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INTRODUCTION Calibration of the fundamental diagram: state of the art

The Fundamental Diagram (FD) relates traffic flow and density. Under time-stationary and spacehomogeneous conditions, it describes equilibrium traffic states and their propagation on a traffic network. The knowledge of its functional form and parameters is of paramount importance to understand traffic properties. It is also a key element of dynamic traffic flow simulation models that aim to reproduce traffic conditions on road networks.

The early studies were based on the analysis of flow and speed observed at fixed locations of the network. Many functional forms have been proposed to describe the speedflow relationship and interested reader may refer to [START_REF] Castillo | On the functional form of the speed-density relationship-ii: Empirical investigation[END_REF] for a comprehensive overview. Then speedflow and flow-density relationships have been estimated based on data collected from loop detectors, commonly aggregated over space (multilanes) and time [START_REF] Van Aerde | Multivariate calibration of single regime speed-flow-density relationships[END_REF][START_REF] Rakha | Comparison of greenshields, pipes, and van aerde car-following and traffic stream models[END_REF][START_REF] Leclercq | Calibration of flow-density relationships on urban streets, Transportation Research Record[END_REF]. However, three drawbacks can be pointed out when loop data is used [START_REF] Chiabaut | Fundamental diagram estimation through passing rate measurements in congestion, Intelligent Transportation Systems[END_REF]: (i) aggregated data presents mixed traffic states that cannot be considered as equilibrium, (ii) Steady state can be difficult to capture and (iii) the state propagations cannot be capture at fixed location.

Alternatively, [START_REF] Cassidy | Some traffic features at freeway bottlenecks[END_REF] proposed a method to identify steady state periods in order not to mix different traffic states measured by loops. The results presented by the author demonstrate the capability of the method to capture traffic steady-states. However, the method requires manual intervention to adjust the steady state period and can hardly be automated.

More recently, [START_REF] Chiabaut | Wave velocity estimation through automatic analysis of cumulative vehicle count curves[END_REF] have proposed to estimate FD parameters by capturing wave propagation through successive loops. This method has proved its ability to capture traffic dynamics and estimate the FD, in particular its congested branch. However, it requires data to be collected on successive loops without any entry or exit in between, which limits its practical use.

During the last decade, trajectory dataset (8) have been widely used to analyze microscopic speed-spacing relationship [START_REF] Ossen | Interdriver differences in car-following: a vehicle trajectory-based study[END_REF][START_REF] Ossen | Validity of trajectory-based calibration approach of car-following models in presence of measurement errors[END_REF][START_REF] Duret | Estimating individual speed-spacing relationship and assessing ability of newell's car-following model to reproduce trajectories[END_REF][START_REF] Treiber | Microscopic calibration and validation of car-following models -a systematic approach[END_REF], which is closely related to the macroscopic flow-density relationship. [START_REF] Chiabaut | From heterogeneous drivers to macroscopic patterns in congestion[END_REF] have proposed to derive macroscopic FD parameters from individual car-following parameters. Despite technological advances, trajectory data collection is still expensive to collect and requires time-consuming data post processing. However, intelligent Transportation Systems have brought a new generation of Lagrangian traffic data: probe data. Probes provide Lagrangian observations such as individual position, speed and travel times. They are highly complementary to loop sensors, which provide Eulerian observations relative to the stream (flow-density-speed). During the last few years, the literature provided proposals using probe and loop data, mainly for traffic state estimation or travel time estimation [START_REF] Herrera | Traffic flow reconstruction using mobile sensors and loop detector data[END_REF][START_REF] Bhaskar | Fusing loop detector and probe vehicle data to estimate travel time statistics on signalized urban networks[END_REF][START_REF] Faouzi | Data fusion in intelligent transportation systems: Progress and challenges-a survey[END_REF][START_REF] Klein | Handbook on Soft Computing for Video Surveillance[END_REF]. However, no method has yet been proposed to calibrate FD parameters combining probe and loop data. This is the purpose of this paper, which objectives is to pave the way to rethink and refine existing estimation methods and to propose a new method for estimating FD.

Traffic flow model

The LWR model introduced by ( 18) and [START_REF] Richards | Shock waves on the highway[END_REF] describes the evolution of traffic density k in time and space with a conservative form:

∂k ∂t + ∂Q(k) ∂x = 0 (1) 
Q(k) is the fundamental diagram, which is assumed to be triangular and time-space invariant in this paper. Its parameters are: u the free-flow speed, w the wave speed and k x the jam density.

