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Abstract Steiner tree problems (STPs) are very important in both theory
and practice. In this paper, we introduce a powerful swap-vertex move opera-
tor which can be used as a basic element of any neighborhood search heuristic
to solve many STP variants. Given the incumbent solution tree T , the swap-
vertex move operator exchanges a vertex in T with another vertex out of T ,
and then attempts to construct a minimum spanning tree, leading to a neigh-
boring solution (if feasible). We develop a series of dynamic data structures,
which allow us to efficiently evaluate the feasibility of swap-vertex moves. Ad-
ditionally, in order to discriminate different swap-vertex moves corresponding
to the same objective value, we also develop an auxiliary evaluation function.
We present a computational assessment based on a number of challenging
problem instances (corresponding to three representative STP variants) which
clearly shows the effectiveness of the techniques introduced in this paper. Par-
ticularly, as a key element of our KTS algorithm which participated in the
11th DIMACS implementation challenge, the swap-vertex operator as well
as the auxiliary evaluation function contributed significantly to the excellent
performance of our algorithm1.
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a) LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
b) Institut Universitaire de France, Paris, France
E-mail: jin-kao.hao@univ-angers.fr

1 The software that was reviewed as part of this submission has been issued with the
Digital Object Identifier Doi:10.5281/zenodo.206998.



2 Zhang-Hua Fu, Jin-Kao Hao

1 Introduction

Many network design problems encountered in real-life applications (e.g., elec-
tricity, telecommunication, transportation, distribution supply, VLSI design,
biology, signal processing, etc.) require to connect a number of basic equip-
ments, with respect to various objectives and constraints [1]. These problems
could generally be formulated as a class of broadly defined Steiner tree prob-
lems (STPs), where the optimal solutions have the structure of a tree. Accord-
ing to the pursued objectives and/or constraints to be considered, a number
of STP variants can be defined, e.g., the classical STP [2], the rectilinear STP
[3], the Euclidean STP [4], the prize-collecting STP [5], the node weighted
STP [6] (including the maximum weight connected subgraph problem [7]), the
group STP [8], the generalized STP [9], the obstacle avoiding STP [10], the
directed STP [11], the dynamic STP [12], the stochastic STP [13], the STP
with hop constraints [14], and mix of them [15,16], etc. Notice that almost all
these STP variants are known to be NP-hard [17–19] and thus computationally
challenging.

Given the theoretical importance and practical relevance of the STPs, con-
siderable effort has been put forth to develop both exact and heuristic methods
during the last decades. On the one hand, numerous powerful exact algorithms
(based on branch & bound, branch & cut, branch & price, etc.) have been de-
vised. These methods have the desirable property of guaranteeing to find the
optimal solution if no time and space limit is imposed. In practice, the cur-
rent best exact algorithms are able to achieve remarkable results on several
well-studied STP variants [20–23]. On the other hand, due to the inherent com-
putational complexity of STPs, in some cases, it is impossible for a method
to enumerate effectively the solutions of a given instance. To handle problems
whose optimal solutions cannot be reached within a reasonable time, heuris-
tic and meta-heuristic algorithms, which aim to provide sub-optimal solutions
within an acceptable time, have become the mainly applied methods. Actu-
ally, exact and heuristic methods complement each other and could be used to
tackle different types of problems. These two approaches can also be combined
to create even more powerful hybrid methods.

Among various heuristics for solving the STPs, local search or neighbor-
hood search is certainly the most popular and effective approach [24–29]. Gen-
erally, local search relies on some key ingredients including most importantly
one or several move (or transformation) operators responsible for generating
neighboring solutions [30]. In the field of STPs, a couple of conventional move
operators have already been developed. For instance, for the classical STP in
graphs (SPG), four basic move operators, i.e., vertex insertion, vertex elimi-
nation, key-path exchange, key-vertex elimination are commonly used in the
literature [24,25], while for the prize-collecting STP (PCSPG), two move op-
erators called vertex insertion and vertex elimination were developed in [27].
These move operators add or remove vertices and then try to reconstruct a
new minimum spanning tree, since for both the SPG and the PCSPG, each
feasible solution could be uniquely characterized by its spanned vertices set.
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Though the existing move operators are generally quite effective, additional
improvements are still possible by introducing new move operators.

This paper is interested in designing a new and effective move operator,
i.e., the swap-vertex move operator, which complements the existing move op-
erators, and can be adopted by local search heuristics to solve a large class
of STP variants. Given the incumbent solution tree T , the swap-vertex move
operator exchanges a vertex in T with another vertex out of T , and then tries
to construct a minimum spanning tree (MST), resulting in a neighboring solu-
tion of T . This basic move operator realizes a natural operation and could be
advantageously employed by heuristic methods. However, due to its unafford-
able complexity in the general case, the power of this operator was not really
explored by the existing heuristics designed for solving STPs.

In this work, we demonstrate that the swap-vertex move operator could be
effectively applied to instances of various STP problems when 1) the optimal
solution of the problem is necessarily a minimum spanning tree once the ver-
tices to span are known, 2) the input graph has uniform edge costs (i.e., all
the edges have the same cost) and 3) the input graph is of reasonable size2.
This covers all the MWCS (the maximum weight connected subgraph prob-
lem) instances, as well as a number of particularly difficult SPG and PCSPG
instances collected by the 11th DIMACS challenge (detailed in Section 4).
More generally, as explained in [28], the proposed swap-vertex move operator
can also be slightly adapted to solve problem instances with nearly uniform
edge costs, even if its effectiveness might be somewhat impacted.

Another contribution of this work is a newly designed auxiliary evaluation
function (defined in Section 3.3), based on the concept of special degree of
a given solution. The auxiliary evaluation function aims to identify the most
promising swap-vertex move among a number of candidate moves with the
same move gain in terms of the objective function. The new function is used
to guide the search algorithm towards a promising direction on search plateaus
when the objective function alone cannot distinguish the candidate moves.

The remainder of this paper is organized as follows: After introducing three
representative STP variants in Section 2, Section 3 presents the main idea
as well as the technical details relative to the swap-vertex move operator.
Section 4 reports experimental results on these three STP variants, in order to
demonstrate the generality and effectiveness of the swap-vertex move operator.
Finally, Section 5 is dedicated to concluding remarks.

2 Problem Definitions

To illustrate the main idea of the swap-vertex based neighborhood and the
associated evaluation technique for Steiner tree problems, we choose, as illus-
trative examples, three representative STP variants: the classical Steiner tree

2 Depending on the available memory of the used computer, currently the swap-vertex
move operator has been successfully applied to solve instances with up to 5226 vertices and
93394 edges, executed on a personal computer with 4GB RAM.
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problem in graphs (SPG), the prize-collecting Steiner tree problem in graphs
(PCSPG), and the maximum weight connected subgraph problem (MWCS).
These STP variants are part of the 11th DIMACS implementation challenge
[31] and attracted a large number of participants during the challenge.

