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NON SELF-ADJOINT LAPLACIANS ON A DIRECTED

GRAPH

MARWA BALTI

Abstract. We consider a non self-adjoint Laplacian on a directed graph
with non symmetric edge weights. We analyse spectral properties of this
Laplacian under a Kirchhoff’s assumption. Moreover we establish isoperi-
metric inequalities in terms of the numerical range to show the lack of es-
sential spectrum of Laplacian on heavy ends directed graphs. We introduce
a special self-adjoint operator and compare its essential spectrum with that
of the non self-adjoint Laplacian considered.
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Introduction

This article follows up on the ideas in [4] and [12] on monotonicity eigenvalues
which are relative to continuous domains. The purpose of this work is to explore
in the case of weighted directed graphs, some familiar facts of monotonicity
proved on domains of Rn and on compact Riemannian manifolds. Specially, our
main question is: ”can one study the behavior of the eigenvalues of a special
operator under perturbations on finite graphs?” First, we consider a finite,
directed and connected graph G with non symmetric edge weights. Then, we
introduce the associated non symmetric Laplacian ∆G. We introduce the self-
adjoint operator SG = ∆G + ∆∗G, such that it is easier to examine its spectrum
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Key words and phrases. Graph Laplacian, Bounds of eigenvalues, Domain monotonicity, Com-
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2 MARWA BALTI

thanks to selfadjointness. We give some spectral properties of ∆G and we show

that the real part of its eigenvalues can coincide with the eigenvalues of
1

2
SG.

Secondly, we study the monotonicity of eigenvalues relative to vertices or edges
of G. We prove that the kth eigenvalue λk of SG is decreasing only in a class of
graphs called here flower-like-graphs, and it is monotone increasing in the set
of edges. These results are inspired by the classical results going back from M.
Fiedler [6] and P. Kurasov, G. Malenova, S. Naboko [11] on the first nonzero
eigenvalue of a simple graph. We extend these results for the higher eigenvalues
λk of our special operator. In the second part of our work, we try to establish
and improve the Proposition 2.1 of [3] for a Riemannian manifold M which gives
upper bounds on the higher eigenvalues λk(M) in terms of Dirichlet eigenvalues
on components of a partition of M .

Let us briefly outline the contents of this article. We shall start with a short
section of preliminaries consisting on some basic properties of the non sym-
metric Laplacian ∆G on G and the associated Green formula. In section 3,
we establish a generalization of some monotonicity eigenvalue results. Further-
more, we study the example of flower-like graphs and insist on the interest of
the subgraph concept. Hence, we can remark that these considerations of graph
help to give an upper bound of the eigenvalues of a simple tree. This section
includes also similar Weyl and Cauchy theorems for the matrices [10]. In section
4, we are interested on the study of the eigenvalues of the Dirichlet Laplacian.
We involve a comparison on the eigenvalues to use the decomposition of G into
two components A and B and we give an upper bound on the eigenvalues of G
in terms of Dirichlet eigenvalues of A and B.

1. Preliminaries

We will review in this section some basic definitions and introduce the nota-
tion used in the article. They are introduced in [2] for the infinite graph.

1.1. Notion of Graphs. We call oriented or directed graph, the couple G =

(V, ~E), where V is a set of vertices, and ~E ⊂ V × V is a set of directed edges.
For two vertices x, y of V , we denote by (x, y) the edge that connects x to y,
we also say that x and y are neighbors.

For all x ∈ V , we set:

• E =
{
{x, y}, (x, y) ∈ ~E or (y, x) ∈ ~E

}
• V +

x =
{
y ∈ V, (x, y) ∈ ~E

}
• V −x =

{
y ∈ V, (y, x) ∈ ~E

}
• Vx = V +

x ∪ V −x .

The valency on G is given by:

v(x) = #Vx for all x ∈ V.

We introduce some definitions given in [1], [2], [5], [14] for the case of sym-
metric graphs.
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Definitions 1.1. • A path between two vertices x and y in V is a finite
set of directed edges (x1, y1); (x2, y2); ..; (xn, yn), n ≥ 1 such that

x1 = x, yn = y and xi = yi−1 ∀ 2 ≤ i ≤ n.

• G = (V, ~E) is called connected if two vertices are always related by a
path.