The LWR model is an initial-value problem. Given initial/boundary conditions, the model propagates traffic states in time and space. It is possible to solve the problem by using the method of characteristics. A characteristic is a curve that starts from a known initial/boundary condition and along which the quantity k is invariant. A discontinuity in the initial/boundary conditions initiate shockwave traveling in time and space with a speed c, given by the Rankine-Hugoniot formula:

c = q B -q A k B -k A (2) 
, where A (q A , k A ) and B (q B , k B ) are the traffic states around the discontinuity. Given a wellposed definition of initial/boundary conditions, it is possible to determine k(x, t) everywhere in the solution domain by the method of characteristics [START_REF] Daganzo | A finite difference approximation of the kinematic wave model of traffic flow[END_REF].

Objectives and content of the paper

This paper aims to propose a method that estimates automatically FD parameters combining data from loops and probes. The method relies on the kinematic wave theory. In its current version, it requires two successive loop sensors without entry or exit in between and probe data collected on a section between the loops. In contrast to the previous method proposed by [START_REF] Chiabaut | Wave velocity estimation through automatic analysis of cumulative vehicle count curves[END_REF], it does not require any wave propagation from one loop to another.

The paper is organized as follows. The recipe of the calibration methodology is presented in the next section. Then the method is validated in two-steps. First, the accuracy of the method is verified applying on synthetic error-free dataset. Second, the method is applied on synthetic aggregated-noised dataset. It illustrates the sensitivity of the results to the data resolution: aggregation period of loop data, frequency of probe data and penetration rate of probe vehicles. It also demonstrates the possibility of operational implementation. Finally, a discussion on operational implementation and other applications is proposed.

RECIPE FOR CALIBRATING THE FD

Let us consider a homogeneous link with a length L. The recipe of the method is the following.

First, traffic counts given by two loop detectors are considered as the boundary conditions of the problem. Second, traffic states between loops are estimated based on the method of the characteristics, for a given set of FD parameters. Third, probe data are emulated and then compared to observed probe data. Finally, the optimal FD parameters minimize the difference between emulated and observed probe data.

Boundary conditions

Let ∆(t) and Σ(t) be the upstream flow (demand) and the downstream flow (supply) measured by two consecutive loop detectors. Considering ∆ and Σ as the initial/boundary conditions of the problem, it is then possible to estimate the traffic states at any point in between. The solution of the problem consists in propagating traffic states by using the method of characteristic.

Traffic states propagation

Upstream and downstream flows can be approximated as step functions with respect to time, with:

∆(i.δt) = q i ∆ and Σ(j.δt) = q j Σ .
If ∆(t) presents a discontinuity at the time t = i.δt, then a characteristic ũi emanates from the upstream boundary conditions. Similarly, if Σ(t) presents a discontinuity at the time t = j.δt, a characteristic called wj emanates from the downstream boundary conditions.

When a congestion occurs, the method of characteristics can then be applied to estimate the trajectory of the front wave, which separates upstream free-flow states from the downstream congested states. In the case of stepwise boundary conditions, the resulting front wave trajectory is piece-wise linear. Let P n = {T n , X n } be the n th coordinates of the front wave trajectory. We propose to calculate the coordinates of the point P n+1 by using the Rankine-Hugoniot formula as illustrated in Figure 1.

wj wj+1 ũi ũi+1 δt Σ δt ∆ (1 -β)δt Σ (1 -α)δt ∆ • P n • • δT Σ δT ∆ FIGURE 1 Research of the point P n+1
Graphically, P n is located between the characteristics ũi , ũi+1 , wj and wj+1 . A characteristic (black solid line in Figure 1) emanates from P n with the W i,j .

One the one hand, the characteristic intersects ũi+1 which yields:

δT ∆ = (1 -α)δt ∆ 1 - W i,j u (3) 
where

α = 1 δt ∆ . T n - X n u -i.δt ∆ (4) 
On the other hand, the characteristic intersect wj+1 , which yields:

δT Σ = (1 -β)δt Σ 1 + W i,j w (5) 
where

β = 1 δt Σ . T n - L -X n w -j.δt Σ (6) x t in out Σ(t) ∆(t) • P 1 • P 2 • P 3 • • • • • • • • • • q i ∆ q j Σ ũi wj FIGURE 2 Front Wave Trajectory
The coordinates of the point P n+1 follows:

P n+1 = T n+1 = T n + min(δT ∆ , δT Σ ) X n+1 = X n + W i,j . min(δT ∆ , δT Σ ) (7) 
The trajectory of the front wave can then been calculated by a recursive process, as illustrated in Figure 2.