2.1 Classical Steiner tree problem in graphs (SPG) [2]

Given an undirected graph G = (V,E) with a set V of vertices and a set E
of edges. The set V is partitioned into two sets: a set of terminal vertices and
a set of Steiner vertices. Each edge e ∈ E has an associated cost ce ≥ 0. The
SPG is to determine a subtree T = (VT , ET ) (with vertex set VT and edge set
ET respectively) of G spanning all terminal vertices and possibly some Steiner
vertices, so as to minimize the total edge cost of the obtained tree, i.e.:

Minimize f1(T ) =
∑
e∈ET

ce. (1)

Specifically, the rectilinear Steiner tree problem [3] can be reduced to a
special case of the SPG.

2.2 Prize-collecting Steiner tree problem in graphs (PCSPG) [5]

Given an undirected graph G = (V,E) with vertex set V and edge set E. Each
vertex v ∈ V is associated with a real-valued prize pv ≥ 0 (vertex v is called
a customer vertex if pv > 0, and a non-customer vertex otherwise), and each
edge e ∈ E is associated with a real-valued cost ce ≥ 0. Then the PCSPG
aims to find a subtree T = (VT , ET ) of G, so as to minimize the sum of the
consumed edge costs plus the prizes of the vertices not spanned by T , i.e.:

Minimize f2(T ) =
∑
e∈ET

ce +
∑
v/∈VT

pv. (2)

Note that the SPG is a special case of the PCSPG, if each terminal of the
SPG is associated with a high enough prize (corresponding to a customer of the
PCSPG), and each Steiner vertex is associated with a zero prize (corresponding
to a non-customer vertex of the PCSPG).

Particularly, if an additional source vertex is chosen as the root which must
be part of any feasible solution, we obtain a rooted version of the PCSPG
(denoted by RPCST, another of the seven competition problems included in
the 11th DIMACS challenge).

2.3 Maximum-weight connected subgraph problem (MWCS) [7]

Given an undirected graph G = (V,E) with vertex set V and edge set E. Each
vertex is associated with a real-valued weight wv (wv might be negative), then
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the MWCS is to find a subset V ∗ ⊆ V such that the induced graph over V ∗

is connected and the total weight is maximized, i.e.:

Maximize f3(T ) =
∑
v∈V ∗

wv. (3)

In the MWCS, the edge costs are no longer under consideration, thus we
should just guarantee connectivity of the induced graph. From the point of
view of STPs, without changing the optimal solution, we can assume each
edge has a zero cost, and the task is to find a subtree of graph G such that
the spanned vertices lead to the largest weight.

Using the rules described in [32], every PCSPG instance can be transformed
to an equivalent MWCS instance, indicating that the MWCS is a basic model
which potentially embraces all the four STP variants mentioned above.

3 Swap-Vertex Based Neighborhood

In this section, we present the general idea of the swap-vertex move oper-
ator and devise dedicated techniques for fast neighborhood evaluation. We
also define an auxiliary evaluation function which aims to distinguish different
swap-vertex moves corresponding to the same objective value.

3.1 Main Idea

According to the problem definitions, the above three STP variants (SPG,
PCSPG and MWCS) share a common feature: the optimal solution must be
a minimum spanning tree (MST) once the vertices to span are known. It
indicates that any solution T could be uniquely characterized by its spanned
vertex set VT . Accordingly, two basic move operators, which simply add (or
remove) a vertex to (from) the incumbent solution (a MST) and then attempt
to reconstruct a new MST, have been applied respectively to the SPG [25]
and the PCSPG [27] (to our knowledge, no such basic move operator has been
applied to the MWCS). Based on these two basic move operators, one can
define two neighborhoods (denoted by N1(T ), N2(T ) respectively) for a given
incumbent solution T with vertex set VT :

N1(T ) = {MST(VT ∪ {i}), ∀ i /∈ VT },
N2(T ) = {MST(VT \{i}), ∀ i ∈ VT }.

(4)

where MST(VT ∪ {i}) and MST(VT \{i}) respectively denote the neighboring
solution of T achieved by adding a vertex i to the vertex set VT of T and
removing i from VT .

The add and remove move operators are simple to implement and are
widely adopted by local search heuristics. However, as we show in this work, the
search performance of these two basic move operators could be considerably
improved by introducing the swap-vertex move operator.
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Basically, given the incumbent solution T (a MST) with its vertex set VT ,
the swap-vertex move operator exchanges a vertex i ∈ VT with another vertex
j /∈ VT , and then tries to reconstruct (dynamically) a new MST, leading to a
neighboring solution of T (possibly discarded if the new solution is infeasible).
One notices that applying this move operator is equivalent to adding vertex j
and removing vertex i simultaneously.

Accordingly, we can define the neighborhood N3(T ) as follows:

N3(T ) = {MST(VT ∪ {j}\{i}), ∀ i ∈ VT , j /∈ VT }. (5)

By combining this new neighborhood N3(T ) with the two basic neigh-
borhoods N1(T ) and N2(T ), a local search procedure could search within an
enlarged neighborhood, thus increasing the opportunity of finding solutions of
improved quality.

Although this idea is natural, the swap neighborhood has not been widely
applied in existing STP local search methods, possibly due to the unreason-
ably high complexity needed for neighborhood exploration. Indeed, given the
incumbent solution T with its vertex set VT , and let n = |V | and m = |E|,
then there are in total O(|VT |) · O(|V | − |VT |) ≤ O(n2) possible swap-vertex
moves. If we choose to reconstruct a MST from scratch (e.g., using Kruskal’s
algorithm with the aid of a Fibonacci heap) after applying a swap-vertex move,
the overall complexity would reach O(n2) ·O(m+n · log n), being unaffordable
for mid- and large- sized instances.

Fortunately, for graphs with uniform edge costs, the above complexity could
be reduced much. For example, in the MWCS problem which potentially cov-
ers many other STP variants, swapping a vertex i ∈ VT with a vertex j /∈ VT

(if feasible) would definitively increase the objective value by ∆ = wj −wi (∆
is called the move gain). Furthermore, for any SPG or PCSPG instance with
uniform edge costs, feasibly swapping i ∈ VT with j /∈ VT would never change
the total consumed cost, indicating that the objective value would definitively
increase by ∆ = 0 (for the SPG) or ∆ = pi − pj (for the PCSPG). In these
cases, it is quite easy to calculate all the O(n2) possible ∆ values, within an
overall complexity of O(n2). However, to implement the swap operator effec-
tively, we need to consider two additional questions: (1) How to verify the
solution feasibility after swapping any pair of vertices? (2) How to distinguish
the feasible moves leading to the same objective value? In the following sub-
sections, we discuss in detail how to address these two questions.

