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We investigate the estimation of the density-weighted average derivative from biased data. An estimator integrating a plug-in
approach and wavelet projections is constructed. We prove that it attains the parametric rate of convergence 1/𝑛 under the mean
squared error.

1. Introduction

The standard density-weighted average derivative estimation
problem is the following. We observe 𝑛 i.i.d. bivariate ran-
dom variables (𝑋

1
, 𝑌
1
), . . . , (𝑋

𝑛
, 𝑌
𝑛
) defined on a probability

space (Ω,A,P). Let 𝑝 be the unknown density function of
𝑋
1
, and let 𝜑 be the unknown regression function given by

𝜑 (𝑥) = E (𝑌
1
| 𝑋
1
= 𝑥) , 𝑥 ∈ R. (1)

The density-weighted average derivative is defined by

𝛾 = E (𝑝 (𝑋
1
) 𝜑
󸀠
(𝑋
1
)) = ∫𝑝

2
(𝑥) 𝜑
󸀠
(𝑥) 𝑑𝑥. (2)

The estimation of 𝛾 is of interest in some econometric prob-
lems, especially in the context of estimation of coefficients
in index models (see, e.g., Stoker [1, 2], Powell et al. [3], and
Härdle and Stoker [4]). Among the popular approaches, there
are the nonparametric techniques based on kernel estimators
(see, e.g., Härdle and Stoker [4], Powell et al. [3], Härdle et al.
[5], and Stoker [6]) or orthogonal series methods introduced
in Rao [7]. Recently, Chesneau et al. [8] have developed an
estimator based on a new plug-in approach and a wavelet
series method. We refer to Antoniadis [9], Härdle et al. [10],
andVidakovic [11] for further details about wavelets and their
applications in nonparametric statistics.

In this paper, we extend this estimation problem to the
biased data. It is based on the “biased regression model”
which is described as follows. We observe 𝑛 i.i.d. bivariate
random variables (𝑋

1
, 𝑌
1
), . . . , (𝑋

𝑛
, 𝑌
𝑛
) defined on a proba-

bility space (Ω,A,P) with the common density function:

𝑓 (𝑥, 𝑦) =
𝑤 (𝑥, 𝑦) 𝑔 (𝑥, 𝑦)

𝜇
, (𝑥, 𝑦) ∈ R

2
, (3)

where 𝑤 is a known positive function, 𝑔 is the density
function of an unobserved bivariate random variable (𝑈, 𝑉),
and 𝜇 = E(𝑤(𝑈,𝑉)) < ∞ (which is an unknown real
number). This model has potential applications in biology,
economics, and many other fields. Important results on
methods and applications can be found in, for example,
Ahmad [12], Sköld [13], Cristóbal and Alcalá [14], Wu [15],
Cristóbal and Alcalá [16], Cristóbal et al. [17], Ojeda et al.
[18], Cabrera and Van Keilegom [19], and Chaubey et al.
[20]. Wavelet methods related to this model can be found in
Chesneau and Shirazi [21], Chaubey et al. [22], and Chaubey
and Shirazi [23].

Let ℎ be the density of 𝑈; that is, ℎ(𝑥) = ∫ 𝑔(𝑥, 𝑦)𝑑𝑦, 𝑥 ∈

R, and let 𝜑 be the unknown regression function given by

𝜑 (𝑥) = E (𝑉 | 𝑈 = 𝑥) , 𝑥 ∈ R. (4)
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The density-weighted average derivative is defined by

𝛿 = E (ℎ (𝑈) 𝜑
󸀠
(𝑈)) = ∫ ℎ

2
(𝑥) 𝜑
󸀠
(𝑥) 𝑑𝑥. (5)

We aim to estimate 𝛿 from (𝑋
1
, 𝑌
1
), . . . , (𝑋

𝑛
, 𝑌
𝑛
). To reach

this goal, we adapt the methodology of Chesneau et al.
[8] to this problem and develop new technical arguments
derived to those developed in Chesneau and Shirazi [21]
for the estimation of (4). A new wavelet estimator is thus
constructed. We prove that it attains the parametric rate of
convergence 1/𝑛 under the mean squared error, showing the
consistency of our estimator.

The paper is organized as follows. In Section 2, we
introduce our wavelet methodology including our estimator.
Additional assumptions on themodel and our main theoreti-
cal result are set in Section 3. Finally, the proofs are postponed
to Section 4.

2. Wavelet Methodology

In this section, after a brief description of the considered
wavelet basis, we present our wavelet estimator of 𝛿 (5).

2.1. Compactly Supported Wavelet Basis. Let us consider the
following set of functions:

L
2
([0, 1]) = {𝑢 : [0, 1] 󳨀→ R; ‖𝑢‖

2

2
= ∫

1

0

(𝑢 (𝑥))
2
𝑑𝑥} .

(6)

For the purposes of this paper, we use the compactly sup-
ported wavelet bases on [0, 1] briefly described below.

