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Abstract—Online magnetic NDE of DP steels is made on bands
submitted to high multiaxial stress. Extraction of microstructural
information from the measurement requires separating the effect
of stress and microstructure. Coupled magneto-mechanical mi-
cromagnetic modeling is relevant for that purpose. In this paper,

magnetic behavior of DP steel under biaxial stress is carried out
and compared to the modeling. It is shown that the discrepancies
observed between experiments and model can be explained by
the 2D assumption.

I. INTRODUCTION

Last few years a growing interest of car industry for the use

of high performance steels as dual phase (DP) steels has been

observed. The high mechanical performance of these steels

(high strength, high ductility) is intimately linked to the pres-

ence of martensite hard phase embedded inside a ferritic phase

matrix and strongly dependent on its volume fraction and

distribution. The mechanical behavior is consequently highly

sensitive to the thermo-mechanical history of the material

and especially to small variations in the process (e.g. furnace

temperature, scrolling speed). Magnetic online non-destructive

monitoring techniques are consequently relevant to control

the process [1]. However the non-destructive measurement is

usually carried out on a band submitted to multiaxial (biaxial)

stress state of high magnitude (tens of MPa). The extraction

of microstructural information from the measurement requires

separating the effect of stress and of microstructure taking

the possible couplings between stress and microstructure into

account. We consequently must define a procedure to evaluate

the effect of biaxial stress on material on the one hand, develop

a modeling of this effect on the other hand, to finally observe

the influence of each parameter and give the key for a future

inverse identification. In this work, some results of the effect

of biaxial stress on the magnetic behavior of a DP steel are first

presented and discussed. A 2D coupled magneto-mechanical

micro-magnetic modeling is next introduced. This model is

able to take the microstructural features (distribution, shape

of martensite and crystallographic texture) and multiaxial

stress into account. This model is tested in biaxial mechanical

configuration and compared to experimental results.

II. MATERIAL AND EXPERIMENTAL PROCEDURE

A 2.5mm thick DP600 from Arcelormittal has been consid-

ered for the study. Figure 1 illustrates the microstructure of the

material, exhibiting the martensite phase in white and ferrite

phase in black. This microstructure is obtained by quenching

of a low carbon steel (wt%C ≤ 0.3% typically) from austeno-

ferritic domain of the phase diagram after several steps of hot

and cold rolling.
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Fig. 1. Dual-phase steel microstructure - RD,TD,ND: rolling, tranverse and
normal directions.

The basic idea of biaxial tests is to perform a measure-

ment of magnetic behavior on a specimen loaded in tension-

compression along two perpendicular directions [2], [3], [4].

For that purpose, a cross-shaped specimen has been designed

and cut from a 300×300 mm2 DP600 sheet (general design

reported in [2]). Compression tests can be carried out because

the specimen is designed to prevent buckling. The local stress

tensor σ̂ = (σ1,σ2) in the centre of the specimen can be

calculated from the forces applied along the two loading axes

F̂ = (F1,F2) according to an interacting symmetric matrix A

(σ̂ = A.F̂). The terms of the matrix have been computed

thanks to a previous finite element mechanical modeling of

the specimen (A11 = A22 =0.0078MPa/N and A12 = A21 =-

0.0018MPa/N). The magnetic measurement area is a 15 mm

diameter circle where both stress and magnetic field are

fairly uniform [3] (heterogeneity level is estimated after finite

element calculation less than 5%).

The specimen is put horizontally between the jacks of the

hydraulic machine ASTREE (figure 2a). Magnetic field and

magnetic induction are measured thanks to a calibrated H-

coil (1000 turns coil - 15mm long, 8mm wide) and a needle-

B sensor (two parallel spikes to 15mm from one to another,

equipped with a spring that provides repeatable contact with

the surface) respectively, put on the topside of the specimen



(the spatial resolution is a circle of 15mm diameter). Strain

field is obtained thanks to Digital Image Correlation (DIC) on

the bottom face of the specimen [5][6].

