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ABSTRACT1

The fundamental diagram is a key component of traffic flow. It describes equilibrium traffic states2

and their propagation on a traffic network. The knowledge of its parameters is of paramount im-3

portance to understand traffic properties and its characteristics. It is also critical to calibrate the4

elements of dynamic traffic flow simulation models and reproduce traffic states on road networks.5

The paper is concerned with developing a method for estimating fundamental diagram parameters6

that combines loop data and probe data.7

Loop data are considered as boundary conditions of the problem. Travel times between (any points8

located between) the loop can be estimated based on the fundamentals of the kinematic wave the-9

ory. The optimal fundamental diagram parameters are computed so that the discrepancy between10

estimated travel times and actual travel times from probes is minimal.11

The method is validated on simulated error-free data. The results demonstrate the accuracy of the12

method when applied on an error-free dataset. The method is then implemented using realistic13

data, i.e. aggregated and noised beforehand. It demonstrates its robustness and the results are en-14

couraging for developing a algorithm that calibrates online and automatically fundamental diagram15

parameters.16
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INTRODUCTION1

Calibration of the fundamental diagram: state of the art2

The Fundamental Diagram (FD) relates traffic flow and density. Under time-stationary and space-3

homogeneous conditions, it describes equilibrium traffic states and their propagation on a traffic4

network. The knowledge of its functional form and parameters is of paramount importance to5

understand traffic properties. It is also a key element of dynamic traffic flow simulation models6

that aim to reproduce traffic conditions on road networks.7

The early studies (1930-1970) were based on the analysis of flow and speed observed at8

fixed locations of the network. Many functional forms have been proposed to describe the speed-9

flow relationship and interested reader may refer to (1) for a comprehensive overview. Then speed-10

flow and flow-density relationships have been estimated based on data collected from loop detec-11

tors, commonly aggregated over space (multilanes) and time (2, 3, 4). However, three drawbacks12

can be pointed out when loop data is used (5): (i) aggregated data presents mixed traffic states that13

cannot be considered as equilibrium, (ii) Steady state can be difficult to capture and (iii) the state14

propagations cannot be capture at fixed location.15

Alternatively, (6) proposed a method to identify steady state periods in order not to mix16

different traffic states measured by loops. The results presented by the author demonstrate the17

capability of the method to capture traffic steady-states. However, the method requires manual18

intervention to adjust the steady state period and can hardly be automated.19

More recently, (7) have proposed to estimate FD parameters by capturing wave propaga-20

tion through successive loops. This method has proved its ability to capture traffic dynamics and21

estimate the FD, in particular its congested branch. However, it requires data to be collected on22

successive loops without any entry or exit in between, which limits its practical use.23

During the last decade, trajectory dataset (8) have been widely used to analyze micro-24

scopic speed-spacing relationship (9, 10, 11, 12), which is closely related to the macroscopic25

flow-density relationship. (13) have proposed to derive macroscopic FD parameters from indi-26

vidual car-following parameters. Despite technological advances, trajectory data collection is still27

expensive to collect and requires time-consuming data post processing.28

However, intelligent Transportation Systems have brought a new generation of Lagrangian29

traffic data: probe data. Probes provide Lagrangian observations such as individual position, speed30

and travel times. They are highly complementary to loop sensors, which provide Eulerian observa-31

tions relative to the stream (flow-density-speed). During the last few years, the literature provided32

proposals using probe and loop data, mainly for traffic state estimation or travel time estimation33

(14, 15, 16, 17). However, no method has yet been proposed to calibrate FD parameters combin-34

ing probe and loop data. This is the purpose of this paper, which objectives is to pave the way to35

rethink and refine existing estimation methods and to propose a new method for estimating FD.36

Traffic flow model37

The LWR model introduced by (18) and (19) describes the evolution of traffic density k in time
and space with a conservative form:

∂k

∂t
+
∂Q(k)

∂x
= 0 (1)