3.2 Feasibility Verification

Given a solution T with vertex set VT and edge set ET , before swapping any
pair of vertices (for the SPG, we only consider swapping Steiner vertices),
we should verify at first its feasibility. Without loss of generality, we assume
the incumbent solution T has at least two vertices, then the feasibility after
swapping each pair of vertices could be efficiently verified, with the aid of the
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following dynamic data structures (an illustrative example is provided at the
end of this section).

– Step 1: For each vertex i ∈ VT , remove i from VT and remove the as-
sociated incidence edges from ET , generally resulting in a number of dis-
connected components (step 1.1). Then, try to reconnect the components
using edges between them (without leading to any cycle). The final solu-
tion after reconnection is typically a forest which is composed of a number
of disconnected subtrees (step 1.2). After that, temporarily store the roots
(dynamically determined during the calculation, relying on the dynamic
data structures slightly adapted from [25]) of all the subtrees into a one-
dimensional array A (step 1.3). Note that the length of A (i.e., |A|) belongs
to [1, di], where di is the degree of vertex i in graph G.

Complexity: We briefly discuss the computational complexity of step 1.
At each iteration of local search, we just need to execute this step only
once for each vertex i ∈ VT , instead of running it repeatedly for each pair
of vertices. Using dynamic updating techniques slightly adapted from the
Steiner-vertex elimination move operator [25], at each iteration, the over-
all complexity needed to process all the vertices of VT (excluding step 1.3)
could be bounded by O(m · log n).

Given a forest corresponding to removing a vertex i ∈ VT , one can obtain,
with the aid of a union-find set data structure (dynamically updated), the
root of each subtree within O(dmax) time, where dmax is the maximum
possible degree of each vertex in graph G. Then, after removing each ver-
tex i ∈ VT , we need to obtain the roots of at most ri+1 subtrees, where
ri is the number of the children of vertex i in solution T . This implies
that at each iteration of local search, we should get the roots of at most∑

i∈VT
(ri + 1) =

∑
i∈VT

ri + |VT | = |VT | − 1 + |VT | < 2n subtrees. Conse-
quently, step 1.3 can be finished within an overall complexity of O(n·dmax).

– Step 2: For each vertex j /∈ VT (for the sake of efficiency, here we only
consider the vertices with at least one edge incident to solution T ), exam-
ine all its adjacent vertices in G and repeatedly check if a given adjacent
vertex belongs to a subtree of the forest generated in step 1. If this is the
case, store (temporarily) the root of the corresponding subtree into another
one-dimensional array B. Notice that array B may have duplicates, and
the length of B (i.e., |B|) belongs to [0, dj ], where dj is the degree of vertex
j in graph G.

Complexity: Unlike step 1, this step needs to be executed repeatedly for
each pair of vertices, since the forests obtained in step 1 might be differ-
ent corresponding to removing different vertices from VT . As it is analyzed
above, using union-find set (dynamically updated), getting the root of each
subtree can be achieved within O(dmax), thus the complexity needed by
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step 2 for processing each pair of vertices (getting and storing the roots of
at most O(dmax) subtrees) is bounded by O(d2max).

– Step 3: With the above two one-dimensional arrays A (step 1) and B
(step 2), it is straightforward to verify the feasibility after swapping any
pair of vertices. For this, it suffices to check if the root vertices stored in
B exactly cover the ones stored in A. If this is the case, the corresponding
swap-vertex move is feasible, otherwise it is infeasible.

Complexity: This step can be finished within a complexity of O(|A| +
|B|) ≤ O(dmax) for each pair of vertices.
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Fig. 1 Example showing how to verify feasibility after swapping any pair of vertices.

To summarize, the overall complexity needed for verifying the feasibility of
all the O(n2) possible swap-vertex moves is bounded by O(m·log n + n2·d2max),
being affordable for mid-sized graphs (even for large-sized sparse graphs with
O(m) ≈ O(n), generally corresponding to a small value of dmax).

Fig. 1 is a SPG example showing how to verify feasibility after swapping
any pair of vertices. Sub-figure (a) is the input graph with 25 vertices and 40
edges, where the 9 terminals are drawn in blocks and the 16 Steiner vertices
are drawn in dots. For convenience, let vxy denote the vertex located at the
cross-point of the xth horizontal line and the yth vertical line. Sub-figure (b) is
a feasible solution spanning all the 9 terminals and 7 Steiner vertices (assume
it is rooted at vertex v53). Now, we consider for example the feasibility after
swapping vertex v43 with any other un-spanned vertex. For this, we at first
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delete vertex v43 and the associated edges, leading to a forest (sub-figure (c)),
which includes 4 subtrees rooted at v53, v42, v44, v33 respectively. After that,
we try to reconnect these subtrees using edges between them. As shown in
sub-figure (d), the subtrees rooted at v53, v42, v44 could be merged into one
subtree (rooted at v53). Then the roots of the remaining two subtrees, i.e., v53
and v33, are stored into the one-dimensional array A.

With the above information, it is easy to verify the feasibility after swap-
ping vertex v43 with any other vertex. Consider vertex v32 at first (similar for
vertices v34, v21 and v25), its adjacent vertices cover both subtrees rooted at
v53 and v33, thus leading to a feasible solution (sub-figure (e)). By contrast, for
vertex v13, its adjacent vertices only cover one subtree (the subtree rooted at
v33), meaning that swapping v43 and v13 would lead to an infeasible solution
(sub-figure (f)). This case is similar for vertices v11, v51, v15 and v55.

3.3 Evaluation Function

Among all the feasible swap-vertex moves, there are generally a number of
moves with the same move gain, which need to be further distinguished in order
for the search to identify the most promising moves. For example, in a SPG
instance with uniform edge costs, although swapping any two Steiner vertices
would never change the objective value (thus leads to the same zero move
gain), it is still possible that some swap-vertex moves might be more promising
than others in the sense that they lead to a solution which could be further
improved by the search algorithm. However, the initial objective function alone
cannot allow us to identify the most promising swap-vertex moves. In order to
overcome this difficulty, we design a more discriminating evaluation function
which aims to guide the search towards promising solutions, inspired by our
previous experiences on graph labeling problems [33,34].

Let us consider a SPG instance with uniform edge costs at first. In this case,
feasibly removing a Steiner vertex would definitively improve the objective
value. Now, let T be a solution where no Steiner vertex could be feasibly
removed. Although swapping any Steiner vertex in T and another vertex out
of T would never change the objective value, it may become possible again
to feasibly remove some Steiner vertex, thus further improving the objective
value (see the example of Fig. 2 and the explanations given at the end of
this section). This observation could be similarly extended to the PCSPG
and the MWCS. Respectively, in any PCSPG instance with uniform edge
costs, feasibly removing a vertex with prize lower than the cost of each edge
would certainly improve the objective value. In any MWCS instance, feasibly
removing a vertex with negative weight would definitively lead to an improving
solution (regardless of the edge costs).