The experimental measurements reported in this work re-

duce to the measurements of initial susceptibility of anhys-

teretic curves χi(σ1,σ2). It allows a simple record of results

(only one scalar value by mechanical state) and a fast com-

parison to modeling. Anhysteretic curves are constructed point

after point by applying to the material an alternating magnetic

field (f=2Hz) of decreasing amplitude superimposed on a con-

stant bias magnetic field. The amplitude of the alternating field

is slowly reduced to zero until only the bias field remains. The

latter point defines the anhysteretic response corresponding to

the applied bias field. The material is demagnetized after each

measurement of anhysteretic point to eliminate the influence

of loading history in the measurement.

The experimental procedure consist in several stress condi-

tions (σ1,σ2). The magnetic field is applied in the direction

parallel to axis 1. 24 biaxial loading configurations have been

tested, for stress level varying from -100MPa to +100MPa

(values defined after previous 1D experiments to meet the

highest sensitivity). These stress states are plotted in the

(σ1,σ2) plane in figure 2b. Mechanical loading can be divided

into parallel uniaxial tests (σ1 6= 0,σ2 = 0), orthogonal uniaxial

tests (σ1 = 0,σ2 6= 0), equibiaxial tests (σ1 = σ2), and shear

tests (σ1 =−σ2) in order to map the stress plane.
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Fig. 2. (a) benchmark for magnetic measurement under biaxial stress; (b)
stress states used for experimental measurements plotted in the (σ1,σ2) plane.

III. MAGNETOMECHANICAL MICROMAGNETIC MODELING

Micromagnetism is a theoretical approach to describe the

process of magnetization at a scale large enough to replace

the atomic magnetic moments by continuous functions, and

small enough to account for the transition zones between

magnetic domains [7][8]. Approximation is obtained thanks

to the minimization of an energy functional. The contribution

of Brown was to define an expression of the free energy Etot

(1) as function of the local magnetic moment ~m. Etot is the

sum over a volume Ω of internal and external contributions:

the exchange energy Eex, the magnetocrystalline energy Ea,

the Zeeman energy Eh and the dipole interaction Ed (full

expressions are not detailed herein - please report to [9] for

more details).

Etot(~m) = Eh +Eex +Ea +Ed (1)

Introduction of the mechanical energy (and associated mag-

netoelastic effects) into this expression has been made in a

recent work [9]. It allows the modeling of the magnetostrictive

behavior and the influence of stress on the magnetic behavior

(full magnetoelastic coupling). The main characteristics of this

modeling are recalled hereafter.

The change of magnetization of a magnetic medium induces

a deformation ε µ called magnetostriction. The magnetostric-

tion strain tensor for cubic symmetry is isochore and given

by:
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3
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where λ100 and λ111 are two magnetostrictive constants.

Since this deformation is mechanically incompatible (iso-

chore), an elastic deformation εe of the magnetic medium is

always associated in case of embedded inclusion. It results

to a stress field even in absence of any external mechani-

cal loading. When the magnetostriction εµ is known for a

medium, the total deformation ε is obtained by simple addition

(ε = ε µ + εe) since small pertubations assumption can be

applied. The total deformation ε derives from a displacement

field ~u (3) and stress field σ associated to elastic deformation

obeys to the local linear momentum balance equation (4) with

C the stiffness tensor of the medium.

ε =
1

2

(

∇~u+ t∇~u
)

in Ω (3)

~∇.σ =~0 in Ω
σ = C : εe in Ω

(4)

The boundary conditions of the problem are given by:

σ .~n = ~Td on ∂Ωt

~u =~ud on ∂Ωu
(5)

~Td and ~ud are the surface forces and displacements applied

at the boundaries (surfaces) ∂Ωt and ∂Ωu respectively. The

additivity of deformations allows to reformulate the mechani-

cal balance to introduce an internal stress of magnetostrictive

origin:
~∇.σ⋆− ~f µ =~0 (6)

