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The Theory of Braids and Energetic Lattices I - Minimization

on Energetic Lattices

B.R. Kiran and J.Serra

3, March 2017

1 Notation

E : space under study; x, y points of E; P(E) : set of the subsets of E, also called classes;
S,A : classes of E; Tj the sibling classes of S;
π = π(E) : partition of E;
π(S) : partial partition ( in short p.p.) of support S ∈ P(E)); the notation τ(S) is also

used for p.p.
{S} p.p. with unique class S (when there is no ambiguity, {S} is just written S) ;
D(E) set of all p.p. for all supports S ∈ P(E);
≤, ∧,∨: when applied to partitions, are relative to the refinement ordering;
t: concatenation of classes and p.p. i.e. π(S) = S1 tS2 ⇔ S1 ∪S2 = S and S1 ∩S2 = ∅;
H = {πi, i ∈ I}: hierarchy, i.e. family of increasing partitions;
S = S(H) family of all classes of H;
cut π: partition of E into classes taken in H;
Π(E) set of all partitions of E, which is a lattice for the refinement ordering;
Π(E,H) set of all cuts of H, viewed as a lattice for the refinement ordering;
ω: energy, i.e. scalar function on D(E);
�ω,fω,gω: ω-energetic ordering, infimum, and supremum, w.r.t. energy ω;
Π(ω,H): ω-energetic lattice on the cuts of H;
π∗ minimal cut in an energetic lattice.

2 Reminder on Partitions

Partition Intuitively, a partition π, or π(E), is a division of image domain E into classes
which are pair-wise disjoint and whose union restores E in its entirety.

Definition 1. A partition π of the image domain E is a family of sets S:

π = {S ⊆ E} (1)

where S : E → P(E), and for each point x ∈ E, we have x ∈ S(x), and

x, y ∈ E ⇒ S(x) = S(y) or S(x) ∩ S(y) = ∅ (2)

These S are called the classes of the partition π
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Refinement order and lattice The set of all partitions π of E forms a complete lattice
Π(E) for the partial ordering of the refinement, where πi ≤ πj when each class Si(x) of πi is
included in the class Sj(x) of πj at the same point x ∈ E:

πi ≤ πj ⇔ Si(x) ⊆ Sj(x). (3)

This refinement lattice is denoted by Π(E). The refinement infimum of a family {πi, i ∈
I ⊆ R} in Π(E) is the partition π whose class at point x is ∩Si(x), and the refinement
supremum is the finest partition π′ such that Si(x) ⊆ S′(x) for all i ∈ I and x ∈ E.

Partial partition First introduced by Ronse in [25], a partial partition is a local partition-
ing of a subset S ⊆ E of the input space.

Definition 2. A partial partition π(S) of support S ∈ P(E) is a set,

π(S) = {Ai|Ai ⊆ S,Ai ∩Aj = ∅} = π u {S} (4)

where S = ∪Ai, is called the support of partial partition π(S).

Partial partitions appear in figure 3, for example. The restriction of partition π to those
classes whose union forms the set S is denoted by π(S) = π u {S}, and the partial partition
of S into the single class S is denoted by {S}.

Energy An energy ω is a real valued function over the family of partial partitions D(E) of
space E:

ω : D(E)→ R (5)

When the energy ω of a p.p. is the sum of the energies of its classes, then ω is said to be
linear [26] [14]

ω(π(S)) =
∑

Ti∈π(S)

ω(Ti) (6)

3 Reminder on Hierarchies of partitions

Hierarchy Hierarchies of partitions are the matter of an abundant literature (see for ex-
ample [3], [21]). The definition that we propose here is based on two axioms:

Definition 3. (Hierarchy of Partitions(HOP)) A family {πi, i ∈ I ⊆ Z} of partitions of E
defines a hierarchy when,

1. The partitions πi are nested, i.e. they form a chain for the refinement ordering:

H = {πi, i ∈ I} with i ≤ k ⇒ πi ≤ πk, I ⊆ Z, (7)

where the finest partition π0 is called the leaves, and the coarsest one, is the root;