Inspired by these observations, for the three STP variants studied in this
paper, we define an auxiliary evaluation function as follows, which aims to
estimate the opportunity of feasibly removing vertices.
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Definition 1. Given the incumbent solution T with vertex set VT , for
each vertex i ∈ VT , its special degree sdi is defined as the number of vertices
belonging to VT which are directly reachable from i (we say a vertex j ̸= i is
directly reachable from vertex i if edge (i, j) ∈ E), i.e.,:

sdi =
∑

j∈VT ,j ̸=i,(i,j)∈E

1. (6)

According to this definition, we observe that if sdi = 1, it means vertex i
is directly reachable from only one other vertex j ∈ VT , implying that once
the related vertex j is removed from VT , the resulting solution would become
disconnected (unless |VT | = 2).

Definition 2. The special degree sd(T) of a feasible solution T is defined
as the number of vertices with special degree sdi = 1, i.e., :

sd(T ) =
∑

i∈VT ,sdi=1

1. (7)

The values of sd(T ) could be dynamically evaluated, within a complexity
of O(dmax) after swapping each pair of vertices.

Intuitively, the lower the value of sd(T ), the larger the opportunity to
feasibly remove a vertex (thus the larger the opportunity to further improve
the objective value). For each of the three STP variants studied in this paper,
to identify improving solutions, we use the objective value defined in Section
2 as the main evaluation criterion, and adopt the special degree sd(T ) as an
auxiliary evaluation criterion. Precisely, we say solution T1 dominates solution
T2 if 1) the objective value of T1 is better than that of T2, or 2) T1 and T2
have the same objective value, but T1 has a special degree lower than T2.

1 2 3

4 5 6
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1 3

4 5 6

(b)

1 2 3

4 5
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1 2 3

5
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Fig. 2 Example of applying the swap-vertex move guided by the auxiliary evaluation func-
tion.

Fig. 2 is a SPG example (with ce = 1, ∀e ∈ E) which shows the search
process of applying the swap-vertex move operator, guided by the auxiliary
evaluation function. Respectively, sub-figure (a) is the input graph with three
terminals (vertex 1, 3, 5, drawn in boxes) and three Steiner vertices (vertex
2, 4, 6, drawn in circles). Sub-figure (b) is an initial solution with objective
value f(b) = 4. Notice that solution (b) could not be further improved by
simply adding or removing any Steiner vertex. However, if we swap vertex 6
with vertex 2 to get a new solution (c), although the objective value does not
vary, the special degree decreases. More precisely, sd(b) = 2 (both vertex 1
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and 3 have a special degree sd1 = sd3 = 1), and sd(c) = 1 (only vertex 3 has
a special degree sd3 = 1). Now, from solution (c), we could feasibly remove
Steiner vertex 4, to obtain an improving solution (d) with objective value
f(d) = 3. Obviously, the swap-vertex move operator as well as the auxiliary
evaluation function play a crucial role during this search process.

4 Experimental Results

This section is dedicated to a computational assessment of the proposed swap-
vertex move operator as well as the associated auxiliary evaluation function.
This study is based on a set of representative benchmark instances for each of
the three studied STP variants (SPG, PCSPG and MWCS).

4.1 Experimental Protocol

In order to particularly emphasize the importance of the swap-vertex move
operator as well as the auxiliary evaluation function, we avoid to test them
within a complex algorithm. Instead, we implement and compare three sim-
ple local search procedures where the search is fully driven by the employed
neighborhoods and evaluation functions. We respectively call these three pro-
cedures ’Basic-LS’ (with add and remove moves of Section 3.1, but without the
swap-vertex move described in Section 3.1), ’Swap-LS’ (Basic-LS reinforced by
the swap-vertex move, but without the auxiliary evaluation function defined in
Section 3.3), and ’Enhanced-LS’ (Basic-LS reinforced by the swap-vertex move
and the auxiliary evaluation function). All these three procedures were coded
in the C language3, shared the same data structures whenever it is possible
and were executed on the same computing platform, i.e., a machine with an
Intel(R) Core(TM) i5-4460 3.20GHz processor with 4 cores and 4GB RAM.
Note that each job occupied only one core, being executed in sequential order.

Algorithm 1 Procedure of Basic-LS
1: Input: A randomly generated initial solution T
2: Output: A local optimal solution
3: Let neighborhood N(T )← N1(T ) ∪N2(T ) /*defined in Section 3.1*/
4: for Each neighboring solution T ∗ ∈ N(T ) (examined in random order) do
5: if T ∗ has a better objective value (defined in Section 2) than T then
6: Let T ← T ∗ and go to line 3
7: end if
8: end for
9: return T

3 Our source codes are available at: http://www.info.univ-angers.fr/pub/hao/SPG_

SWAP/CODE.zip
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– Basic-LS (Algorithm 1): Starting from a given initial solution T , Basic-LS
examines in random order the solutions of N1(T )∪N2(T ), i.e., the union of
the two neighborhoods induced by the add and remove operators (defined
in Section 3.1, using the dynamic updating techniques described in [25] for
efficient evaluations), and iteratively replaces the incumbent solution with
the first met improving solution (only regarding the objective value). The
process stops when no improving solution exists in the whole neighborhood,
meaning that a local optimum is reached.

– Swap-LS (Algorithm 2): Swap-LS is an improved version of Basic-LS. It
realizes the search with an enlarged neighborhood N1(T )∪N2(T )∪N3(T ),
i.e., the union of the three neighborhoods induced by the add, remove and
swap-vertex operators (defined in Section 3.1).

– Enhanced-LS (Algorithm 3): Enhanced-LS is the same as Swap-LS with
the following difference. Enhanced-LS uses, instead of the original objec-
tive function, the auxiliary evaluation function described in Section 3.3 to
evaluate the perspective of each neighboring solution.

We did not implement and compare a variant with the conventional move
operators (add and remove) combined with the auxiliary evaluation function.
In fact, without the swap-vertex move operator, the auxiliary evaluation func-
tion is of little interest since in general adding or removing a vertex will change
the objective value.

