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Abstract

1. Convergence is the process by which several species independently
develop similar traits. This evolutionary process is not only strongly
related to fundamental questions such as the predictability of evo-
lution and the role of adaptation, its study also may provide new
insights about genes involved in the convergent phenotype. We fo-
cus on this latter question and aim to detect the molecular basis of
a given phenotypic convergence.

2. After pointing out a number of concerns with current detection
methods based on ancestral reconstruction, we propose a novel ap-
proach combining an original measure, called convergence index,
which associates to any proteic site a quantity reflecting the ex-
tent to which it supports a phenotypic convergence, with a statis-
tical framework for selecting genes from the convergence indices of
all their sites.

3. First, our measure of the “convergence level” outperforms two pre-
vious ones in distinguishing simulated convergent sites from non-
convergent ones. Second, by applying our detection approach to the
well-studied case of convergent echolocation between dolphins and
bats, we identified a set of genes which is very significantly annotated
with audition-related GO-terms.

4. This result constitutes an indirect evidence that genes involved in
a phenotypic convergence can be identified with a genome-wide ap-
proach, a point which was highly debated, notably in the echolo-
cation case. Our approach paves the way to systematic studies of
numerous examples of convergent evolution in order to link conver-
gent phenotypes to genotypes.

1 Introduction

Evolutionary convergence, which is part of what is called homoplasy in cladis-
tics, is a key concept in evolutionary biology (Stayton, 2015b; Pontarotti and
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Hue, 2016). It is indeed an important and rather common evolutionary phe-
nomenom, which may involve all kinds of traits, including behavioral, morpho-
logical, developmental and molecular ones. (Losos et al., 1998; Losos, 2009;
Mahler et al., 2013; Gallant et al., 2014; Pfenning et al., 2014; Vidal-Garćıa and
Keogh, 2015; Ujvari et al., 2015; Friedman et al., 2016; Davis et al., 2016).

As a key concept, convergence has been considered from various points of
view. Intuitively, the main underlying idea is that convergence arises as soon
as two or more species independently evolve similar phenotypes that are not
derived from a common ancestral phenotype. In order to avoid confusion, let us
start by giving a formal “working” definition of convergence for a binary char-
acter (i.e., the presence/absence of a given phenotype), which will be discussed
and refined in Section 2.2. We say that a phenotype is convergent over two taxa
s1 and s2 if the two following assertions are true:

1. both taxa s1 and s2 have the phenotype;

2. the the Most Recent Common Ancestor (MRCA) of both taxa does not
have the phenotype.

We emphasize the fact that our study deals only with binary characters. Consid-
ering more complex (e.g., quantitative) characters raises many questions which
shall not be addressed in the present work.

Deciding whether a given phenotype is convergent in two or more taxa is
generally not obvious. Several approaches have been developed for studying this
question (Revell et al., 2007; Ingram and Mahler, 2013; Arbuckle et al., 2014;
Arbuckle and Speed, 2016; Stayton, 2015a; Speed and Arbuckle, 2017).

The question that we shall address here is slightly different from identifying
convergence events. Given the presence of a binary character (typically the
presence or absence of some phenotype), which is assumed to be convergent for
at least two extant taxa, we aimed at detecting genes showing convergences
at the amino acid level which support the convergence of the phenotype. In
particular, this is not the same as detecting molecular convergences per se, i.e.,
not related with a phenotype as considered in Zhang and Kumar (1997) and
Storz (2016). More specifically, the inputs required to address this question
are:

• the phylogenetic tree of a set of extant taxa,

• the information about the taxonomic distribution the phenotype of inter-
est,

• the alignments of the clusters of orthologous genes of the extant taxa,

from which we aim to output a selection of genes which significantly support
the convergence of the considered phenotype. Note that we implicitly expect
the observed phenotypic convergence to result, at least partially, from molecular
convergences that we are aiming at detecting.

An expected outcome of identifying such genes is, at first, a better un-
derstanding of the evolutionary mechanisms leading to the acquisition of new
phenotypes. Second, genes supporting the convergence are suspected of playing
a role not only in the emergence of the phenotype but also in its functions, pos-
sibly yielding new insights into the biological processes involved. This is thus

2



an important question, which has been addressed by several previous works
(Yokoyama et al., 2011; Parker et al., 2013; Foote et al., 2015; Thomas and
Hahn, 2015; Zou and Zhang, 2016). All these previous approaches first mea-
sure the strength of convergence, with regard to the phenotype considered, for
all sites of a given dataset and then select genes according to the convergence
level of their sites. They differ mainly in the way of measuring the convergence
level of sites.