2. The number of leaves is finite in any class of the hierarchy, except possibly, in the class
{E}.

One often takes the whole space {E} for the root.
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Classes and cuts A hierarchy can be described from its classes, or nodes. At each point
x ∈ E the family of all classes Si(x) containing x forms a closed chain of nested elements in
P(E), from the leave S0(x) to E. This chain is called the cone at point x. Let S ={Si(x), x ∈
E, i ∈ I} be the family of all classes of H. Class S is characterized by the implication

i ≤ j and x, y ∈ E ⇒ Si(x) ⊆ Sj(y), or Si(x) ⊇ Sj(y), or Si(x) ∩ Sj(y) = ∅. (8)

which generalizes the characterization (2) of the partitions. The classes of the partition πi−1
included in the class Si of the partition πi are the sons or the siblings of Si, and hierarchy is
said to be binary when each class has two sons exactly. The symbol t refers to the disjoint
union of classes, i.e.

S = S1 t S2 ⇔ S1 ∪ S2 = S and S1 ∩ S2 = ∅.

A cut of H is a partition of the space E into classes taken in S. The symbol Π(E,H)
stands for the set of all cuts of H. Clearly, Π(E,H) is a sub-lattice of Π(E), the lattice of
all partitions of E. If S ∈ S(H), then Π(S,H) denotes the family of all partial partitions of
S whose classes are in S(H).

CART and cuts of minimal energy Classification and Regression Trees (CART) were
introduced in the 80’s by Breiman et al [6], which creates powerful and simple binary tree
based models for classification and regression problems, in statistical learning theory. The
method consisted in creating rectangular partition of a feature space (high dimensional Rn),
either fit a model over each of these rectangles in case of regression, produce a classifica-
tion. These trees (now called decision trees) described then the estimator for the regression
function, or a linear separator for classification tasks.

Salembier-Garrido and Guigues [26] [14] generalized the CART framework to families of
partitions obtained from image segmentations1. The first two study binary partition trees,
i.e. hierarchies of partitions created by using the max-tree representation, while Guigues
considers a hierarchy created from complete linkage on regions of an over-segmentation [13],
titled as Cocoons. In both studies a so called “dynamic programing” is used to find a cut of
minimal energy, according to the rule described on the toy example of Figure

4 Discussion

The main features of these approaches, from Breiman to Guigues, set a few questions:

1- Number of cuts The principle of the method consists in allocating an energy with
each cut, then to minimize the energy, and to state that the minimal energy characterizes a
minimal cut. Now consider a binary hierarchy H of n = 2p leaves, where p is the number of
levels. This hierarchy H generates more 22

P−1
cuts. For example, in a small binary hierarchy

1They address the two issues of non-constrained and of constrained optimizations. The first one is presented
here, and the second further.
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Figure 1: Dynamic programing works as follows: the energy at any node S is compared to
the sum of the energies of the children. If ω(S) ≤

∑
ω(Tk) , Tk children of S, one keeps the

class S; if not, one replaces S by its sons. The optimal cut is then the union of the remaining
classes. It results here in the partition in dotted lines.

of six levels, n = 64, and one finds ' 1011,3 cuts, i.e. more than 100 times the population of
the earth in 2013 (namely 7, 125× 109 persons). A basis of n = 512 leaves, which is common
in image processing, provides ' 1090 cuts, a number equal to that of all the particles of the
universe... Can we really match a scalar energy with so many cuts?

2- An absent energy Moreover, though an energy is “officially” given to each cut, is it
really used in the dynamic programing for minimization? The global energies of the cuts
never appear during the processing, which just needs local energies to locally compare the
cuts, and results in a global minimal cut whose energy is ususlly ignored. Here is an example.
Imagine an infinite set of leaves covering the whole plane R2, like a huge chessboard, and a
hierarchy H where all classes but the last one, E, admit a finite number of leaves. Take an
additive energy ω equal to 1 on every class, and +∞ for E. Then all cuts have an infinite
energy, whereas the dynamic programing of figure ?? still works perfectly well. It is the
concern of partial partitions, indeed, and it never needs the energy of the complete cuts to
compare them. Again, the notion which is minimized should not be the energy of the cut.