Additionally, the above three algorithms use the following heuristic for gen-
erating initial solutions (uniform for all the three studied STP variants). We
call a terminal vertex (for the SPG), or a vertex with positive prize (for the PC-

Algorithm 2 Procedure of Swap-LS
1: Input: A randomly generated initial solution T
2: Output: A local optimal solution
3: Let neighborhood N(T )← N1(T ) ∪N2(T ) ∪N3(T ) /*defined in Section 3.1*/
4: for Each neighboring solution T ∗ ∈ N(T ) (examined in random order) do
5: if T ∗ has a better objective value (defined in Section 2) than T then
6: Let T ← T ∗ and go to line 3
7: end if
8: end for
9: return T

Algorithm 3 Procedure of Enhanced-LS
1: Input: A randomly generated initial solution T
2: Output: A local optimal solution
3: Let neighborhood N(T )← N1(T ) ∪N2(T ) ∪N3(T ) /*defined in Section 3.1*/
4: for Each neighboring solution T ∗ ∈ N(T ) (examined in random order) do
5: if T ∗ has a objective value better than T or their objective values are the same but

T ∗ has a special degree (defined in Section 3.3) lower then T then
6: Let T ← T ∗ and go to line 3
7: end if
8: end for
9: return T
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SPG) or positive weight (for the MWCS) as a candidate vertex. Then, starting
from a randomly selected candidate vertex, we try to complete the incumbent
solution by inserting a new path connecting a randomly chosen un-spanned
candidate vertex (for the PCSPG and the MWCS, we should guarantee that
the objective value after insertion is improved). This process is repeated until
no further path can be inserted, meaning that an initial solution is generated.

In the following subsections, we compare the performances of the three
algorithms on the SPG, the PCSPG and the MWCS, using a set of represen-
tative benchmarks for each problem. To ensure fair comparisons, for each test
instance, we repeatedly ran each algorithm, each run independently restarting
from a randomly generated initial solution. This process was repeated until
one CPU hour was reached.

Finally, we also briefly summarize the competition results of the 11th DI-
MACS implementation challenge, in order to provide some supplementary in-
formation about the effectiveness of the techniques introduced in this paper.

4.2 Results on the SPG

We chose 25 SPG instances (the un-weighted instances of types hc, bip and cc)
from the 11th DIMACS challenge as benchmarks to evaluate the performances
of the three algorithms. These instances are all with uniform edge costs and
of reasonable size (|V | < 6000), thus being suitable to apply the swap-vertex
move operator. Moreover, they are known to be extremely difficult for the
existing approaches such that most of these instances still remain open.

The detailed results are summarized in Table 1, where the first two columns
indicate the instance name and the corresponding optimal result (extracted
from [20], if applicable). The next two columns respectively indicate the over-
all best objective value found by Basic-LS (indicated with a symbol ”*” if
it reaches the known optimal result), and the average objective value of each
independent run. For comparisons, columns 5 and 6 indicate the same informa-
tion corresponding to Swap-LS, where the objective values better than those
of Basic-LS are indicated in bold, and the same objective values are indicated
in italic. Additionally, column 7 gives the mean improvement percentage ob-
tained by Swap-LS compared to Basic-LS, in terms of best objective values.
Finally, we give in the last three columns similar information corresponding
to Enhanced-LS.

In terms of best objective values, compared to Basic-LS, Swap-LS obtains
within the same allowed time (one CPU hour for each instance) 4 better, 6
worse and 15 equal results, corresponding to a mean deterioration of 0.11%
(averaged on all these 25 instances) provided by Swap-LS. Under the same
test condition, compared to Basic-LS, Enhanced-LS obtains 20 better results
and yields the same results on the remaining 5 instances (all reaching op-
timality), leading to a mean improvement of 3.93%. Furthermore, we used
the Friedman test to check the statistical differences between the best objec-
tive values of the compared algorithms, which respectively reveals a p-value of
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Table 1 Comparative results between Basic-LS, Swap-LS and Enhanced-LS on 25 repre-
sentative SPG instances (within one CPU hour)

Instance Optimal Basic-LS Swap-LS Enhanced-LS

fbest favg fbest favg Improve fbest favg Improve

hc6u.stp 39.00 39.00* 43.80 39.00* 43.79 0.00% 39.00* 39.28 0.00%
hc7u.stp 77.00 77.00* 87.63 77.00* 87.63 0.00% 77.00* 77.30 0.00%
hc8u.stp 148.00 153.00 173.86 153.00 173.89 0.00% 148.00* 150.84 3.27%
hc9u.stp - 304.00 345.92 307.00 345.84 -0.99% 293.00 298.37 3.62%
hc10u.stp - 624.00 687.27 623.00 687.21 0.16% 586.00 591.30 6.09%
hc11u.stp - 1268.00 1366.94 1270.00 1366.88 -0.16% 1169.00 1173.97 7.81%
hc12u.stp - 2593.00 2720.42 2569.00 2721.86 0.93% 2321.00 2333.92 10.49%
bip42u.stp 236.00 258.00 264.02 258.00 264.02 0.00% 239.00 243.48 7.36%
bip52u.stp - 263.00 268.05 264.00 268.05 -0.38% 238.00 241.22 9.51%
bip62u.stp - 235.00 239.83 234.00 239.83 0.43% 221.00 223.87 5.96%
bipa2u.stp - 374.00 377.72 374.00 377.72 0.00% 343.00 347.35 8.29%
bipe2u.stp 54.00 55.00 57.00 55.00 57.00 0.00% 54.00* 54.88 1.82%
cc3-4n.stp 13.00 13.00* 13.40 13.00* 13.40 0.00% 13.00* 13.00 0.00%
cc3-5n.stp 20.00 20.00* 21.77 20.00* 21.77 0.00% 20.00* 20.07 0.00%
cc3-10n.stp - 76.00 89.08 76.00 89.08 0.00% 75.00 75.57 1.32%
cc3-11n.stp - 93.00 109.25 94.00 109.25 -1.08% 92.00 92.32 1.08%
cc3-12n.stp - 113.00 133.47 115.00 133.47 -1.77% 111.00 111.70 1.77%
cc5-3n.stp 42.00 44.00 49.20 44.00 49.20 0.00% 43.00 46.17 2.27%
cc6-2n.stp 18.00 18.00* 19.86 18.00* 19.86 0.00% 18.00* 18.00 0.00%
cc6-3n.stp 100.00 106.00 114.88 106.00 114.88 0.00% 104.00 109.08 1.89%
cc7-3n.stp - 318.00 332.67 318.00 332.67 0.00% 298.00 305.05 6.29%
cc9-2n.stp - 106.00 113.80 106.00 113.79 0.00% 102.00 107.26 3.77%
cc10-2n.stp - 194.00 205.36 195.00 205.36 -0.52% 185.00 189.96 4.64%
cc11-2n.stp - 358.00 372.90 358.00 372.90 0.00% 340.00 348.71 5.03%
cc12-2n.stp - 679.00 696.14 675.00 696.09 0.59% 639.00 645.89 5.89%

Average - - - - - -0.11% - - 3.93%

9.39×10−1 (between Swap-LS and Basic-LS), a p-value of 3.75×10−6 (between
Enhanced-LS and Basic-LS), and a p-value of 3.57×10−7 (between Enhanced-
LS and Swap-LS). These results indicate that, in terms of best objective values,
Enhanced-LS performs clearly better than Basic-LS and Swap-LS, while there
is no significant difference between Swap-LS and Basic-LS.