The solution of the LWR model presented above finally provides traffic states of any intermediate location between loops. Upstream the front wave, traffic states emanate from the upstream boundary ∆(t) and travels with a speed u. Downstream the front wave, traffic states emanate from the downstream boundary Σ(t) and travels with a speed -w.

Simulation process of probe data

We propose to simulate probe data based on the aforementioned solution. Commonly, probe data provides time-position of probe vehicles at fixed time intervals. It consists in successive timeposition, as illustrated in Figure 3 (red filled circles). (t n 0 , x n 0 ) and (t n 1 , x n 1 ) are the initial and the later position of the n th probe vehicle respectively. Considering the initial position of the probe vehicle (t n 0 , x n 0 ), the final position can easily be simulated from the results presented above. If the initial position (t n 0 , x n 0 ) is upstream the front wave, the vehicle is free-flowing and drives at the speed u. When it crosses the front wave, it turns into a congested state with a reduced speed and its motion is then driven by traffic conditions downstream. Then, its speed can change every time

x t in out Σ(t) ∆(t) • • • • • x n j-1 x n,sim j t n j t n j-1 • x n j e n j
• Collected probe data for one vehicle • • Simulated probe data for one couple of measure

FIGURE 3

Calculation of e n j (w, k x ) : discrepancy between collected and simulated probe data a wave w is crossed. Its final position x n,sim 1 at the later time t n 1 can easily be derived, as illustrated in Figure 3 (blue circles).

Calibration

The calibration procedure aims to find the set of FD parameters that minimizes the discrepancy between simulated and observed probe data. The calibration of the free-flow speed is straightforward by using loop detectors only. Consequently the paper focuses on the calibration of congested parameters w and k x .

It should be noted that x n,sim 1 depends on the FD parameters: w and k x . Let e n j (w, k x ) be the difference between emulated and observed position of the probe vehicle indexed n at the time t j .

e n j (w, k x ) = x n j -x n,sim j (w, k x ) (8) 
We define the Goodness of Fit (GoF) as the root mean square error:

RM SE(w, k x ) = 1 N n,j e n j (w, k x ) 2 (9) 
Here the RMSE assigns the same weight to each error. However, some errors are more valuable for capturing the traffic dynamics, in particular when probe vehicles move slowly and may cross one or several waves. Consequently, we propose to weight the errors according to probe speeds: heavy weights (denoted α) are assigned to probe vehicles that present low observed mean speeds between the times t 0 and t 1 . With normalized weights, the following GoF denoted F (w, k x ) is considered:

F (w, k x ) = n,j α n . e n j (w, k x ) 2 (10) 
Where :

       α n = u -vn m (u -vn ) vn = x n j -x n j-1 t n j -t n j-1 (11) 
Finally, the optimal set of parameters (w * , k * x ) minimize the function F .

VALIDATION

To validate the calibration procedure, we have performed two simulation studies. For the first simulation study, the calibration procedure is executed on an error-free dataset. For the second simulation study, the calibration procedure is performed on a set of realistic aggregated and noised data. The accuracy of the calibration procedure is tested regarding different observation models with varying aggregation period (loop), frequency (probe) and penetration rate (probe).

Error-free dataset

First, the calibration procedure is tested on synthetic loop and probe data that are error free. The calibration process is supposed to be exact and gives the FD parameter used by the simulation with

F * = F (w * , k * x ) = 0.
Simulated data The idea is to let the mesoscopic-LWR model [START_REF] Leclercq | Meso lighthill-whitham and richards model designed for network applications[END_REF][START_REF] Laval | The hamilton-jacobi partial differential equation and the three representations of traffic flow[END_REF] generate vehicle trajectories with mesoscopic coordinates, which are convenient to generate both loop and probe data [START_REF] Yuan | Mesoscopic traffic state estimation based on a variational formulation of the lwr model in lagrangian-space coordinates and kalman filter[END_REF]. Loop and probe data are generated on a homogeneous link of 10000 m in length. For the simulation purpose, the FD is defined as triangular with the following parameters: u = 25m/s, w = 5m/s and k x = 0, 14veh/m. The results of the mesoscopic LWR model return passing time T (n, x) of every vehicle n at discrete positions x. The simulation scenario is defined so that congestion is triggered at the exit of the section, propagates backward and then disappears before the end of the simulation. For the purpose of the test, the probe data have been generated with a frequency f = 1/60s -1 and a penetration rate τ = 10%.