3- Linearity Following Breiman’ work, [6] where the energy of a partial partition is the
sum of the energies of its constituent classes, most of the authors have adopted this linearity
[26] [12] [14]. However other laws of compositions appear in literature, e.g. by supremum
[34], [1], [38], or by infimum [30]. How to regroup all these modalities in a unique notion ?

4- Hierarchies only? The dynamic programing exclusively requires the comparison be-
tween fathers and siblings. It never imposes that a father has a unique set of siblings, i.e.
that we are working with a hierarchy. Could we introduce classes which would present several
decompositions into partial partitions?

These four comments govern the theoretical development which follows. Dynamic pro-
graming opens the way to the energetic ordering; the discrepancy between the numbers of
cuts and of energies drives us to energetic lattice; the extension of the linearity directly leads
to h-increasingness; and the braids turn out to generalize hierarchies.
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5 Braid

To define the braids, we start from the lattice Π(E) of the partitions of E, of minimal element
the leaves partition π0. Next we introduce a hierarchy H which serves as a parameter. A
braid B is a family of partitions of E. The family B is not arbitrary, but monitored by a
non-trivial hierarchy H, in the sense that the refinement supremum of any two elements of
Π(E,B) is a cut of H. This leads to the more formal definition:

Definition 4. (Braid of Partitions) Let Π(E) be the complete lattice of all partitions of set
E; let H be a hierarchy in Π(E). A braid B of monitor H is a family in Π(E) where the
refinement supremum of any pair π1, π2 in B is a cut of H, other than {E}, and belongs to
Π(E,H) \ {E}:

∀π1, π2 ∈ B ⇒ π1 ∨ π2 ∈ Π(E,H) \ {E} (9)

The partition with one class {E} is not considered in Equation 9, since this would imply
that any family of arbitrary partitions would form a braid with {E} as supremum, thus losing
any useful structure. We also assume a locally finite number of classes in such cases, like
in the case of hierarchies. Though the classes of supremums π1 ∨ π2 are classes of monitor
hierarchy H, the monitor by itself is not uniquely defined.

Cuts in braids Just as for the cuts of H, which were denoted by Π(E,H), we now define
the cuts of B as the partitions whose classes are taken in B, and denote the class of all these
cuts by Π(E,B).The hierarchy H may itself belong to the braid, or not. On the other hand,
any hierarchy is a braid with itself as monitor. When H ⊆ B, we have Π(E,H) ⊆ Π(E,B) ⊆
Π(E), i.e. the braid cuts Π(E,B) are in between the cuts of the hierarchy H and the set of
all partitions of E. A braid cannot be represented by a saliency, except when it reduces to a
hierarchy whose classes are connected sets.

Braids and hierarchies The braids of partitions (BOP) provide alternatives to hierarchi-
cal structure in many ways. We state one direction here, where a composition law on tuples
of hierarchies produces a braid.

Proposition 5. Given three hierarchies H,H1, H2 formed from the same leaves, such that,
H1 ≤ H, H2 ≤ H, then the family of partitions given by {H1 ∪H2} \ {E} forms a braid with
the monitor H.

Here H1 ≤ H on hierarchies says that each class of hierarchy H1 is contained in the classes
of H. The union of hierarchies form braids, while braids are not necessarily decomposable
into hierarchies.

Cones of the monitor Let π1, π2, π3 be three partitions of a braid B. We denote by
S12, S23, S31 the classes at point x of the suprema π1 ∨ π2, π2 ∨ π3, and π3 ∨ π1 respectively.

Proposition 6. The three classes S12, S23, S31 are nested and the larger two are identical.
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Figure 2: Three braids and their suprema

Proof. As S12, S23, S31 are classes of a hierarchy containing a same point, they are nested.
Suppose for example that S12 ⊆ S23 ⊆ S31. If S12 = S23 = S, then S is a union of classes
of π3 and π1, and S ⊇ S31. But we have also the reverse inequality by hypothesis, thus
S12 = S23 = S31. If not, S23 as class in a hierarchy, equals the union of the classes smaller
than it. Such classes cannot come from π2 ∨ π3, or π3 ∨ π1 which are larger or equal to S23.
Therefore S23 is a union of classes ofπ1 ∨ π2 hence of π1. But by construction, it is also a
union of classes of π3. It thus contains S31, and finally S23 = S31.

