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Abstract—Magnetic non destructive methods are frequently
used in the industries of steel since magnetic behavior demon-
strates a good sensitivity to the microstructural and/or mechan-
ical changes. Magnetic behavior is especially sensitive toplastic
straining that occurs for example with the manufacturing of
materials (cutting, punching). Evaluating the state of a material
from a measurement requires a modeling of the behaviors
of the material (local constitutive laws) involved that must
on the other hand demonstrate low computation time. Such
magneto-mechanical modeling is proposed, based on the so-called
multidomain model.

I. I NTRODUCTION

The influence of plastic deformation on the magnetic be-
havior has been studied intensively in the past years. It
is characterized by a strong non-linear degradation of the
magnetic behavior associated to a shift of the magnetostric-
tive behavior [1], [2], [3]; it can be interpreted in term of
influence of internal stresses and has been modeled thanks to
a combination between a micro-macro mechanical modeling
of plastic strain and a magneto-elastic multiscale model [4].
This modeling is nevertheless restricted to small plastic strain
amplitudes and the calculation time is prohibitive. Application
in non destructive evaluation (NDE) area is consequently
compromised especially when inverse identification is wanted.
A new fast and simple modeling is relevant for that purpose.
The modeling proposed herein requires first the calculationof
residual stress fields considering the material as a two phased
material. The so-called multidomain modeling recently pro-
posed [8] is used for the calculation of the magnetic quantities.
The inverse identification procedure is not discussed.

II. PREVIOUS EXPERIMENTS AND MODELING

It is well known that plastic deformations lead to a sharp
degradation of the magnetic properties of ferromagnetic ma-
terials (strong decrease of susceptibility, increase of hysteresis
losses) [1], [3] especially for weak plastic strain levels.Plastic
deformations change on the other hand the magnetostriction
amplitude [2], [5]. Classical magnetoelasticity is able to
explain these phenomenon assuming that the driving force
associated to plasticity is the long range internal stresses
[1], [6], [7]. A micro-macro model was previously proposed

to describe the influence of plastic strain on the magneto-
mechanical behavior. It involves first a microcrystalline plas-
ticity approach where the material is defined by its orientation
data file (ODF - about 400 grains). The local stress in a
grain σ is calculated as function of the macroscopic stress
Σ, the local plastic deformationǫp and the macroscopic
plastic deformationEp. The effect of plastic deformation at
the unloaded state (relaxation of macroscopic stress tensor to
zero) after uniaxial traction was modeled.
The next step consists to use the residual stress tensorσ as a
loading at the grain scale of a magnetic multiscale model able
to describe magnetic and magnetostrictive behaviors [4]. This
model was applied to non-oriented Fe-3%Si and simulations
of the effect of plasticity are consistent with experimental
observations [4], [6]. This approach is complemented by
experimental observations where the kinematic hardening (see
next section) is correlated with the degradation of the magnetic
properties [1]. However, this approach is limited to the range
of levels of plastic deformation corresponding to intergranular
internal stresses (stress homogeneous at the grain scale).In
addition, only monotonic loading is taken into account and
only the unloaded state is modeled. This modeling leads
on the other hand to dissuasive computation times. Inverse
identification is consequently still not reachable by this way.
Nevertheless the principle that plasticity can be considered as
a state of internal stress is kept for the modeling proposed
herein.

III. M ECHANICAL MODELING

The challenge is to simplify the micro-macro approach in
order to meet the time constraints inherent with the calculation
specifications for NDE. The modeling proposed requires first
the calculation of residual stress fields considering the material
as a two phased material as initially proposed by Mughrabi [9].
The effect of plastic deformation on the macroscopic magnetic
behavior is supposed to correspond to an average effect of the
residual stresses on each phase.

A. Composite model

At the macroscopic scale, we consider a representative
volume element (RVE) consisting of two phases: a soft phases



and a hard phaseh, meaning thats phase exhibits a lower yield
stress and strengthening than theh phase.fs andfh indicate
the volume fraction ofs andh phases. The RVE is submitted
to an elastoplastic stress tensorΣ. E

e, E
p andE denote the

elastic, plastic and total deformation tensors respectively so
that :

E = E
e + E

p = C
−1

Σ + E
p (1)

whereC indicates the stiffness tensor of the medium sup-
posed isotropic and homogeneous whatever the phase.
The same decomposition can be made for each phase:

ǫh = ǫ
e
h + ǫ

p
h = C

−1
σh + ǫ

p
h (2)