Let 𝑁 ≥ 5 be a fixed integer, and let 𝜙 and 𝜓 be the
initial wavelet functions of the Daubechies wavelets 𝑑𝑏2𝑁

(see, e.g., Mallat [24]). These functions have the features to
be compactly supported and derivable.

Set

𝜙
𝑗,𝑘

(𝑥) = 2
𝑗/2

𝜙 (2
𝑗
𝑥 − 𝑘) , 𝜓

𝑗,𝑘
(𝑥) = 2

𝑗/2
𝜓 (2
𝑗
𝑥 − 𝑘) ,

(7)

andΛ
𝑗
= {0, . . . , 2

𝑗
−1}.Then,with a specific treatments at the

boundaries, there exists an integer 𝜏 such that the collection

B = {𝜙
𝜏,𝑘

, 𝑘 ∈ Λ
𝜏
; 𝜓
𝑗,𝑘

; 𝑗 ∈ N − {0, . . . , 𝜏 − 1} , 𝑘 ∈ Λ
𝑗
}

(8)

is an orthonormal basis of L2([0, 1]).
Hence, a function 𝑢 ∈ L2([0, 1]) can be expanded on B

as

𝑢 (𝑥) = ∑

𝑘∈Λ
𝜏

𝛼
𝜏,𝑘

𝜙
𝜏,𝑘

(𝑥) +

∞

∑

𝑗=𝜏

∑

𝑘∈Λ
𝑗

𝛽
𝑗,𝑘

𝜓
𝑗,𝑘

(𝑥) , (9)

where

𝛼
𝜏,𝑘

= ∫

1

0

𝑢 (𝑥) 𝜙
𝜏,𝑘

(𝑥) 𝑑𝑥, 𝛽
𝑗,𝑘

= ∫

1

0

𝑢 (𝑥) 𝜓
𝑗,𝑘

(𝑥) 𝑑𝑥.

(10)

Further details about wavelet basis can be found in, for
example, Meyer [25], Cohen et al. [26], and Mallat [24].

2.2. Wavelet Estimator. Proposition 1 provides another
expression of the density-weighted average derivative (5) in
terms of wavelet coefficients.

Proposition 1. Let 𝛿 be given by (5). Suppose that supp (𝑋
1
) =

[0, 1], 𝜑ℎ ∈ L2([0, 1]), ℎ󸀠 ∈ L2([0, 1]), and ℎ(0) = ℎ(1) =

0. Then the density-weighted average derivative (5) can be
expressed as

𝛿 = −2( ∑

𝑘∈Λ
𝜏

𝛼
𝜏,𝑘

𝑐
𝜏,𝑘

+

∞

∑

𝑗=𝜏

∑

𝑘∈Λ
𝑗

𝛽
𝑗,𝑘

𝑑
𝑗,𝑘

) , (11)

where

𝛼
𝜏,𝑘

= ∫

1

0

𝜑 (𝑥) ℎ (𝑥) 𝜙
𝜏,𝑘

(𝑥) 𝑑𝑥,

𝑐
𝜏,𝑘

= ∫

1

0

ℎ
󸀠
(𝑥) 𝜙
𝜏,𝑘

(𝑥) 𝑑𝑥,

(12)

𝛽
𝑗,𝑘

= ∫

1

0

𝜑 (𝑥) ℎ (𝑥) 𝜓
𝑗,𝑘

(𝑥) 𝑑𝑥,

𝑑
𝑗,𝑘

= ∫

1

0

ℎ
󸀠
(𝑥) 𝜓
𝑗,𝑘

(𝑥) 𝑑𝑥.

(13)

In view of Proposition 1, adapting the ideas of Chesneau
et al. [8] and Chesneau and Shirazi [21] to our framework, we
consider the following plug-in estimator for 𝛿:

𝛿 = −2( ∑

𝑘∈Λ
𝜏

𝛼̂
𝜏,𝑘

𝑐
𝜏,𝑘

+

𝑗
0

∑

𝑗=𝜏

∑

𝑘∈Λ
𝑗

𝛽
𝑗,𝑘

𝑑
𝑗,𝑘

) , (14)

where

𝛼̂
𝜏,𝑘

=
𝜇

𝑛

𝑛

∑

𝑖=1

𝑌
𝑖

𝑤 (𝑋
𝑖
, 𝑌
𝑖
)
𝜙
𝜏,𝑘

(𝑋
𝑖
) ,

𝑐
𝜏,𝑘

= −
𝜇

𝑛

𝑛

∑

𝑖=1

1

𝑤 (𝑋
𝑖
, 𝑌
𝑖
)
(𝜙
𝜏,𝑘

)
󸀠

(𝑋
𝑖
) ,

(15)

𝛽
𝑗,𝑘

=
𝜇

𝑛

𝑛

∑

𝑖=1

𝑌
𝑖

𝑤 (𝑋
𝑖
, 𝑌
𝑖
)
𝜓
𝑗,𝑘

(𝑋
𝑖
) ,

𝑑
𝑗,𝑘

= −
𝜇

𝑛

𝑛

∑

𝑖=1

1

𝑤 (𝑋
𝑖
, 𝑌
𝑖
)
(𝜓
𝑗,𝑘

)
󸀠

(𝑋
𝑖
) ,

(16)

𝜇 = (
1

𝑛

𝑛

∑

𝑖=1

1

𝑤 (𝑋
𝑖
, 𝑌
𝑖
)
)

−1

, (17)

and 𝑗
0
is an integer which will be chosen a posteriori.