This property characterizes the braids without making explicit the monitor hierarchy, and
can be useful as a starting point. It is illustrated by Figure 2

6 h-increasing energies

An energy ω ≥ 0 on p.p. may not lend itself to dynamic programing. For example, take
for energy ω(π) = 1 (resp. 2) when the number of classes of the p.p. π is 1 (resp. 2), and
ω(π) = 0 otherwise. Then, as shown in Figure 5 b and c, one finds two cuts of minimal energy,
and none of them is reached by dynamic programing. The condition missed by this counter
example is that of h-increasingness. It is a property of the energies ω on partial partitions
D(E) which preserves the optimal substructure [28] [18].

h-increasingness is involved in three aspects of the theory. Firstly it serves as corner stone
in the construction of energetic lattices, secondly it governs dynamic program for extracting
minimal cuts, and, finally, it permits the global to local transition when the objects under
study extend much more than the sampling regions, such as in remote sensing.

Definition 7. (h-increasingness) Let (τi, τ
′
i) be elements of two different p.p. of the same

support Si, and {Si, Si ∈ E, i ∈ I} a family of disjoint supports. A finite singular energy ω
on the partial partitions D(E) is h-increasing when for every triplet {τi, τ ′i , Si ∈ E, i ∈ I}
one has, ∀i ∈ I:

ω(τi) ≤ ω(τ ′i) ⇒ ω(tτi) ≤ ω(tτ ′i) (10)

When in addition one has ω(τi) < ω(τ ′i) for one i at least, and when this leads to ω(tτi) <
ω(tτ ′i), then the energy ω is strictly h-increasing.
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Figure 3: Hierarchical increasingness

For example, a linear energy, i.e. an energy where ω(tτi) is the sum of the ω(τi) is
h-increasing, an even strictly h-increasing since

ω(τi) < ω(τ ′i) for all i ∈ I ⇒ ω(tτi) < ω(tτ ′i).

Unlike, the h-increasing energy ω(tτi) =
∑
ω(τi) when

∑
ω(τi) < K and = K when

not, is not strictly h-increasing. The energies composed by supremum are also h-increasing,
but not strictly.

Finite case When a finite family of partition is under study, then Definition 7 reduces to

ω(τ1) ≤ ω(τ2)⇒ ω(τ1 t τ0) ≤ ω(τ2 t τ0) (11)

The energies of two partial partitions τ1 and τ2 of same support S are compared. If the
energy ω is h-increasing and ω(τ1) ≤ ω(τ2), this order is not changed when we concatenate
a third p.p. τ0 of support disjoint from S: Figure 3 shows the geometrical meaning of the
h-increasingness.

When, in addition, ω is singular, then ω(π1(S)) 6= ω(π2(S)), and also ω[π1(S) t π0] 6=
ω[π2(S)tπ0], so that Rel.(11) can be written in the reverse sense, i.e. by inverting the indexes
1 and 2:

ω[π1(S) t π0] ≤ ω[π2(S) t π0]⇒ ω(π1(S)) ≤ ω(π2(S)) (12)

h-increasingness permits also to concatenate the supports of the partial partitions. Con-
sider two partitions π1 and π2 and two disjoint supports S, S′ which satisfy the h-increasingness
implication (11). We have

ω(π1(S)) ≤ ω(π2(S))⇒ ω(π1(S) t π1(S′)) ≤ ω(π2(S) t π1(S′)) (13)

ω(π1(S
′)) ≤ ω(π2(S

′))⇒ ω(π1(S
′) t π2(S)) ≤ ω(π2(S

′) t π2(S))

hence
ω(π1(S ∪ S′)) ≤ ω(π2(S ∪ S′)). (14)

Generating h-increasing energies Any weighted sum of h-increasing energies is still h-
increasing (they form a vector space). An easy way to generate basic energies in this vector
space consists in providing the classes with an arbitrary energy, and to define the energy
of the p.p. by composition of their classes. We already saw two laws of composition, by
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addition and by supremum. Both laws are indeed particular cases of the classical Minkowski
expression

ω(π(S)) =

[ ∑
u∈[1,q]

ω(Tu)α
] 1
α

(15)

which is a norm in Rn for α > 0. Even though over partial partitions D(E), it is no longer a
norm, it yields strictly h-increasing energies for all α ∈]−∞,+∞[:

Proposition 8. Let E ∈ P(E), let ω : P (E) → R be a positive or negative energy defined
on P(E). Then the extension of ω to the partial partitions D(E) by means of Relation (15)
is strictly h-increasing.