• G = (V, ~E) is called strongly connected if there is for all vertices x, y a
path from x to y and one from y to x.

Example 1.1. The cycle graph Cn = {0, 1, .., n− 1}, with

(0, 1) ∈ ~E, (1, 2) ∈ ~E, .., (n− 2, n− 1) ∈ ~E, (n− 1, 0) ∈ ~E

is strongly connected.

• Define for a finite subset Ω of V , the interior, the vertex boundary and
the edge boundary of Ω respectively by:

◦
Ω =

{
y ∈ Ω, Vy ⊂ Ω

}
∂Ω =

{
y ∈ Ωc, y ∈ Vx for some x ∈ Ω

}
∂EΩ =

{
(x, y) ∈ ~E : (x ∈ Ω, y ∈ Ωc) or (x ∈ Ωc, y ∈ Ω)

}
.

We remark that the strong connectedness of G assures that:

∀ x ∈ V, #V +
x 6= 0 and #V −x 6= 0. (1)

In this work we suppose that G is finite, connected and satisfies the Hy-
pothesis (1). In this work, we take the following definition.

Definition 1.1. Directed weighted Graph: A weighted graph (G, b) is the

data of a graph (V, ~E) and a weight b : V × V → R+ satisfying the following
conditions:

• b(x, x) = 0 for all x ∈ V , (no loops in ~E)

• b(x, y) > 0 iff (x, y) ∈ ~E
• Assumption (β).

Assumption (β): for all x ∈ V , β+(x) = β−(x)
where

β+(x) =
∑
y∈V +

x

b(x, y) and β−(x) =
∑
y∈V −x

b(y, x).

The weight βG on a vertex x ∈ V is given by:

βG(x) = β+(x) + β−(x) = 2β+(x).

Remark 1.1. The Assumption (β) is natural, it looks like the Kirchhoff’s law
in the electrical networks.

The weighted graph is symmetric if for all x, y ∈ V , b(x, y) = b(y, x),

as a consequence (x, y) ∈ ~E ⇒ (y, x) ∈ ~E (the graph is symmetric).
In addition, we consider a weight m on V :

m : V → R∗+.
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1.2. Functional spaces. Let us introduce the following function spaces asso-
ciated to the graph G:

Cm(V ) = {f : V → C}
endowed with the following inner product:

(f, g)m =
∑
x∈V

m(x)f(x)g(x).

We define its associated norm by:

‖f‖m =
√

(f, f)m.

A particular case called normalized is for m = β+.
For a subset U of V , Let

Cm(U) = {f ∈ Cm(V ), f with support in U}.

The weights m and b are called simple if they are constant equal to 1 on V and
E respectively. We denote by Gs the simple graph (with simple weights).

2. Laplacian on directed graphs

For a weighted connected directed graph (G, b), we introduce the combina-
torial Laplacians:

Definitions 2.1. • We define the Laplacian ∆G on Cm(V ) by:

∆Gf(x) =
1

m(x)

∑
y∈V +

x

b(x, y)
(
f(x)− f(y)

)
.

• In particular, if for all x ∈ V , β+(x) = m(x), the Laplacian is said to
be the normalized Laplacian and is defined on Cβ+(V ) by:

∆̃Gf(x) =
1

β+(x)

∑
y∈V +

x

b(x, y)
(
f(x)− f(y)

)
.

• For any operator A on Cm(V ), the Dirichlet operator ADU , where U is a
subset of V , is defined by:

f is with support in U, ADU (f) = A(f)|U .

Thanks to Hypothesis (β) the adjoint of ∆ has a simple expression.

Definition 2.1. Adjoint of an operator: The adjoint operator ∆∗ of ∆ is
defined by:

∀φ, ψ ∈ Cm(V ), (∆ψ, φ) = (ψ,∆∗φ).

Proposition 2.1. Let f be a function of Cm(V ), we have

∆∗Gf(x) =
1

m(x)

∑
y∈V −x

b(y, x)
(
f(x)− f(y)

)
.