A first class of measures of the convergence level of a site is conceptually very
close to the aforementioned definition (Foote et al., 2015; Thomas and Hahn,
2015; Zou and Zhang, 2016). Its main idea is to check if the taxa with the
convergent phenotype show the same amino acid at the studied site and if this
amino acid has been derived independently. To this end, the “convergent” amino
acids are compared with the ancestral reconstructed ones, not necessarily at the
MRCA level. For instance, Foote et al. (2015) compare the amino acid of each
marine mammal with the reconstructed amino acid of its most recent ancestor
having a terrestrial descendant. Assuming that the amino acids are accurately
reconstructed allows counting the number of times that a given amino acid has
been derived independently toward a taxon with the phenotype of interest (we
shall see in Section 2.2 that this is not completely true). Since our approach
was mainly designed to address this concern, we will further discuss ancestral
reconstruction in the next section.

Another way of measuring the convergence level, introduced by Castoe et al.
(2009) and used by Parker et al. (2013), consists in testing, for each site, the
“real” phylogeny against an alternative phylogeny that separates the extant
taxa having the convergent phenotype from the other one s. The convergence
strength of a site is then measured in terms of ∆SSLS (site-wise log-likelihood
support) that is the difference between the log-likelihoods obtained from these
two phylogenies. The approach is conceptually far from the definition of conver-
gence, in the sense that ∆SSLS tests an evolutionary hypothesis corresponding
to the alternative phylogeny separating taxa with from those without the con-
vergent phenotype, which is not obvious to interpret (Zou and Zhang, 2015b),
rather than several independent substitutions toward a same amino acid. We
refer to Zou and Zhang (2015b) and Thomas and Hahn (2015) for a thorough
discussion and a critical evaluation of this method. Castoe et al. (2009) consid-
ered molecular convergence between all pairs of independent lineages and sought
for excess of convergence in branches related to the phenotypic convergence.

The stage in which these approaches select genes from the convergence level
of their sites is generally straightforward. For instance, Thomas and Hahn
(2015) and Foote et al. (2015) considered genes that contain at least one con-
vergent site, according to the measure used. Parker et al. (2013) ranked genes
according to the mean ∆SSLS of their sites and considered the top-ranked ones.

Genome-wide detection of molecular signature of convergence is an emergent
area of research which is still controversial. The article of Parker et al. (2013),
about echolocation, was followed by two responses: from Thomas and Hahn
(2015) and Zou and Zhang (2015b), who conclude that there is “no genome-
wide protein sequence convergence for echolocation”.

We propose here a new measure of the convergence level of a site, called
convergence index, altogether with a statistical framework for ranking and se-
lecting significant genes with regard to the convergence level of their sites. By
applying our detection approach to the dataset of Thomas and Hahn (2015),
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still about echolocation, we draw the opposite conclusion to that of Zou and
Zhang (2015b). The set of genes significantly convergent between dolphins and
microbats (the two echolocating taxa) show a very significant enrichment in
GO-terms associated with audition (defined from a set of keywords given in
Section SI-2.6) in contrast to those detected from the other pairs of terminal
taxa in the dataset. These results provide an indirect evidence that molec-
ular signatures of a phenotypic convergence may be detected with a suitable
approach.

2 Material and methods

With a given set of extant taxa including some with a phenotype assumed
convergent as well as the phylogenetic tree and alignments of orthologous genes
of the extant taxa, the question is to identify the genes that show molecular
convergences consistent with that of the phenotype. To this end, we follow
the same general outline as the previous approaches, i.e., by first considering
a convergence measure on alignment sites, then by selecting genes from the
convergence level of their sites.

Our convergence measure, called convergence index, is essentially an attempt
to address some concerns raised by ancestral reconstruction which are discussed
in Section 2.1. The convergence index itself is presented in Section 2.2 (see also
Section SI-1).

