
2
(∫ t

s

∫

T3

|Bεk
n |2 + 1

hεkn

) 1
2

≤ 2‖∇× φ‖∞Λ(h0, U0)|t− s| 12
From (7.6), we can easily know that, for all εk, n and t ,the total variation of
(hεkn , B

εk
n ) is bounded. By Banach-Alaoglu theorem, the closed ball BR(0) in
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C(T3,R4)′ is compact with respect to the weak-∗ topology. From (7.9),(7.10),

we know that {(hεnn , Bεn
n )}∞n=1 is uniformly bounded in C0, 12 ([0, T ], C(T3,R4)′w∗)

by some constant that depends only on T and (h0, B0). So by Arzelà-Ascoli’s

theorem, we can extract a subsequence {(hεni
ni , B

εni
ni )}∞i=1 that converge to some

measures denoted by (h,B) in C([0, T ], C(T3,R4)′w∗), and (h,B) is bounded in

C0, 12 ([0, T ], C(T3,R4)′w∗) by the same constant. Besides, from (7.6), we know that
the total variations of P εn

n , Dεn
n is uniformly bounded in C([0, T ]× T

3,R3)′, so we
can extract a sub sequence that weakly converge to P,D ∈ C([0, T ]× T

3,R3)′. So
we get the conclusion.

�

7.3. The limit is a dissipative solution. By Lemma 7.3, we can extract a
subsequence (h

εni
ni , B

εni
ni , D

εni
ni , P

εni
ni ) that converge strongly to a function (h,B)

in C([0, T ], C(T3,R4)′w∗) and weakly-∗ to D,P in C([0, T ]×T
3,R3)′. But it is not

clear if these functions are dissipative solutions or not. In the following part, we
will prove that (h,B,D, P ) satisfies all the requirements in Definition 3.2, thus it
is indeed a dissipative solution of (DMHD) with the initial data (h0, B0).

Firstly, we know that (h
εni
ni , B

εni
ni )|t=0 = (h

εki
0 , B

εni

0 ) converge weakly-∗ to (h0, B0),
so (h,B)|t=0 = (h0, B0).

Secondly, for any u ∈ C1([0, T ] × T
3,R) and t ∈ [0, T ], the limit h, P satisfy

(3.22). To prove this, for any δ > 0, let’s find a smooth non increasing function
on [0, T ] denoted by Θδ, such that Θδ(s) = 1, s ∈ [0, t], Θδ(s) = 0, s ∈ [t + δ, T ],

0 ≤ Θδ(s) ≤ 1, s ∈ [t, t+ δ]. Because (h
εni
ni , P

εni
ni ) satisfies (3.1), then we have

∫ T

0

∫
Θδ(s)

[
∂su(s, x)h

εni
ni (s, x) +∇u(s, x) · P εni

ni (s, x)
]
dxds

=−
∫ t+δ

t

∫
Θ′

δ(s)u(s, x)h
εni
ni (s, x)dxds −

∫
u(0, x)h

εni
ni (0, x)dx

Because ∀s, hεni
ni (s)

w∗

−−→ h(s), P
εni
ni

w∗

−−→ P as i → ∞ and the total variation of

h
εni
ni , P

εni
ni is uniformly bounded, so by the weak-∗ convergence and Lebesgue’s

dominated convergence theorem, let i→ ∞, we have
∫ T

0

∫
Θδ

(
h∂su+ P · ∇u

)
= −

∫ t+δ

t

∫
Θ′

δ(s)u(s)h(s) −
∫
u(0)h(0)

Now because h ∈ C([0, T ], C(T3,R)′w∗), so
〈
h(s), u(s)

〉
is a continuous function on

s, then we let δ → 0, we have

−
∫ t+δ

t

Θ′
δ(s)

〈
h(s), u(s)

〉
ds −→∈ u(t)h(t)

Because Θδ → 1[0,t] for every s ∈ [0, T ], by Lebesgue’s dominated convergence
theorem, pass the limit δ → 0 on the left hand side, we finally get (3.22).

Moreover, because∇·Bεni
ni (t) = 0. So for any φ ∈ C1(T3,R), we have

〈
B

εni
ni (t),∇φ

〉
=

0. By taking the limit, we get
〈
B(t),∇φ

〉
= 0. So (3.23) is also satisfied.