ǫs = ǫ
e
s + ǫ

p
s = C

−1
σs + ǫ

p
s (3)

Macroscopic stress and deformationΣ andE are given by:

Σ = fhσh + fsσs (4)

E = fhǫh + fsǫs (5)

The local stress is given on the other hand by the Hill’s
relationship [11] so that:

σs = Σ + C
∗(E − ǫs) (6)

σh = Σ + C
∗(E − ǫh) (7)

whereC∗ indicates the Hill’s constraint tensor.
Because of isotropic elasticity, the plastic deformation ten-

sors verify:
E

p = fsǫ
p
s + fhǫ

p
h (8)

so that it is possible to define two residual stress tensorsDs

andDh satisfying:

σs = Σ + Ds (9)

σh = Σ + Dh (10)

fsDs + fhDh = 0 (11)

We observe that:Dh = − fs

fh
Ds.

B. Correlation with kinematic hardening

On the other hand the plastic straining of a material is
suitably described by the yield functionf which can be
expressed as function of the macroscopic deviatoric stress
tensor S1, yield stressΣy, isotropic R and kinematicX

hardening components [12]:

f(Σ) =

√

3

2
(S − X) : (S− X) − Σy − R (12)

assuming that the strengthening is suitably described by a
von Mises criterion.X tensor is a non linear function of
the plastic strain tensorEp (13), related to the position of
the yield function (f = 0) in the stress space (figure 1) and
representative of heterogeneous and multiaxial residual stress
field within the material.

Ẋ = g(Ėp) (13)
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Fig. 1. Illustration of kinematic and isotropic hardening for a vonMises
criterion in the deviatoric eigen-stress space (SI ,SII ,SIII ): (a) initial yield
function; (b) yield function after strengthening.

Coming back to the previous decomposition in soft and hard
phases, it can be shown that the kinematic hardening is directly
associated to the residual stress within the soft phase, so that:

Ds = −
3

2
X (14)

Assuming that the volume fraction of hard and soft phases
are known, an experimental estimation of the quantityX

allows to define the stress field within the two phases. Ap-
plication to tensile strengthening is made in the next section.
The procedure is applied experimentally in [13].

IV. M AGNETIC MODELING

A. Multidomain modeling - single phased material [8]

The multidomain modeling is a two-scales reversible mod-
eling allowing the prediction of the magneto-mechanical be-
havior of isotropic polycrystals. A six magnetic domains
configuration is considered associated to the six easy axes
of cubic symmetry for materials that exhibit a positive mag-
netocrystalline constant (figure 2a). Each domain familyα

(α = 1..6) is defined by a magnetization vector~Mα (15) so
that ‖ ~Mα ‖= Ms, and by a magnetostriction tensorǫ

µ
α (16)

(γi parameters figure the direction cosines of magnetization;
λ100 and λ111 are the two magnetostrictive constants). This
single crystal is considered as submitted to a magnetic field
~H and/or stressσ. Uniform strain and field hypotheses are
used over the crystal and domain walls contribution to the total
energy is neglected [10]. The energy of a magnetic domainWα

is the sum of the Zeeman energyWH
α , the magnetocrystalline

energyWK
α and of the magnetoelastic energyW σ

α (17,18,19)
(K1 is the magnetocrystalline constant of the material). The
stress tensor is supposed uniaxial; magnetic field and stress
are applied along a same direction~nc defined by anglesφc

and θc of the spherical frame (figure 2b). This direction is
restricted to the standard triangle: cubic symmetry means that
at any loading direction is corresponding a direction in this
triangle. The resolution of the problem (ie calculation of the
mean magnetization and deformation) requires to evaluate the
direction of magnetization and the volume fraction of each
domain familyα.

1with S = Σ −

1

3
tr(Σ)I; I: identity tensor.
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Fig. 2. (a) Initial domain structure of single crystal considered for the
multidomain modeling; (b) standard triangle and loading axis ~nc.