Proposition 2 provides some theoretical results explain-
ing the constructions of the above estimators.

Proposition 2. Suppose that supp (𝑋
1
) = [0, 1]. Then

(i) 1/𝜇 (17) is an unbiased estimator for 1/𝜇;
(ii) (𝜇/𝜇)𝛼̂

𝜏,𝑘
(15) and (𝜇/𝜇)𝛽

𝑗,𝑘
(16) are unbiased estima-

tors for 𝛼
𝜏,𝑘

(12) and 𝛽
𝑗,𝑘

(13), respectively;
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(iii) under ℎ(0) = ℎ(1) = 0, (𝜇/𝜇)𝑐
𝜏,𝑘

(15) and (𝜇/𝜇)𝑑
𝑗,𝑘

(16) are unbiased estimators for 𝑐
𝜏,𝑘

(12) and 𝑑
𝑗,𝑘

(13),
respectively.

3. Assumptions and Result

After the presentation of some additional assumptions on
the model, we describe our main result on the asymptotic
properties of 𝛿 (14).

3.1. Assumptions. We formulate the following assumptions
on 𝜑, ℎ, and 𝑤.

(H1) The support of 𝑋
1
, denoted by supp(𝑋

1
), is com-

pact. In order to fix the notations, we suppose that
supp(𝑋

1
) = [0, 1].

(H2) There exists a constant 𝐶 > 0 such that

sup
𝑥∈[0,1]

󵄨󵄨󵄨󵄨𝜑 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝐶. (18)

(H3) The function ℎ satisfies ℎ(0) = ℎ(1) = 0 and there
exists a constant 𝐶 > 0 such that

sup
𝑥∈[0,1]

ℎ (𝑥) ≤ 𝐶, sup
𝑥∈[0,1]

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠
(𝑥)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶. (19)

(H4) There exists a constant 𝐶 > 0 such that

sup
𝑥∈[0,1]

∫

∞

−∞

𝑦
4
𝑔 (𝑥, 𝑦) 𝑑𝑦 ≤ 𝐶,

sup
𝑥∈[0,1]

∫

∞

−∞

𝑔 (𝑥, 𝑦) 𝑑𝑦 ≤ 𝐶.

(20)

(H5) There exist two constants 𝐶 > 0 and 𝑐 > 0 such that

inf
(𝑥,𝑦)∈[0,1]×R

𝑤 (𝑥, 𝑦) ≥ 𝑐, sup
(𝑥,𝑦)∈[0,1]×R

𝑤 (𝑥, 𝑦) ≤ 𝐶. (21)

Let 𝑠
1
> 0, 𝑠

2
> 0, and 𝛽

𝑗,𝑘
and 𝑑

𝑗,𝑘
be given by (13). We

formulate the following assumptions on 𝛽
𝑗,𝑘

and 𝑑
𝑗,𝑘
.

(H6 (𝑠
1
)) There exists a constant 𝐶 > 0 such that

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶2
−𝑗(𝑠
1
+1/2)

. (22)

(H7 (𝑠
2
)) There exists a constant 𝐶 > 0 such that

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶2
−𝑗(𝑠
2
+1/2)

. (23)

Note that (H2)–(H5) are boundedness assumptions, whereas
(H6 (𝑠

1
)) and (H7 (𝑠

2
)) are related to the smoothness of 𝜑ℎ

and ℎ
󸀠 represented by 𝑠

1
and 𝑠
2
. There exist deep connections

between (H6 (𝑠
1
)) and (H7 (𝑠

2
)) and balls of Hölder spaces

(see [10, Chapter 8]).

3.2. Main Result. The following theorem establishes the
upper bound of the MSE of our estimator.

Theorem 3. Assume that (H1)–(H5), (H6 (𝑠
1
)) with 𝑠

1
> 3/2,

and (H7 (𝑠
2
)) with 𝑠

2
> 1/2 hold. Let 𝛿 be given by (5), and let

𝛿 be given by (14) with 𝑗
0
such that 𝑛1/4 < 2

𝑗
0
+1

≤ 2𝑛
1/4. Then

there exists a constant 𝐶 > 0 such that

E ((𝛿 − 𝛿)
2

) ≤ 𝐶
1

𝑛
. (24)

Theorem 3 proves that 𝛿 attains the parametric rate of
convergence 1/𝑛 under theMSE.This implies the consistency
of our estimator.This result provides a first theoretical aspect
to the estimation of 𝛿 from biased data.