In terms of average objective values, compared to Basic-LS, Swap-LS ob-
tains 6 better, 2 worse and 17 equal results, while Enhanced-LS succeeds to
obtain a better result on each of the 25 test instances. The Friedman test in
terms of average objective values respectively reveals a p-value of 8.09× 10−1

(between Swap-LS and Basic-LS), a p-value of 3.69×10−9 (between Enhanced-
LS and Basic-LS), and a p-value of 9.07 × 10−8 (between Enhanced-LS and
Swap-LS), indicating again that Enhanced-LS is a much improved version over
Basic-LS and Swap-LS, while Swap-LS does not perform significantly differ-
ently from Basic-LS.

To conclude, the swap-vertex move operator alone does not perform well
enough on the SPG instances with uniform edge costs (on these instances
swapping any two Steiner vertices would never change the objective value). In
contrast, when it is combined with the auxiliary evaluation function, we obtain
a highly competitive algorithm to solve the SPG instances with uniform edge
costs.

4.3 Results on the PCSPG

For the PCSPG, we chose 40 benchmark instances with uniform edge costs
from the 11th DIMACS challenge, including the un-weighted instances of
groups H, H2, and all the instances of groups PUCNU, ACTMODPC (we
do not use the HAND instances since they are too large to apply the swap-
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Table 2 Comparative results between Basic-LS, Swap-LS and Enhanced-LS on 40 repre-
sentative PCSPG instances (within one CPU hour)

Instance Optimal Basic-LS Swap-LS Enhanced-LS

fbest favg fbest favg Improve fbest favg Improve

hc6u.stp 36.00 36.00* 38.77 36.00* 38.77 0.00% 36.00* 37.04 0.00%
hc7u.stp 72.00 73.00 77.62 73.00 77.61 0.00% 72.00* 73.60 1.37%
hc8u.stp 143.00 146.00 154.14 146.00 154.15 0.00% 143.00* 145.83 2.05%
hc9u.stp 283.00 295.00 310.53 295.00 310.51 0.00% 284.00 289.56 3.73%
hc10u.stp - 588.00 609.66 588.00 609.64 0.00% 565.00 571.15 3.91%
hc11u.stp - 1184.00 1216.96 1178.00 1216.87 0.51% 1131.00 1140.03 4.48%
hc12u.stp - 2381.00 2426.55 2378.00 2427.14 0.13% 2255.00 2266.11 5.29%
hc6u2.stp 20.00 20.00* 21.54 20.00* 21.55 0.00% 20.00* 20.12 0.00%
hc7u2.stp 47.00 47.00* 51.16 47.00* 51.16 0.00% 47.00* 47.66 0.00%
hc8u2.stp 97.00 99.00 104.36 98.00 104.35 1.01% 97.00* 99.39 2.02%
hc9u2.stp - 196.00 204.81 196.00 204.79 0.00% 190.00 193.84 3.06%
hc10u2.stp - 398.00 414.90 398.00 414.93 0.00% 383.00 387.66 3.77%
hc11u2.stp - 799.00 818.22 799.00 818.21 0.00% 761.00 768.20 4.76%
hc12u2.stp - 1602.00 1631.39 1602.00 1631.64 0.00% 1516.00 1524.11 5.37%
bip42nu.stp 226.00 244.00 251.08 244.00 251.08 0.00% 228.00 231.59 6.56%
bip52nu.stp 222.00 246.00 250.07 246.00 250.06 0.00% 224.00 226.66 8.94%
bip62nu.stp 214.00 227.00 232.26 227.00 232.26 0.00% 215.00 217.91 5.29%
bipa2nu.stp - 358.00 363.63 357.00 363.64 0.28% 327.00 330.76 8.66%
bipe2nu.stp 53.00 54.00 55.04 54.00 55.05 0.00% 53.00* 53.18 1.85%
cc3-4nu.stp 10.00 10.00* 10.90 10.00* 10.90 0.00% 10.00* 10.59 0.00%
cc3-5nu.stp 17.00 17.00* 18.52 17.00* 18.52 0.00% 17.00* 17.96 0.00%
cc3-10nu.stp - 62.00 65.63 62.00 65.62 0.00% 62.00 63.77 0.00%
cc3-11nu.stp - 86.00 89.96 86.00 89.96 0.00% 85.00 86.55 1.16%
cc3-12nu.stp - 99.00 107.45 99.00 107.45 0.00% 98.00 103.34 1.01%
cc5-3nu.stp 36.00 37.00 38.29 37.00 38.29 0.00% 37.00 38.23 0.00%
cc6-2nu.stp 15.00 15.00* 15.23 15.00* 15.23 0.00% 15.00* 15.23 0.00%
cc6-3nu.stp 95.00 98.00 104.48 98.00 104.47 0.00% 97.00 103.46 1.02%
cc7-3nu.stp - 288.00 298.27 288.00 298.30 0.00% 279.00 287.80 3.13%
cc9-2nu.stp 83.00 85.00 89.20 85.00 89.20 0.00% 84.00 88.91 1.18%
cc10-2nu.stp - 173.00 182.17 174.00 182.15 -0.58% 172.00 179.92 0.58%
cc11-2nu.stp - 320.00 332.89 321.00 332.87 -0.31% 312.00 325.05 2.50%
cc12-2nu.stp - 597.00 613.06 598.00 612.68 -0.17% 583.00 597.81 2.35%

HCMV.stp 7371.54 7373.39 7382.61 7373.39 7379.61 0.00% 7373.39 7379.61 0.00%
lymphoma.stp 3341.89 3371.24 3412.78 3371.24 3406.95 0.00% 3371.24 3406.96 0.00%

metabol expr mice 1.stp 11346.93 11485.55 11838.56 11485.0611834.59 0.00% 11485.0611835.06 0.00%
metabol expr mice 2.stp 16250.24 16342.56 16495.46 16342.56 16493.85 0.00% 16342.56 16493.82 0.00%
metabol expr mice 3.stp 16919.62 17173.26 17408.79 17159.4217406.32 0.08% 17159.4217406.29 0.08%
drosophila001.stp 8273.98 8286.43 8300.51 8286.43 8297.74 0.00% 8286.43 8297.74 0.00%
drosophila005.stp 8121.31 8211.42 8268.89 8197.07 8261.44 0.17% 8195.64 8261.72 0.19%
drosophila0075.stp 8039.86 8133.80 8210.47 8120.13 8202.67 0.17% 8122.07 8201.17 0.14%

Average - - - - - 0.03% - - 2.11%

vertex move operator). These instances are also very challenging since many
of them still remain unsolved. The corresponding optimal results are also ex-
tracted from [20] (if known). Like before, for each instance, we repeatedly ran
Basic-LS (respectively, Swap-LS and Enhanced-LS) for one CPU hour, and
show the obtained results in Table 2, with the same information as in Table 1.