~Mα = Ms
t[γ1, γ2, γ3] (15)

ǫ
µ
α =

3

2

(

λ100((γ1)2 −

1
3
) λ111(γ1γ2) λ111(γ1γ3)

λ111(γ1γ2) λ100((γ2)2 −

1
3
) λ111(γ2γ3)

λ111(γ1γ3) λ111(γ2γ3) λ100((γ3)2 −

1
3
)

)

(16)

WH
α = −µ0

~H. ~Mα (17)

WK
α = K1((γ1γ2)

2 + (γ2γ3)
2 + (γ1γ3)

2) (18)

W σ
α = −σ : ǫ

µ
α (19)

~nc = t[cos(φc)sin(θc), sin(φc)sin(θc), cos(θc)] (20)

[γ1, γ2, γ3] = [cos(φα)sin(θα), sin(φα)sin(θα), cos(θα)]
(21)

The volume fractionfα of a domain is calculated thanks to
statistical Boltzmann formula:

fα =
exp(−As.Wα)

∑

α

exp(−As.Wα)
(22)

As is an adjusting parameter proportional to the initial sus-
ceptibility χ0 of the magnetization curve. We get [8]:

As =
3χ0

µ0.M2
s .(cosφcsinθc)2

(23)

The magnetization direction of a domain is defined by
anglesφα andθα of the spherical frame (21). The restriction
of the loading axis to standard triangle allows to express
constitutive laws for the angles of each domain as function of
magnetic field, stress, and loading direction parameters (see
[8] for more details).

Average magnetization and magnetostriction (24) are pro-
jected along the loading axis~nc leading to the behavior
of the single crystalM(H, σ) and ǫ

µ
//(H, σ) (25). Because

all possible loading directions are restricted to the standard

triangle, the behavior of an isotropic polycrystal is necessary
given by a loading along a single direction inside the triangle.
Since behaviors are not linear and single crystal anisotropic,
this direction is not the average direction and is theoretically
changing with stress or magnetic field level. We consequently
make the assumption that this change is small enough to be
neglected associated to usual homogeneous field and stress
hypotheses over the grains. Parameters to be identified are
finally φc and θc that requires few experimental data (e.g.
magnetic and magnetostrictive curves under unstress condition
using a least square method2).

~M =
∑

α

fα
~Mα ǫ

µ =
∑

α

fα ǫ
µ
α (24)

M = ~M.~nc ǫ
µ
// = t~nc.ǫ

µ.~nc (25)

B. Application to the elasto-plastic composite material

We consider a plastified material composed of hard (h) and
soft (s) phases. We suppose on the other hand that macroscopic
stressΣ, kinematic hardeningX and volume fraction ofs
and h phases are known. The stress field within the two
phases is consequently defined (σs,σh). Considering finally
homogeneous magnetic field condition and assuming that the
magnetic behavior of each phase is known, a mixing law
allows the estimation of the magneto-mechanical behavior of
the whole material:

~M( ~H,Σ) = fs
~Ms( ~H, σs) + fh

~Mh( ~H, σh) (26)

ǫ
µ( ~H,Σ) = fsǫ

µ
s ( ~H, σs) + fhǫ

µ
h( ~H, σh) (27)

Magnetization and magnetostriction of thes andh phases
can be modeled separately thanks to the multidomain
modeling.
A first step is to get the parameters of each phase (loading axis
and constantAs). A second step is to change the multiaxial
stresses σs and σh into uniaxial magneto-mechanical
equivalent stresses according to the direction of the magnetic
loading. We use for that purpose the simplified equivalent
stress recently defined in [14]:

σ
eq
i =

3

2
t~nSi~n (28)

Index i indicatess or h phase.Si is the deviatoric tensor
associated toσs andσh respectively.~n indicates the direction
of the magnetic loading.

V. A PPLICATION TO TENSILE STRENGTHENING

A tensile loading of axis~x is considered leading to an axial
plastic deformationEp. The material can be reloaded along
the same direction so that the macroscopic stress tensor is:

Σ =





Σ 0 0
0 0 0
0 0 0





(~x,~y,~z)

(29)

2A separate optimization ofAs is possible allowing a better fitting of
experimental results.
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Fig. 3. Kinematic and isotropic variables identification ina classical stress-
strain diagram.

The macroscopic plastic strain tensor is constant, diagonal
and deviatoric, as well as the kinematic hardening :

E
p

=

0

@

E
p

0 0

0 −

Ep

2
0

0 0 −

Ep

2

1

A X =

0

@

X 0 0

0 −

1

2
X 0

0 0 −

1

2
X

1

A

(30)
The center of the yield surfaceO′ is given byΣ0 = 3

2X , as
illustrated in figure 3.