Proof:
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The following calculation for all f, g ∈ Cm(V ) gives:

(∆Gf, g)m =
∑

(x,y)∈ ~E

b(x, y)
(
f(x)− f(y)

)
g(x)

=
∑
x∈V

g(x)f(x)
∑
y∈V +

x

b(x, y)−
∑

(y,x)∈ ~E

b(y, x)g(y)f(x)

=
∑
x∈V

g(x)f(x)
∑
y∈V −x

b(y, x)−
∑

(y,x)∈ ~E

b(y, x)g(y)f(x)

=
∑
x∈V

f(x)
∑
y∈V −x

b(y, x)
(
g(x)− g(y)

)
=(f,∆∗Gg)m.

�
The Green’s formula is one of the main tools when we are working with

the symmetric Laplace operator. In the following we establish it for the non
symmetric Laplacian.

Lemma 2.1. Green’s Formula. Let f and g be two functions of Cm(V ).
Then

(∆Gf, g)m + (∆∗Gf, g)m =
∑

(x,y)∈ ~E

b(x, y)
(
f(x)− f(y)

)(
g(x)− g(y)

)
.

Proof:

The proof is a simple calculation:

(∆Gf, g)m + (∆∗Gf, g)m =
∑

(x,y)∈ ~E

b(x, y)
(
f(x)− f(y)

)
g(x)

+
∑

(y,x)∈ ~E

b(y, x)
(
f(x)− f(y)

)
g(x)

=
∑

(x,y)∈ ~E

b(x, y)
(
f(x)g(x) + f(x)g(x)− f(y)g(x)− f(x)g(y)

)
=

∑
(x,y)∈ ~E

b(x, y)
(
f(x)− f(y)

)(
g(x)− g(y)

)
.

�

Definition 2.2. Special Laplacian. We define a special Laplacian SG as the
sum of the two non self-adjoint Laplacians ∆G and ∆∗G, given by:

SGf(x) = (∆G + ∆∗G)f(x)

=
1

m(x)

∑
y∈V +

x ∪V −x

(
b(x, y) + b(y, x)

)(
f(x)− f(y)

)
=

1

m(x)

∑
y∈Vx

a(x, y)
(
f(x)− f(y)

)
where a(x, y) = b(x, y) + b(y, x) for any x, y ∈ V .
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Remark 2.1. (1) SG is a symmetric operator on Cm(V ), because (∆∗G)∗ =
∆G.

(2) SG is a positive operator: for all f ∈ Cm(V ),

(SGf, f) =(∆Gf, f) + (∆∗Gf, f)

=
∑

(x,y)∈ ~E

b(x, y)
∣∣f(x)− f(y)

∣∣2
≥0.

In our discussion on the study of eigenvalues of a self-adjoint operator, it is
natural to introduce the different characterization by variational principles [9].

2.1. Variational principles and Properties. Let A be a bounded from
below self-adjoint operator. The eigenvalues of A can be characterized by
three fundamental variational principles: the Rayleigh’s principle, the Poincaré-
Ritz max-min principle and the Courant-Fischer-Weyl principle applied to the

Rayleigh quotients R(f) =
(Af, f)

(f, f)
, f 6= 0.

Let us arrange the eigenvalues of A as

λ1 ≤ λ2 ≤ ... ≤ λn

counted according to their multiplicities.
In this case we have :

(1) The Rayleigh’s principle states:

λk = min
f 6=0, (f,fi)=0
i=1,...,k−1

R(f) (2)

where fi are eigenvectors corresponding to the eigenvalues λi and the
minimum is reached at the eigenvector fk.

(2) The Poincaré-Ritz principle establishes:

λk = min
dimΩ=k

max
f∈Ω, f 6=0

R(f). (3)

(3) The Courant-Fischer-Weyl principle is given in the form:

λk = max
dimΩ=k−1

min
f⊥Ω
f 6=0

R(f). (4)

The result below establishes a link between the eigenvalues of SG and ∆G.
We assume that the eigenvalues of ∆G are ordered as follows respectively:

Re(λ1(∆G)) ≤ Re(λ2(∆G)).. ≤ Re(λn(∆G)).

Lemma 2.2.

2Re(λn(∆G)) ≤ λn(SG)

Proof:
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Let f be an eigenfunction associated to λn(∆G), we have

λn(SG) ≥(SGf, f)m
(f, f)m

≥
(∆Gf, f)m + (∆Gf, f)m

(f, f)m
≥2Re(λn(∆G)).