Q(k) is the fundamental diagram, which is assumed to be triangular and time-space invariant in38

this paper. Its parameters are: u the free-flow speed, w the wave speed and kx the jam density.39
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The LWR model is an initial-value problem. Given initial/boundary conditions, the model
propagates traffic states in time and space. It is possible to solve the problem by using the method
of characteristics. A characteristic is a curve that starts from a known initial/boundary condition
and along which the quantity k is invariant. A discontinuity in the initial/boundary conditions
initiate shockwave traveling in time and space with a speed c, given by the Rankine-Hugoniot
formula:

c =
qB − qA
kB − kA

(2)

, where A (qA, kA) and B (qB, kB) are the traffic states around the discontinuity. Given a well-1

posed definition of initial/boundary conditions, it is possible to determine k(x, t) everywhere in2

the solution domain by the method of characteristics (20).3

Objectives and content of the paper4

This paper aims to propose a method that estimates automatically FD parameters combining data5

from loops and probes. The method relies on the kinematic wave theory. In its current version, it6

requires two successive loop sensors without entry or exit in between and probe data collected on7

a section between the loops. In contrast to the previous method proposed by (7), it does not require8

any wave propagation from one loop to another.9

The paper is organized as follows. The recipe of the calibration methodology is presented10

in the next section. Then the method is validated in two-steps. First, the accuracy of the method11

is verified applying on synthetic error-free dataset. Second, the method is applied on synthetic12

aggregated-noised dataset. It illustrates the sensitivity of the results to the data resolution: aggre-13

gation period of loop data, frequency of probe data and penetration rate of probe vehicles. It also14

demonstrates the possibility of operational implementation. Finally, a discussion on operational15

implementation and other applications is proposed.16

RECIPE FOR CALIBRATING THE FD17

Let us consider a homogeneous link with a length L. The recipe of the method is the following.18

First, traffic counts given by two loop detectors are considered as the boundary conditions of the19

problem. Second, traffic states between loops are estimated based on the method of the charac-20

teristics, for a given set of FD parameters. Third, probe data are emulated and then compared to21

observed probe data. Finally, the optimal FD parameters minimize the difference between emu-22

lated and observed probe data.23

Boundary conditions24

Let ∆(t) and Σ(t) be the upstream flow (demand) and the downstream flow (supply) measured25

by two consecutive loop detectors. Considering ∆ and Σ as the initial/boundary conditions of the26

problem, it is then possible to estimate the traffic states at any point in between. The solution of27

the problem consists in propagating traffic states by using the method of characteristic.28

Traffic states propagation29

Upstream and downstream flows can be approximated as step functions with respect to time, with:30

∆(i.δt) = qi∆ and Σ(j.δt) = qjΣ.31

If ∆(t) presents a discontinuity at the time t = i.δt, then a characteristic ũi emanates from the32
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upstream boundary conditions. Similarly, if Σ(t) presents a discontinuity at the time t = j.δt, a1

characteristic called w̃j emanates from the downstream boundary conditions.2

When a congestion occurs, the method of characteristics can then be applied to estimate3

the trajectory of the front wave, which separates upstream free-flow states from the downstream4

congested states. In the case of stepwise boundary conditions, the resulting front wave trajectory5

is piece-wise linear. Let Pn = {Tn, Xn} be the nth coordinates of the front wave trajectory. We6

propose to calculate the coordinates of the point Pn+1 by using the Rankine-Hugoniot formula as7

illustrated in Figure 1.8

w̃j w̃j+1

ũi ũi+1δtΣ

δt∆

(1− β)δtΣ

(1− α)δt∆

•
Pn

• •

δTΣ

δT∆

FIGURE 1 Research of the point Pn+1

Graphically, Pn is located between the characteristics ũi, ũi+1, w̃j and w̃j+1. A character-9

istic (black solid line in Figure 1) emanates from Pn with the Wi,j .10

One the one hand, the characteristic intersects ũi+1 which yields:

δT∆ =
(1− α)δt∆

1− Wi,j

u

(3)

where

α =
1

δt∆
.