The convergence index of a site is not directly used for measuring the
strength of its convergence. We rather consider its significance under a null
“neutral” evolutionary model in order to normalize effects due to the number of
convergent extant taxa, to the phylogenetic tree and to the evolution ary rate
of its gene (Section 2.3).

The last stage consists in selecting the genes which contain a significant
number of sites detected as convergent with regard to their index (Section 2.4).

2.1 Ancestral reconstruction approaches

Methods for identifying molecular signatures of convergence from ancestral se-
quence reconstruction (Foote et al., 2015; Thomas and Hahn, 2015) raise several
concerns, among which:

1. in order to decide whether there is convergence for a given site, one has
to choose the ancest ral nodes whose reconstructed amino acids will be
compared with those of convergent extant taxa;

2. ancestral reconstruction always comes with a certain amount of uncer-
tainty, which is not taken into account by standard ancestral reconstruc-
tions;

3. approaches based on ancestral reconstruction implicitly assume that if one
observes a same amino acid both at an ancestral taxa and in its direct
descendant, then it was continuously present all along the branch (i.e., no
substitution occurred during the corresponding timeline).

The first concern is not a big issue in the case where only two extant taxa
have the convergent phenotype since, in this case, the MRCA is quite a natural
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Figure 1: Several evolutionary histories (left) leading to the presence of amino
acid A at the beginning and the end of a branch of a phylogenetic tree (right).
The parts in red (resp. in blue, in green, . . . ) correspond to the times when
amino acid A (resp. V , L, . . . ) was continuously present at the corresponding
site.

choice. Things get more complicated with datasets containing a greater number
of convergent extant taxa. The ancestral nodes to be compared have then to
be chosen with regard to inferences about whether they ha d the phenotype of
interest or not (e.g., Foote et al. (2015)).

The second concern may be easier to address. Ancestral reconstruction
approaches based on stochastic evolutionary models are able to provide the
probabilities of reconstructing any given amino acid at a specified ancestral
node. This makes it possible to compute the expected number of convergent
events in the sense of ancestral reconstruction approaches (Zou and Zhang,
2015a). In a similar way, Castoe et al. (2009) were interested in the expected
number of convergences between all pairs of branches of a phylogenetic tree by
considering the posterior probabilities of all ancest ral amino acids.

Let us remark that the definition of convergence given in the introduction
is not completely consistent with the intuitive idea that there is convergence as
soon as a phenotype (or here an amino acid) appeared independently. There may
be an independent substitution toward an amino acid X inside a branch, even
in the case where X is present at both nodes beginning and ending the branch.
Figure 1 illustrates this point by displaying four different evolutionary histories
of a site along a branch, all leading to observe Alanine (A) both at its beginning
and at its end. All the histories but the one at the top-left of the figure show an
independent substitution toward Alanine, which will not be considered as such
in an ancestral reconstruction framework, even if it deals with the reconstruction
uncertainty like Zhang and Kumar (1997); Castoe et al. (2009); Zou and Zhang
(2015a). In short, assuming that no substitution occurred on a branch which
starts and ends with a same amino acid is an oversimplification which may lead
to underestimate the actual number of molecular convergences.

2.2 Convergence index of an alignment site

In order to introduce our convergence measure, let us start by assuming that the
whole evolutionary history of a site is known. By whole evolutionary history, we
mean that the amino acid present in all lineages and at all times encompassed
by the phylogenetic tree is known (i.e., we know which amino acid is present
not only at the nodes but anywhere in the tree, including inside branches).
In this situation, and for all amino acids X present in a convergent extant
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Figure 2: Independent substitutions toward amino acid A with regard to a
given phenotype assumed convergent. Extant taxa are represented with • or
◦ depending on whether they have the convergent phenotype or not. Parts of
the tree where amino acid A is continuously present until an extant convergent
taxon are red-colored.

taxon, it is straightforward to count the number of substitutions toward X which
are conserved from the substitution to an extant taxon with the convergent
phenotype. This number reflects intuitively the extent to which substitutions
toward X support the convergence of the phenotype for the site considered.
It will be referred to as the number of independent substitutions toward X.
Figure 2 displays several evolutionary histories leading to different numbers of
independent substitutions toward A, which correspond to the number of starting
points of the red parts of branches in the figure. Note that the amino acid
considered (A in Figure 2) may not be present at all in the extant taxon
having the convergent phenotype (e.g., evolutionary history at the bottom-right
of Figure 2).