4. Proofs

4.1. On the Construction of 𝛿

Proof of Proposition 1. We follow the approach of Chesneau et
al. [8]. Using supp(𝑋

1
) = [0, 1], ℎ(0) = ℎ(1) = 0, and an

integration by parts, we obtain

𝛿 = [ℎ
2
(𝑥) 𝜑 (𝑥)]

1

0
− 2∫

1

0

𝜑 (𝑥) ℎ (𝑥) ℎ
󸀠
(𝑥) 𝑑𝑥

= −2∫

1

0

𝜑 (𝑥) ℎ (𝑥) ℎ
󸀠
(𝑥) 𝑑𝑥.

(25)

Moreover,

(i) since 𝜑ℎ ∈ L2([0, 1]), we can expand it onB as (9):

𝜑 (𝑥) ℎ (𝑥) = ∑

𝑘∈Λ
𝜏

𝛼
𝜏,𝑘

𝜙
𝜏,𝑘

(𝑥) +

∞

∑

𝑗=𝜏

∑

𝑘∈Λ
𝑗

𝛽
𝑗,𝑘

𝜓
𝑗,𝑘

(𝑥) , (26)

where 𝛼
𝜏,𝑘

and 𝛽
𝑗,𝑘

are (12),

(ii) since ℎ
󸀠
∈ L2([0, 1]), we can expand it onB as (9):

ℎ
󸀠
(𝑥) = ∑

𝑘∈Λ
𝜏

𝑐
𝜏,𝑘

𝜙
𝜏,𝑘

(𝑥) +

∞

∑

𝑗=𝜏

∑

𝑘∈Λ
𝑗

𝑑
𝑗,𝑘

𝜓
𝑗,𝑘

(𝑥) , (27)

where 𝑐
𝜏,𝑘

and 𝑑
𝑗,𝑘

are (13).

Thanks to (25) and the orthonormality ofB onL2([0, 1]),
we get

𝛿 = −2( ∑

𝑘∈Λ
𝜏

𝛼
𝜏,𝑘

𝑐
𝜏,𝑘

+

∞

∑

𝑗=𝜏

∑

𝑘∈Λ
𝑗

𝛽
𝑗,𝑘

𝑑
𝑗,𝑘

) . (28)

Proposition 1 is proved.
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Proof of Proposition 2. (i) We have

E(
1

𝜇
) = E(

1

𝑛

𝑛

∑

𝑖=1

1

𝑤 (𝑋
𝑖
, 𝑌
𝑖
)
) = E(

1

𝑤 (𝑋
1
, 𝑌
1
)
)

= ∫

∞

−∞

∫

1

0

1

𝑤 (𝑥, 𝑦)
𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

=
1

𝜇
∫

∞

−∞

∫

1

0

𝑔 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 =
1

𝜇
.

(29)

(ii) Using the identical distribution of (𝑋
1
, 𝑌
1
), . . .,

(𝑋
𝑛
, 𝑌
𝑛
) and the definition of 𝜑 (4), we obtain

E(
𝜇

𝜇
𝛽
𝑗,𝑘

) = E(
𝜇

𝑛

𝑛

∑

𝑖=1

𝑌
𝑖

𝑤 (𝑋
𝑖
, 𝑌
𝑖
)
𝜓
𝑗,𝑘

(𝑋
𝑖
))

= 𝜇E(
𝑌
1

𝑤 (𝑋
1
, 𝑌
1
)
𝜓
𝑗,𝑘

(𝑋
1
))

= 𝜇∫

∞

−∞

∫

1

0

𝑦

𝑤 (𝑥, 𝑦)
𝜓
𝑗,𝑘

(𝑥) 𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

= ∫

∞

−∞

∫

1

0

𝑦𝑔 (𝑥, 𝑦) 𝜓
𝑗,𝑘

(𝑥) 𝑑𝑥 𝑑𝑦

= ∫

1

0

(∫

∞

−∞

𝑦𝑔 (𝑥, 𝑦) 𝑑𝑦)𝜓
𝑗,𝑘

(𝑥) 𝑑𝑥

= ∫

1

0

𝜑 (𝑥) ℎ (𝑥) 𝜓
𝑗,𝑘

(𝑥) 𝑑𝑥 = 𝛽
𝑗,𝑘

.

(30)

Similarly, we prove that E((𝜇/𝜇)𝛼̂
𝜏,𝑘

) = 𝛼
𝜏,𝑘
.