After the substitution of the value ofΣ andX in equations
(9), (10), (11) and (14), the stress tensors in soft and hard
phases are deduced:

σs =





Σ + 3
2X 0 0

0 − 3
4X 0

0 0 − 3
4X



 (31)

σh =







Σ − fs

fh

3
2X 0 0

0 fs

fh

3
4X 0

0 0 fs

fh

3
4X






(32)

Considering on the other hand a magnetic loading along~x

axis, the magneto-mechanical equivalent stresses ins and h

phases are:

σeq
s = Σ −

9

4
X σ

eq
h = Σ +

fs

fh

9

4
X (33)

The following points can be highligthed:

• At zero applied stress, we observe that thes phase is
submitted to compression, theh phase to traction. This
result joins the hypotheses of Cullity [5] in order to
interpret the results carried out on a plastic strained iron-
silicon alloy (theh phase was actually corresponding to
the grain boundaries of the material).

• In order to annul the equivalent stress in thes phase, a
tensile stress must be superimposed:

Σ =
3

2
Σ0 =

9

4
X (34)

The equivalent stress in theh phase is non zero:

σ
eq
h =

Σ0

fh
6= 0 (35)

This result joins the experimental observations of Ior-
dache [15]. Iordache observed a recovery of the behavior
of Fe-3%Si laminations after plastic deformation for a su-
perimposed stressΣ = 3

2Σ0. Theh phase corresponding
to the grain boundaries of the material does not participate
to the magnetic behavior although the stress in theh

phase is high. The reason is that the volume fraction of
grain boundaries is negligible compared to the volume
fraction of matrix.

• In order to annul the equivalent stress in theh phase, a
compressive stress must be superimposed:

Σ = −
3

2

fs

fh
Σ0 = −

9

4

fs

fh
X (36)

The equivalent stress in thes phase is non zero:

σeq
s = −

Σ0

fh
6= 0 (37)

It could be interesting to propose an experimental vali-
dation of such a situation.

VI. CONCLUSION

In this work a new modeling of the influence of plastic
straining on the magnetic and magnetostrictive behaviors of
ferromagnetic materials is proposed. This modeling especially
dedicated to non destructive evaluation requires to consider
the plastified material as a two phased material submitted to
residual stresses. The multiaxial stress field within the two
phases is associated to the kinematic hardening that can be
experimentally measured and depends on the volume fraction
of the phases. The magneto-mechanical modeling is made
thanks to the so-called multidomain model: the magnetic
quantities are calculated separately. An averaging operation
leads to the calculation of the macroscopic magnetization
and magnetostriction. Considering tensile strengthening, this
work gives a theoretical background for the interpretationof
previous experimental results of Cullity and Iordache. In [13],
an experimental validation of the approach is proposed using
a dual-phase steel. Non destructive evaluation remains a far
issue since inverse identification procedure must be proposed
involving both mechanical and magnetic finite element mod-
eling for an application to non-homogeneous situations.

REFERENCES

[1] E.Hug, et al., M., Mat. Sc. and Eng.,A332, (2002), p.193.
[2] J.M.Makar, B.K. Tanner, J. of Magn. Magn. Mater.,184, (1998) p.193.
[3] J.M.Makar, B.K. Tanner, J. of Magn. Magn. Mater.,187, (1998) p.353.
[4] O. Hubert,et al., Steel Res. Int.,6, (2005), p.440.
[5] B.D. Cullity, Introduction to magnetic Materials, Addison-Wesley Pub-

lishing Company, 1972.
[6] O. Hubert, L. Daniel, J. of Magn. Magn .Mater.,304, (2006), p.e489.
[7] M.J. Sablik,et al., IEEE Trans. Mag.,40, (2004), p.3219.
[8] S. Lazreg, O. Hubert, J. Appl. Phys.,109, (2011), 07E508.
[9] H. Mughrabi, Acta Metallurgica,9 (1983), p.1367.
[10] L. Daniel et al., J. Mech. Phys. Sol.,56 (2008), p.1018.
[11] R. Hill, J. Mech. Phys. Sol.,13 (1965), p.89.
[12] J. Lemaitre, J.L. ChabocheMechanics of solid materials, Cambridge

University Press, 1994.
[13] S. Lazreg, O. Hubert,Influence of plasticity on magnetic and magne-

tostrictive behaviors of dual-phase steel, SMM20, (2011).
[14] O. Hubert, L. Daniel, J. of Magn. Magn. Mater.,323, (2011), p.1766.
[15] V.E. Iordache,et al., Mater. Sci. Eng. A.359, (2003) p.62.