(
Tn −

Xn

u
− i.δt∆

)
(4)

On the other hand, the characteristic intersect w̃j+1, which yields:

δTΣ =
(1− β)δtΣ

1 +
Wi,j

w

(5)

where

β =
1

δtΣ
.

(
Tn −

L−Xn

w
− j.δtΣ

)
(6)
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FIGURE 2 Front Wave Trajectory

The coordinates of the point Pn+1 follows:1

Pn+1 =

{
Tn+1 = Tn + min(δT∆, δTΣ)

Xn+1 = Xn +Wi,j.min(δT∆, δTΣ)
(7)

The trajectory of the front wave can then been calculated by a recursive process, as illus-2

trated in Figure 2.3

The solution of the LWR model presented above finally provides traffic states of any inter-4

mediate location between loops. Upstream the front wave, traffic states emanate from the upstream5

boundary ∆(t) and travels with a speed u. Downstream the front wave, traffic states emanate from6

the downstream boundary Σ(t) and travels with a speed −w.7

Simulation process of probe data8

We propose to simulate probe data based on the aforementioned solution. Commonly, probe data9

provides time-position of probe vehicles at fixed time intervals. It consists in successive time-10

position, as illustrated in Figure 3 (red filled circles). (tn0 , x
n
0 ) and (tn1 , x

n
1 ) are the initial and the11

later position of the nth probe vehicle respectively. Considering the initial position of the probe12

vehicle (tn0 , x
n
0 ), the final position can easily be simulated from the results presented above. If the13

initial position (tn0 , x
n
0 ) is upstream the front wave, the vehicle is free-flowing and drives at the14

speed u. When it crosses the front wave, it turns into a congested state with a reduced speed and15

its motion is then driven by traffic conditions downstream. Then, its speed can change every time16
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FIGURE 3 Calculation of enj (w, kx) : discrepancy between collected and simulated probe
data

a wave w̃ is crossed. Its final position xn,sim1 at the later time tn1 can easily be derived, as illustrated1

in Figure 3 (blue circles).2

Calibration3

The calibration procedure aims to find the set of FD parameters that minimizes the discrepancy
between simulated and observed probe data. The calibration of the free-flow speed is straightfor-
ward by using loop detectors only. Consequently the paper focuses on the calibration of congested
parameters w and kx.
It should be noted that xn,sim1 depends on the FD parameters: w and kx. Let enj (w, kx) be the
difference between emulated and observed position of the probe vehicle indexed n at the time tj .

enj (w, kx) = xnj − x
n,sim
j (w, kx) (8)

We define the Goodness of Fit (GoF) as the root mean square error:

RMSE(w, kx) =

√
1

N

∑
n,j

(
enj (w, kx)

)2 (9)

Here the RMSE assigns the same weight to each error. However, some errors are more valuable
for capturing the traffic dynamics, in particular when probe vehicles move slowly and may cross
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one or several waves. Consequently, we propose to weight the errors according to probe speeds:
heavy weights (denoted α) are assigned to probe vehicles that present low observed mean speeds
between the times t0 and t1. With normalized weights, the following GoF denoted F (w, kx) is
considered:

F (w, kx) =

√∑
n,j

αn.
(
enj (w, kx)

)2

(10)

Where :1 
αn =

u− v̄n∑
m (u− v̄n)

v̄n =
xnj − xnj−1

tnj − tnj−1

(11)

Finally, the optimal set of parameters (w∗, k∗x) minimize the function F .2

VALIDATION3

To validate the calibration procedure, we have performed two simulation studies. For the first4

simulation study, the calibration procedure is executed on an error-free dataset. For the second5

simulation study, the calibration procedure is performed on a set of realistic aggregated and noised6

data. The accuracy of the calibration procedure is tested regarding different observation models7

with varying aggregation period (loop), frequency (probe) and penetration rate (probe).8

Error-free dataset9

First, the calibration procedure is tested on synthetic loop and probe data that are error free. The10

calibration process is supposed to be exact and gives the FD parameter used by the simulation with11