Unfortunately, in a real situation, we do not have access to the whole
evolutionary history of a site, but only to the amino acids of the extant taxa.
All is not lost, however, since we are able to compute the expected number of
independent substitutions under a standard continuous time Markov model of
evolution (Section SI-1).

In order to obtain a synthetic measure, the convergent index of a site is
defined as the maximum over all amino acids X of the expected number of
substitutions toward X continuously conserved from the substitution to an
extant convergent taxon, conditioned on amino acids of all the extant taxa
(i.e., the corresponding alignment column, see Equation 5 of Section SI-1).

Let us note that the concerns stated at the beginning of Section 2.1 do no
apply to the convergence index, since:

1. computing the expected number of substitutions toward an amino acid
does not require to select any ancestor node;

2. it does take into account the uncertainty due to the stochastic nature of
evolution, since it is an expectation under a probabilistic model;

3. our calculus distinguish es between the case where there is no substitution
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Figure 3: Simulated distributions of the convergence index under neutral evo-
lution. Distributions of each line are simulated from the tree s displayed in
Column 1 at evolution ary rates 10 (Column 2) and 30 (Column 3). The tree
of the top row (resp. of the bottom row) has three (resp. two) convergent taxa
(represented with •).

all along a branch of the phylogenetic tree and the case where an ancestor
and its direct descendant share a same amino acid (Section SI-1).

The computation of the convergence index requires a continuous time Markov
model of sequence evolution, which is generally given by its substitution rate
matrix (Whelan and Goldman, 2001). In order to compute likelihoods over
phylogenetic trees, this matrix has to be multiplied by a constant rate, standing
for the evolution speed with regard to the time unit of the branch lengths. The
choice of this rate has a great influence on the convergence index. In partic-
ular, a high rate leads systematically to convergence indices almost equal to
the number of convergent taxa. After trying several alternatives, we devised a
heuristic approach for calibrating the evolution ary rate used to compute the
convergence index from the phylogenetic tree and the convergent taxa, which
ensures that the convergence index takes values over a range as wide as possible
(Section SI-2.2).

2.3 Significance of a site

For all amino acids X, the expected number of independent substitutions toward
X which are conserved from the substitution to a convergent extant tax on is
smaller or equal to the total number of convergent extant taxa. It follows that
the convergence index heavily depends on the number of convergent extant taxa.
Another factor which influences the expected number of substitutions toward
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an amino acid is the evolutionary rate of the site. For instance, no molecular
convergence can be identified from a completely conserved site. Figure 3 displays
the simulated distributions of the convergence index over two different trees,
having respectively three and two convergent taxa, and at evolutionary rates
10 and 30. We do observe that these distributions are quite different between
each other. In particular, distributions simulated with rate 10 do not have the
same general shape as those simulated with rate 30. Note that the rate used
for computing the convergence index is here fixed, constant over all the plots,
and different from that used for the simulations. Convergence indices of the
bottom row distributions are bounded by 2 while those of top row distributions
may actually reach 3, which is the number of convergent taxa, though the
corresponding probabilities are very low and not visible at the scale of the plots
(Figure 3).

In order to assess whether a site is convergent or not, we thus have to normal-
ize its convergence index with regard to its evolution ary rate, the phylogenetic
tree and the number and positions of extant taxa with the convergent phe-
notype. To this end, we consider the p-value of its convergence index from
the empirical distribution of the convergence indices of proteic sites simulated
under neutral evolution on the same phylogenetic tree and with the same con-
vergent taxa. The parameters of the evolutionary model used for simulations
are estimated from the whole gene to which the tested site belongs. We in-
sist on the fact that the model used for simulating sites does not have to be
the same as the one used for computing the convergence index. Convergence
index is treated here as a statistics of the site of which we evaluate the dis-
tribution under an evolutionary model of its gene (this model may take into
account rates heterogeneity etc.). In the current implementation of the method,
the same substitution rate matrix is used both for convergence indices and
for simulations but convergence indices are computed with a single evolution
ary rate while simulations are performed from evolution ary rates drawn from
a discretized Gamma distribution. Computing convergence indices from the
exact same model as for simulations worked as well but was several times more
time-consuming.