Proof. Let π(S) and π′(S) be two p.p. of support S, with q, q′ elements each, respectively.
When 0 ≤ α <∞, the mapping y = xα on R+ is strictly increasing and, according to Relation
(15), the inequality ω(π(S)) < ω(π′(S)) implies

q∑
1

[ω(Tu)]α ≤
q′∑
1

[ω(T ′u)]α ⇒
q∑
1

[ω(Tu)]α + ω(π0) ≤
q′∑
1

[ω(T ′u)]α + ω(π0) (16)

hence ω(π1 t π0) < ω(π2 t π0). When −∞ < α ≤ 0, the sense of the inequality changes on
both sides of implication in (16) but changes again when taking the (.)α. This again lead to
ω(π1 t π0) < ω(π2 t π0), and achieves the proof. ..

One can easily check that the proposition remains true when ω : P (E)→ R− is a negative
energy. For α = +∞ (resp.−∞) Minkowski expression yields the supremum (resp. the
infimum), which is h-increasing, but not strictly. A number of other laws are compatible
with h-increasingness, such as alternating compositions, etc.[19]. Some particular cases of α
are of interest, namely

α ω(Ti) Composition Law Applications

−∞ infimum Ground truth energies [18]

−1 harmonic sum -

0 number of classes CART classifier complexity [6]

+1 sum Salembier-Garrido, Guigues [26], [12]

+2 quadratic sum -

+∞ supremum Valero[38], Veganzones[39], Soille [34] ,

which all provide h-increasing energies. .

7 Energetic ordering and energetic lattice for braids

7.1 Climbing energies

The energies on partial partitions which allow minimizations by dynamic programing cannot
be totally arbitrary. They must satisfy the axioms of h-increasingness that we just saw,
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Figure 4: The energetic ordering induces a lattice where one takes the less energetic partial
partition in each class of π1 ∨ π2 (here for a hierarchy).

and also of singularity [28] [18]. Indeed, if some fathers in a braid have the same energies
as their siblings, multiple optimal cuts may arise. It is for preventing such occurrences that
singularity is introduced.

Definition 9. Let ω be an energy on the partial partitions D(E), and B be a braid B of
monitor hierarchy H. Energy ω is singular when

1. the energy ω({S}) of every class S of H is either strictly smaller, or strictly greater,
than the energies of all partial partitions of B of support S:

∀ π(S) ∈ Π(S), ω({S}) < ω(π(S))} or ω({S}) > ω(π(S))}, (17)

2. if ∀π1, π2 ∈ B and π1 ∨ π2 = {S} ∈ Π(E,H), then ω(π1) 6= ω(π2).

When the braid reduces to a hierarchy, the second axiom becomes useless.

Definition 10. An energy on the partial partitions of E is said to be climbing when it is
both h-increasing and singular [18].

7.2 Energetic ordering and energetic lattice

Consider two cuts π1, π2 ∈ Π(B) in a braid B of partitions, and their supremum π1 ∨ π2 (see
Figure 4). Intuitively, one may assess that, in some sense, π1 is less energetic than π2 for an
energy ω when ω[π1 u {S}] ≤ ω[π2 u {S}] in each class S of π1 ∨ π2. This intuition is true
and has the meaning of an ordering relation if and only if the energy ω is climbing:

Theorem 11. Let Π(B) be a braid of partitions of E, and let π1, π2 ∈ Π. Given an energy
ω, the partition π1 is said to be less energetic than π2, and one writes π1 �ω π2 when in each
class of π1 ∨ π2 the energy of the partial partition of π1 is smaller or equal to that of π2: :

π1 �ω π2 ⇔ {S ∈ π1 ∨ π2 ⇒ ω(π1 u {S}) ≤ ω(π2 u {S})} (18)

The relation �ω is an ordering relation if and only if the energy ω is climbing.
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Proof. “If” part of the proof. The relation �ω is obviously reflexive. It is also anti-
symmetrical, since the double condition π1 �ω π2 and π2 �ω π1 means that in each class S
of π1 ∨ π2 the energies of π1(S) and π2(S) are the same, which implies by singularity that S
is a class of both π1 and π2, hence π1 = π2.