�

Remark 2.2. In a particular case, the previous inequalities are strict. Let us
consider the following example, where m ≡ 1, we have σ(SG) = {0, 3, 7} and

��
��
��
��

�
�
�
�

�
�
�
�

2

1

11

Figure 1. Graph with real spectrum

σ(∆G) = {0, 2, 3}.

We introduce in the following a particular case of graphs whose σ(SG) =
2Re

(
σ(∆G)

)
.

Example 2.1. Let us consider the simple cycle graph C3, see the Figure 2, we
have ,

σ(∆C3) =

{
0,

3

2
+ i

√
3

2
,

3

2
− i
√

3

2

}
and σ(SC3) = {0, 3, 3} .

Figure 2. Cycle graph

In the following proposition we determine the spectrum of the non symmetric
Laplacian ∆Cn . We follow the same approach as Grigoryan for the symmetric
Laplacian [7] page 49.

Proposition 2.2. The eigenvalues of ∆Cn = I − P are as follows:

(1) If n is odd then the eigenvalues are λ = 0 (simple) and λ = 1 − e±i
2lπ
n

for all l = 1, .., n−1
2 (simple).
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(2) If n is even then the eigenvalues are λ = 0, 2 (simple) and λ = 1−e±i
2lπ
n

for all l = 1, .., n2 − 1 (simple).

Proof:

To compute the eigenvalues of ∆Cn = I − P , it is sufficient
to determine the spectrum of P . Let α be an eigenvalue of the
operator Pf(k + 1) = f(k), for k = 0, .., n − 1, which leads
to f(k) = αkf(0) but f(n) = f(0) thus αn = 1. As f is an
eigenfunction (f(0) 6= 0), then α = e±iθ. As f is n-periodic
provided nθ is a multiple of 2π, hence,

θ =
2lπ

n
,

where l is an integer of (0, n2 ).

�
Observe that an interesting corollary concerning the spectra of SCn and ∆Cn .

Corollary 2.1.

σ(SCn) = 2Re
(
σ(∆Cn)

)
.

Proof:

We refer the Lemma 2.7 of [7], we remark that the eigenvalues

of the operator
1

2
(P +P ∗)f(k) =

1

2

(
f(k+1)+f(k−1)

)
coincide

with the real part of the eigenvalues of P .

�
Using the Green’s formula, we establish some properties of the spectrum on

any graph G .

Proposition 2.3. (1) 0 is a simple eigenvalue of S̃G and SG.

(2) All the eigenvalues of S̃G are contained in [0, 4].

(3) The real part of the eigenvalues of ∆̃G are also contained in [0, 2].

Proof:

(1) As in the case of undirected graph [7], we have for all f ∈
Cβ+(V ),

(S̃Gf, f)β+ =
∑

(x,y)∈ ~E

b(x, y)|f(x)− f(y)|2.

Clearly, the constant function is an eigenfunction of 0. As-
sume now that f is an eigenfunction of the eigenvalue 0. By
the connectedness of G, f is constant, which will imply that
0 is a simple eigenvalue. It is similar for S̃G.

(2) It is sufficient to prove that S̃G is bounded by 4 because

S̃G is non negative by the Green’s formula. In fact, for all
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f ∈ Cβ+(V ) and thanks to Assumption (β), we obtain

(S̃Gf, f)β+ =
∑

(x,y)∈ ~E

b(x, y)|f(x)− f(y)|2

≤2
∑

(x,y)∈ ~E

b(x, y)
∣∣|f(x)|2 + |f(y)|2

∣∣
≤2

∑
(x,y)∈ ~E

b(x, y)|f(x)|2 + 2
∑

(x,y)∈ ~E

b(x, y)|f(y)|2

≤2
∑
x∈V

∑
y∈V +

x

b(x, y)|f(x)|2 + 2
∑
y∈V

∑
x∈V −x

b(x, y)|f(y)|2

≤2
∑
x∈V
|f(x)|2β+(x) + 2

∑
y∈V
|f(y)|2β−(y)

≤4(f, f)β+ .

(3) We deduce directly our inclusion thanks to the Lemma 2.2.

�

3. Domain monotonicity of eigenvalues

The purpose of this part is to give an overview of some results concerning
the monotonicity with regard to the domain, of eigenvalues of SG, the special
self-adjoint Laplacian associated to directed graphs with non symmetric edge
weights. We could be concerned with the related question:
Does a given eigenvalue increases or decreases under a given perturbation of G?