At last, we will prove that (h,B,D, P ) satisfies (3.24). We first suppose that for
fixedN , 0 < h∗ ∈ C1([0, T ]×T

3,R), b∗ ∈ C1([0, T ]×T
3,R3), v∗, d∗ ∈ C1([0, T ], XN)

and r is a big number such that Qr(w
∗) is positive definite for all t, x. Here Q is

defined in (3.9). Now, let us denote

U =
(
L, B

)
, Ui =

(
L, Bεni

ni

)
∈ C([0, T ], C(T3,R4)′)
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W =
(
U,D, P

)
, Wi =

(
Ui, D

εni
ni , P

εni
ni

)
∈ L2([0, T ], C(T3,R10)′)

Ũ = U − V h =
(
L − hh∗−1, B − hb∗

)
, Ũi = Ui − V h

εni
ni

W̃ =W − Fhds =
(
Ũ ,D − hd∗, P − hv∗

)
, W̃i =Wi − Fh

εni
ni

V =
(
h∗−1, b∗

)
, F =

(
h∗−1, b∗, d∗, v∗

)

Ei(t) =

∫
1

2h
εni
ni

{
(B

εni
ni −hεni

ni b
∗)2+

(
1− h

εni
ni

h∗

)2

+εni

[
(D

εni
ni − h

εni
ni d

∗)2 + (P
εni
ni − h

εni
ni v

∗)2
] }

Now, because (h
εni
ni , B

εni
ni , v

εni
ni , d

εni
ni ) is a some kind of “solution” to (6.1)-(6.3), we

have that for any ϕ, ψ ∈ Xni
, any g ∈ C1(T3), φ ∈ C1(T3,R3),

∫
∂th

εni
ni (t)g −

∫
h
εni
ni (t)v

εni
ni (t) · ∇g = 0

∫
∂tB

εni
ni (t) · φ−

∫
(B

εni
ni ⊗ v

εni
ni − v

εni
ni ⊗B

εni
ni ) : ∇φ+

∫
d
εni
ni · (∇× φ) = 0

∫
∂t
(
h
εni
ni (t)v

εni
ni (t)

)
· ϕ−

∫
h
εni
ni v

εni
ni ⊗ v

εni
ni : ∇ϕ−

∫ [
(h

εni
ni d

εni
ni · ∇)d

εni
ni

]
· ϕ

+

∫
∇lv

εni
ni : ∇lϕ+ ε−1

ni

∫ [
h
εni
ni

−1
(B

εni
ni ⊗B

εni
ni + I3) : ∇ϕ+ h

εni
ni v

εni
ni · ϕ

]
= 0

∫
∂t
(
h
εni
ni (t)d

εni
ni (t)

)
· ψ −

∫
h
εni
ni (d

εni
ni ⊗ v

εni
ni − v

εni
ni ⊗ d

εni
ni ) : ∇ψ

+

∫
∇ld

εni
ni : ∇lψ + ε−1

ni

∫ [
− b

εni
ni · (∇× ψ) + h

εni
ni d

εni
ni · ψ

]
= 0

For ni ≥ N , we can shoose φ = b
εni
ni − b∗, ψ = εni

(
d
εni
ni − d∗

)
, ϕ = εni

(
v
εni
ni − v∗

)
,

and

g =
1

2

[
|h∗|−2 + |b∗|2 − |hεni

ni |−2 − |bεni
ni |2 + εni

(
|v∗|2 + |d∗|2 − |vεni

ni |2 − |dεni
ni |2

)]

With the specific chosen test function, we can get that (after a long progress of
computation, we skip the tedious part here)

(7.11)
d

dt
Ei(t) +

∫
W̃T

i Q(w∗)W̃i

2h
εni
ni

+

∫
W̃i · L(w∗)− εni

R̃i(t)

= −εni

∫ (∣∣∇ld
εni
ni

∣∣2 +
∣∣∇lv

εni
ni

∣∣2
)
≤ 0

Here

R̃i(t)=

∫
D

εni
ni ⊗D

εni
ni − P

εni
ni ⊗ P

εni
ni

2h
εni
ni

:
(
∇v∗ +∇v∗T

)
+

∫
P

εni
ni ⊗D

εni
ni

h
εni
ni

:
(
∇d∗ −∇d∗T

)

+

∫ (
∇
( |v∗|2 + |d∗|2

2

)
− ∂tv

∗

)
· P εni

ni −
∫
∂td

∗ ·Dεni
ni +

∫
h
εni
ni ∂t

( |v∗|2 + |d∗|2
2

)

+

∫ [
∇lv

εni
ni : ∇lv∗ +∇ld

εni
ni : ∇ld∗

]
−
∫
D

εni
ni · ∇

(
d
εni
ni · v∗

)