For the concern of transitivity, we consider three partitions π1, π2, π3 of the braid B, and
the classes S12, S23, S31of the suprema π1∨π2, π2∨π3, and π3∨π1 at point x. We have to prove
that π1 �ω π2 and π2 �ω π3 imply π1 �ω π3. According to Proposition 6, there are three
possibilities to order the three nested sets S12, S23, S31depending upon the one taken to be
the smaller. Take S12 for example. Then S23 = S31 = S is a union of classes of π1 and of π2,
hence of π1∨π2. In each of these classes S12, S

′
12, .. ∈ S the energy of π1 is ≤ than that of π2.

These inequalities extend to S by h-increasingness, and we can write ω(π1(S)) ≤ ω(π2(S)).
But we also have by hypothesis ω(π2(S)) ≤ ω(π3(S)), hence ω(π1(S)) ≤ ω(π3(S)). As S
is an arbitrary class of π3 ∨ π1, we finally obtain π1 �ω π3, which proves transitivity when
S12 ⊆ S23 = S31. The two other cases admit similar derivations

For the “only if” statement, we must prove that the ordering vanishes either when ω is
not singular or when ω is not h-increasing. Consider first an ordering �ω whose energy is
not singular, and two cuts π and π′ identical everywhere except in the class S′(x), which
is replaced by the p.p. τ . Suppose that ω(τ) = ω(S′(x)). This implies π �ω π′ and also
π′ �ω π. However we do not have π′ = π since τ 6= S′(x). Thus singularity is needed. For
proving the need of h-increasingness, take for ω the function equal to 1 on each class, plus
the linear composition law and a constraint for the singularity. Introduce now the following
exception: when the number of classes of a p.p. is 5, then its energy becomes infinite. ω is no
longer h-increasing and transitivity is not satisfied, for example at point x in figure 2. This
achieves the proof.

The “only if” part of the theorem means that the braids and their cuts have the correct
level of generality to lend themselves to a lattice. If one wants to build up energetic orderings
on other families of partitions, the energy ω must be more specified. In particular, one can
think of braids of order II, where the suprema are cuts of a braid (rather than of a hierarchy),
braids of order III, etc.. Coming back to our standard braids, we now prove that the energetic
order induces on them a complete lattice.

Theorem 12. Let B be a braid of partitions of E, and ω be an energy on the partial partitions.
The set of all cuts of B forms a complete lattice Π(ω,B) for the energetic ordering �ω if
and only if the energy ω is climbing. Given a family {πj , 1 ≤ j ≤ p} of cuts in Π(ω,B), the
infimum fωπj (resp. supremum gωπj) is obtained by taking the p.p. of lowest energy (resp.
highest energy) in each class of the refinement supremum ∨πj.

Proof. If the energy ω is not climbing, there is no energetic ordering, thus no possible lattice.
We now suppose that ω is climbing and we treat the finite case in the first place.

A- Finite number of leaves. Let {πi, i ∈ I} be a finite family in Π(ω,B), and πj , πk two
members of this family. Define the partition πj fω πk by taking the less energetic of the two
p.p. in each class of πj ∨πk . The partition πj fω πk is a member of the set Π(ω,B), and it is
�ω-smaller than both πj and πk. Moreover, suppose that another partition πm ∈ Π(ω,B) be
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Figure 5: a) in case of ∨-composition, there is a unique minimal cut π∗ and its energy is
minimal, but other cuts have also the same energy. b) and c) depict a non h-increasing
energy ω(π) which depends on the number of classes of the p.p. π. The two cuts surrounded
by ellipses are minimal (hence no energetic lattice), and none of them is obtained by dynamic
program, which gives the cut in grey.

also �ω-smaller than both πj and πk. According to Proposition 6, at point x two of the three
classes Sjk, Skm, and Smj are identical. If Sjk = Skm = S, then this class S is the support
of partial partitions of πj , πk, and πm, and by h-increasingness ω(πm(S) ≤ ω[(πj fω πk)(S)].
For the same reason, we find the same inequality when Skm = Smj and when Smj = Sjk.
Therefore πj fω πk is the largest lower bound of πj and πk.