3.1. Definitions on G. Before discussing the study of variation of eigenvalues,

let us recall some basic definitions: let G = (V, ~E) be a graph,

• The graph G1 = (V, ~E1) is called a partial graph of G, if ~E1 is included

in ~E.
• A graph H = (VH , ~EH) is called a subgraph of G = (VG, ~EG) if VH ⊂ VG

and ~EH =
{

(x, y); x, y ∈ VH
}
∩ ~EG.

• A graph (VU , ~EU ) is called a part of a graph G = (VG, ~EG) if VU ⊂ VG
and ~EU =

{
(x, y), x, y ∈ VU

}
⊂ ~EG.

Remark 3.1. A subgraph is a part of G but the converse is not true, for example
let us give the following undirected graphs, see the Figure 3.

�� �� ���� ����

����

   

a b

c

Ga b

c

H 

Figure 3. H part of G

H is a part of G, but not a subgraph.
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Remark 3.2. A confusion between a subgraph and a part of a graph can create
a false interpretation on the monotonicity of eigenvalue.

3.2. Monotonicity relative to vertices. We study the monotonicity of eigen-
values under the variation of the set of vertices.

By the Courant-Fischer-Weyl principle we establish the following statement.

Theorem 3.1. Let H = (VH , ~EH) be a connected subgraph of a graph G =

(VG, ~EG), ]VG = n, then for any 1 ≤ k ≤ ]VH = r :

λk(SH) ≤ λn−r+k(SG).

Proof:

Let f1, f2, ..., fk be k eigenfunctions associated to λ1(SH), λ2(SH), ..., λk(SH);
and F = {f1, f2, ..., fk, δ1, .., δn−r}, δ1, .., δn−r are the Dirac mea-
sures on G relative to the vertices in VG \ VH . It is clear that
dimF = k + n− r. Then using (4), we obtain ;

λn−r+k+1(SG) ≥ min
ϕ∈F⊥\{0}

(SGϕ,ϕ)m
(ϕ,ϕ)m

hence ∃ϕk ∈ F⊥ with support in H such that

λn−r+k+1(SG)(ϕk, ϕk)m ≥ (SGϕk, ϕk)m

= (SHϕk, ϕk)m

≥ λk+1(SH)(ϕk, ϕk)m.

�
For studying the behavior of eigenvalues relative to perturbations, we propose

a special construction of graphs.

Definition 3.1. Let G = (VG, ~EG) be a weighted graph. G is called H-flower-

like with respect to the subgraph H = (VH , ~EH) of G if there exists (Hi)i∈I a
family of subgraphs of G such that:

(1) VG = VH ∪ (]iV ◦
Hi

)

(2) ∀ i, j ∈ I, x ∈ V ◦
Hi
, y ∈ V ◦

Hj
, i 6= j ⇒ x /∈ Vy.

(3) ∀ i ∈ I, ∃ xi ∈ VG, VH ∩ VHi = {xi}.

These special graphs are used to create a rule of monotonicity of λk under a
given graph perturbation.

Theorem 3.2. Let G = (VG, ~EG) be a H-flower-like graph, we have then for
any 1 ≤ k ≤ ]VH = r,

λk(SH) ≥ λk(SG). (5)

Proof:

We use the variational principle (2). Let be f1, f2, ..., fk−1

eigenfunctions ofG in Cm(V ) associated to λ1(SG), λ2(SG), ..., λk−1(SG),
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H1

H2

H3

H4

H5

H

Figure 4. H-flower-like graph

and gj be the eigenfunction associated to λj(SH), for j = 1, .., k.
We define a function φj on VG by:

φj(x) =



gj(x) if x ∈ VH
gj(x1) if x ∈ VH1 \ {x1}
.

.

gj(xr) if x ∈ VHr \ {xr}

where {xs} = VH ∩ VHs , ∀s ∈ I = {1, .., r}
Let F = Span{φj}1≤j≤k, dimF = k so, there exist k reals
α1, α2, ..., αk not all equal to zero, satisfying:

( k∑
j=1

αjφj , fl

)
m

= 0 ∀ 1 ≤ l ≤ k − 1.

Therefore the function ψ(x) =

k∑
j=1

αjφj(x) 6= 0 is orthogonal to

fl for all 1 ≤ l ≤ k−1, we define for x ∈ H, ψ′(x) =

k∑
j=1

αjgj(x).