Then, for any r such that Qr(w
∗) > 0 for all t, x, we have

(
d

dt
− r

)
Ei(t) +

∫
W̃T

i Qr(w
∗)W̃i

2h
εni
ni

+

∫
W̃i · L(w∗)− εni

R̃i,r(t) ≤ 0
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R̃i,r = R̃i − r

∫
h
εni
ni

2

[
(d

εni
ni − d∗)2 + (v

εni
ni − v∗)2

]

So we have

e−rtEi(t) +

∫ t

0

e−rs

[∫
W̃T

i Qr(w
∗)W̃i

2h
εni
ni

+

∫
W̃i · L(w∗)− εni

R̃i,r(s)

]
ds ≤ Ei(0)

Because Ei(t) ≥ Λ(h
εni
ni (t), Ũi), then we have that

(7.12) e−rtΛ(h
εni
ni (t), Ũi(t)) + Λ̃(h

εni
ni , W̃i, e

−rsQr(w
∗); 0, t)

+

∫ t

0

e−rs

(∫
W̃i · L(w∗)− εni

R̃i,r(s)

)
ds ≤ Ei(0)

Notice that h
εni

0
w∗

−−→ h0 in C(T3,R)′, and

Ei(0) = Λ(h
εni

0 , U
εni

0 ) +
〈
h
εni

0 ,
1

2
|V (0)|2

〉
−
〈
U

εni

0 , V (0)
〉
+ εni

〈
h
εni

0 ,
|v∗|2 + |d∗|2

2

〉

By Proposition 7.1, we know that the right hand side of (7.12) Ei(0) → Λ(h0, Ũ0)

as εni
→ 0. By Lemma 7.2, we know that

√
εni

∇lv
εni
ni ,

√
εni

∇ld
εni
ni are uniformly

bounded in L2
t,x, thus

√
εni

v
εni
ni ,

√
εni

d
εni
ni are uniformly bounded in L2(W 1,∞).

Moreover P
εni
ni , D

εni
ni , h

εni
ni are uniformly bounded in L2

t (L
1
x), so we have that

εni

∣∣∣∣
∫ t

0

er(t−s)R̃i,r(s)ds

∣∣∣∣ ≤
√
εni

(1 +
√
εni

)(1 + |r|)C

Here C only depends on v∗, b∗, d∗, h0, B0. So it goes to 0 as εni
→ 0. By the weak-*

convergent of P
εni
ni , D

εni
ni ∈ C′

t,x and similar method as we did for (3.22), we have

∫ t

0

∫
e−rsW̃i · L(w∗) →

∫ t

0

∫
e−rsW̃ · L(w∗)

Besides, we have that,

lim inf
i→∞

Λ(h
εni
ni (t), Ũi(t)) ≥ Λ(h(t), Ũ(t))

lim inf
i→∞

Λ̃(h
εni
ni , W̃i, e

−rsQr(w
∗); 0, t) ≥ Λ̃(h, W̃ , e−rsQr(w

∗); 0, t)

Combining the above results, we take the lower limit on both side of (7.12), then we
can just get the inequality (3.24) for all fixed N , 0 < h∗ ∈ C1([0, T ]× T

3,R), b∗ ∈
C1([0, T ]×T

3,R3), v∗, d∗ ∈ C1([0, T ], XN). Now for any v∗, d∗ ∈ C1([0, T ]×T
3,R3)

and r such that Qr(w
∗) is positive definite, because v∗, d∗ is continuous, then there

exist r′ < r such that Qr′(w
∗) is still positive definite. Because

⋃∞
n=1 C

1([0, T ], Xn)
is dense in C1([0, T ]×T

3,R3), So we can find a sequence {v∗n}, {d∗n} ∈ C1([0, T ], Xn)
that converge to v∗, d∗ in C1([0, T ]×T

3,R3) and Qr(w
∗
n) is always positive definite,

where w∗
n = (h∗−1, b∗, d∗n, v

∗
n). Now let us denote

W̃n = W̃ + F̃nh, F̃n =
(
0, 0, d∗ − d∗n, v

∗ − v∗n
)

By Lebesgue’s dominated convergence theorem, we have that
∫ t

0

∫
e−rsW̃n · L(w∗

n) →
∫ t

0

∫
e−rsW̃ · L(w∗)
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Besides, we have

(7.13) Λ̃(h, W̃n, e
−rsQr(w

∗
n); 0, t) = Λ̃(h, W̃ , e−rsQr(w

∗
n); 0, t)

+

∫ t

0

e−rs
〈
W̃ ,QnF̃n

〉
+

∫ t

0

e−rs
〈
h,

1

2
|
√
QnF̃n|2

〉

Now we would like to take the limit n→ ∞. The following lemma will be useful:

Lemma 7.4. Suppose Qn, Q ∈ C([0, T ] × T
3,Rd2

) are positive definite, ‖Qn −
Q‖∞ → 0 as n→ ∞, then lim inf

n→∞
Λ̃(ρ,W,Qn; 0, t) ≥ Λ̃(ρ,W,Q; 0, t).