2.4 Significance of a gene

In our context, assessing the significance of a gene requires to combine the (em-
pirical) p-values of its sites. Since combining p-values is a question of broad
interest, several methods have been developed to perform this task (Loughin,
2004). The widely used “quantile” approaches such as Fisher and truncated
product are ill-suited to our particular question. Empirical p-values are prone
to uncertainty, notably the smallest ones which have the greatest influence on
these methods. Thus, we follow Wilkinson (1951) and start by choosing a
significance level γ. A site is said convergent at a significance level γ, or γ-
convergent, if the probability of observing a convergence index greater or equal
to its own convergence index is smaller or equal to γ, in the empirical distribu-
tion associated to its gene as described in Section 2.3. We developed an adaptive
sampling scheme which determines the number of simulations required for en-
suring a given confidence level to the number of γ-convergent sites of a gene,
with regard to its length and γ. All genes are then associated with the number of
γ-convergent sites that they contain. By assuming independence between sites,
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the number of convergent sites of a gene of length L follows a binomial distri-
bution of parameters (γ, L). The p-value of the convergent status of a gene,
which is the probability of observing a number superior or equal to the observed
number of convergent sites in this binomial distribution, is thus straightforward
to compute. This p-value has to be corrected for multiple testing with regard
to all the genes/alignments in the dataset, in order to give the final significance
of this gene.

2.5 Detection pipeline overview

The detection pipeline is schematically displayed in Figure 4. In order to detect
molecular signatures of a given convergent phenotype inside a set of genes, the
phylogenetic tree of a set of taxa among which some are convergent, the infor-
mation about whether they carry the convergent phenotype and the alignments
of orthologous genes of these taxa are required as inputs. Users have to provide
four parameters: a substitution matrixM, suited to the type of sequences con-
sidered, a significance threshold γ for deciding which sites are convergent and
a significance threshold β for deciding if a gene is convergent with regard to its
length, the convergent sites that it contains and the total number of genes. The
execution of the pipeline follows three stages. Stage 1, “Method calibration”, de-
termines the evolutionary rate µ used for computing the convergence index with
matrix M (Section SI-2.2). Stage 2 consists of treating all alignments/genes
of the dataset by (i) estimating the parameter α of the discretized Gamma dis-
tribution for the evolutionary rates of the alignment protein from matrix M
(Yang, 1994), (ii) simulating the empirical distribution of the convergence in-
dex from the estimated parameter α with M , (iii) computing the convergence
index of all sites with the method rate µ under M and (iv) determining the p-
values associated to alignments/genes with regard to parameter γ, the number
of sites of significance smaller than γ and the length of alignments/genes. In
Stage 3, p-values are corrected for multiple testing. Finally, alignments/genes
with corrected p-values smaller than parameter β are returned. The pipeline
also returns the complete list of genes, sorted according to their p-values, and
the positions of their γ-convergent sites (Supplementary information).

2.6 Simulating (non-)convergent sites

Simulated neutral “non-convergent” sites, used both in our simulation study
(Section 3.1) and for computing the empirical distributions of convergent index,
were obtained by simulating the evolution of amino acid s on the tree displayed
in Figure 5, under the WAG model with an evolutionary rate of 10 (Whelan
and Goldman, 2001) and by keeping only the amino acids of the extant taxa
which give us our alignment columns.

Simulated convergent sites were obtained in two stages. First, we simulated
the evolution of an amino acid in the very same way as for a non-convergent site.
Second, for all simulated sites, we randomly picked an extant taxon with the
convergent phenotype and “copied” its amino acid in all the other convergent
extant taxa. Thus, we obtained an alignment column (i.e., a site) in which a
same amino acid occurs at all the entries corresponding to the convergent taxa.
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Figure 4: Schematic of the detection pipeline. ML stands for Maximum Likeli-
hood and CI for Convergence Index.
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2.7 Availability

The source code of the software implementing the detection of the molecu-
lar signatures of phenotypic convergence is available at https://github.com/

gilles-didier/Convergence.