(iii) Using the identical distribution of 𝑋
1
, . . . , 𝑋

𝑛
, an

integration by parts, and ℎ(0) = ℎ(1) = 0, we obtain

E(
𝜇

𝜇
𝑑
𝑗,𝑘

) = −E(
𝜇

𝑛

𝑛

∑

𝑖=1

1

𝑤 (𝑋
𝑖
, 𝑌
𝑖
)
(𝜓
𝑗,𝑘

)
󸀠

(𝑋
𝑖
))

= −𝜇E(
1

𝑤 (𝑋
1
, 𝑌
1
)
(𝜓
𝑗,𝑘

)
󸀠

(𝑋
1
))

= −𝜇∫

∞

−∞

∫

1

0

1

𝑤 (𝑥, 𝑦)
(𝜓
𝑗,𝑘

)
󸀠

(𝑥) 𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

= −∫

∞

−∞

∫

1

0

𝑔 (𝑥, 𝑦) (𝜓
𝑗,𝑘

)
󸀠

(𝑥) 𝑑𝑥 𝑑𝑦

= −∫

1

0

(∫

∞

−∞

𝑔 (𝑥, 𝑦) 𝑑𝑦) (𝜓
𝑗,𝑘

)
󸀠

(𝑥) 𝑑𝑥

= −∫

1

0

ℎ (𝑥) (𝜓
𝑗,𝑘

)
󸀠

(𝑥) 𝑑𝑥

= −([ℎ (𝑥) 𝜓
𝑗,𝑘

(𝑥)]
1

0
− ∫

1

0

ℎ
󸀠
(𝑥) 𝜓
𝑗,𝑘

(𝑥) 𝑑𝑥)

= ∫

1

0

ℎ
󸀠
(𝑥) 𝜓
𝑗,𝑘

(𝑥) 𝑑𝑥 = 𝑑
𝑗,𝑘

.

(31)

Similarly, we prove that E((𝜇/𝜇)𝑐
𝜏,𝑘

) = 𝑐
𝜏,𝑘
.

This ends the proof of Proposition 2.

4.2. Proof of Some Intermediate Results

Proposition 4. Suppose that (H1)–(H5) hold. Let 𝛽
𝑗,𝑘

and 𝑑
𝑗,𝑘

be given by (13), and let 𝛽
𝑗,𝑘

and 𝑑
𝑗,𝑘

be given by (16) with 𝑗

such that 2𝑗 ≤ 𝑛. Then

(i) there exists a constant 𝐶 > 0 such that

E((
1

𝜇
−

1

𝜇
)

4

) ≤ 𝐶
1

𝑛
2
, (32)

(ii) there exists a constant 𝐶 > 0 such that

E ((𝛽
𝑗,𝑘

− 𝛽
𝑗,𝑘

)
4

) ≤ 𝐶
1

𝑛
2
, (33)

(iii) there exists a constant 𝐶 > 0 such that

E ((𝑑
𝑗,𝑘

− 𝑑
𝑗,𝑘

)
4

) ≤ 𝐶
2
4𝑗

𝑛
2
. (34)

These inequalities hold with (𝛼̂
𝜏,𝑘

, 𝑐
𝜏,𝑘

) in (15) instead of
(𝛽
𝑗,𝑘

, 𝑑
𝑗,𝑘

) and (𝛼
𝜏,𝑘

, 𝑐
𝜏,𝑘

) in (12) instead of (𝛽
𝑗,𝑘

, 𝑑
𝑗,𝑘

) for 𝑗 = 𝜏.

Proof of Proposition 4. We use the following version of the
Rosenthal inequality. The proof can be found in Rosenthal
[27].

Lemma 5. Let 𝑛 be a positive integer, 𝑝 ≥ 2, and let
𝑈
1
, . . . , 𝑈

𝑛
be 𝑛 zero mean independent random variables such

that sup
𝑖∈{1,...,𝑛}

E(|𝑈
𝑖
|
𝑝
) < ∞. Then there exists a constant

𝐶 > 0 such that

E(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

𝑈
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

) ≤ 𝐶(

𝑛

∑

𝑖=1

E (
󵄨󵄨󵄨󵄨𝑈𝑖

󵄨󵄨󵄨󵄨

𝑝

) + (

𝑛

∑

𝑖=1

E (𝑈
2

𝑖
))

𝑝/2

) .

(35)

(i) Note that

E((
1

𝜇
−

1

𝜇
)

4

) =
1

𝑛
4
E((

𝑛

∑

𝑖=1

𝑈
𝑖
)

4

) , (36)

with

𝑈
𝑖
=

1

𝑤 (𝑋
𝑖
, 𝑌
𝑖
)
−

1

𝜇
, 𝑖 ∈ {1, . . . , 𝑛} . (37)

Since (𝑋
1
, 𝑌
1
), . . . , (𝑋

𝑛
, 𝑌
𝑛
) are i.i.d., we get

that 𝑈
1
, . . . , 𝑈

𝑛
are also i.i.d.. Moreover, from

Proposition 2, we have E(𝑈
1
) = 0. Using (H5), for

any 𝑢 ∈ {2, 4}, we have E(𝑈𝑢
1
) ≤ 𝐶. Thus, Lemma 5

with 𝑝 = 4 yields

E((
1

𝜇
−

1

𝜇
)

4

) ≤ 𝐶
1

𝑛
4
(𝑛E (𝑈

4

1
) + 𝑛
2
(E (𝑈

2

1
))
2

) ≤ 𝐶
1

𝑛
2
.