Proof. The proof is quite straightforward. For any a ∈ C([0, T ] × T
3,R), A ∈

C([0, T ]× T
3,Rd) such that a+ 1

2 |
√
Q−1A|2 ≤ 0, we have

∫ t

0

∫ (
aρ+A ·W

)
=

∫ t

0

∫ (
ãρ+A ·W

)
+

∫ t

0

∫
(a− ã)ρ

where

ã = a+
1

2
|
√
Q−1A|2 − 1

2
|
√
Q−1

n A|2

Since ã+ 1
2 |
√
Q−1

n A|2 ≤ 0, we have
∫ t

0

∫ (
aρ+A ·W

)
≤ Λ̃(ρ,W,Qn; 0, t) +

1

2
‖ρ‖TV

∥∥∥∥|
√
Q−1

n A|2 − |
√
Q−1A|2

∥∥∥∥
∞

Take the lower limit on both sides, we have, for any (a,A) s.t. a+ 1
2 |
√
Q−1A|2 ≤ 0,

∫ t

0

∫ (
aρ+A ·W

)
≤ lim inf

n→∞
Λ̃(ρ,W,Qn; 0, t)

So we have Λ̃(ρ,W,Q; 0, t) ≤ lim inf
n→∞

Λ̃(ρ,W,Qn; 0, t). �

Now, by taking the lower limit as n → ∞ in (7.13), we can get that (3.24) is
valid for C1 functions. So we have completely proved the existence of a dissipative
solution. We summarize our result in the following theorem.

Theorem 7.5. Suppose that B0 ∈ C(T3,R3)′, h0 ∈ C(T3,R)′, satisfying that
∇ · B0 = 0 in the sense of distributions and Λ(h0, U0) < ∞, where U0 = (L, B0).
Then there exists a dissipative solution (h,B,D, P ) of (DMHD) with initial value
(h,B)|t=0 = (h0, B0).

8. Appendix: proof of Lemma 3.1

Let us consider a more general case where (h,B,D, P ) only satisfies the conti-
nuity equation (3.1) and the divergence-free constraint (3.4). We denote

φ = ∂tB +∇×
(
D +B × P

h

)
,

ψ = D −∇×
(
B

h

)
, ϕ = P −∇ ·

(
B ⊗B

h

)
−∇

(
1

h

)
,

Note that φ, ψ, ϕ vanish when (h,B,D, P ) is exactly a solution to the Darcy MHD
(3.1)-(3.4). We also use the non-conservative variables, namely,

τ =
1

h
, b =

B

h
, d =

D

h
, v =

P

h



MAGNETOHYDRODYNAMIC REGIME OF THE BORN-INFELD ELECTROMAGNETISM 31

and, for the convenience of writing, let’s denote

U =
(
1, B

)
, u∗ = (h∗−1, b∗), W = (1, B,D, P ), w∗ = (h∗−1, b∗, d∗, v∗).

To prove the lemma, let’s start with computing the time derivative of the energy

S(t) =

∫

T3

|U |2
2h

=

∫

T3

1 +B2

2h

Quite similar to (3.7), we have

(8.1)

S′(t)=

∫
b · ∂tB −

∫
1

2
(τ2 + b2)∂th

=

∫
b ·
[
φ−∇× (B × v + d)

]
+

∫
1

2
(τ2 + b2)∇ · P

=

∫
b · φ−

∫
(B × v + d) · (∇× b)−

∫ [
τ∇τ +∇(b2/2)

]
· P

=

∫
b · φ−

∫
d · (∇× b)−

∫
v ·
(
∇ · (b⊗B) +∇τ

)