As the number of leaves of B is finite, the number of partitions πjfωπk with i, k ∈ I is also
finite, and their iterated minimizations lead to a partition π0 ∈ Π(ω,B) smaller than all πi.
This π0 is also the greatest lower bound of the πi since if there exists in Π(ω,B) another π00
smaller or equal to all πi, then it is also smaller or equal to the iterated (πjfωπk)fω(πj′fωπk′),
etc., and finally to π0. By duality, the family {πi, i ∈ I} admits a lower upper bound π1 ∈
Π(ω,B),

B- Infinite case Let {Sj(x)} be set of all classes at point x of a (possibly infinite) family
{πj , j ∈ J ⊆ I} of cuts of B. We saw that these classes form a cone, and that their
union SM (x) = ∪Sj(x), which belongs to H, has a finite number of leaves. Therefore the
number of possible partitions of these leaves is finite, as well as the number of different
partitions πj u {SM (x). The results of the finite case applies and leads to the local infimum
∧[πju{SM (x)}]. The global infimum is obtained by making x vary. Then, by h-increasingness,
the partition ∧πj = t{∧[πju{SM (x)}], x ∈ E} is smaller than any other partition (Rel.(10)).
By duality, we have also ∨πj = t{∨[πj u {SM (x)}], x ∈ E}, which achieves the proof.

As a consequence, the theorem indicates that dynamic programing no longer works as
son as ω is not h-increasing, as depicted in Figure 5 b and c.

7.3 The two orderings � and ≤

h-increasingness allows us to bridge the gap between the energetic ordering �ω for partitions
and the numerical ordering of their energies. Consider two cuts π and π′ of a braid B, and
denote by {Si, i ∈ I } the set of all classes of π∨π′. If τi and τ ′i stand for the p.p. of support
Si of π and π′ respectively, and ω for ah-increasing energy, then the left member of (10)
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Figure 6: Hierarchy with three levels.The energies of the classes are indicated. Those of the
partial partitions are obtained by sums of their classes. the fωof the three partitions is not
(π2 fω π3) fω π1

means that π �ω π′ and the right one that ω(π) ≤ ω(π′), hence:

π �ω π′ ⇒ ω(π) ≤ ω(π′), (19)

with in particular

π∗ = fω{π ∈ Π(E,B)} ⇒ ω(π∗) = ∧{ω(π), π ∈ Π(E,B)} (20)

The inverse implication may be false, since several cuts can share the same energy, as
demonstrated in figure 5. However in case of a climbing energy, the minimal cut is unique,
and it is nothing but the infimum π∗ of the energetic lattice.

Proposition 13. When energy ω is climbing, when ω(π) is finite for one ω at least, and
when the set Π(E,B) is finite, then implication (20) becomes an equivalence.

Proof. As energy ω is climbing, the set Π(E,B) of all cuts of the braid B form a ω-lattice.
By uniqueness of the minimum in this energetic lattice, π∗ ≺ π for π ∈ Π(E,B)\π∗. It means
that there is a class S of π∗ ∨ π such that ω(π∗ u {S}) < ω(π u {S}). Moreover we draw
from the second assumption of the proposition and from Rel. (19) that ω(π∗) is finite. As
ω is climbing, this gives ω(π∗) < ω(π), and by finiteness ω(π∗) < ∧{ω(π), π ∈ Π(E,B)\π∗}.
Therefore, if a cut π ∈ Π(E,B) has ω for energy, it can only be π∗.

8 Climbing energies and local knowledge

In earth sciences, most phenomena largely exceed the regions Z in which they are studied.
Air-borne and satellites images are of this type. Optimal segmentation of such phenomena
must be reached by local, or regional information, and not via a global energy, which would
involve the whole space. Here the second axiom of a hierarchy (in definition 3), which states
that the number of leaves is finite in any class of the hierarchy, except possibly, in the class
{E}, opens the door to a regional approach.

