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Introduction

The spraying process of orchards has extreme importance in fruit growing, not only to prevent the economic damages associated with the loss of a production, but also to ensure the quality of the fruit that will arrive the final consumer. This process uses an equipment, called sprayer tower, which is illustrated in Figure 1. This equipment is composed by a vehicle suspension and a support tower, equipped with several fans, and in a typical operating condition it vibrates nonlinearly [START_REF] Sartori Junior | Non-linear dynamics of a tower orchard sprayer based on an inverted pendulum model[END_REF][START_REF] Cunha | Quantification of parametric uncertainties induced by irregular soil loading in orchard tower sprayer nonlinear dynamics[END_REF]. Understanding the dynamics of this equipment is essential to its design and also to discover operating conditions that may be harmful to the spraying process. In this sense, this work aims to model the nonlinear dynamics of the sprayer tower, taking into account the deterministic and stochastic aspects. In particular, it is of great interest to predict the maximum amplitude of the lateral vibration of the structure, and verify if the uncertainties in the soil-induced loadings are capable of generating undesirable levels of oscillations.

The rest of this chapter is organized as follows. In section 2 it is presented the deterministic model and analysis for the mechanical system. A stochastic model to take into account the uncertainties associated to the model parameters, and the corresponding stochastic simulations are shown in section 3. Finally, in section 4, final remarks are highlighted.

Deterministic analysis

In the modeling process developed here, the mechanical system is considered as the multibody system illustrated in Figure 2. The masses of the chassis and the tank are assumed to be concentrated at the bottom of the double pendulum, as a point mass denoted by m 1 . On the other hand, the point mass m 2 , at the top of the double pendulum, takes into account the masses of the fans. The point of articulation between the moving suspension and the tower is denoted by P and its distance to the suspension center of gravity is L 1 . The junction P has torsional stiffness k T , and damping torsional coefficient c T . The tower has length L 2 , and is considered to be massless. The left wheel of the vehicle suspension is represented by a pair spring/damper with constant respectively given by k 1 and c 1 located at a distance B 1 from suspension center line, and it is subject to a vertical displacement y e1 . Similarly, the right wheel is represented by a pair spring/damper characterized by k 2 and c 2 , it is B 2 away from suspension center line, and displaces vertically y e2 . The moments of inertia of the suspension and of the tower, with respect to their centers of gravity, are respectively denoted by I 1 and I 2 . The acceleration of gravity is denoted by g. Finally, introducing the inertial frame of reference XY , the vertical displacement of the suspension is measured by y 1 , while its rotation is computed by φ 1 , and the rotation of the tower is denoted by φ 2 . Therefore, this model, which was developed by [START_REF] Sartori | Mathematical modeling and dynamic analysis of a orchards spray tower[END_REF][START_REF] Sartori Junior | Non-linear dynamics of a tower orchard sprayer based on an inverted pendulum model[END_REF], has three degrees of freedom: y 1 , φ 1 and φ 2 . It can be deduced from the geometry of Figure 2 that tower horizontal (lateral) displacement is given by

x 2 = -L 1 sin φ 1 -L 2 sin φ 2 . (1) 
Typically, the sprayer tower moves on an irregular terrain during its operation, which induces oscillatory displacements (loads) in the tires. In order to reproduce a typical load (induced by soil) the left and right tires displacements are respectively assumed to be periodic functions in time, out of phase, with the same amplitude, and a single frequencial component,

y e1 (t) = A sin (ω t) , and y e2 (t) = A sin (ω t + ρ) , (2) 
where A and ω respectively denotes the amplitude and frequency of the tires displacements, and ρ is the phase shift between the two tires.

Employing a Lagrangian formalism to obtain the nonlinear dynamical system associated to the mechanical system, the following set of ordinary differential equations is obtained

[M]    ÿ1 φ1 φ2    + [N]    ẏ2 1 φ 2 1 φ 2 2    + [C]    ẏ1 φ1 φ2    + [K]    y 1 φ 1 φ 2    = g -h, (3) 
where

[M], [N],
[C] and [N] are 3 × 3 (configuration dependent) real matrices, respectively, defined by