=

∫ (
b · φ+ d · ψ + v · ϕ

)
−
∫
D2 + P 2

h

Now, let’s look at the relative entropy. Since Ũ = U − hu∗, we have
∫ ∣∣Ũ

∣∣2

2h
= S(t) +

∫
h
∣∣u∗
∣∣2

2
−
∫
U · u∗

Therefore, we have
(8.2)

d

dt

∫ ∣∣Ũ
∣∣2

2h
= S′(t) +

∫
∂th

2

∣∣u∗
∣∣2 +

∫
hu∗ · ∂tu∗ −

∫
∂tU · u∗ −

∫
U · ∂tu∗

= S′(t)−
∫ ∇ · P

2

∣∣u∗
∣∣2 −

∫
∂tB · b∗ −

∫
Ũ · ∂tu∗

= S′(t) +

∫
P

2
· ∇
∣∣u∗
∣∣2 −

∫
b∗ ·

[
φ−∇× (B × v + d)

]
−
∫
Ũ · ∂tu∗

Now let’s use a small trick to write 0 as,

0 =

∫ [
d∗ · (D −∇× b− ψ) + v∗ · (P −∇ · (b ⊗B)−∇τ − ϕ)

]

=

∫ (
D · d∗ + P · v∗ − d∗ · ψ − v∗ · ϕ

)
+

∫ 


3∑

i,j=1

∂jv
∗
i

h
BiBj +

∇ · v∗
h

−
(
∇× d∗

)
·B

h




Then by (8.1),(8.2), we have,
(8.3)

d

dt

∫ ∣∣Ũ
∣∣2

2h
=

3∑

i,j=1

∫ [∂jv∗i
h

BiBj −
∂jb

∗
i − ∂ib

∗
j

h
BiPj

]
−
∫
D2 + P 2

h
+

∫ ∇ · v∗
h

+

∫ [(∇× b∗
)
·D

h
−
(
∇× d∗

)
· B

h

]
+

∫ [
D · d∗ + P ·

(
v∗ +

∇|u∗|2
2

)]

−
∫
U · ∂tu∗ +

∫ [
φ ·
(
b− b∗

)
+ ψ ·

(
d− d∗

)
+ ϕ ·

(
v − v∗

)]

= −
∫
WTQ(w∗)W

2h
−
∫
Ũ · ∂tu∗ +

∫ [
D · d∗ + P ·

(
v∗ +

∇|u∗|2
2

)]

+

∫ [
φ ·
(
b− b∗

)
+ ψ ·

(
d− d∗

)
+ ϕ ·

(
v − v∗

)]
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Now since W = W̃ + hw∗, we can rewrite the quadratic like term as
∫
WTQ(w∗)W

2h
=

∫ (
W̃ + hw∗

)T
Q(w∗)

(
W̃ + hw∗

)

2h

=

∫ (
W̃TQ(w∗)W̃

2h
+ W̃ ·Q(w∗)w∗ +

w∗TQ(w∗)w∗

2
h

)

A direct computation gives that

Q(w∗)w∗ = L(w∗)−(∂tu
∗, 0, 0)+

(
∇ ·
(
d∗ × b∗ − h∗−1v∗

)
,−∇

(
b∗ · v∗

)
, d∗, v∗ +

1

2
∇
∣∣u∗
∣∣2
)

w∗TQ(w∗)w∗

2
=
v∗

2
·∇
∣∣u∗
∣∣2−b∗ ·∇

(
b∗ ·v∗

)
+h∗−1∇·

(
d∗×b∗−h∗−1v∗

)
+d∗2+v∗2

Therefore, since B is divergence free, we have
∫
WTQ(w∗)W

2h
=

∫ [
W̃TQ(w∗)W̃

2h
+ W̃ · L(w∗)− Ũ · ∂tu∗ +D · d∗ + P ·

(
v∗ +

∇|u∗|2
2

)]

So, finally, we have
(8.4)

d

dt

∫ ∣∣Ũ
∣∣2

2h
+

∫
WTQ(w∗)W

2h
+

∫
W̃ ·L(w∗) =

∫ [
φ·
(
b−b∗

)
+ψ·

(
d−d∗

)
+ϕ·

(
v−v∗

)]

Especially, when (h,B,D, P ) is a solution of the Darcy MHD (3.1)-(3.4), i.e.,
ψ = φ = ϕ = 0, we obtain (3.8). Moreover, if (h∗, h∗b∗, h∗d∗, h∗v∗) is also a solution
of (3.1)-(3.4), it is quite easy to verify that Lh(w

∗),LB(w
∗),LD(w∗),LP (w

∗) respec-
tively correspond to the equation for the non-conservative variables (τ, b, d, v), thus
vanish.

References
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