Calibration results

The results of the calibration procedure has been applied to find the optimal set of parameters. A range a reasonable parameter values (according to their physical meaning) have been tested: k x = {0.1, ..., 0.2}veh/m and w = {4, ..., 6}m/s . 

FIGURE 4 Results of the calibration for an error-free dataset

We observe that near the optimal parameters, the shape of the function F (w * , k x ) is tighter than F (w * , k x ). It demonstrates that the calibration process is more sensitive to errors on k x . We conclude that the calibration of k x is more critical that w in operational settings. It should be noted that these results can also be proved by an analytical sensitivity analysis.

Realistic dataset

The meso-LWR model is used to generate data on a realistic simulation scenario, and test the impact of data resolution on the calibration performance.

Efficiency and accuracy

The extent to which a FD parameters can be accurately estimated is closely related to its ability to impact model predictions and thereby the value of the function F .

As initially proposed by ( 25), here we analyse the shape of GoF regarding two indicators that estimate the efficiency and the accuracy of the calibration process.

The efficiency is quantified by the F * = F (w * , k * x ), which measures the ability of the model to fit the dataset.The efficiency of the calibration increases when F * decreases.

The accuracy is measured by the tightness of F around optimal parameters, which represents the sensitivity of the calibration process to the error. The level of accuracy for parameter p is denoted A and is defined as the width of the function F for F = F * + 1.

Simulated data

The same link is considered. The simulation lasts three hours and the typical demand profiles are derived from a real dataset. vehicle that crosses the loop detector has a probability of 0.01 to be undetected a probability of 0.01 to be detected twice.

• Probe data are measured with f = 1/60s -1 and the penetration rate is set to τ = 10%.

Based on this data, three observation models have been considered to test the impact of data resolution and noise on the calibration results.

- For aggregation time period under 180s: F * , A w and A kx are stable and are not impacted by the aggregation period. For aggregation time period greater than 180s: the efficiency and the accuracy of the calibration become worse. We conclude that for practical use, loop data should be aggregated with a maximum time period of 180s to ensure both efficient and accurate calibration results.

Observation model 2

Here the impact of the penetration rate of probe vehicles on the calibration results is tested. Penetration rates τ from 1% to 15% are considered. The results are presented in Table 2 and illustrated in Figure 7.

τ (%) When τ ≥ 3%, the accuracy and the efficiency of the calibration process are stable. However, Figure 7 clearly shows that the accuracy of the method decreases for both parameters when τ = 1%. Nevertheless, Table 2 says that the accuracy stays in a reasonable range of value. It demonstrates that ability of this method to be developed even when the penetration rate of probe vehicles is low.

Observation model 3

Here the impact of probe data frequency is tested. Frequency from 1/80 s -1 to 1/20 s -1 are considered. The results are presented in Table 3 and illustrated in Figure 8. As expected, the efficiency of the calibration process is improved when the frequency increases. It varies within a reasonable range, from F * = 3.00 (f = 1/80 s -1 ) to F * = 0.96

(f = 1/20 s -1 ).
It is clear from Figure 8 that probe data frequency has a major impact on calibration accuracy. It is confirmed in Table 3 where the best accuracy is observed for the lowest frequency f = 1/80 s -1 .

This result goes against intuition but it can be explained reasonably. When the frequency is low, probe vehicles may experience various traffic states and cross several waves between two consecutive position-time measurements. Consequently, the calibration becomes more sensitive to errors on FD parameters and thus more accurate. This result indicates that 1/60 s

-1 ≤ f ≤ 1/40 s -1
is a satisfactory trade-off between accuracy and efficiency.

DISCUSSION

Conclusions

The paper presents a method for calibrating the FD parameters, assumed as being triangular, based on loop data and probe data. Loop data are considered as boundary conditions of the LWR problem.