3 Results

3.1 Simulation study: Comparison of 3 measures of con-
vergence of a site

In order to assess the accuracy of measures of the convergence level, we simulated
the evolution of non-convergent and convergent sites on the tree of Thomas
and Hahn (2015) (Figure 5-left-top). We compared 3 measures, namely the
convergence index, the number of convergences observed from the ancestral
reconstruction (Foote et al., 2015) and the ∆SSLS (Parker et al., 2013). We
used the tree of Thomas and Hahn (2015) with the same convergent extant
taxa, also displayed in Figure 6. The ∆SSLS measure was computed with an
alternative tree built following the ideas of Hypothesis H2 in Parker et al. (2013)
(Figure 5-left-bottom). Following Foote et al. (2015), we compared the amino
acids of convergent extant taxa with those reconstructed at their most recent
ancestors with at least one descendant without the convergent phenotype, in
order to count the number of convergent events for the ancestral reconstruction
method. Since all the sites were simulated on the same tree with the same
convergent taxa and under the same evolution ary rate, it is not required to
normalize the convergence indices with regard to their empirical distribution.
They are thus used directly.

The relevance of the convergence measures was next assessed with regard to
their ability to distinguish between the simulated non-convergent and convergent
sites (the status of all simulated sites is known). Figure 5-right displays the
results obtained for the ancestral reconstruction, ∆SSLS and the convergence
index. The ROC curves (Zhou et al., 2009) reporting the results of each measure
show that the convergence index better discriminates between convergent and
non-convergent sites than the two other measures (Figure 5-Right). In this
particular example, the convergence index identifies 99% of the convergent sites
with an error rate of 14%, with a suitable threshold.

3.2 Application: Convergent genes related to echoloca-
tion

We applied the approach described in Section 2, to the dataset of Thomas
and Hahn (2015). This dataset was designed for studying the emergence(s) of
echolocating abilities in mammals, like that of Parker et al. (2013). It contains
6,332 alignments of orthologous genes from 9 mammal taxa, among which two
have echolocating abilities (dolphins and microbats), and the phylogenetic tree
of these 9 taxa (Figure 6 and Section SI-2.3).

Convergent sites are detected at a confidence level of 10−4 according to the
empirical distribution simulated with regards to the genes to which they belong
(Sections SI-2.4). We next computed the (binomial) p-values of all genes with
regard to the number of convergent sites that they contain, ranked the genes
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Figure 6: Phylogenetic tree from Thomas and Hahn (2015). Among the nine
extant taxa, dolphins and microbats (in red italic) have echolocating abilities.
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of the dataset.

according to their p-values and performed a Benjamini-Hochberg correction for
multiple-testing (Section SI-2.5). We finally selected the genes with corrected
p-values smaller than 5× 10−2, which give us the set of convergent genes. The
detection of convergent genes was performed between all pairs of terminal taxa
in the dataset for control purposes.

Figure 7 displays the number of genes detected as showing convergence
between all pairs of terminal taxa. No genes were detected as displaying
convergence between pairs of sister taxa (cow-dolphin, microbat-megabat and
human-marmoset). But there is a certain number of convergent genes for almost
all the other pairs of terminal taxa, ranging from 23 to 152 genes, except for
the pair human-mouse which has only 2 convergent genes. We did not detect
more genes between the two echolocating taxa than between the other pairs,
which is consistent with what was observed by Thomas and Hahn (2015) and
with the fact that the gene sample of the dataset is unbiased, notably toward
audition.

In order to assess if the convergent genes detected between dolphins and
microbats were related to echolocation, we tested their enrichment with regards
to GO-terms involved in audition (see Section SI-2.6). We performed the same
test for all pairs of taxa, in order to ensure that there is no bias leading to
observe more convergence on genes associated with these particular GO-terms.
Results are displayed in Figure 8, which shows that the set of convergent genes
between dolphins and microbats is by far the most significantly enriched in
audition-related annotations. The corresponding Fisher’s exact test p-value,
i.e., 6.66 × 10−5, is (at least) three orders of magnitude lower than those of
other pairs of taxa.

Note that Prestin (a.k.a. SLC26A5), known to be involved in echolocation
(Li et al., 2010; Liu et al., 2010, 2014), is the 3rd most significant convergent gene
out of the 6, 332 ones of the dataset. Still for studying echolocation, Shen et al.
(2012) screened three genes, namely CDH23, PCDH15 and OTOF, pointing
out that “Convergent evolution and expression patterns of OTOF suggest the
potential role of nerve and brain in echolocation”. The two first genes were not
in the dataset of Thomas and Hahn (2015) but Otoferlin (OTOF) was detected
as displaying convergen ce with our approach (at the 54th rank). Davies et al.
(2012) found signatures of sequence convergence in TMC1 and DFNB59 (aka
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Figure 8: Enrichment p-values, with regard to the “audition-related” GO-terms,
of the genes detected convergent for all pairs of taxa of the dataset.