[M] =    m 1 + m 2 -m 2 L 1 sin φ 1 -m 2 L 2 sin φ 1 -m 2 L 1 sin φ 1 I 1 + m 2 L 2 1 m 2 L 1 L 2 cos (φ 2 -φ 1 ) -m 2 L 2 sin φ 1 m 2 L 1 L 2 cos (φ 2 -φ 1 ) I 2 + m 2 L 2 2    , (4) 
[N] =    0 -m 2 L 1 cos φ 1 -m 2 L 2 cos φ 2 0 0 -m 2 L 1 L 2 sin (φ 2 -φ 1 ) 0 -m 2 L 1 L 2 sin (φ 2 -φ 1 ) 0    , (5) 
[C] =    c 1 + c 2 (c 2 B 2 -c 1 B 1 ) cos φ 1 0 (c 2 B 2 -c 1 B1) cos φ 1 c T + (c 1 B 2 1 + c 2 B 2 2 ) cos 2 φ 1 -c T 0 -c T c T    , (6) 
[K] =    k 1 + k 2 0 0 (k 2 B 2 -k 1 B1) cos φ 1 k T -k T 0 -k T k T    , (7) 
and let g, and h be (configuration dependent) vectors in R 3 , respectively, defined by

g =    (k 2 B 2 -k 1 B 1 ) sin φ 1 + (m 1 + m 2 )g (k 1 B 2 1 + k 2 B 2 2 ) sin φ 1 cos φ 1 -m 2 g L 1 sin φ 1 -m 2 g L 2 sin φ 2    , (8) 
and

h =    k 1 y e1 + k 2 y e2 + c 1 ẏe1 + c 2 ẏe2 -B 1 cos φ 1 (k 1 y e1 + c 1 ẏe1 ) + B 2 cos φ 1 (k 2 y e2 + c 2 ẏe2 ) 0    . (9) 
Considering the static equilibrium configuration as initial condition, the resulting nonlinear initial value problem is integrated using a Runge-Kutta method [START_REF] Ascher | A First Course in Numerical Methods[END_REF]. The evolution of this nonlinear dynamic system is investigated in the interval [t 0 ,t f ] = [0, 30] s, adopting for the physical and geometrical parameters the nominal (deterministic) values shown in Table 1. The time series corresponding to the tower horizontal (lateral) dynamics x 2 can be seen in Figure 3, while the corresponding phase space trajectories projections (in R 3 and R 2 ) are presented in Figure 4.

From a qualitative point of view, the simulation results shown in Figures 3 and4 allow one to see that, after a transient regime of approximately 5 s, the sprayer tower dynamics accumulate into a limit cycle. Hence, for any practical purpose, the permanent behavior is periodic. In addition, from the quantitative point of view, these same results show that the tower can oscillate with amplitude bigger then 0.2 m, which is the value of B 1 and B 2 . This shows that the sprayer tower can reach a critical level of horizontal (lateral) vibration, which can be harmful to the spraying process. This analysis used a deterministic model for dynamics, where amplitude and frequency of external loading are assumed to be known. However, in practice, amplitude and frequency of external excitation are not known with precision, which induces uncertainties to the dynamic response of the structure. Taking into account the effect of these uncertainties on the model response is essential for a robust design, being the purpose of the next section.

Stochastic analysis

Consider a probability space (Θ , Σ, P), where Θ is a sample space, Σ is a σ -field over Θ , and P : Σ → [0, 1] is a probability measure. In this probabilistic space, the amplitude A and the frequency ω are respectively modeled by the independent random variables A : Σ → R and ω : Σ → R.

To specify the distribution of these random parameters, based only on theoretical information known about them, the maximum entropy principle is employed [START_REF] Jaynes | Information theory and statistical mechanics[END_REF][START_REF] Soize | Stochastic modeling of uncertainties in computational structural dynamics -recent theoretical advances[END_REF]. For A, which is a positive parameter, it is assumed that: (i) the support of the probability density function (PDF) is the positive real line, i.e., Supp p A = (0, +∞); (ii) the mean value is known, i.e. E {A} = µ A ∈ (0, +∞); and (iii) A -1 is a second order random variable, so that E {ln A} = q, |q| < +∞. Besides that, for ω, that is also a positive parameter, the only known information is assumed to be the support Supp

p ω = [ω 1 , ω 2 ] ⊂ (0, +∞).
Consequently, the distributions which maximize the entropy have the following PDFs

p A (a) = 1 (0,+∞) (a) 1 µ A 1 δ 2 A 1 δ 2 A 1 Γ (1/δ 2 A ) a µ A 1 δ 2 A -1 exp -a δ 2 A µ A , (10) 
and

p ω (ω) = 1 [ω 1 ,ω 2 ] (ω) 1 ω 2 -ω 1 , (11) 
which correspond, respectively, to the gamma and uniform distributions. In the above equations 1 X (x) denotes the indicator function of the set X, and 0

≤ δ A = σ A /µ A < 1/
√ 2 is a dispersion parameter, being σ A the standard deviation of A. The stochastic simulations reported here adopted, for the random variables A and ω, the following parameters µ A = 0.15 m, σ A = 0.2 × µ A , and

[ω 1 , ω 2 ] = [0, 2] × 2π rad/s.
Due to the randomness of A and ω, the tire displacements are now described by the following random processes y e1 (t) = A sin (ωt) , and y e2 (t) = A sin (ωt + ρ) .