Travel distances are simulated for a range of FD parameters. Simulated travel distances are then compared to the travel distances given by probes. The optimal set of parameters is computed so that the discrepancy between simulated and collected travel distances is minimal.

Based on this methodology, the calibration procedure has been tested on an error free dataset and it has demonstrated the accuracy of the calibration procedure. Then it has been tested for different observation model, to estimate the impact of data resolution on calibration results, which have been analyzed regarding two indicators : accuracy and efficiency. The results shows that common loop data are proper to apply the methodology. It shows that the performance of the method is satisfactory for a penetration rate of probe vehicle greater than 3%, which is an encouraging but also must be confirmed with further experiments based on real dataset. It also shows that, counterintuitively, high-frequency probe data do not necessary provide more accurate results.

Further Research

The proposed methodology has been applied and validated based on simulated noised data with various resolution. However, further research is still needed to confirm its practical use when applied to real data.

-The proposed methodology estimates traffic states between loop detectors based on the method of characteristics. Other technics have been proposed in the literature, notably based on variational principles, and can be explored and compared in terms of computational efficiency.

-In the paper, the GoF is defined so that errors from low speed probes receive heavier weights than errors from probes driving close to the free-flow speed. Further analysis should be conducted to validate the weight definition when applied to real data.

-Here, data from loops have been noised considering an unbiased random undetected / doubledetected vehicles but vehicles keep the same ordering between the loops (First In First Out, FIFO).

This assumption may not be met on multilane sections with multi pipe regimes and further research is needed to test the robustness of the method when applied to non-FIFO traffic flow.

-It is assumed that the road section does not present any entry or exit between loop detectors. Here the methodology can be adapted to estimate the net additional flow that enters/exits the section between loops based on (i) the data from loops and probes and (ii) assuming a given (default or pre-calibrated) fundamental diagram. Such a methodology can be useful to estimate the exact entry (exit) flow from on-ramp (off-ramp) when congestion occurs between loops.

Finally, the proposed methodology can be used for off-line application. But the computational efficiency of the methodology is promising and it can also be the basis for developing an algorithm that calibrates automatically FD parameters online.
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 4 a) depicts the shape of the function F (w, k x ). As expected, optimal parameters exactly correspond to the FD parameters used for the simulation scenario: k * x = 0.14veh/m, w * = 5m/s and F * = 0. It confirms the accuracy of the calibration procedure.Figure 4(b) illustrates the shape of function F (w, k * ). It should be noted that the shape of the cost function F is similar to those presented in (24), where the objective of the calibration process was to calibrate individual (vehicle) FD parameters based on vehicle trajectory dataset. The sensitivity of the calibration procedure is illustrated in Figures 4(b) and 4(c), which represents the function F (w, k * x ) and F (w * , k x ). They correspond to the vertical cross section of F with k x = k * and w = w * respectively.

  F (w, k x ) w (m/s)

  F (w * , k x )

FIGURE 5

 5 FIGURE 5 Flows at entry and exit of the link • Loop data are aggregated with 180s interval. Loop data at entry and exit of the network are illustrated on Figure 5. Here loop data have been noised with unbiased errors as follows: each
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  Observation model 1 : flow measurements from loop detectors with varying time resolution -Observation model 2 : probe data with varying penetration rate -Observation model 3 : probe data with varying frequencyAccording to the previous results, loop data have then been aggregated over varying time periods, from 30s to 600s. The results are presented in Table1and illustrated in Figure6.

	Observation model 1						
	Aggregation period (s)	30	60	120	180	360	600
	k x (veh/m)	0.130 0.150 0.132 0.140 0.152 0.138
	w (m/s)	5.95	4.15	5.70	4.85	4.00	5.65
	F *	2.700 2.703 3.483 2.773 11.53 885.8
	k * x (veh/m)	0.138 0.138 0.138 0.138 0.138 0.138
	A kx (veh/m)	0.0023 0.0023 0.0024 0.0011 0.0026 0.0037
	w * (m/s)	4.90	4.90	4.90	4.85	4.85	5.40
	A w (m/s)	0.1337 0.1359 0.1517 0.1353 0.2672 0.4029
	TABLE 1 Results for observation model 1: optimal parameters, accuracy and efficiency
	w (m/s)