F ∗ = F (w∗, k∗x) = 0.12

Simulated data The idea is to let the mesoscopic-LWR model (21, 22) generate vehicle trajec-13

tories with mesoscopic coordinates, which are convenient to generate both loop and probe data14

(23). Loop and probe data are generated on a homogeneous link of 10000 m in length. For the15

simulation purpose, the FD is defined as triangular with the following parameters: u = 25m/s,16

w = 5m/s and kx = 0, 14veh/m. The results of the mesoscopic LWR model return passing17

time T (n, x) of every vehicle n at discrete positions x. The simulation scenario is defined so that18

congestion is triggered at the exit of the section, propagates backward and then disappears before19

the end of the simulation. For the purpose of the test, the probe data have been generated with a20

frequency f = 1/60s−1 and a penetration rate τ = 10%.21

Calibration results The results of the calibration procedure has been applied to find the optimal22

set of parameters. A range a reasonable parameter values (according to their physical meaning)23

have been tested: kx = {0.1, ..., 0.2}veh/m and w = {4, ..., 6}m/s . Figure 4(a) depicts the24

shape of the function F (w, kx). As expected, optimal parameters exactly correspond to the FD25

parameters used for the simulation scenario: k∗x = 0.14veh/m, w∗ = 5m/s and F ∗ = 0. It26

confirms the accuracy of the calibration procedure.Figure 4(b) illustrates the shape of function27

F (w, k∗). It should be noted that the shape of the cost function F is similar to those presented28

in (24), where the objective of the calibration process was to calibrate individual (vehicle) FD29
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parameters based on vehicle trajectory dataset. The sensitivity of the calibration procedure is1

illustrated in Figures 4(b) and 4(c), which represents the function F (w, k∗x) and F (w∗, kx). They2

correspond to the vertical cross section of F with kx = k∗ and w = w∗ respectively.

4

4.5
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5
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0.2

0.18

k
x
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0.16
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(a) F (w, kx)
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(b) F (w, k∗x)

kx (veh/m)
0.1 0.12 0.14 0.16 0.18 0.2

F

0

20

40

60

80

100

120

140

160

(c) F (w∗, kx)

FIGURE 4 Results of the calibration for an error-free dataset
3

We observe that near the optimal parameters, the shape of the function F (w∗, kx) is tighter4

than F (w∗, kx). It demonstrates that the calibration process is more sensitive to errors on kx. We5

conclude that the calibration of kx is more critical that w in operational settings. It should be noted6
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that these results can also be proved by an analytical sensitivity analysis.7

Realistic dataset8

The meso-LWR model is used to generate data on a realistic simulation scenario, and test the9

impact of data resolution on the calibration performance.10

Efficiency and accuracy The extent to which a FD parameters can be accurately estimated is11

closely related to its ability to impact model predictions and thereby the value of the function F .12

As initially proposed by (25), here we analyse the shape of GoF regarding two indicators that13

estimate the efficiency and the accuracy of the calibration process.14

The efficiency is quantified by the F ∗ = F (w∗, k∗x), which measures the ability of the model to fit15

the dataset.The efficiency of the calibration increases when F ∗ decreases.16

The accuracy is measured by the tightness of F around optimal parameters, which represents the17

sensitivity of the calibration process to the error. The level of accuracy for parameter p is denoted18

A and is defined as the width of the function F for F = F ∗ + 1.19

Simulated data The same link is considered. The simulation lasts three hours and the typical20

demand profiles are derived from a real dataset.21

t (s)
0 2000 4000 6000 8000

q
in

(v
eh
/s
)

0
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0.4

0.5

(a) Entry flow

t (s)
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q
o
u
t
(v
eh
/s
)

0

0.1

0.2

0.3

0.4

0.5

(b) Exit flow

FIGURE 5 Flows at entry and exit of the link

• Loop data are aggregated with 180s interval. Loop data at entry and exit of the network22

are illustrated on Figure 5. Here loop data have been noised with unbiased errors as follows: each23

vehicle that crosses the loop detector has a probability of 0.01 to be undetected a probability of24