Table 2 discloses that, in terms of best objective values, Swap-LS obtains
within the same allowed time 8 better, 3 worse and 29 equal results compared
to Basic-LS, corresponding to a mean improvement of 0.03%. For comparison,
Enhanced-LS obtains 28 better and 12 equal results compared to Basic-LS,
leading to a mean improvement of 2.11%. Furthermore, the Friedman test in
terms of best objective values reveals a p-value of 5.60×10−1 (between Swap-LS
and Basic-LS), a p-value of 2.71×10−9 (between Enhanced-LS and Basic-LS),
and a p-value of 6.09× 10−7 (between Enhanced-LS and Swap-LS), indicating
again that Enhanced-LS performs clearly better than Basic-LS and Swap-LS,
while there is no significant difference between Swap-LS and Basic-LS.

In terms of average objective values, compared to Basic-LS, Swap-LS ob-
tains 22 better, 8 worse and 10 equal results. In contrast, Enhanced-LS ob-
tains a better average result on 39 out of the 40 test instances, only with
one exception on which Enhanced-LS yields a same average result. The Fried-
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man test in terms of average objective values respectively reveals a p-value
of 1.11 × 10−1 (between Swap-LS and Basic-LS), a p-value of 1.73 × 10−12

(between Enhanced-LS and Basic-LS), and a p-value of 7.02× 10−7 (between
Enhanced-LS and Swap-LS), indicating that Swap-LS performs slightly better
than Basic-LS (especially on the last eight instances of group ACTMODPC
with quite different structures), while Enhanced-LS performs overall clearly
better than both Basic-LS and Swap-LS.

This analysis showed that on most of the PCSPG instances with uniform
edge costs, it is very useful to combine the swap-vertex move operator with
the auxiliary evaluation function within a local-search based algorithm.

4.4 Results on the MWCS

Now we turn our attention to the more general MWCS, for which any instance
of reasonable size is suitable to apply the swap-vertex move operator (there
are no edge costs for the MWCS). More importantly, as explained in Section
2, the MWCS is a basic model which potentially covers many related STP
variants (including both the SPG and the PCSPG), indicating the generality
of the swap-vertex move operator for tackling various STP variants.

We chose as benchmarks the 32 representative MWCS instances which were
adopted as the final test set by the 11th DIMACS challenge. Similarly, for each
of these 32 instances, we repeatedly and independently ran Basic-LS, Swap-LS
and Enhanced-LS with a cutoff limit of one CPU hour. The obtained results
are listed in Table 3, where we display the same statistics as in the previous
tables. As indicated in column 2, all these instances have known optimal results
[20,23].

As shown in Table 3, in terms of best objective values, within the same
allowed time, Swap-LS obtains 19 better, 1 worse and 12 equal results com-
pared to Basic-LS, corresponding to a mean improvement of 2.09%. Under
the same test condition, Enhanced-LS also obtains 19 better, 1 worse and 12
equal results compared to Basic-LS, leading to a mean improvement of 2.20%.
Respectively, the Friedman test in terms of best objective values reveals a p-
value of 1.75×10−5 (between Swap-LS and Basic-LS), a p-value of 7.77×10−6

(between Enhanced-LS and Basic-LS) and a p-value of 9.84 × 10−1 (between
Enhanced-LS and Swap-LS), indicating that there is no significant difference
between Enhanced-LS and Swap-LS, while they both clearly dominate Basic-
LS.

In terms of average objective values, compared to Basic-LS, Swap-LS and
Enhanced-LS both obtains 29 better and 3 equal results, while the Friedman
test respectively reveals a p-value of 1.70×10−6 (between Swap-LS and Basic-
LS), a p-value of 4.10 × 10−10 (between Enhanced-LS and Basic-LS) and a
p-value of 3.46× 10−1 (between Enhanced-LS and Swap-LS), indicating again
that Enhanced-LS and Swap-LS performs similarly, while they both perform
clearly better than Basic-LS.
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Table 3 Comparative results between Basic-LS, Swap-LS and Enhanced-LS on 32 repre-
sentative MWCS instances (within one CPU hour)

Instance Optimal Basic-LS Swap-LS Enhanced-LS

fbest favg fbest favg Improve fbest favg Improve

drosophila001.stp 24.4 11.9 3.27 11.9 3.31 0.00% 11.9 3.31 0.00%
drosophila005.stp 178.7 150.3 109.02 165.3 120.52 9.93% 165.3 119.59 9.97%
drosophila0075.stp 260.5 231.8 211.88 246.4 222.25 6.29% 243.1 227.04 4.87%

HCMV.stp 7.6 5.0 0.64 5.0 0.64 0.00% 5.0 0.64 0.00%
lymphoma.stp 70.2 61.1 31.55 60.9 32.72 -0.39% 60.9 32.69 -0.39%

metabol expr mice 1.stp 544.9 533.1 411.17 538.6 418.53 1.02% 537.5 421.65 0.82%
metabol expr mice 2.stp 241.1 241.1* 114.44 241.1* 116.46 0.00% 241.1* 116.49 0.00%
metabol expr mice 3.stp 508.3 477.3 308.11 495.8 320.12 3.88% 495.8 319.77 3.88%

1500-a-0 6-d-0 25-e-0 25.stp 1333.5 1193.6 1118.52 1255.5 1205.98 5.18% 1261.3 1218.59 5.66%
1500-a-0 6-d-0 25-e-0 5.stp 2799.7 2787.2 2748.63 2799.7* 2788.98 0.45% 2799.7* 2792.24 0.45%