A toy example is given by the following hierarchy of nested partitions of Z where the
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central class enlarges:

i = 0 π0 = all points of Z
i = 1 π1 = {−∞}...{−3}; {−2}; [−1,+1]; {+2}; {+3}...{+∞}.
i = 2 π2 = {−∞}...{−4}; {−3}; [−2,+2]; {+3}; {+4}...{+∞}.
i = 3 π3 = {−∞}...{−5}; {−4}; [−3,+3]; {+4}; {+5}...{+∞}
...............................................

Though |I| =∞, the number of leaves at any class Si(x), x ∈ Z remains finite as soon as the
label i <∞.

Take now the case of a satellite image accessible in the window Z, small w.r.t. the surface
of the earth. Some previous processing of this image results in a hierarchy HZ with n + 1
levels i (i = 0 for the leaves and i = n for Z) and we want to find its minimal cut according
to a h-increasing energy. HZ is the restriction to Z of the hierarchy H of infinite extension
which should be obtained if we could access the whole space, i.e. HZ = H u {Z}. It is
composed by all classes of H included in Z. We admit that the objects of interest are small
enough so that every class of the level n− 1 can be covered by a convenient Z. The minimal
cut π∗Z of HZ is computed by the usual dynamic program. As ω is HZ = H u {Z}, and as
the implication (19 accepts an infinite number of operands, all classes of π∗Z different from Z
itself are also classes of the minimal cut π∗ of the whole hierarchy H.

9 Rebuilding

Theorem 12 shows also that given the finite family {πi, i ∈ I} of partitions, there are two
ways for calculating its fω-infimum. If we do not order them, we must take πj fω πk for all
pairs πj , πk in the family, but not calculate (((πjfω πk)fω πl)fω πm etc., as demonstrated by
Figure 6. Alternatively, we can exhibit a sub-hierarchy generated by all classes of the πi and
only by them, and minimze it by dynamic programing. We now develop this second solution.

9.1 Case of a hierarchy

Consider the family ΠJ = {πj , 1 ≤ j ≤ J <∞} of J cuts of an unknown hierarchy H of set
of cuts Π. We propose to build up a sub-hierarchy H ′ of H made of all classes of ΠJ and
uniquely with them.

Put π0 = ∧πj . The classes a, b, etc. of π0 form the leaves of H ′, and, as J is finite, each
class a, b, etc. of π0 turns out to be a class of one πj at least.

Define the cones {ak, 1 ≤ k ≤ J} of summits a, b, etc. whose increasing classes are taken
in the πj (see figure 7). At each level k the classes ak, bk, etc. form a partition. Indeed, they
are nested or disjoint, and they cover the space because each of them contains one leaf at
least. Moreover, these partitions increase with k because they classes come from increasing
sections of cones. Hence they form a hierarchy, and we can state
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1. Let ΠJ = {πj , 1 ≤ j ≤ J <∞} be a family of cuts of a hierarchy H, and SJ be the set all
all classes of the πj. Then there exists a unique hierarchy H ′ with J levels and whose classes
are exclusively all elements of SJ .

Figure 7: Four cuts πj in an unknown hierarchy H ′. The associated cones allow to find the
four levels π′j of H ′.

Note that it is a purely geometric property of the hiearchies, which does not requires any
energy.

9.2 Case of a braid

In case of a braid we must construct the smallest partial monitor H ′′ whose classes are
suprema of the πj . For each leave, e.g. b, when ascending the cone of summit b, we must
replace the first two classes which are not nested, e.g. b2 and b4, by the class of the supremum
π2 ∨ π4 which contains b.

The algorithm which gives the partial monitor H ′ must determine the children of each
class of the {πk}:

� Consider the infimumπ0 = ∧{πj},

� Determine all cones of summits the classes (or leaves) of π0,

� for each class c in π0; consider the cone at c. For each level k in this cone, if ck ⊆ ck+1,
then keep ck. If ck * ck+1then replace both of them by the class of πk ∨ πk+1 that
contains c

� Continue by going up from all leaves to the root.

At the end the monitor hierarchy for family {πj} is completely determined (see figure 8)
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Figure 8: Four cuts πj in an unknown braid of an unkown partial monitor H ′′. The associated
cones allow to find the three levels π′′j of H ′′.
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