σ⋆ is the total stress and ~f µ = ~∇(C : εµ) the force density

of magnetostrictive origin. The mechanical problem can also

be reduced to an optimization problem where the displacement

field minimizes the elastic energy Eσ given by the application

of a variational formulation of the problem (6)

~u = Min(~v∈H 1
Ω ) Eσ (~v) with ~v =~ud on ∂Ωd (7)

with:

Eσ (~v) =
1

2
ε(~v) : C : ε(~v) − ε(~v) : C : εµ (8)



Considering a magneto-mechanical coupled approach, con-

tributions related to magnetic equilibrium, but also contri-

butions related to the mechanical equilibrium and various

interactions between these two phenomena are involved in the

energy equilibrium. The free energy that suitably describes a

deformable magnetic medium takes the following form:

Etot(~m,~u) = Eh +Eex +Ea +Ed +Eσ (9)

The stability condition of the energy is obtained if and only

if the magnetization and displacement fields minimize the total

free energy simultaneously.

A condition of minimization is the cancellation of all the

partial derivatives independently. We solve the system:

∂Etot

∂~m
=~0

∂Etot

∂~u
=~0 ∀ ~x ∈ Ω (10)

Numerical methods used for the resolution and associated

algorithms are detailed in [9].

IV. EXPERIMENTAL RESULTS AND COMPARISON TO

MODELING

Figure 3 illustrates the evolution of the experimental initial

susceptibility in the stress plane. The susceptibility under

stress is normalized by the value of the susceptibility at the

same magnetic field level at zero stress (χ0=3200). The main

observations are: uniaxial tension along the magnetic field

direction improves the susceptibility and a compression in

the same direction deteriorates it. When a uniaxial stress is

applied in the direction perpendicular to the magnetic field,

the effect is opposite and attenuated. The tension-compression

asymmetry is very perceptible: bi-tension does not modify

significantly the susceptibility, while bi-compression decreases

it. The lowest and highest values of χi are obtained for a

shear situation: lowest for σ1 < 0 and highest for σ1 > 0.

These results meet some previous results reported for iron-

cobalt [4] and more recently for iron-silicon [5]. Indeed all

these materials exhibit positive magnetostriction. Considering

an average magnetostriction λ > 0, the magnetoelastic energy

for magnetic field applied along direction ~1 can be roughly

expressed as: Wme = −σ1λ + σ2λ/2 [3], leading to equal

behavior lines of slope 2 in the (σ1,σ2) plane and higher

susceptibility for σ1 > 0 (lower energy). Non-linearity of

behaviors leads to the curvature of equal lines.

Micromagnetic code ”sivimm2d” [10] is used as the basis

for the implementation of the magneto-mechanical formula-

tion. For simplicity purpose, we only considered the evolution

of initial susceptibility of a single crystal (axes: [100] =~1 and

[010] =~2). The region of interest is a square of 30× 30µm2

in the vacuum. This region is meshed by 3996 triangular

elements. Magnetic and mechanical constants are reported on

table I (Ms is the saturation magnetization; A, Ki and Ci j

are the exchange,magnetocrystalline and stiffness constants).

The domain distribution after minimization of the full energy

functional without any external loading is given in figure 4a.

To reproduce the experimental conditions, we apply suitable

boundaries conditions (BC) on the sides of the square. These
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Fig. 3. Evolution of normalized anhysteretic initial susceptibility χi/χ0

(interpolation) in the (σ1,σ2) plane - with χ0=3200 .

Ms = 1.71×106 A.m−1 A = 1.8×10−11 J.m−1 K1 = 48×103 J.m−3

K2 = 0 J.m−3 λ100 = 21×10−6 λ111 =−21×10−6

C11 = 228 GPa C12 = 132 GPa C44 = 116.5 GPa

TABLE I
PHYSICAL CONSTANTS USED FOR SIMULATIONS
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Fig. 4. (a) Initial domain definition: color code corresponding to m1 = (~m.~1);
(b) boundary conditions used for the modeling; (c) loadings (u1,u2) considered
for the modeling and (d) associated average stress.

conditions consist in different displacement magnitude u1,

u2 applied along directions 1 and 2 (figures 4b and 4c).