750-a-0 647-d-0 25-e-0 25.stp 702.6 672.9 621.08 701.4 677.79 4.24% 701.8 682.00 4.29%
1500-a-1-d-0 25-e-0 25.stp 1377.0 1376.6 1362.93 1377.0* 1368.65 0.03% 1377.0* 1368.56 0.03%
1000-a-0 6-d-0 5-e-0 25.stp 522.5 439.7 361.10 501.8 435.81 14.11% 514.8 449.79 17.08%
1000-a-0 6-d-0 25-e-0 5.stp 1872.3 1866.3 1847.82 1872.3* 1863.33 0.32% 1872.3* 1863.36 0.32%
1000-a-0 6-d-0 25-e-0 25.stp 931.5 875.6 800.01 925.1 886.88 5.65% 922.2 892.35 5.33%
750-a-0 647-d-0 25-e-0 5.stp 1419.8 1419.4 1398.21 1419.8* 1415.41 0.03% 1419.8* 1416.14 0.03%
500-a-0 62-d-0 75-e-0 25.stp 171.6 170.3 147.76 171.6* 165.63 0.81% 171.6* 165.80 0.81%
500-a-0 62-d-0 25-e-0 25.stp 460.6 432.9 387.02 449.9 430.15 3.92% 448.7 431.71 3.64%
1000-a-0 6-d-0 75-e-0 25.stp 332.8 324.2 289.04 332.5 309.49 2.57% 332.8* 313.28 2.66%
500-a-0 62-d-0 25-e-0 5.stp 993.0 986.4 961.43 993.0* 982.66 0.66% 993.0* 983.59 0.66%
1000-a-1-d-0 25-e-0 75.stp 2789.6 2789.6* 2789.57 2789.6* 2789.58 0.00% 2789.6* 2789.58 0.00%

1000-a-0 6-d-0 25-e-0 75.stp 2789.6 2789.6* 2787.48 2789.6* 2789.58 0.00% 2789.6* 2789.56 0.00%
1500-a-0 6-d-0 75-e-0 75.stp 1423.6 1417.2 1388.62 1423.6* 1411.81 0.45% 1423.6* 1419.14 0.45%
1000-a-1-d-0 5-e-0 75.stp 1770.3 1770.3* 1770.28 1770.3* 1770.28 0.00% 1770.3* 1770.28 0.00%

1000-a-0 6-d-0 5-e-0 75.stp 1762.7 1762.7* 1753.70 1762.7* 1757.67 0.00% 1762.7* 1757.59 0.00%
1500-a-1-d-0 75-e-0 75.stp 1423.6 1423.6* 1423.55 1423.6* 1423.61 0.00% 1423.6* 1423.61 0.00%
1500-a-1-d-0 75-e-0 5.stp 1089.8 1089.8* 1084.94 1089.8* 1089.31 0.00% 1089.8* 1089.50 0.00%
1000-a-1-d-0 25-e-0 5.stp 1883.2 1883.2* 1881.13 1883.2* 1883.21 0.00% 1883.2* 1883.21 0.00%

1500-a-0 6-d-0 5-e-0 25.stp 847.5 737.0 651.80 782.4 728.18 6.16% 797.2 745.30 8.17%
1500-a-0 6-d-0 75-e-0 5.stp 1089.8 1073.5 1033.04 1089.8* 1074.27 1.52% 1089.8* 1081.21 1.52%
750-a-1-d-0 25-e-0 75.stp 2116.6 2116.6* 2116.58 2116.6* 2116.58 0.00% 2116.6* 2116.58 0.00%

750-a-0 647-d-0 25-e-0 75.stp 2116.6 2116.6* 2114.61 2116.6* 2116.58 0.00% 2116.6* 2116.58 0.00%

Average - - - - - 2.09% - - 2.20%

To conclude, on these 32 representative MWCS instances, the swap-vertex
move operator alone contributes significantly to the effectiveness of the pro-
posed algorithm, while the auxiliary evaluation function is not so important
as for the SPG and the PCSPG instances. One possible reason is that on these
MWCS instances, different vertices generally have different weights, thus swap-
ping a pair of vertices rarely leads to a neighboring solution with a ∆ = 0,
making the auxiliary evaluation function irrelevant (actually, this is also the
case for the last 8 PCSPG instances of Table 2).

4.5 Performance on the 11th DIMACS Implementation Challenge

By combining the techniques described in this work with several other strate-
gies (e.g., tabu search, knowledge learning mechanisms, and adaptive perturba-
tion strategies), we proposed KTS, a knowledge guided tabu search algorithm
[28] for the 11th DIMACS implementation challenge dedicated to the broadly
defined Steiner tree problems [31]. We took part in the competition on two
STP variants, i.e., the RPCST and the PCSPG respectively, which attracted
the largest number of participants among the seven competition variants. For
each variant, we participated in four main challenge subcategories involving
all the competing algorithms, i.e., two Primal Integral subcategories regarding
both the solution quality and runtime, and two Primal Bound subcategories
regarding only the solution quality. Given that our KTS algorithm is a heuris-
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tic which runs only in sequential mode, we are not concerned by the special
subcategories focused on exact algorithms or parallelized algorithms.

Under the competition rules, the KTS algorithm achieved the following
performances on the eight subcategories in which it was involved4. On the
RPCST, it won both the two Primal Integral subcategories, and was tied for
the first place on both the two Primal Bound subcategories. On the PCSPG,
it was ranked first on one Primal Integral subcategory, and third on the re-
maining three subcategories. Additionally, although we did not participate in
the competition on the SPG (due to time reason), the KTS algorithm yielded
remarkable results on several challenging SPG instances, with respect to the
current best known results.

Actually, as key elements of the KTS algorithm, the swap-vertex move
operator and the auxiliary evaluation function contributed significantly to
the achieved performance on the 12 difficult PCSPG instances of groups H,
PUCNU and ACTMODPC, including 10 instances with strictly uniform edge
costs and 2 instances with nearly uniform edge costs. When these two compo-
nents are disabled from the KTS algorithm, the performance decreases drasti-
cally on these 12 instances. Given the applicability condition of the swap-vertex
move operator, it was not applied by KTS to solve the remaining challenge
instances with significantly varying edge costs or of too large size (with more
than 6000 vertices).

5 Conclusions

In this paper, we developed an effective swap-vertex move operator for tack-
ling broadly defined Steiner tree problems (STPs). This operator complements
the existing conventional move operators and could be adapted to solve many
STP instances (corresponding to various Steiner tree problems), where 1) the
optimal solution must be a minimum spanning tree, 2) each edge is associated
with a uniform cost (this requirement can be relaxed to include instances with
nearly uniform edge costs, using the techniques detailed in [28]), and 3) the
input graph is of reasonable size (depending on the available memory of the
used computer). We showed that with the aid of dynamic data structures,
one can efficiently evaluate the feasibility of every possible swap-vertex move.
Additionally, we designed an auxiliary evaluation function, which is able to dis-
criminate different swap moves leading to the same move gain, in order to guide
the search towards promising search regions. Our computational study carried
out on three representative STP variants (i.e., the SPG, the PCSPG and the
MWCS, all being part of the 11th DIMACS implementation challenge) demon-
strated the usefulness of the swap-vertex operator and the auxiliary evaluation
function for improved search performances. More generally, these techniques
could be advantageously combined with other powerful search strategies to
create effective algorithms for solving various Steiner tree problems.

4 Details at: http://dimacs11.zib.de/contest/results/results.html
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