0.01 to be detected twice.25

• Probe data are measured with f = 1/60s−1 and the penetration rate is set to τ = 10%.26

Based on this data, three observation models have been considered to test the impact of27

data resolution and noise on the calibration results.28
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- Observation model 1 : flow measurements from loop detectors with varying time resolution29

- Observation model 2 : probe data with varying penetration rate30

- Observation model 3 : probe data with varying frequency31

Observation model 132

According to the previous results, loop data have then been aggregated over varying time periods,33

from 30s to 600s. The results are presented in Table 1 and illustrated in Figure 6.34

Aggregation period (s) 30 60 120 180 360 600
kx (veh/m) 0.130 0.150 0.132 0.140 0.152 0.138
w (m/s) 5.95 4.15 5.70 4.85 4.00 5.65
F ∗ 2.700 2.703 3.483 2.773 11.53 885.8
k∗x (veh/m) 0.138 0.138 0.138 0.138 0.138 0.138
Akx (veh/m) 0.0023 0.0023 0.0024 0.0011 0.0026 0.0037
w∗ (m/s) 4.90 4.90 4.90 4.85 4.85 5.40
Aw (m/s) 0.1337 0.1359 0.1517 0.1353 0.2672 0.4029

TABLE 1 Results for observation model 1: optimal parameters, accuracy and efficiency

w (m/s)
4 4.5 5 5.5 6

F

0

50

100

150

360s

180s

120s

60s

30s

(a) kx = 0.14

kx (veh/m)
0.1 0.12 0.14 0.16 0.18 0.2

F

0

50

100

150

360s

180s

120s

60s

30s

(b) w = 5

FIGURE 6 GoF for observation model 1

For aggregation time period under 180s: F ∗, Aw and Akx are stable and are not impacted35

by the aggregation period. For aggregation time period greater than 180s: the efficiency and the36
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accuracy of the calibration become worse. We conclude that for practical use, loop data should be37

aggregated with a maximum time period of 180s to ensure both efficient and accurate calibration38

results.39

Observation model 21

Here the impact of the penetration rate of probe vehicles on the calibration results is tested. Pene-2

tration rates τ from 1% to 15% are considered. The results are presented in Table 2 and illustrated3

in Figure 7.4

τ (%) 1 3 5 7 10 15
kx (veh/m) 0.136 0.142 0.132 0.140 0.140 0.140
w (m/s) 5.2 4.7 5.65 4.85 4.85 4.85
F ∗ 1.969 2.667 2.168 2.748 2.773 2.596
k∗x (veh/m) 0.138 0.138 0.138 0.138 0.138 0.138
Akx (veh/m) 0.0013 0.0011 0.0009 0.0010 0.0011 0.0010
w∗ (m/s) 4.85 4.85 4.85 4.85 4.85 4.85
Aw (m/s) 0.1489 0.1347 0.1224 0.1277 0.1353 0.1261

TABLE 2 Results for observation model 2: optimal parameters, accuracy and efficiency

w (m/s)
4 4.5 5 5.5 6
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(a) kx = 0.14
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(b) w = 5

FIGURE 7 GoF for observation model 2
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When τ ≥ 3%, the accuracy and the efficiency of the calibration process are stable. How-5

ever, Figure 7 clearly shows that the accuracy of the method decreases for both parameters when6

τ = 1%. Nevertheless, Table 2 says that the accuracy stays in a reasonable range of value. It1

demonstrates that ability of this method to be developed even when the penetration rate of probe2

vehicles is low.1

Observation model 32

Here the impact of probe data frequency is tested. Frequency from 1/80 s−1 to 1/20 s−1 are3

considered. The results are presented in Table 3 and illustrated in Figure 8.