(38)
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(ii) We have

𝛽
𝑗,𝑘

− 𝛽
𝑗,𝑘

=
𝜇

𝜇
(

𝜇

𝑛

𝑛

∑

𝑖=1

𝑌
𝑖

𝑤 (𝑋
𝑖
, 𝑌
𝑖
)
𝜓
𝑗,𝑘

(𝑋
𝑖
) − 𝛽
𝑗,𝑘

)

+ 𝛽
𝑗,𝑘

𝜇(
1

𝜇
−

1

𝜇
) .

(39)

By (H5), we have |𝜇/𝜇| ≤ 𝐶, |𝜇| ≤ 𝐶, and by (H2) and (H3),
|𝛽
𝑗,𝑘

| ≤ 𝐶. Hence, by the triangular inequality,

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗,𝑘

− 𝛽
𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨

≤ 𝐶(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇

𝑛

𝑛

∑

𝑖=1

𝑌
𝑖

𝑤 (𝑋
𝑖
, 𝑌
𝑖
)
𝜓
𝑗,𝑘

(𝑋
𝑖
) − 𝛽
𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝜇
−

1

𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) .

(40)

The elementary inequality, (𝑥+𝑦)
4
≤ 8(𝑥

4
+𝑦
4
), (𝑥, 𝑦) ∈

R2, implies that

E ((𝛽
𝑗,𝑘

− 𝛽
𝑗,𝑘

)
4

) ≤ 𝐶 (𝐼
1
+ 𝐼
2
) , (41)

where

𝐼
1
=

1

𝑛
4
E((

𝑛

∑

𝑖=1

𝑈
𝑖
)

4

) ,

𝑈
𝑖
= 𝜇

𝑌
𝑖

𝑤 (𝑋
𝑖
, 𝑌
𝑖
)
𝜓
𝑗,𝑘

(𝑋
𝑖
) − 𝛽
𝑗,𝑘

, 𝑖 ∈ {1, . . . , 𝑛} ,

𝐼
2
= E((

1

𝜇
−

1

𝜇
)

4

) .

(42)

Upper bound for 𝐼
1
. Since (𝑋

1
, 𝑌
1
), . . . , (𝑋

𝑛
, 𝑌
𝑛
) are i.i.d.,

we get that 𝑈
1
, . . . , 𝑈

𝑛
are also i.i.d. Moreover, from

Proposition 2, we have E(𝑈
1
) = 0. Now, using the Hölder

inequality, (H4), (H5) and 2
𝑗
≤ 𝑛, for any 𝑢 ∈ {2, 4}, observe

that

E (𝑈
𝑢

1
) ≤ 𝐶E((𝜇

𝑌
1

𝑤 (𝑋
1
, 𝑌
1
)
𝜓
𝑗,𝑘

(𝑋
1
))

𝑢

)

≤ 𝐶𝜇E((𝑌
1
𝜓
𝑗,𝑘

(𝑋
1
))
𝑢 1

𝑤 (𝑋
1
, 𝑌
1
)
)

= 𝐶𝜇∫

∞

−∞

∫

1

0

(𝑦𝜓
𝑗,𝑘

(𝑥))
𝑢 1

𝑤 (𝑥, 𝑦)
𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

= 𝐶∫

∞

−∞

∫

1

0

(𝑦𝜓
𝑗,𝑘

(𝑥))
𝑢

𝑔 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

= 𝐶∫

1

0

(∫

∞

−∞

𝑦
𝑢
𝑔 (𝑥, 𝑦) 𝑑𝑦) (𝜓

𝑗,𝑘
(𝑥))
𝑢

𝑑𝑥

≤ 𝐶∫

1

0

(𝜓
𝑗,𝑘

(𝑥))
𝑢

𝑑𝑥 = 𝐶2
𝑗(𝑢−2)/2

∫

1

0

(𝜓 (𝑥))
𝑢

𝑑𝑥

≤ 𝐶𝑛
(𝑢−2)/2

.