Stress σ is then computed by averaging over the surface

(figure 4d). Finally, a numerical anhysteretic procedure is

applied at each mechanical point (20 demagnetization points)

to calculate the corresponding numerical anhysteretic point

and numerical initial susceptibility. 2D modeling leads to

high demagnetization field and low mobility of magnetic

moments: a 0.15×Ms bias field is consequently required to



reach a 0.3×Ms magnetization level and calculate associated

susceptibility. This bias field level is more than 100 times

the level required during experiments. For similar reasons,

the stress levels required to generate a significant effect on

modeled magnetic behavior is 100 times higher than the

stress level required during experiments [11]. Some large

displacements must consequently be applied (magnitude of 1

µm to reach a stress level of about 10GPa). Figure 5 illustrates

the evolution of the micromagnetic initial susceptibility in

the stress plane (relatively to the zero stress value - χ0 = 2

before correction of demagnetizing field). This simulation is in

accordance with the experimental results concerning the effect

of shear stress, parallel and orthogonal uniaxial stress. The

equibiaxial loading leads on the contrary to different results.

The iso-susceptibility curves (χi/χ0= cte) seem corresponding

to straight lines whereas the iso-susceptibility curves observed

during experiments appear more curved.
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Fig. 5. Evolution of relative initial susceptibility χi/χ0 (interpolation) in the
(σ1,σ2) plane obtained from the micromagnetic model - with χ0=2 .

An equivalent stress model that has been proposed recently

[4] confirms that the expected iso-susceptibility curves should

exhibit a decreasing slope with increasing σ2. Indeed, in the

case of biaxial stress state (σ1,σ2) and magnetic field applied

along ~1, the equivalent stress is given by:

σeq =
2

3k
ln

(

2 exp
(

3
2

k σ1

)

1+ exp
(

3
2

k σ2

)

)

(11)

with k = 6χ0λ100

5µ0M2
s

(µ0: vacuum permeability). Results are plotted

in figure 6. Evolutions of equivalent stress (form of iso-

value curves) in the stress plane are in accordance with the

experimental results.

It must be noticed that equation (11) has been derived

using a modeling of ferromagnetic material considered as

an assembly of six domains as illustrated in figure 7. But

the micromagnetic simulations were performed using a 2D

assumption for the distribution of magnetic moments. If we

consider now an assembly of four domains, a new formulation

of equivalent stress can be derived. After few calculation

(using the same approach than in [4]), in the case of biaxial

stress state (σ1,σ2) and magnetic field applied along~1, the 2D

equivalent stress is given by:

σeq = σ1 −σ2 (12)
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Fig. 6. Equivalent stress σeq for {σ1,σ2} ∈[-100MPa,100MPa] -

k=1.3716×10−8Pa−1.

1

2

1

2

Fig. 7. Elementary representation of ferromagnetic material used for the
derivation of equivalent stress: (a) six domains (3D configuration) [4]; (b)
four domains (2D configuration).

This equivalent stress meets the equivalent stress proposed

in the early work of Schneider [12]. Iso-values obtained are

straight lines of slope 1, in accordance with the results from the

micromagnetic modeling. The 2D distribution of the magnetic

moments in the latter modeling seems clearly at the origin of

shape of iso-susceptibility curves. This result question about

the ability of the 2D micromagnetic to restitute properly the

magneto-mechanical coupling.

V. CONCLUSION

The influence of biaxial stress on the magnetic anhysteretic

susceptibility of dual-phase steel has been addressed from

an experimental and a modeling point of view. It has been

demonstrated that 3D magneto-mechanical approaches (ana-

lytic or micromagnetic) are required to simulate accurately

the influence of multiaxial stress on the magnetic behavior.
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