Then we get :

λk(SG)(ψ,ψ)m ≤ (SGψ,ψ)m

= (SHψ
′, ψ′)m because ψ is constant on each Hi

≤ λk(SH)(ψ′, ψ′)m
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as

(ψ,ψ)m =
∑
x∈VG

m(x)|ψ(x)|2

≥
∑
x∈VH

m(x)|ψ′(x)|2

= (ψ′, ψ′)m

then

λk(SG)(ψ′, ψ′)m ≤ λk(SH)(ψ′, ψ′)m.

�
The above results have several important consequences, for instance on a tree

seen as a flower-like graph.

Corollary 3.1. Let Gs be a simple symmetric tree and 2q = max
x∈V

v(x) then the

eigenvalues of Gs satisfy for all k = 1, .., q:

λk(SGs) ≤ 2

and

λq+1(SGs) ≤ 2(q + 1).

Proof:

Clearly there exists a symmetric star graph Sq with q+1 vertices
seen as a subgraph of Gs. It can be considered as a Sq-flower-like
graph. Therefore Gs satisfies the assumptions of the Proposition
3.2. Hence we get the result because the spectrum of Sq is :
0, 2, ..., 2, 2(q + 1), see [13].

�
In the following, we will show more general results : instead of adding only

one vertex and one edge, we would also add a graph.

Corollary 3.2. Let G be a graph with n vertices, let G1 connected to G by a
single edge.Then for k = 1, .., n;

λk(SG) ≥ λk(SG1).

Remark 3.3. The previous corollary is an immediate consequence of the Propo-
sition 3.2. In addition this is an interesting generalization of Proposition 2 in
[11] which shows that λ2(SG) ≥ λ2(SG1) where G1 is obtained from G by adding
one edge between one vertex of G and one new vertex.

3.3. Monotonicity relative to edges. We apply the Weyl and interlacing
Theorems for matrices to study how the spectrum of the special operator SG
of a directed graph changes under adding an edge or a set of edges.

Now we have several opportunities to refer to the following basic observation
about subspace intersections (see [10] page 235).
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Lemma 3.1. Let W be a finite dimensional vector space and let S1, S2,..,Sk
be subspaces of W , if

δ = dimS1 + ...+ dimSk − (k − 1) dimW ≥ 1

then dim(S1∩ ..∩Sk) ≥ δ and hence S1∩ ..∩Sk contains δ linearly independent
vectors, in particular , it contains a nonzero vector.

Observation 3.1. Let SG be the special self-adjoint operator with eigenvalues
λ1(SG) ≤ λ2(SG) ≤ ... ≤ λn(SG). Then the ordered eigenvalues of −S are
λ1(−SG) ≤ λ2(−SG) ≤ ... ≤ λn(−SG), that is, λk(−SG) = −λn−k+1(SG), k =
1, ..., n.

We show that the kth eigenvalue λk(SG) is monotonously increasing func-
tions of the set of edges. The following results are the generalizations of the
Proposition 1 and the Proposition 2 in [11].

Proposition 3.1. Let G = (V, ~E) be a connected finite weighted graph (]V =

n), consider the partial graphs G1 = (V, ~E1) and G2 = (V, ~E2) where E =
E1 t E2 (disjoint union). Then for all k = 1, ..., n and r, s = 1, 2, r 6= s:

λk(SG) ≤ λk+j(SGs) + λn−j(SGr) j = 0, ..., n− k (6)

and

λk(SG) ≥ λk−j+1(SGs) + λj(SGr) j = 1, ..., k.

Proof:

Let gk, hk, and fk be the eigenfunctions associated to λk(SG1),
λk(SG2) and λk(SG) respectively for k = 1, .., n.
For j = 0, ..., n − k, we define S1 = Span{g1, ..., gk+j}, S2 =
Span{h1, ..., hn−j} and S3 = Span{fk, ..., fn} by the Lemma
(3.1) there exists a non zero function ψ in S1 ∩ S2 ∩ S3 and so
we will have

λk(SG)(ψ,ψ)m ≤ (SGψ,ψ)m (7)

=
∑

(x,y)∈ ~E

b(x, y)
∣∣ψ(x)− ψ(y)

∣∣2
= (SGsψ,ψ)m + (SGrψ,ψ)m

≤ λk+j(SGs)(ψ,ψ)m + λn−j(SGr)(ψ,ψ)m

≤
(
λk+j(SGs) + λn−j(SGr)

)
(ψ,ψ)m.