(43)

Combining Lemma 5 with 𝑝 = 4 with the previous
inequality, we obtain

𝐼
1
≤ 𝐶

1

𝑛
4
(𝑛E (𝑈

4

1
) + 𝑛
2
(E (𝑈

2

1
))
2

) ≤ 𝐶
1

𝑛
2
. (44)

Upper bound for 𝐼
2
.The point (i) yields

𝐼
2
≤ 𝐶

1

𝑛
2
. (45)

It follows from (41), (44), and (45) that

E ((𝛽
𝑗,𝑘

− 𝛽
𝑗,𝑘

)
4

) ≤ 𝐶
1

𝑛
2
, (46)

(iii) Similar arguments to the beginning of (ii) give

E ((𝑑
𝑗,𝑘

− 𝑑
𝑗,𝑘

)
4

) ≤ 𝐶 (𝐼
1
+ 𝐼
2
) , (47)

where

𝐼
1
=

1

𝑛
4
E((

𝑛

∑

𝑖=1

𝑈
𝑖
)

4

) ,

𝑈
𝑖
= −𝜇

1

𝑤 (𝑋
𝑖
, 𝑌
𝑖
)
(𝜓
𝑗,𝑘

)
󸀠

(𝑋
𝑖
) − 𝑑
𝑗,𝑘

, 𝑖 ∈ {1, . . . , 𝑛} ,

𝐼
2
= E((

1

𝜇
−

1

𝜇
)

4

) .

(48)

Upper bound for 𝐼
1
. Since (𝑋

1
, 𝑌
1
), . . . , (𝑋

𝑛
, 𝑌
𝑛
) are i.i.d.,

we get that 𝑈
1
, . . . , 𝑈

𝑛
are also i.i.d. Moreover, from

Proposition 2, we have E(𝑈
1
) = 0. Now, using the Hölder

inequality, (H4), (H5), (𝜓
𝑗,𝑘

)
󸀠
(𝑥) = 2

𝑗
2
𝑗/2

𝜓
󸀠
(2
𝑗
𝑥 − 𝑘), and

2
𝑗
≤ 𝑛, for any 𝑢 ∈ {2, 4}, observe that

E (𝑈
𝑢

1
) ≤ 𝐶E((𝜇

1

𝑤 (𝑋
1
, 𝑌
1
)
(𝜓
𝑗,𝑘

)
󸀠

(𝑋
1
))

𝑢

)

≤ 𝐶𝜇E(((𝜓
𝑗,𝑘

)
󸀠

(𝑋
1
))

𝑢 1

𝑤 (𝑋
1
, 𝑌
1
)
)

= 𝐶𝜇∫

∞

−∞

∫

1

0

((𝜓
𝑗,𝑘

)
󸀠

(𝑥))

𝑢 1

𝑤 (𝑥, 𝑦)
𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

= 𝐶∫

∞

−∞

∫

1

0

((𝜓
𝑗,𝑘

)
󸀠

(𝑥))

𝑢

𝑔 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

= 𝐶∫

1

0

(∫

∞

−∞

𝑔 (𝑥, 𝑦) 𝑑𝑦) ((𝜓
𝑗,𝑘

)
󸀠

(𝑥))

𝑢

𝑑𝑥

≤ 𝐶∫

1

0

((𝜓
𝑗,𝑘

)
󸀠

(𝑥))

𝑢

𝑑𝑥

= 𝐶2
𝑗𝑢
2
𝑗(𝑢−2)/2

∫

1

0

(𝜓
󸀠
(𝑥))
𝑢

𝑑𝑥

≤ 𝐶2
𝑗𝑢
𝑛
(𝑢−2)/2

.

(49)
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Owing to Lemma 5 with 𝑝 = 4 and the previous inequality,
we obtain

𝐼
1
≤ 𝐶

1

𝑛
4
(𝑛E (𝑈

4

1
) + 𝑛
2
(E (𝑈

2

1
))
2

)

≤ 𝐶
1

𝑛
4
(𝑛2
4𝑗
𝑛 + 𝑛
2
(2
2𝑗
)
2

) ≤ 𝐶
2
4𝑗

𝑛
2
.

(50)

Upper bound for 𝐼
2
.The point (i) yields

𝐼
2
≤ 𝐶

1

𝑛
2
. (51)

It follows from (47), (50), and (51) that

E ((𝑑
𝑗,𝑘

− 𝑑
𝑗,𝑘

)
4

) ≤ 𝐶
2
4𝑗

𝑛
2
. (52)

Proposition 4 is proved.

Proposition 6 below is a consequence of [8, Proposi-
tion 5.2] and the results of Proposition 4 above.

Proposition6. (i) Suppose that (H1)–(H5), (H6 (𝑠
1
)), and (H7

(s
2
)) hold. Let 𝛽

𝑗,𝑘
and 𝑑

𝑗,𝑘
be given by (13), and let 𝛽

𝑗,𝑘
and

𝑑
𝑗,𝑘

be given by (16) with 𝑗 such that 2𝑗 ≤ 𝑛. Then there exists
a constant 𝐶 > 0 such that

E ((𝛽
𝑗,𝑘

𝑑
𝑗,𝑘

− 𝛽
𝑗,𝑘

𝑑
𝑗,𝑘

)
2

)

≤ 𝐶(
2
−𝑗(2𝑠
1
−1)

𝑛
+

2
−𝑗(2𝑠
2
+1)

𝑛
+

2
2𝑗

𝑛
2
) .