PJVK). These genes are respectively the 5th and 11th most significantly conver-
gent with our method (Supplementary Information). Among the seven genes
pointed out by Parker et al. (2013) as previously reported for showing conver-
gence and/or adaptation in echolocation, four were present in the dataset. We
detected all of them (in bold in Table 1 of Supplementary Information). Table 1
displays the significant GO annotations of detected genes for the echolocating
pair, which are related with audition (as defined in Section SI-2.6) and their
Fisher’s exact test p-values without multiple testing correction with regard to
the total number of GO-terms.

Fish
er’s

exact
p-v

alue

GO ID
Desc

rip
tio

n

Genes

4.36 × 10−4 GO:0007605 sensory perception of sound
SLC26A5, TMC1,

DFNB59, COL11A1,

OTOF

4.59 × 10−3 GO:0050910

detection of mechanical
stimulus involved in sensory
perception of sound

TMC1, COL11A1

7.79 × 10−3 GO:0090102 cochlea development SLC26A5, OTOF

1.89 × 10−2 GO:0007420 brain development
PTPRZ1, RELN,

MED1, KCNAB1

3.10 × 10−2 GO:0060117
auditory receptor cell
development

TMC1

Table 1: Significant audition-related GO annotations of genes detected conver-
gent between dolphins and microbats.
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4 Discussion

There is mounting evidence that phenotypic convergence has a detectable
molecular basis for many phenotypic characters, including echolocation (Li
et al., 2010; Liu et al., 2010). Despite this fact and the importance of this
matter, there is still no consensu al method for the genome-wide identification
of the molecular signatures of a given phenotypic convergence. We presented
here, first, a new measure for evaluating the extent to which an alignment site
supports a phenotypic convergence and, second, a statistical framework for de-
tecting genes displaying significant convergence.

A first result is that our convergence measure has better performance for
detecting convergence than the two previous measures on simulated sites. In
particular, the convergence measure based on ancestral reconstruction (the “his-
torical” approach) showed poor results on discriminating between convergent
and non-convergent simulated sites. This is not a surprise in view of the con-
cerns we listed in Section 2.1 and of the lack of definition of this approach, which
basically decides if the amino acids of the convergent taxa are convergent or
not, without considering any nuance between the two situations. The ∆SSLS
approach yields better results than the ancestral one but is outperformed by
the convergence index whatever the alternative tree tested.

Our detection pipeline did not return a greater number of genes between
the two echolocators than between the other pairs of taxa. This point was not
completely unexpected since dolphins and microbats evolve in very different en-
vironments and, at first glance, do not share more phenotypic characters than
the other pairs (echolocation excepted). Nevertheless, the fact that the number
of convergent sites or genes detected between echolocators was not greater than
between other pairs was put forward as an argument against the detectabil-
ity of the molecular basis of echolocation (Thomas and Hahn, 2015; Zou and
Zhang, 2015b). We argue that this point is not conclusive since it is based
on the assumption that non-echolocating pairs have no phenotypic convergence
(Thomas and Hahn (2015) used the non-echolocating pairs for determining a
null distribution). The actual amount of phenotypic and molecular convergence
between taxa remains difficult to predict since it may involve phenotypes not
obvious to observe (e.g., metabolic pathways, proteins binding etc.). Evaluat-
ing the actual extent of convergence between taxa needs further investigations
which are out of the scope of the present work. At this point, Figure 7 suggests
either that convergence is quite a common mechanism whose molecular traces
are detectable, or a possible issue in the approach.