In the following we apply the equality (6) to the operator −SG
because the inequalities (7) does not depend on positivity of b,
and by:

λk(−SG) = −λn−k+1(SG).

We obtain by re-indexing:

λk(SG) ≥ λk−j+1(SGs) + λj(SGr) j = 1, ..., k.

�
We can easily deduce,
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Corollary 3.3. Let G = (V, ~E) be a connected finite graph, G1 = (V, ~E1) and

G2 = (V, ~E2) two partial graphs of G where ]V = n and E = E1 tE2, then for
all k = 1, ..., n and r, s = 1, 2, r 6= s:

λk(SGs) ≤ λk(SG) ≤ λk(SGs) + λn(SGr).

Proof:

By applying the proposition 3.1 to j = 0 and j = 1 respectively,
we obtain the result because λ1(SGr) = 0.

�
In other words, adding a subset of edges to ~E while keeping the same set of

vertices always induces an increasing of the kth eigenvalue or keeps it unchanged.

Corollary 3.4. Let G = (V, ~E) be a connected finite graph with n vertices, and
G1 a graph obtained by adding a set of edges to G then for all k = 1, ..., n:

λk(SG) ≤ λk(SG1).

4. Comparison eigenvalues of Dirichlet Laplacian on graphs

In this section, we present some results about the spectrum comparison be-
tween the Laplacian and the Dirichlet Laplacian. The purpose of this part is
to find the relation between the usual vertex weight on a subgraph H of G and
its boundary weight to compare eigenvalues.
This is done by establishing a clear and explicit link between the eigenvalues
and the Dirichlet eigenvalues on G.

In the following proposition, we treat the Dirichlet Laplacian case :

∀x ∈ U, SDU f(x) =
1

m(x)

∑
y∈Vx
y∈VG

a(x, y)
(
f(x)− f(y)

)
.

By the same techniques used in the Lemma 2.2, we can show the following
Lemma.

Lemma 4.1.

λ1(SDU ) ≤ 2Re(λ1(∆D
U ))

and

λn(SDU ) ≥ 2Re(λn(∆D
U )).

Proof:

Let f and g be eigenfunctions associated to λ1(∆D
U ) and λn(∆D

U )
respectively. By the variational principle of λ1(SDU ) and λn(SDU ),
we have

λ1(SDU ) ≤
(SDU f, f)m

(f, f)m
=

(∆D
U f, f)m

(f, f)m
+

(∆D
U f, f)m

(f, f)m
= λ1(∆D

U ) + λ1(∆D
U )

and

λn(SDU ) ≥
(SDU g, g)m

(g, g)m
=

(∆D
U g, g)m

(g, g)m
+

(∆D
U g, g)m

(g, g)m
= λn(∆D

U ) + λn(∆D
U )
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�
In the same spirit as the Cauchy interlacing theorem concerning hermitian

bordered matrices (see [9] theorem 4.3.28 for a generalized statement) one can
prove the following.

Proposition 4.1. Consider a connected subgraph H = (VH , ~EH) of G =

(VG, ~EG), (#VG = n,#VH = r), then the eigenvalues on G of the normalized
Laplacian SG satisfies:

λk(S
D
H ) ≤ λk+n−r(SG).

Proof:

Let h1, .., hr and f1, .., fn be the eigenfunctions associated to
SDH and SG respectively, define the function gk for k = 1, .., r by:

gk =

{
hk on VH

0 otherwise

Let 1 ≤ k ≤ r and fix S1 = Span{gk, ..., gr} and S2 = Span{f1, ..., fk+n−r}
by the Lemma 3.1 there exists a function ψ in S1 ∩ S2. Since
ψ ∈ S1, it has the form

ψ =

{
g on VH

0 otherwise

for some g ∈ Span{gk, ..., gr}. Observe that:

λk(S
D
H )(g, g)m ≤ (SDHg, g)m

≤ (SGψ,ψ)m

since (g, g)m = (ψ,ψ)m, we get

λk(S
D
H ) ≤ (SGψ,ψ)m

(ψ,ψ)m

then,

λk(S
D
H ) ≤ λk+n−r(SG).