Therefore, the dynamics of the mechanical system evolves (almost sure) according to the following system of stochastic differential equations Monte Carlo (MC) method [START_REF] Kroese | Handbook of Monte Carlo Methods[END_REF][START_REF] Cunha | Uncertainty quantification through Monte Carlo method in a cloud computing setting[END_REF] is employed to compute the propagation of uncertainties of the random parameters through the nonlinear dynamics. In this method, realizations of the random parameters are generated. Each one defines a new deterministic nonlinear dynamical system, which is integrated using the procedure described in section 2. Then, statistics of the generated data is calculated to access the stochastic nonlinear dynamics.

[M]    ÿ1 φ1 φ2    + [N]    ẏ2 1 φ2 1 φ2 2    + [C]    ẏ1 φ1 φ2    + [K]    y 1 φ 1 φ 2    = g -h, a.s. (13) 
The map n s ∈ N → conv(n s ) ∈ R, used to evaluate the convergence of MC simulation, is defined by

conv(n s ) = 1 n s n s ∑ n=1 t f t=t 0 y 1 (t, θ n ) 2 + φ 1 (t, θ n ) 2 + φ 2 (t, θ n ) 2 dt 1/2 , (14) 
where n s is the number of MC realizations. See [START_REF] Soize | A comprehensive overview of a non-parametric probabilistic approach of model uncertainties for predictive models in structural dynamics[END_REF] for further details.

As can be seen in Figure 5, which shows the evolution of conv(n s ) as a function of n s , for n s = 1024 the metric value is stationary. So, all MC simulations reported in this work use n s = 1024 to address the stochastic dynamics. Realizations of tower horizontal (lateral) dynamics x 2 time series can be seen in Figure 3, as well as the corresponding 95% of probability confidence band. A wide variability in x 2 can be observed. This fact may also be noted in Figure 7, which shows the evolution of the sample mean and standard deviation of x 2 . Note that, in all the interval of analysis, the standard deviation is bigger than the mean value, which indicates a significant spreading of the realizations with respect to the mean.

In Figure 8 are presented estimations of the (normalized1 ) probability density function (PDF) of the tower horizontal vibration, for different instants of time. In all cases it is possible to observe asymmetries with respect to mean and multimodal behavior. In Figure 9 the reader finds the time average of the tower horizontal dynamics PDF, which reflects the multimodal characteristic observed in the instants of time analyzed in Figure 8. By way of reference, a lateral vibration with an amplitude level greater than 10% of the B 1 value will be considered high, i.e.,

large vibration = x 2 (t) > 10% of B 1 . (15) 
For any instant t, it is of interest to determine the value of

P x 2 (t) > 10% of B 1 = 1 -P x 2 (t) ≤ 10% of B 1 , (16) 
where

P x 2 (t) ≤ 10% of B 1 = B 1 /10 -∞ dF x 2 (t) (x 2 ). (17) 
In Figure 10 the reader can see the value of P x 2 (t) > 10% of B 1 as function of time. Note that, for almost all the instants, the probability of an unwanted level 

Final remarks

This work presented the study of the nonlinear dynamics of an orchard tower sprayer subjected to random excitations due to soil irregularities. Random loadings were taken into account through a parametric probabilistic approach, where the external loading was modeled as a harmonic random process, with random parameters distributions specified by maximum entropy principle. Monte Carlo simulations of the stochastic dynamics reveal a wide range of possible responses for the mechanical system, and show the possibility of large lateral vibrations being developed during the sprayer operation. Preliminary results of this work were presented in [START_REF] Cunha | Exploring the nonlinear stochastic dynamics of an orchard sprayer tower moving through an irregular terrain[END_REF], and deeper analysis of this problem, including a more complex stochastic loading, can be found in [START_REF] Cunha | Quantification of parametric uncertainties induced by irregular soil loading in orchard tower sprayer nonlinear dynamics[END_REF].
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  where the real-valued random matrices/vectors [M], [N], [C], [K], g and h are stochastic versions of the matrices/vectors [M], [N], [C], [K], g and h.
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Table 1

 1 Nominal parameters used the simulations of the mechanical system.

	parameter value unit
	m 1	6500 kg
	m 2	800	kg
	L 1	0.2	m
	L 2	2.4	m
	I 1	6850 kg m 2
	I 2	6250 kg m 2
	k 1	465 × 10 3 N/m
	k 2	465 × 10 3 N/m
	c 1	5.6 × 10 3 N/m/s
	c 2	5.6 × 10 3 N/m/s
	B 1	0.85 m
	B 2	0.85 m
	k T	45 × 10 3 N/rad
	c T	50 × 10 3 Nm/rad/s
	A	0.15 m
	w	2π	rad/s
	ρ	π/4	rad

In this context, the meaning of normalized is zero mean and unity standard deviation.
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