The relevance of the results obtained with our pipeline was assessed with
regard to the particular phenotype studied in the dataset. Since echolocation
requires special hearing capacities, one expects genes detected as showing con-
vergence between the two echolocating taxa to be, at least for some of them,
related to audition. This point is clearly observed in Figure 8 (see also Supple-
mentary Information). On the contrary, Thomas and Hahn (2015) found no evi-
dence of sensory enrichment in genes detected with the ancestral reconstruction
approach on the same unbiased dataset. Though Parker et al. (2013) observed
several hearing genes among the top 5% with the highest ∆SSLS, they did not
provide any statistical support for this point (they obtained 117 genes among
which only 4 were also detected convergent by our method). They showed that
a selection of hearing (and sensory) genes have higher ∆SSLS than expected but
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not at a level extremely significant, and without checking the non-echolocating
pairs as pointed out by Thomas and Hahn (2015). The significance threshold
γ, which is used for deciding if a site is convergent with regard to the empirical
distribution associated to its gene, is a crucial parameter of our approach. Its
choice is up to the user and relies on what is expected about molecular conver-
gence, i.e., a signal spread out over the sites or concentrated on a few sites. We
tested several values of γ from 10−3 to 10−5. For all cases except γ = 10−3, the
“audition enrichment” p-value of the set of genes detected between the echolo-
cating pair was at least one order of magnitude lower than that of the other pairs
(Supplementary material). Though this is not an absolute rule, the number of
detected genes tends to decrease with γ for all pairs of taxa. Significance with
regard to audition-related GO-terms peaks at γ = 5× 10−5 for the echolocators
but only 36 convergent genes are detected at this level. There are only 7 genes
left for γ = 10−5 and there is no point in considering lower thresholds.

Though we aim at providing a rigorous framework for detecting convergent
genes, the relevance of our results heavily depends on our assumptions with
regard to protein evolution. Since deciding if a site is convergent relies on
simulations from the evolutionary model chosen, the more realistic this model,
the more accurate the results. By “evolutionary model”, we mean here both the
modeling of amino acid substitutions and that of the rate heterogeneity along a
gene. The current version of the detection pipeline is based on the widely used
model WAG+discretized Gamma distribution as implemented in PAML (Yang,
1994). Any evolutionary model, whatever its level of sophistication, may be
easily plugged into the detection pipeline, since it is only used for simulating
empirical null distributions. In order to test more realistic evolutionary models,
we implemented CAT models (Lartillot and Philippe, 2004, 2006) for computing
the null distribution of the convergence index. Since such models somehow
constrain the simulated sites to evolve within a subset of amino acids, observing
a high convergence index is more likely than under a WAG model (Figures SI-8
and SI-9). In other words, a given level of convergence index is less significant
with regard to empirical distribution from CAT models than with regard to that
of the WAG model that we used. We performed the same analyses as in Section
3.2 by using CAT models. Results are displayed in Section SI-5. As expected, we
generally detected a smaller number of convergent genes between pairs of taxa.
Genes detected as showing convergence between dolphins and microbats are still
significantly enriched in audition-related GO-terms but to a lesser extent than in
Figure 8. Nevertheless, though they are not all detected, the genes previously
reported to be involved in echolocation (see Section 3.2) are still among the
topmost-convergent genes, which may suggest that the empirical distribution
from CAT models could underestimate the significance of some of the sites.
This point deserves further investigations and illustrates the importance of the
evolutionary model used for simulating the null distribution of the convergence
index.

Though there is still room for improvement, the fact that genes we detected
as showing convergence for the echolocating pair are annotated with audition-
related GO-terms at a significance level far greater than for the other pairs of
terminal taxa constitutes a proof of concept that a genome-wide approach may
identify the molecular basis of a given phenotypic convergence. Whether such
an identification was possible was debated. First, detecting genes displaying
convergence is possible only if at least some of the substitutions leading to the
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phenotype involve the same sites, thus the same genes, which corresponds to
strong constraints on evolution. Second, the preceding condition is not sufficient
to ensure that convergent sites are detectable. In a genome-wide context, this
also requires a rigorous statistical framework for evaluating the significance of
the molecular convergences observed at sites, in other words, a way of distin-
guishing convergence signal from evolutionary noise. This latter point is not a
real concern when genes in which molecular signatures are expected are known
a priori (Zhang, 2006; Ujvari et al., 2015) but is essential for dealing with thou-
sands of genes.

Since Conte et al. (2012) estimated that phenotypic convergence involves the
same genes in around a third to half of the cases, the numerous occurrences of
phenotypic convergence observed in natural settings constitutes a huge dataset
that can be used for studying relations between genotypes and phenotypes.
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