�
We deduce easily from the Proposition 4.1 an estimation of the eigenvalues

of SG and ∆G, thanks to Theorem 3.1, as follows:

Corollary 4.1. Consider a connected subgraph H = (VH , ~EH) of G = (VG, ~EG),
(#VG = n,#VH = r), then the eigenvalues on G satisfies:

λk+n−r(SG) ≥ max
(
λk(SH), λk(S

D
H )
)
.

Corollary 4.2. Consider a connected subgraph H = (VH , ~EH) of G = (VG, ~EG),
(#VG = n,#VH = r), then:

λn(SG) ≥ max
(

2Re
(
(λr(∆H)

)
, 2Re

(
λr(∆

D
H)
))
.
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Corollary 4.3. Consider a connected subgraph H = (VH , ~EH) of the cycle
graph Cn, (#VH = r), then:

Re
(
(λn(∆Cn) ≥ max

(
Re
(
(λr(∆H)

)
,Re

(
λr(∆

D
H)
))
.

In the following Proposition we prove how to give an upper bound for λk+l(SG)
in terms of a Rayleigh quotient. We give a discrete version of the Proposition
2.1 [3] by applying the Poincaré min-max principle. The methods we use follow
closely the arguments given in B. Benson [3] in the case of the Laplacian of
Riemannian manifolds. Next we provide an upper bound of the eigenvalues of
G according to Dirichlet eigenvalues on such repartition of G as in the Figure
5.

Proposition 4.2. Let G = (V, ~E) a finite connected graph, U = (VU , ~EU ) a part

of G and A = (VA, ~EA), B = (VB, ~EB) two subgraphs satisfying the following
conditions:

(1) V = VA t VB = V ◦
A
t V ◦

B
t VU ( disjoint union)

(2) ~E = ~EA t ~EB t ~EU
(3) ∂ ~EA = ∂ ~EB = ~EU .

A BU

Figure 5. Repartition of G

Then we get for 1 ≤ k, l ≤ min(]V ◦
A
, ]V ◦

B
):

λk+l(SG) ≤ max
(
λk(S

D
◦
A

), λl(S
D
◦
B

)
)
.

Proof:

Let hk and gl be the eigenvectors associated to λk(S
D
◦
A

) and

λl(S
D
◦
B

) respectively, for 1 ≤ k ≤ ]V ◦
A

and 1 ≤ l ≤ ]V ◦
B

.

We define f on Cm(
◦
A⊕

◦
B) by:

f(x) =


hk(x) if x ∈ V ◦

A

gl(x) if x ∈ V ◦
B

0 if x ∈ VU .
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We have

(Sf, f)m = (SD◦
A
hk, hk)m + (SD◦

B
gl, gl)m.

Using the Poincaré min-max principle (3), we obtain:

λk+l(SG) ≤ max
f∈F◦

A
+F◦

B

(SGf, f)m
(f, f)m

= max
h∈F◦

A
,g∈F◦

B

(SD◦
A
h, h)m + (SD◦

B
g, g)m

(h, h)m + (g, g)m

≤
λk(S

D
◦
A

)(h, h)m + λl(S
D
◦
B

)(g, g)m

(h, h)m + (g, g)m

≤ max
(
λk(S

D
◦
A

), λl(S
D
◦
B

)
)
.

Hence
λk+l(SG) ≤ max

(
λk(S

D
◦
A

), λl(S
D
◦
B

)
)
.

�

Remark 4.1. The previous Proposition remains true in the particular case of
the Laplacian S̃G.

An estimate of λ2(SG) can also be obtained with respect to λ1(∆D
◦
B

) and

λ1(∆D
◦
B

).

Corollary 4.4. Under the same hypothesis of the previous Proposition we have

λ2(SG) ≤ max
(

2Re
(
λ1(∆D

◦
A

)
)
, 2Re

(
λ1(∆D

◦
B

)
))
.

Corollary 4.5. Under the same hypothesis of the previous Proposition, from
the cycle graph Cn, we have

Re
(
λ2(∆Cn) ≤ max

(
Re
(
λ1(∆D

◦
A

)
)
,Re

(
λ1(∆D

◦
B

)
))
.
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