1/f (s) 20 40 60 80
kx (veh/m) 0.132 0.132 0.140 0.140
w (m/s) 5.65 5.65 4.85 4.85
F ∗ 0.961 1.972 2.773 3.005
kx∗ (veh/m) 0.138 0.138 0.138 0.138
Akx (veh/m) 0.0020 0.0012 0.0011 0.0009
w∗ (m/s) 4.85 4.85 4.85 4.85
Aw (m/s) 0.1822 0.1385 0.1353 0.1201

TABLE 3 Results for observation model 2: optimal parameters, accuracy and efficiency

w (m/s)
4 4.5 5 5.5 6

F
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50

100

150

1/20s−1

1/40s−1

1/60s−1

1/80s−1

(a) kx = 0.14veh/m
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FIGURE 8 GoF for observation model 3
4
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As expected, the efficiency of the calibration process is improved when the frequency in-5

creases. It varies within a reasonable range, from F ∗ = 3.00 (f = 1/80 s−1) to F ∗ = 0.966

(f = 1/20 s−1).7

It is clear from Figure 8 that probe data frequency has a major impact on calibration accuracy. It is8

confirmed in Table 3 where the best accuracy is observed for the lowest frequency f = 1/80 s−1.1

This result goes against intuition but it can be explained reasonably. When the frequency is low,2

probe vehicles may experience various traffic states and cross several waves between two consec-3

utive position-time measurements. Consequently, the calibration becomes more sensitive to errors4

on FD parameters and thus more accurate. This result indicates that 1/60 s−1 ≤ f ≤ 1/40 s−1
5

is a satisfactory trade-off between accuracy and efficiency.6

DISCUSSION7

Conclusions8

The paper presents a method for calibrating the FD parameters, assumed as being triangular, based9

on loop data and probe data. Loop data are considered as boundary conditions of the LWR problem.10

Travel distances are simulated for a range of FD parameters. Simulated travel distances are then11

compared to the travel distances given by probes. The optimal set of parameters is computed so12

that the discrepancy between simulated and collected travel distances is minimal.13

Based on this methodology, the calibration procedure has been tested on an error free dataset and14

it has demonstrated the accuracy of the calibration procedure. Then it has been tested for different15

observation model, to estimate the impact of data resolution on calibration results, which have16

been analyzed regarding two indicators : accuracy and efficiency. The results shows that common17

loop data are proper to apply the methodology. It shows that the performance of the method is18

satisfactory for a penetration rate of probe vehicle greater than 3%, which is an encouraging but19

also must be confirmed with further experiments based on real dataset. It also shows that, counter-20

intuitively, high-frequency probe data do not necessary provide more accurate results.1

Further Research2

The proposed methodology has been applied and validated based on simulated noised data with3

various resolution. However, further research is still needed to confirm its practical use when4

applied to real data.5

- The proposed methodology estimates traffic states between loop detectors based on the method6

of characteristics. Other technics have been proposed in the literature, notably based on variational7

principles, and can be explored and compared in terms of computational efficiency.8

- In the paper, the GoF is defined so that errors from low speed probes receive heavier weights than9

errors from probes driving close to the free-flow speed. Further analysis should be conducted to10

validate the weight definition when applied to real data.11

- Here, data from loops have been noised considering an unbiased random undetected / double-12

detected vehicles but vehicles keep the same ordering between the loops (First In First Out, FIFO).13

This assumption may not be met on multilane sections with multi pipe regimes and further research14

is needed to test the robustness of the method when applied to non-FIFO traffic flow.15

- It is assumed that the road section does not present any entry or exit between loop detectors. Here16

the methodology can be adapted to estimate the net additional flow that enters/exits the section17

between loops based on (i) the data from loops and probes and (ii) assuming a given (default or18

pre-calibrated) fundamental diagram. Such a methodology can be useful to estimate the exact entry19
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(exit) flow from on-ramp (off-ramp) when congestion occurs between loops.20

Finally, the proposed methodology can be used for off-line application. But the computa-21

tional efficiency of the methodology is promising and it can also be the basis for developing an1

algorithm that calibrates automatically FD parameters online.2
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