(53)

(ii) Suppose that (H1)–(H5) hold. Let 𝛼
𝜏,𝑘

and 𝑐
𝜏,𝑘

be given
by (12), and let 𝛼̂

𝜏,𝑘
and 𝑐
𝜏,𝑘

be given by (15). Then there exists
a constant 𝐶 > 0 such that

E ((𝛼̂
𝜏,𝑘

𝑐
𝜏,𝑘

− 𝛼
𝜏,𝑘

𝑐
𝜏,𝑘

)
2

) ≤ 𝐶
1

𝑛
. (54)

4.3. Proof of the Main Result

Proof of Theorem 3. Using the intermediary results above, the
proof follows the lines of [8, Theorem 5.1]. It follows from
Proposition 1 and the elementary inequality, (𝑎 + 𝑏 + 𝑐)

2
≤

3(𝑎
2
+ 𝑏
2
+ 𝑐
2
), (𝑎, 𝑏, 𝑐) ∈ R3, that

E ((𝛿 − 𝛿)
2

) ≤ 12 (𝑊
1
+ 𝑊
2
+ 𝑊
3
) , (55)

where

𝑊
1
= E(( ∑

𝑘∈Λ
𝜏

󵄨󵄨󵄨󵄨𝛼̂𝜏,𝑘𝑐𝜏,𝑘 − 𝛼
𝜏,𝑘

𝑐
𝜏,𝑘

󵄨󵄨󵄨󵄨)

2

) ,

𝑊
2
= E((

𝑗
0

∑

𝑗=𝜏

∑

𝑘∈Λ
𝑗

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗,𝑘

𝑑
𝑗,𝑘

− 𝛽
𝑗,𝑘

𝑑
𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨
)

2

) ,

𝑊
3
= (

∞

∑

𝑗=𝑗
0
+1

∑

𝑘∈Λ
𝑗

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨
)

2

.

(56)

Upper bound for 𝑊
1
. Using the Cauchy-Schwarz inequality,

the second point of Proposition 6, and Card(Λ
𝜏
) ≤ 𝐶, we

obtain

𝑊
1
≤ ( ∑

𝑘∈Λ
𝜏

√E ((𝛼̂
𝜏,𝑘

𝑐
𝜏,𝑘

− 𝛼
𝜏,𝑘

𝑐
𝜏,𝑘

)
2

))

2

≤ 𝐶
1

𝑛
. (57)

Upper bound for 𝑊
2
. It follows from the Cauchy-Schwarz

inequality, the first point of Proposition 6, Card(Λ
𝑗
) ≤ 𝐶2

𝑗,
the elementary inequality, √𝑎 + 𝑏 + 𝑐 ≤ √𝑎 + √𝑏 + √𝑐,
𝑠
1
> 3/2, 𝑠

2
> 1/2, and 2

𝑗
0 ≤ 𝑛
1/4, that

𝑊
2
≤ (

𝑗
0

∑

𝑗=𝜏

∑

𝑘∈Λ
𝑗

√E ((𝛽
𝑗,𝑘

𝑑
𝑗,𝑘

− 𝛽
𝑗,𝑘

𝑑
𝑗,𝑘

)
2

))

2

≤ 𝐶(

𝑗
0

∑

𝑗=𝜏

2
𝑗√

2
−𝑗(2𝑠
1
−1)

𝑛
+

2
−𝑗(2𝑠
2
+1)

𝑛
+

2
2𝑗

𝑛
2
)

2

≤ 𝐶(
1

√𝑛

𝑗
0

∑

𝑗=𝜏

2
−𝑗(𝑠
1
−3/2)

+
1

√𝑛

𝑗
0

∑

𝑗=𝜏

2
−𝑗(𝑠
2
−1/2)

+
1

𝑛

𝑗
0

∑

𝑗=𝜏

2
2𝑗
)

2

≤ 𝐶(
1

√𝑛
+

1

√𝑛
+

2
2𝑗
0

𝑛
)

2

≤ 𝐶
1

𝑛
.

(58)

Upper bound for 𝑊
3
. By (H6 (𝑠

1
)) with 𝑠

1
> 3/2, (H7 (𝑠

2
))

with 𝑠
2
> 1/2, and 2

𝑗
0
+1

> 𝑛
1/4, we have

𝑊
3
≤ 𝐶(

∞

∑

𝑗=𝑗
0
+1

2
𝑗
2
−𝑗(𝑠
1
+1/2)

2
−𝑗(𝑠
2
+1/2)

)

2

≤ 𝐶2
−2𝑗
0
(𝑠
1
+𝑠
2
)
≤ 𝐶2
−4𝑗
0

≤ 𝐶
1

𝑛
.

(59)

Putting (55), (57), (58), and (59) together, we obtain

E ((𝛿 − 𝛿)
2

) ≤ 𝐶
1

𝑛
. (60)

This ends the proof of Theorem 3.
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